
Smaller Self-Indexes for Natural Language⋆

Nieves R. Brisaboa1 , Gonzalo Navarro2, and Alberto Ordóñez1

1 Database Lab., Univ. of A Coruña, Spain. {brisaboa,alberto.ordonez}@udc.es
2 Dept. of Computer Science, Univ. of Chile, Chile. gnavarro@dcc.uchile.cl

Abstract. Self-indexes for natural-language texts, where these are re-
garded as token (word or separator) sequences, achieve very attractive
space and search time. However, they suffer from a space penalty due
to their large vocabulary. In this paper we show that by replacing the
Huffman encoding they implicitly use by the slightly weaker Hu-Tucker
encoding, which respects the lexical order of the vocabulary, both their
space and time are improved.

1 Introduction

Self-indexing [6, 11, 18] is a technique to represent a sequence in compressed
form and offer direct access to any portion of the sequence as well as pattern
searches on it. They emerged as alternatives to suffix arrays [17], which require
several times the text size. Compared to classical solutions like compressed in-
verted indexes [20], suffix arrays and self-indexes have the important advantage
of working on any sequence of symbols, not only on (Western) natural language
texts, so they also support indexed searches on genomic and protein sequences,
music sequences, Oriental language texts, source code repositories, and so on.

Interestingly, self-indexes also offer improvements on natural language in-
dexing [5]. The key idea is to regard the text collection as a sequence of words
(and separators between words), so that pattern searches correspond to word
and phrase searches over the text collection. Regarding words as symbols yields
much better compression ratios than considering characters, so that the index
represents the text within 30%–35% of its original size and in addition offers
fast searches on it. In exchange, this index must handle a large alphabet, thus
the impact of data structures that are proportional to the alphabet size is not
anymore negligible.

In this paper we study a new representation for self-indexes over large al-
phabets. Inspired by a theoretical result [2] on representing permutations, we
replace the Huffman encoding [13] underlying many self-indexes by a Hu-Tucker
encoding [12]. This is slightly suboptimal but it does not alter the vocabulary
ordering, thus avoiding the need to store the reordering that Huffman encoding
carries out. As a result, we show that we reduce both the space and the time of
word-based self-indexes.
⋆ Funded by the Spanish MICINN (PGE and FEDER) refs. TIN2009-14560-C03-0,
MICINN ref. AP2010-6038 (FPU Program) for Alberto Ordóñez, and Fondecyt
Grant 1-110066, Chile for Gonzalo Navarro.

2

2 Self-Indexes

Let T [1, n] be a sequence of symbols over alphabet Σ of size σ, terminated with
a special symbol T [n] = $ ∈ Σ, smaller than all the others in Σ. A full-text index

is a data structure built on T . Given a search pattern P [1,m], the full-text index
usually supports the operation count, which tells the number of occurrences of
P in T , and locate, which gives the positions where P occurs in T . A classical
full-text index is the suffix array [17], which counts in time O(m log n) (and
some variants in O(m+ log n)), and after counting it locates each occurrence in
constant time. A disadvantage of the suffix array is that it uses O(n log n) bits,
which is much more than the n log σ bits needed to represent T .

A self-index is a data structure that represents a text T and in addition
supports the above search operations. It represents T via operation extract, which
retrieves any desired text substring. There exist various self-indexes [18], most
of which represent T within the same space a compressor would achieve, yet still
support efficient searches. In this paper we focus on the FM-Index family [6].

The suffix array A[1, n] of T [1, n] is a permutation [1, n] of all the suffixes
T [i, n] so that T [A[i], n] ≺ T [A[i+1], n] for all 1 ≤ i < n, being ≺ the lexico-
graphic order, where a ≺ b means that a precedes b in the lexicographic order.
Since all the suffixes starting with a pattern P [1,m] are contiguous in A, we can
find the occurrences of the pattern in the text in O(m log n) time via two binary
searches for the first and last suffix starting with P . Once the corresponding
interval A[sp, ep] is identified, we know that P occurs ep − sp + 1 times in T ,
and we can list its occurrences A[i], sp ≤ i ≤ ep.

The Burrows-Wheeler Transform (BWT) [3] of T is a reversible transfor-
mation Tbwt[1, n] such that Tbwt[i] = T [A[i] − 1], except when A[i] = 1, where
Tbwt[i] = T [n] = $. The BWT consists of a reordering of the characters of T .
Given a position j, if we know that T [j] corresponds to Tbwt[i], we can know
where is T [j−1] via an operation called the LF-mapping : LF (i) = A−1[A[i]−1]
(except that LF (i) = A−1[n] if A[i] = 1). As shown by Ferragina and Manzini
[6], LF (i) can be obtained as follows: let C(c) be the number of occurrences of
symbols < c in T . Then, it holds LF (i) = C(c)+rankc(Tbwt, i), where c = Tbwt[i]
and rankc(S, i) is the number of occurrences of c in S[1, i].

The FM-Index [6] family of self-indexes is based on representing C and Tbwt,
the latter with rankc capabilities. The locate and extract functionality is provided
via the LF function together with appropriate samplings of the text, which are
not crucial for this paper. To search for P [1,m], the FM-index uses a technique
called backward search, where the characters of P are considered in reverse order.
Let A[spi+1, epi+1] be the suffixes starting with P [i+1,m] (initially [spm, epm] =
[1, n]). Then it holds spi = C(P [i]) + rankP [i](Tbwt, spi+1 − 1) + 1 and epi =
C(P [i])+ rankP [i](Tbwt, epi+1). The final answer is A[sp, ep] = A[sp1, ep1]. Thus
count takes the time of O(m) rankc operations.

The FM-Indexes mainly differ in how Tbwt is represented [18]. The modern
variants [7] represent S = Tbwt using a wavelet tree [9]. This is a binary tree
with σ leaves, each representing a symbol of Σ. The root represents S[1, n], and
divides the alphabet into Σ1 and Σ2. A bitmap B[1, n] is stored at the root, so

3

that B[i] = 0 iff S[i] ∈ Σ1. The children of the root represent the complementary
subsequences S1 and S2 of S formed by the symbols of Σ1 and Σ2, respectively,
and are built recursively. To access S[i] we examine B[i] at the root. If it is
a 0, we continue recursively on the left child with i=rank0(B, i); otherwise we
continue on the right with i=rank1(B, i). When we arrive at a leaf representing
symbol c ∈ Σ, we know S[i]=c. We can also compute rankc(S, i). We start at
the root and, if c ∈ Σ1, we descend to the left child with i=rank0(B, i); else to
the right with i=rank1(B, i). When we arrive at leaf c, the answer is the current
i value. We use representations of B that support rank in O(1) time [14, 19].

The space required by the wavelet tree is adequately described with the
notion of empirical entropy. Measure nH0(T) is a lower bound to the output size
of a statistical semi-static compressor applied on T that encodes each symbol
of Σ always in the same way. Measure nHk(T) is similar but it allows codes
to depend on the k characters that follow in T the one to be encoded. It holds
Hk(T) ≤ Hk−1(T) ≤ H0(T) ≤ log σ for any k.

We enumerate now the wavelet tree encodings that are competitive for large
alphabets. By using a balanced wavelet tree and an uncompressed bitmap rep-
resentation, the FM-index requires n log σ + o(n log σ) bits of space. If we in-
stead use a particular bitmap representation that compresses them to H0 space
[19], the total space is nHk(T) + o(n log σ) [16], for any k ≤ α logσ n and con-
stant α < 1. In all these cases the operations require O(log σ) time, thus for
example counting requires time O(m log σ). By giving the wavelet trees the
shape of the Huffman tree for the frequencies in T , the space turns out to be
n(H0(T)+1)(1+o(1))+O(σ log n) bits [4], the last term to represent the model,
and the average access and rankc time drops to O(1 + H0(T)) if positions are
probed uniformly at random. If in addition one uses compressed bitmaps [19],
the space becomes nHk(T) + o(n(1 +Hk(T)) +O(σ log n). Finally, a recent so-
called “alphabet partitioning” representation achieves nH0(T)+o(n(1+H0(T))
bits and O(log log σ) operation time [1].

Our aim in this paper is to reduce the impact of the O(σ log n) term, which
is significant for large alphabets.

3 Huffman versus Hu-Tucker-Shaped Wavelet Trees

We describe our implementation of Huffman-shaped wavelet trees, and then our
new variant, Hu-Tucker shaped ones.

3.1 Huffman-Shaped Wavelet Trees

We give the wavelet tree the shape of the Huffman tree of the word frequencies.
The total number of bits stored is less than n(H0(T)+1), where T is the sequence
of (word and separator) tokens forming the text collection. We concatenate all
the bitmaps and create a unique rank-capable structure with the concatenation.
The wavelet tree internal nodes store pointers to this concatenation, indicating

4

where their own bitmap starts. Such pointers use log(n(H0(T) + 1)) bits. The
tree is allocated in an array of 2V − 1 nodes, so tree pointers use log(2V) bits.

We must also spend 2V log V bits to encode the permutation π of words
induced by Huffman coding, and its inverse π−1. To access T bwt[i], we traverse
the wavelet tree until reaching a leaf. At this point, we can know the sum of all
the leaf sizes to the left of the current leaf: it is a matter of accumulating the 0s
to the left of the current position each time we go right. To convert this position
into a leaf rank, that is, to know how many leaves are there to the left of the one
we arrived at, we store an array D[1, V]. This is identical to C, but considers
the cumulative word frequencies in the order given by π. A binary search on D

tells the leaf number r corresponding to the position arrived at. Then, π−1(r)
gives the actual word identifier. Array D requires V log n bits.

To compute rankc(Tbwt, i), we use d = π(c) to convert it into a leaf number,
and then traverse the wavelet tree towards that leaf. Array D can be used to
guide the search: if D[d] < rank0(B,n), where B is the bitmap root, then d is
to the left, else to the right. The criterion inside the descendant nodes is similar.

The total space is at most n(H0(T)+1)(1+o(1)) for the bits. Related to the
vocabulary, we spend V (log(n(H0(T)+1))+2 log(2V)+2 log V +2 log n) bits for
the pointers to bitmaps, tree pointers, permutations, C and D, respectively. This
is n(H0(T)+1)(1+o(1))+V (3 log n+4 log V +O(log log V)), sinceH0(T) ≤ log V .

3.2 Hu-Tucker-Shaped Wavelet Trees

Based on the idea of Barbay and Navarro [2], we use a Hu-Tucker encod-
ing [12] (see also Knuth [15, p. 446]) instead of Huffman. The Hu-Tucker al-
gorithm produces an optimal prefix-free code from a sequence of frequencies
X = 〈x1, . . . , xV 〉 such that: (1) the i-th lexicographically smallest code is for
the i-th symbol and; (2) if li is the length associated to the i-th run, then

∑
lini

is minimal, and upper bounded by n(H0(X) + 2).
Since the leaves of the Hu-Tucker-shaped wavelet tree are in alphabetic order,

it is not necessary to store π nor π−1. Furthermore, we do not need to store D,
as it is identical to C. Thus the space becomes at most n(H0(T)+2)(1+o(1))+
V (2 log n+2 log V +O(log log V)). That is, we have replaced V log n+2V log V
bits by n further bits in the encoding. However, in practice the difference between
Huffman and Hu-Tucker codes is much less than one bit per symbol. We note
that Hu-Tucker shaped wavelet trees have been studied in other scenarios [10].

4 Experimental Evaluation

We compare several wavelet tree encodings that are competitive for large alpha-
bets, on the task of implementing an FM-index on words. The wavelet trees
use either plain or compressed bitmaps. For plain bitmaps we used a sim-
ple 1-level rank implementation [8] of Jacobson’s solution [14], and for com-
pressed bitmaps we used a simple 1-level rank implementation [4] of Raman
et al.’s solution [19]. We consider a balanced wavelet tree with compressed

5

Name Size (MB) Words (n) Voc. (V) H0 gzip fast gzip best bzip2 fast bzip2 best

ZIFF1 158.89 39,395,522 212,195 9.74 39.69% 33.02% 29.68% 25.14%
AP 254.20 61,281,811 250,592 9.96 43.27% 37.39% 33.39% 27.41%
FR 259.72 66,753,342 227,241 9.31 32.32% 25.68% 23.66% 20.06%
DOE 183.81 41,912,456 241,124 9.68 40.19% 33.44% 29.93% 25.44%

Table 1. Collection statistics and compressibility.

bitmaps (Balanced-WT-RRR, achieving nHk(T) + o(n log V) bits [16] as no
pointers are used), a Huffman-shaped wavelet tree with plain bitmaps (HWT-
PLAIN, achieving n(H0(T)+1)(1+o(1))+O(V log n) bits) and with compressed
bitmaps (HWT-RRR, achieving nHk(T) + o(n(H0(T)) + 1) + O(V log n) bits),
a Hu-Tucker-shaped wavelet tree with plain bitmaps (HTWT-PLAIN, achieving
n(H0(T)+2)(1+o(1))+O(V log n) bits) and with compressed bitmaps (HTWT-
RRR, achieving nHk(T)+ o(n(H0(T))+1)+O(V log n) bits), and an “alphabet
partitioned” representation [1] (A-partition, achieving nH0(T)+o(n(H0(T)+1))
bits). As a control value, we introduce in the comparison an existing FM-index
for words: the WSSA [5], using zero space for samplings.

To achieve different space/time trade-offs, we use samplings {32, 64, 128, 180}
for bitmaps. We test the different indexes using collections ZIFF1, AP, FR, and
DOE taken from TREC (http://trec.nist.gov/data.html). Table 1 gives
some statistics and information on compressibility of each collection, in terms of
space achieved by well-known compressors like gzip and bzip2.

We used an isolated Intel R©Xeon R©-E5335@2.00GHz with 16 GB RAM, run-
ning Ubuntu 9.10 (kernel 2.6.32-39-server). We used gcc version 4.4.3 with -O9

options. Time results refer to cpu user time.
Figure 1 shows the different space/time trade-offs achieved, for the process

of counting the occurrences of a phrase of 4 words. It can be seen that our
variant HTWT-RRR dominates most of the space/time map, and it also clearly
surpasses the best compressors. The only competitive alternative, using much
more space, is again our HTWT-PLAIN, and sometimes, using even more space,
A-partition. In particular, each HTWT variant is smaller (and slightly faster)
than its corresponding HWT version. The WSSA is not competitive.

References

1. Barbay, J., Gagie, T., Navarro, G., Nekrich, Y.: Alphabet partitioning for com-
pressed rank/select and applications. In: ISAAC. pp. 315–326 (part II) (2010)

2. Barbay, J., Navarro, G.: Compressed representations of permutations, and appli-
cations. In: STACS. pp. 111–122 (2009)

3. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm.
Tech. Rep. 124, Digital Equipment Corporation (1994)

4. Claude, F., Navarro, G.: Practical rank/select queries over arbitrary sequences. In:
In: SPIRE. pp. 176–187 (2008)

5. Fariña, A., Brisaboa, N., Navarro, G., Claude, F., Places, A., Rodŕıguez, E.: Word-
based self-indexes for natural language text. ACM Trans. Inf. Sys. 30(1), 1–34
(2012)

6

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36

Ti
m

e
(m

ili
se

cs
 p

er
 q

ue
ry

)

Encoding size as a fraction of the text

ZIFF1
10000 patterns. 4 words/pattern

Balanced-WT-RRR
HTWT-PLAIN

HTWT-RRR
HWT-PLAIN

HWT-RRR
A-partition

WSSA

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.22 0.24 0.26 0.28 0.3 0.32 0.34

Ti
m

e
(m

ili
se

cs
 p

er
 q

ue
ry

)

Encoding size as a fraction of the text

AP
100 patterns. 4 words/pattern

Balanced-WT-RRR
HTWT-PLAIN

HTWT-RRR
HWT-PLAIN

HWT-RRR
A-partition

WSSA

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34

Ti
m

e
(m

ili
se

cs
 p

er
 q

ue
ry

)

Encoding size as a fraction of the text

FR
10000 patterns. 4 words/pattern

Balanced-WT-RRR
HTWT-PLAIN

HTWT-RRR
HWT-PLAIN

HWT-RRR
A-partition

WSSA

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34

Ti
m

e
(m

ili
se

cs
 p

er
 q

ue
ry

)
Encoding size as a fraction of the text

DOE
10000 patterns. 4 words/pattern

Balanced-WT-RRR
HTWT-PLAIN

HTWT-RRR
HWT-PLAIN

HWT-RRR
A-partition

WSSA

Fig. 1. Space/time trade-off for count queries.

6. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In:
FOCS. pp. 390–398 (2000)

7. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations
of sequences and full-text indexes. ACM Trans. Alg. 3(2), art. 20 (2007)

8. González, R., Grabowski, S., Mäkinen, V., Navarro, G.: Practical implementation
of rank and select queries. In: WEA (posters). pp. 27–38 (2005)

9. Grossi, R., Gupta, A., Vitter, J.: High-order entropy-compressed text indexes. In:
SODA. pp. 841–850 (2003)

10. Grossi, R., Vitter, J., Xu, B.: Wavelet trees: From theory to practice. In: CCP. pp.
210–221 (2011)

11. Grossi, R., Vitter, J.S.: Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. In: STOC. pp. 397–406 (2000)

12. Hu, T.C., Tucker, A.C.: Optimal computer search trees and variable-length alpha-
betical codes. SIAM J. Appl. Math. 21(4), 514–532 (1971)

13. Huffman, D.A.: A method for the construction of minimum-redundancy codes. In:
Proc. I.R.E. vol. 40, pp. 1098–1101 (1952)

14. Jacobson, G.: Space-efficient static trees and graphs. In: FOCS. pp. 549–554 (1989)
15. Knuth, D.E.: The Art of Computer Programming. Vol. 3: Sorting and Searching.

Addison-Wesley, 2nd edn. (1998)
16. Mäkinen, V., Navarro, G.: Implicit compression boosting with applications to self-

indexing. In: SPIRE. pp. 214–226 (2007)
17. Manber, U., Myers, G.: Suffix arrays: A new method for on-line string searches.

SIAM J. Comp. 22(5), 935–948 (1993)
18. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comp. Surv. 39(1),

art. 2 (2007)
19. Raman, R., Raman, V., Rao, S.: Succinct indexable dictionaries with applications

to encoding k-ary trees and multisets. In: SODA. pp. 233–242 (2002)
20. Witten, I.H., Moffat, A., Bell, T.C.: Managing gigabytes: compressing and indexing

documents and images. Morgan Kaufmann, 2nd edn. (1999)

