
Colored Range Queries and Document Retrieval

Travis Gagie1?, Gonzalo Navarro1?, and Simon J. Puglisi2

1 Dept. of Computer Science, Univt. of Chile, {tgagie,gnavarro}@dcc.uchile.cl
2 School of Computer Science and Information Technology

Royal Melbourne Institute of Technology, simon.puglisi@rmit.edu.au

Abstract. Colored range queries are a well-studied topic in computa-
tional geometry and database research that, in the past decade, have
found exciting applications in information retrieval. In this paper we give
improved time and space bounds for three important one-dimensional
colored range queries — colored range listing, colored range top-k queries
and colored range counting — and, thus, new bounds for various docu-
ment retrieval problems on general collections of sequences. Specifically,
we first describe a framework including almost all recent results on col-
ored range listing and document listing, which suggests new combina-
tions of data structures for these problems. For example, we give the
fastest compressed data structures for colored range listing and docu-
ment listing, and an efficient data structure for document listing whose
size is bounded in terms of the high-order entropies of the library of doc-
uments. We then show how (approximate) colored top-k queries can be
reduced to (approximate) range-mode queries on subsequences, yielding
the first efficient data structure for this problem. Finally, we show how
a modified wavelet tree can support colored range counting in logarith-
mic time and space that is succinct whenever the number of colors is
superpolylogarithmic in the length of the sequence.

1 Introduction

A range query on a sequence S[1, n] of elements in [1, σ] takes as arguments two
indices i and j and returns information about S[i, j]. This information could
be, for example, the minimum or maximum value in S[i, j] [12], the element
with a specified rank in sorted order [15] (e.g., the median [7]), the mode [17], a
complete list of the distinct elements [31], the frequencies of the elements [35], a
list of the k most frequent elements for a given k [20], or the number of distinct
elements [6]. In this paper, motivated by problems in document retrieval, we con-
sider the latter three kinds of problems, which are often referred to as “colored”
range queries: colored range listing (with or without color frequencies), colored
range top-k queries, and colored range counting. These have been associated, re-
spectively, to very relevant document retrieval queries on general texts [31, 35, 37,
20, 15, 12, 9]: listing the documents where a pattern appears (possibly computing

? Partially funded by the Millennium Institute for Cell Dynamics and Biotechnology
(ICDB), Grant ICM P05-001-F, Mideplan, Chile.



2 T. Gagie, G. Navarro, and S. J. Puglisi

term frequencies), finding the most relevant documents to a query (under a tf ×
idf scheme, for example), and computing document frequencies. Such techniques
have been shown to be competitive [9], even beating classical inverted indexes
on natural-language texts.

In Section 2 we describe a framework that includes almost all recent results on
colored range listing and the related problem of document listing. This frame-
work suggests new combinations of data structures that yield interesting new
bounds, including the fastest compressed data structures for colored range list-
ing and an efficient data structure for document listing whose space occupancy
is bounded in terms of the higher-order entropies of the library of documents.
In Section 3 we describe what seems to be the first data structure to support
efficient, general approximate colored range top-k queries. By “approximate” we
mean that we are given an ε > 0 with S and we guarantee that no element
we do not list occurs more than 1 + ε times more often in the range than any
element we list. Finally, in Section 4 we describe a new solution to the col-
ored range counting problem, reducing the space bound from O(n log n) bits
to n log σ + O(n log log n) bits without changing the O(log n) time bound. The
improvements for colored range queries we present in Sections 3 and 4 are not
competitive with the state of the art when mapped to the more specific problem
of document retrieval. However, as we discuss in Section 5, data structures for
general colored range queries can be applied to information retrieval scenarios
that specialized document-retrieval data structures cannot.

2 Listing

Related work. The problem of colored range listing (CRL) is to preprocess a
given sequence S[1, n] over [1, σ] such that later, given a range S[i..j], we can
quickly list all the distinct elements (“colors”) in that range. Almost all recent
data structures for CRL (and the related problem of document listing) are based
on a key idea by Muthukrishnan [31] (see [23] for older work). He defined C[1, n]
to be the array in which C[j] is the largest value i < j such that S[i] = S[j], or 0
if there is no such i, so that S[`] is the first occurrence of a color in S[i..j] if and
only if i ≤ ` ≤ j and C[`] < i. He showed how, if we store C in an O(n log n)-bit
data structure due to Gabow, Bentley and Tarjan [14] that supports O(1)-time
range-minimum queries (RMQs), we can quickly find all the values in C[i..j] less
than i and, thus, list all the colors in S[i..j]. To do this, we find the minimum
value C[`] in C[i..j]; if it is less than i, then we output S[`] and recurse on
S[i..`− 1] and S[`+ 1..j]. Altogether, Muthukrishnan’s CRL data structure uses
O(n log n) bits and O(1) time per color reported.

Muthukrishnan gave his solution to the CRL problem as part of a solution
to the problem of document listing (DL), in which we are given a library of
documents and asked to preprocess them such that later, given a pattern, we can
quickly list all the distinct documents containing that pattern (see [29] for older
work). Let T [1, n] be the concatenation of the D documents. Muthukrishnan
defined the array E[1, n] such that E[i] is the document containing the starting



Colored Range Queries and Document Retrieval 3

position of the lexicographically ith suffix in T . If we store a suffix tree [38, 1] for
T then, given a pattern, we can quickly find the lexicographic ranks i and j of
the first and last suffixes starting with the pattern. This is equivalent to finding
the range A[i..j] in the suffix array [27] A for T that lists the starting positions
of all the suffixes of T that start with the pattern. Once we know i and j, we can
implement a DL query as a CRL query on E[i..j]. Altogether, Muthukrishnan’s
DL data structure uses O(n log n) bits and O(m+ ndoc) time to list the ndoc
documents containing a pattern of length m.

Sadakane [35] gave a slower but smaller version of Muthukrishnan’s DL data
structure, in which he replaced Gabow, Bentley and Tarjan’s data structure by
a 4n + o(n) bit index that, given a range C[i..j], in O(1) time and without
consulting C returns the position of the minimum value in that range (but not
the value itself). He also replaced the suffix tree by a compressed suffix array
(CSA) for T and showed how the CSA and a bit vector V [1, n] can simulate
access to E: 1s in V mark the positions in T where the documents start; then,
for 1 ≤ ` ≤ n, E[`] = rank1(V,CSA[`]), where rank1(V, r) is the number of 1s in
V [1..r]. It takes D log(n/D)+O(D)+o(n) bits to store V such that a rank query
takes O(1) time [33]. Sadakane did not store C at all so, when listing the distinct
documents containing a pattern, he used a D-bit string to mark which documents
he had already listed. He used a recursion similar to Muthukrishnan’s, stopping
whenever it finds a document already reported.

Altogether, Sadakane’s DL data structure uses |CSA| + 4n + D log(n/D) +
O(D) + o(n) bits and O(search(m) + ndoc · lookup(n)) time, where search(m) is
the time to find the range CSA[i..j] containing the starting positions of suffixes
beginning with the pattern and lookup(n) is the time to compute CSA[`] for any
`. (There are a number of CSA implementations, allowing various space/time
tradeoffs [32].) He used |CSA|+ 4n+ o(n) additional bits for data structures to
compute the pattern’s frequency in each document, increasing the time bound
toO(search(m) + ndoc(lookup(n) + log log ndoc)) (assuming lookup(n) is also the
time to find CSA−1[`], where CSA−1 is the inverse permutation).

Välimäki and Mäkinen [37] gave an alternative slower-but-smaller version of
Muthukrishnan’s CRL data structure, in which they used a 2n+ o(n) bit, O(1)
time RMQ succinct index due to Fischer and Heun [13] that requires access to C.
Välimäki and Mäkinen showed how access to C can be implemented by rank and
select queries on S; specifically, for 1 ≤ ` ≤ n, C[`] = selectS[`](S, rankS[`](S, `)−
1), where selecta(S, r) is the position of the rth occurrence of a in S. Välimäki and
Mäkinen stored S in a multiary wavelet tree [10], which takes nH0(S)+o(n) log σ
bits and O(1 + log σ/ log log n) time; when σ is polylogarithmic in n, it takes
nH0(S) + o(n) bits and O(1) time. The 0-th order empirical entropy H0(S) =∑
a

occ(a,S)
n log n

occ(a,S) , where occ(a, S) is the number of times element a occurs

in S, is the Shannon entropy of the distribution of elements in S.

Altogether, their CRL data structure takes nH0(S)+2n+o(n) log σ bits and
O(1 + log σ/ log log n) time per reported color. Combining this data structure
with a CSA yields a DL data structure that takes |CSA|+n logD+2n+o(n) logD
bits and O(search(m) + ndoc(1 + logD/ log log n)) time. They also showed how



4 T. Gagie, G. Navarro, and S. J. Puglisi

to compute the pattern’s frequency in a document d using two rank queries on E,
rankd(E, j)− rankd(E, i− 1). Since multiary wavelet trees support rank queries
in the same time as accesses, it follows that reporting the pattern’s frequency
in all the documents does not affect their time and space bounds. Finally, they
noted that, using one select query per occurrence, they can list the positions of
the pattern’s occurrences in a specified document.

Gagie, Puglisi and Turpin [15] showed that a binary wavelet tree [18] can be
used to compute range quantile queries on S in O(log σ) time, and that these
queries can be used to enumerate the distinct elements in S[i..j], eliminating
the need for RMQs. A binary wavelet tree for S takes nH0(S) + o(n) log σ bits
and supports access, rank and select in O(log σ) time; therefore, by itself it is a
CRL data structure that takes O(log σ) time per reported element. Combining
a wavelet tree for E with a CSA for T , we obtain a DL data structure that takes
|CSA|+ n logD + o(n) logD bits and O(search(m) + ndoc logD) time.

Hon, Shah and Vitter [20] described a solution to DL similar to Sadakane’s
but removing the Θ(n)-bit space term. They pack logε n consecutive cells of
C into a block and build the RMQ data structure on the block minima (so it
takes O(n/ logε n) bits of space), and tries to report (avoiding repetitions) all
the documents in the block that holds the minimum. Their whole data struc-
ture takes |CSA|+D log(n/D) +O(D) + o(n) bits and answers queries in time
O(search(m) + ndoc logε n · lookup(n)), for any constant ε > 0.

They can also return the number of times the pattern occurs in any docu-
ment by using, like Sadakane, one CSAd local to each document d. These add
up to other |CSA| extra bits. To find out how many times document d = E[`],
i ≤ ` ≤ j, appears in E[i..j], it maps ` to position p = CSA[`]− select1(V, d) + 1
within document d, and then to `′ = CSA−1d [p]. This is the first lexicographic
occurrence of the pattern in CSAd. The last occurrence is found by an expo-
nential search and then binary search on CSAd[`

′..], for the largest c such that
CSA−1[CSAd[`

′ + c] + select1(V, d)− 1)] ≤ j. Then the answer, c+ 1, is obtained
in time O(lookup(n) log c) = O(lookup(n) log n).

New tradeoffs. All the previous solutions have essentially the same ingredients:
for CRL, access to S, distinct color enumeration on S (implemented via RMQs
on C or range quantile queries on S) and, to count the number of times each
color occurs, rank on S; for DL, a suffix tree or CSA for T , access to E, distinct
document enumeration on E and, to report the pattern’s frequency in each
document, rank on E. Solutions for CRL can be used for DL with the addition
of a CSA for T , setting S = E and σ = D. Recall that Sadakane’s [35] and Hon,
Shah and Vitter’s [20] solutions for DL implement access to E using a CSA and
bit vector V on T , so they cannot be used for general CRL.

Our main contribution in this section is the observation that, using new data
structures for access, color enumeration and rank, we can obtain interesting new
bounds for both CRL and DL. This is formalized in the next theorem.

Theorem 1. Suppose we are given a sequence S[1, n] over [1, σ] and we store
any data structure supporting access on S in time tacc and any structure sup-



Colored Range Queries and Document Retrieval 5

porting distinct enumeration in a range of S in time tenum per element (and any
structure supporting rank on S in time trank if computing frequencies is desired).
Then later, given i and j, we can list the distinct elements in S[i..j] in time
O(tacc + tenum) per reported element, plus O(trank) to list its frequency in S[i..j].

Corollary 1. Given a concatenation T [1, n] of D documents, we can store either

– the CSA for T and data structures supporting access, enumeration and rank
on the corresponding array E[1, n] in times tacc, tenum and trank, or

– the CSA for T , a bit vector occupying D log(n/D) +O(D) + o(n) bits, and
data structures supporting enumeration and rank on E as above,

such that, given a pattern of length m, we can list the distinct documents con-
taining that pattern in time O(search(m)) plus O(tacc + tenum + trank) per reported
document, where tacc = lookup(n) in the second case and trank is required only in
order to list the frequencies of the documents.

A selection of these data structures is shown in Table 1. If we choose a
set of rows covering support for access and enumeration (and rank) then we
can answer CRL queries (and return the frequency of each color). The space
bound is the sum of the space bounds and the time bound per reported color is
O(tacc + tenum + trank), the latter term for computing frequencies. For example,

2+9: is Välimäki and Mäkinen’s scheme [37].
1: is the scheme by Gagie, Puglisi, and Turpin [15].
3+9+10: combining Ferragina and Venturini’s [11] data structure with Fis-

cher’s [12] succinct index for RMQ and Grossi, Orlandi and Raman’s [19]
succinct index for rank gives a solution for CRL that takes nHk(S) + 2n +
o(n) log σ + n o(log σ) bits and O(1) time per reported color, matching the
time of Muthukrishnan’s O(n log n)-bit space solution [31]. The k-th order
empirical entropy Hk(S) measures the compressibility of S when we use
contexts of length k; see [28] for details. The frequency of any color can be
obtained in time O(log log σ).

6+9: is similar to the above but the n o(log σ) space term is avoided, as the
structure by Barbay, Gagie, Navarro and Nekrich [4] computes rank as well.
This becomes the least-space reported solution to CRL, listing in O(1) time.

(4 or 5)+9: combining Barbay et al.’s [4] access and rank data structure
with Fischer’s [12] succinct index for RMQ gives a solution for CRL that
takes nH0(S) + 2n + o(n)(H0(S) + 1) bits and O(log log σ) bits per re-
ported color and its frequency (variant 4), which is the fastest compressed
solution when we want all the frequencies; or O(1) per reported color and
O(log log σ log log log σ) per reported frequency (variant 5), which trades fre-
quency reporting time for constant-time listing.

[35]+9: replacing Sadakane’s [35] RMQ data structure with the one by Fis-
cher [12] improves Sadakane’s space bound by 2n bits.

[20]+10: replacing Hon, Shah and Vitter’s [20] CSAd structures by that of Grossi
et al. [19] speeds up counting document frequencies (here tacc = lookup(n)).



6 T. Gagie, G. Navarro, and S. J. Puglisi

Table 1. Space and time bounds for some data structures supporting operations on
S[1, n] over [1, σ]. The O(σ logn) extra bits of wavelet trees [18, 10] can be avoided [26]
so we have not included it. The space bound in rows 3 and 6 holds for k = o(logσ n).
In rows 7 and 8, g is the size (in bits) of a given context-free grammar generating S
and only S and α is the inverse Ackermann function. The succinct index for RMQ in
row 9 does not need access to the underlying data (i.e., C), but the succinct index for
rank in row 10 does (i.e., S), hence the time of the latter depends on tacc. Due to space
constraints, here we write log[2] and log[3] for log log and log log log.

row source space (in bits) tacc tenum trank

1 [18, 15] nH0(S) + o(n) log σ O(log σ) O(log σ) O(log σ)

2 [10, Cor. 3.3] nH0(S) + o(n) log σ O
(

1 + log σ

log[2] n

)
O
(

1 + log σ

log[2] n

)
3 [11] nHk(S) + o(n) log σ O(1)

4 [4, Thm. 1] nH0(S) + o(n)(H0(S) + 1) O
(
log[2] σ

)
O
(
log[2] σ

)
5 [4, Thm. 1] nH0(S) + o(n)(H0(S) + 1) O(1) O

(
log[2] σ log[3] σ

)
6 [4, Thm. 2] nHk(S) + o(n) log σ O(1) O

(
(log[2] σ)2 log[3] σ

)
7 [5, Thm. 1] O(g α(g)) O(logn)

8 [5, Thm. 1] O(g) O
(
logn log[2] n

)
9 [12, Thm. 1] 2n+ o(n) O(1)

10 [19, Thm. 5(a)] n o(log σ) O
(
tacc log[2] σ

)

The |CSA| space is exchanged by n o(log d) bits, which can be less or more.
We can then also discard the D-bit string marking documents used by both
solutions [35, 20] and replace it with rank queries on E.

(7 or 8)+9+10: combines Bille, Landau and Weimann’s [5] grammar-based
data structure for access, Fischer’s [12] succinct index for RMQ, and Grossi
et al.’s [19] succinct index for rank. González and Navarro [16] showed how
to build a grammar generating an array that, together with some other small
data structures, gives access to the suffix array (SA) A. Building Bille, Lan-
dau and Weimann’s data structure for this grammar, we obtain a O(log n)-
time data structure for DL whose size is bounded in terms of the high-order
entropies of the library of documents. This is described next.

Theorem 2. Given a concatenation T [1, n] of D documents, we can store T in

|CSA|+ 2n+ o(n) + n o(logD)+

O
((
nmin(Hk(T ), 1) +D

)
log

(
1

min(Hk(T ), 1) +D/n

)
α(n) log n

)
bits, for any k ≤ α logτ n, constant 0 < α < 1 and τ the size of the alphabet of
T . Then given a pattern of length m, we can list the distinct documents contain-
ing that pattern in time O(search(m)) plus O(log n) to list each document, plus
O(log n log logD) to give its frequency.



Colored Range Queries and Document Retrieval 7

Proof. González and Navarro’s algorithm takes advantage of the so-called runs
of the SA, that is, areas A[i..i+ `] such that there is some other area A[j..j + `]
where A[j+k] = A[i+k]+1 for all 0 ≤ k ≤ `. Let R be the number of runs with
which the SA can be covered; it is known that R ≤ min(n, nHk(T ) +σk) for any
k [25]. González and Navarro represent the SA differentially so that these areas
become true repetitions, and use a grammar-based compression algorithm that
represents A using at most R log(n/R) rules. We note that, in E, those SA runs
become identical areas E[i..i+ `] = E[j..j + `] except for at most D cells where
the document number can change when we advance one text position. It follows
that, by applying the same compression algorithm [16] to E we obtain at most
(R+D) log(n/(R+D)) rules and hence the space given in the theorem. ut

As a final note applying only to document collections, Sadakane’s CSA [34]
essentially represents a function Ψ such that A[Ψ(i)] = A[i]+1, which is stored in
compressed form and any value computed in constant time. Thus one advances
virtually in the text by successively applying Ψ . Now assume we sample E with
a step r such that, for any i, E[Ψ j(i)] is sampled for some 0 ≤ j < r. Then one
computes any E[i] value in time O(r) by following Ψ until hitting a sampled
entry, whose value will be the same as E[i] if we also sample every document
end in the text collection. The space is O((n/r) log r) + (n/r) logD for a bitmap
marking the sampled cells and an array with the sampled values, respectively.
For example, using r = logD yields access to E (though not rank nor select on
it) in the same time of a binary wavelet tree, within bit space n+o(n). Depending
on the relation between n and D, this can be an interesting alternative to using
lookup and marking the document beginnings [35].

3 Top-k Queries

Improving the current-best solution for documents. Recently, Hon, Shah
and Wu [21] described a data structure that stores a library T of D documents of
total length n in O

(
n log2 n

)
bits such that later, given a pattern of length m and

an integer k ≥ 1, we can find the k documents that contain that pattern most
frequently, in O(m+ log n log log n+ k) time. We call this the document top-k
problem (DTK). Hon, Shah and Vitter [20] gave solutions for DTK that store
T in O(n log n) bits and answer queries in O(m+ k log k) time, or in 2|CSA| +
o(n) +D log(n/D) +O(D) bits and O

(
search(m) + k log3+ε n · lookup(n)

)
time.

The last solution consists of a tree τk built for each k power of 2. For τk they
divide E into blocks of size z = k log2+ε n, and τk consists of the suffix tree nodes
that are lowest common ancestors (lca) of end points of blocks, and transitively
all the lcas of pairs of those nodes. At each node, τk stores the k most frequent
documents within the whole blocks it contains, and their frequencies. Thus each
τk requires O((n/z)k log n) = O

(
n/ log1+ε n

)
bits, and all the trees together add

up to O(n/ logε n) bits. At query time, to find the top-k documents in E[i..j],
they increase k to the next power of 2 and find the highest node of τk whose
range [i′..j′] is contained in [i..j]. They show that i′ − i ≤ z and j − j′ ≤ z by



8 T. Gagie, G. Navarro, and S. J. Puglisi

the lca properties. Then the query is answered by considering the k candidates
given by τk and the O(z) further candidates found at positions of E[i..i′−1] and
E[j′ + 1..j], for each of which they compute the frequency. The total time, con-
sidering priority queue operations, is O(search(m) + z(trank + log k) + k log k) =
O
(
search(m) + k log3+ε n · lookup(n)

)
. This time bound can be improved to

O
(
search(m) + k logD log(D/k) log1+ε n · lookup(n)

)
by noticing that (a) one

needs only O(logD) powers of 2 for k since k ≤ D; (b) one can store the top-k
elements in the τk trees and not their frequency. The k frequencies can be com-
puted at query time without changing the time complexity since k = o(z). Thus
the k documents out of D can be stored in increasing order and as gamma-
encoded differences, taking O(k log(D/k)) bits. Therefore we can use smaller
blocks of size z = k logD log(D/k) logε n, which are processed faster, and still
have O(n/ logε n) = o(n) space for the structure.

In addition, as shown in Section 2, by replacing the |CSA| bits of their
solution for computing frequencies, by Grossi et al.’s [19] succinct index for
rank, we achieve a new space bound of |CSA| + o(n) + D log(n/D) + O(D) +
n o(logD) bits, which can be better or worse than before, but the time is reduced
to O(search(m) + k logD log(D/k) logε n · lookup(n)), for any ε (log-logarithmic
terms disappear by adjusting ε).

An approximate solution to the general problem. We now give a solution
to the approximate colored range top-k problem (CRTK), which asks us to
preprocess a given sequence S such that later, given a range S[i..j] and an
integer k ≥ 1, we can return an approximate list of the k elements (“colors”) that
occur most frequently in that range. We do not know of any previous efficient
solutions to this problem, although finding the k most frequent or important
items in various data sets and models is a well studied problem and there has
been work on interesting special cases (see, e.g., [22, 24]).

Greve, Jørgensen, Larsen and Truelsen [17] recently gave a data structure
that, for any ε > 0, stores S in O((n/ε) log n) bits such that we can find an
element such that no element is more than 1 + ε times more frequent in S[i, j],
in O(log(1/ε)) time. Thus, their data structure solves the approximate CRTK
problem for k = 1, which is called the approximate range-mode problem. We can
assume their data structure also returns the frequency of the approximate mode
in S[i..j], since adding a rank data structure for S allows us to compute this and
does not change their space bound. We show how to use their data structure as
a building block to store S in O((n/ε)(H0(S) + 1) log n) bits such that, given
an integer k, we can approximately list the k most common elements and their
frequencies in O(k log σ log(1/ε)) time.

We first build a binary wavelet tree for S [18]. This is a balanced tree where
each node represents a range of [1, σ]: the root represents the full range, the
leaves the individual symbols, and the children of a node represent the left and
right halves of the node’s interval. For each node v, let Sv be the subsequence of
S consisting of characters labelling the leaves in v’s subtree. The original wavelet
tree does not store Sv, but just a bitmap Bv of length |Sv| telling whether each
Sv[i] went to the left or right child. Rank and select over those bitmaps allow



Colored Range Queries and Document Retrieval 9

accessing any S[i], as well as computing ranka(S, i) and selecta(S, i), in time
O(log σ), and the overall space is n log σ(1 + o(1)). It can also track any range
S[i..j] down to any node [26].

Here we do store each subsequence Sv in an instance of Greve et al.’s approx-
imate range-mode data structure. For now, assume [i, j] = [1, n] and that Greve
et al.’s data structure returns the exact mode, rather than an approximation.
Notice that, if a1, . . . , ak′ are the k′ most frequent elements and v is an ancestor
of the leaf labelled ak′ but not of those labelled a1, . . . , ak′−1, then ak′ is the
mode in Sv. Let V be the set of ancestors of a1, . . . , ak′−1 and let V ′ be the set
of nodes whose siblings are in V but who are not in V themselves; V ′ contains
the root of the tree if V is empty. We can find ak′ by finding the mode of Sv for
each v ∈ V ′, finding their frequencies in S, and taking the most frequent.

We keep the modes for each v ∈ V ′ in a priority queue, ordered by their
frequencies and with the corresponding nodes of the wavelet tree as auxiliary
data. Notice ak′ is the head of the queue, so we can find and output it in O(1)
time; let v be the corresponding node, i.e., the node in V ′ such that the mode
of Sv is ak′ . To update the queue, we delete ak′ , perform range-mode queries on
the siblings of nodes on the path from v to the leaf labelled ak′ , and add the
modes to the queue. There are alwaysO(k log σ) nodes in the queue (the tree is of
heightO(log σ)) so, if we use a priority queue allowingO(log(k log σ)) = O(log σ)
time deletion and O(1) time insertion [8], then we can find the k most frequent
elements in S in O(k log σ log(1/ε)) time. We can deal with general i and j by
using the wavelet tree to compute the appropriate range in each subsequence
[26]. As for the approximation, it is clear that, whenever we output an element,
none of the elements not output yet can be more than 1+ε times more frequent.

If we use a Huffman-shaped wavelet tree, then calculation shows that our
space usage is O((n/ε)(H0(S) + 1) log n) bits. However, since a Huffman tree can
be very deep (height n−1 for a very skewed distribution), this would compromise
our time bound. Therefore, we use a an O(log σ)-restricted Huffman tree [30],
which yields both the space and time bounds we want.

Theorem 3. Given a sequence S[1, n] over an alphabet of size σ and a constant
ε > 0, we can store S in O((n/ε)(H0(S) + 1) log n) bits such that, given i, j and
k, we can list k distinct elements such that no element is more than 1 + ε times
more frequent in S[i..j] than any of the ones we list, in O(k log σ log(1/ε)) time.

This (1 + ε)-approximation makes sense in information retrieval scenarios,
where top-k queries are understood to be just approximations to the ideal answer.

Corollary 2. Given a set of D documents of total length n and a constant ε > 0,
we can store them in O((n/ε) log n logD) bits such that, given a pattern of length
m and k, we can list k distinct documents such that no document contains that
pattern more than 1 + ε times as often as any of the ones we list, in a total of
O(m+ k logD log(1/ε)) time.

Although Corollary 2 is weaker than Hon, Shah and Vitter’s uncompressed
result, our approach applies to the general colored range query problem, and may



10 T. Gagie, G. Navarro, and S. J. Puglisi

be faster than what the upper bound suggests. For example, if the documents are
webpages sorted lexicographically by URL, then it is more likely that interesting
patterns will occur often in clusters of documents than widely spread out [36, 39].
In this case, leaves in a balanced wavelet tree for E that are labelled with the k
distinct documents that contain the pattern most often, are likely to share many
ancestors; if so, our data structure can speed up to O(m+ k log k log(1/ε)).

The K-mining problem. Muthukrishnan [31] defined (document) K-mining
(DKM) as the problem of finding all the documents in the library that contain
a given pattern at least K times. He gave an O

(
n log2 n

)
-bit data structure

that, given K and a pattern of length m, answers queries in O(m) time plus
O(1) time per reported document. Hon, Shah and Wu [21] noted that we can
use binary search with a DTK data structure to solve DKM, with an O(log n)
slowdown for the queries. They then showed how we can use an O

(
n log2 n

)
-bit

data structure to find the largest k such that k documents contain the pattern
K times, in O(search(m) + log n log logn) time. Hon, Shah and Vitter [20] gave
an O(n log n)-bit data structure that answers K-mine queries in time O(m)
plus O(1) per reported document. They also showed how to improve the space
bound to 2|CSA| + o(n) + D log(n/D) bits at the cost of increasing the time
O
(
search(m) + k log3+ε n · lookup(n)

)
, which we can improve similarly as before.

Neither of these solutions applies to general colored range queries, however.
Since our CRTK data structure outputs elements in (approximately) non-

increasing order by frequency in the range, it also solves (approximately) the
natural generalization of DKM: i.e., the colored range K-mine (CRKM) problem,
which asks us to report all the elements that occur at least K times in S[i..j]. If
we query our data structure until the next element it would report occurs fewer
than (1 + ε)K times, then we use O(log σ log(1/ε)) time per reported element,
but we may miss some elements that occur between K and (1 + ε)K times.
Alternatively, if we query our data structure until the next element it would
report occurs fewer than K/(1 + ε) times, then we find all the elements that
occur at least K times, but we can bound our time only in terms of the number
of elements that occur at least K/(1 + ε) times.

4 Counting

Given a wavelet tree for the array C we described in Section 2, and positions i
and j, it is not difficult to count the number of values less than i in C[i..j] [26],
which is the number of distinct elements in S[i..j] [31]. The wavelet tree for C
takes O(n log n) bits and does this counting in time proportional to its height,
O(log n). This already matches the best known solution, due to Bozanis, Kitsios,
Makris and Tsakalidis [6]. In the rest of this section we show how to reduce the
space bound to n log σ +O(n log log n) bits.

Theorem 4. We can represent a sequence S[1, n] over alphabet [1, σ] in n log σ+
O(n log log n) bits of space so as to count the number of distinct elements in any
interval S[i..j] in time O(log n).



Colored Range Queries and Document Retrieval 11

Proof. Our structure represents C[1, n] using a wavelet tree. We have already
explained how to attain the given time bound. The remaining problem is that
the wavelet tree for C requires n log n(1 + o(1)) bits. We reduce the space to
n log σ+O(n log log n) as follows. Note that each symbol c ∈ [1, σ] that appears
at positions c1 < c2 < . . . < cnc

, S[c1] = S[c2] = . . . = S[cnc
] = c, induces a

chain in C of the form C[c1] = 0, C[c2] = c1, C[c3] = c2, . . ., C[cnc
] = cnc−1.

Now consider the middle point n/2 of C. For any c, let us call mc the last value
such that cmc < n/2. Then for any c and any k ≤ mc it holds C[ck] < n/2,
and for any k > mc it holds C[ck] ≥ n/2. Thus C[cmc+1 ] = cmc ≥ n/2 and
C[cmc

] < n/2, and i = mc is the only value satisfying this for c. Thus all the
sequence values are C[i] < n/2 for i < n/2. For i ≥ n/2 there are at most σ
positions i = mc ≥ n/2 such that C[mc] < n/2, and all the rest are C[i] ≥ n/2.
Thus there are at most σ positions in C where C[i] < n/2 and C[i + 1] ≥ n/2,
and at most σ positions where C[i] ≥ n/2 and C[i + 1] < n/2. Since the root
bitmap Bv satisfies Bv[i] = 0 iff C[i] < n/2, there are at most σ transitions
from 0 to 1 in Bv, and at most σ transitions from 1 to 0. Both children of v may
contain the σ subsequences and thus each may contain up to σ transitions again.
Thus, there are at most 2dσ 0/1 and 1/0 transitions among all the bitmaps at
depth d of the wavelet tree.

For d ≥ log(n/σ) this upper bound is useless, so we may assume that bitmaps
at depths log(n/σ) to log n − 1 are incompressible. These add up to n(log n −
log(n/σ)) = n log σ bits, plus o(n log σ) to provide rank and select capabilities
to those bitmaps. For smaller d, we introduce a compression scheme. Consider
the concatenation Bd of all the bitmaps at depth d. Then Bd contains at most
2dσ runs of 0s and 2dσ runs of 1s. We represent Bd using two sparse bitmaps.
A bitmap Rd[1, n] will mark with a 1 the beginning of each run of 0s or 1s. Let
o1, o2, . . . the lengths of the runs of 1s. A second bitmap Od[1, rank1(Bd, n)] will
have a 1 at positions 1, 1+o1, 1+o1+o2, . . .. Then rank1(Bd, i) can be computed
as follows. First we compute x = rank1(Rd, i). Because C[i] < i, the first run of
Bd is a 0-run, thus if x is odd then i is within a 0-run and otherwise within a
1-run. If x is odd, then we must count the 1s in the first (x− 1)/2 1-runs of Bd,
that is, rank1(Bd, i) = select1(Od, (x + 1)/2) − 1. If, instead, x is even, then we
must count the 1s in the first x/2− 1 1-runs and add the 1s in the current run.
This is rank1(B, di) = select1(Od, x/2) + i− select1(Rd, x).

We represent Rd with Raman et al.’s technique [33]. If Rd has m 1s, then the
representation takes m log n

m + O(m) + o(n) bits. At level d we have
m ≤ 2dσ, thus Rd requires at most 2dσ log n

2dσ
+ O

(
2dσ
)

+ o(n) bits (that
o(n) is O(n log log n/ log n)). Added over all the compressible levels we have∑log(n/σ)−1
d=0 2dσ log n

2dσ
+O

(
2dσ
)

+ o(n) = O(n) + o(n log(n/σ)) .
Analogously, the Od bitmap takes O(n) + o(n log(n/σ)) bits. Added to the

incompressible levels, we have n log σ+o(n log n) bits of space, or more precisely,
n log σ + O(n log log n). The preprocessing time is the same as for a classical
wavelet tree over alphabet [0, n− 1]. ut

On the other hand, the array C can also provide access to S as follows. Sample
the tth occurrence of each color c, say at S[i] = c, in a bitmap B[1, n], that is



12 T. Gagie, G. Navarro, and S. J. Puglisi

B[i] = 1, and store the samples at W [rank1(B, i)] = c. Then, we can find out
any S[j] without storing S by repeatedly asking whether B[i] = 1, B[C[i]] = 1,
B[C[C[i]]] = 1, and so on until finding a sampled value, in time O(t log n). The
extra space is n + o(n) + O((n/t) log σ), so we can set t = O(logε n) for any
constant ε > 0 to make it n + o(n) log σ. Therefore, our representation replaces
S, as it can compute any S[i] in time O

(
log1+ε n

)
. Its space occupancy, n log σ+

o(n) log σ +O(n log log n), makes the representation succinct (i.e., |S|(1 + o(1))
bits) whenever σ is more than polylogarithmic in n.

Theorem 4, applied over sequence S = E, lets us compute document frequen-
cies for arbitrary patterns. Find the suffix array interval CSA[i..j] corresponding
to the pattern, and then count the different values in E[i..j]. For this particular
case, however, there is a better solution [35] using 2n + o(n) bits and constant
time, yet it does not generalize to colored range counting. On the other hand,
since our representation provides access to E in time tacc = O

(
log1+ε n

)
, it can

be regarded within the framework of Section 2.

5 Further Applications to Information Retrieval

We have presented new and efficient solutions for three natural colored range
queries: colored range listing, colored range top-k queries, and colored range
counting. Our solutions for colored range listing lead to the fastest compressed
data structures for that problem and for document listing; our (approximate)
solution for colored range top-k queries is, as far as we know, the first efficient
data structure for that problem; and our solution for colored range counting
reduces the space bound from O(n log n) bits to n log σ + O(n log log n) bits
while maintaining O(log n) query time. Although our solutions for colored range
top-k queries and colored range counting do not give improved bounds for the
corresponding document retrieval problems, our more general data structures
may find applications to other information retrieval scenarios beyond ranges
induced by searching for exact patterns in suffix trees or arrays.

A simple example of natural queries not fitting in the restricted model are
lexicographic range queries. Imagine we look for patterns lexicographically in
the range ["1969", "2010"] in documents; the result is a suffix array range that
does not correspond to any suffix tree node. In this case, existing techniques for
document retrieval based on suffix tree properties (such as for computing top-k
queries [20] and for computing document frequencies [35]) will not work. The
general techniques we have introduced in this article do.

Yet another scenario that is not captured by the suffix tree model is inverted
indices for natural language text (as opposed to the general texts addressed
in this paper) [3]. Consider that we store the list of documents where each
vocabulary word appears, consecutively according to the order of the words
in the vocabulary. If queries are simple words, then all the document retrieval
problems we have considered are easily solved by storing the documents of each
list ordered by decreasing term frequency. Yet, imagine we wish to provide also
the same functionality on stemmed searching, upon user request at query time.



Colored Range Queries and Document Retrieval 13

One solution is to group together the vocabulary words sharing the same stem
so that, while individual word queries can be handled as usual, stemmed queries
are handled by considering the concatenation of the lists of the words sharing
the same stem. Then we can regard the concatenation of all inverted lists as
the array E and use the general techniques developed in this paper to answer
various document queries on stems: Document listing and counting algorithms
apply verbatim, while those involving frequencies pose further challenges as each
entry in the inverted lists is weighted by the term frequency of the word in the
document. Other query operations, from case folding to thesauri expansion, can
also be reduced to a proper grouping of lists.

Finally, there are information retrieval scenarios completely different from
the text search framework. For example, colored range queries seem a natural
tool for query mining [2], where logs of queries posed to search engines are
recorded over periods of time, and then analyzed to discover trends in user
behavior. By considering that each different query is a color, we can find the
most popular queries or the number of distinct queries within any given time
period, among many other potential queries of interest, which could in turn
become new challenging colored range queries.

References

1. A. Apostolico. The myriad virtues of subword trees. In Combinatorial Algorithms
on Words, NATO ISI Series, pp. 85–96. Springer-Verlag, 1985.

2. R. Baeza-Yates. Applications of web query mining. In Proc. ECIR, pp. 7–22, 2005.
3. R. Baeza-Yates and B. Ribeiro. Modern Information Retrieval. AW, 1999.
4. J. Barbay, T. Gagie, G. Navarro, and Y. Nekrich. Alphabet partitioning for com-

pressed rank/select with applications. Technical Report 0911.4981, arXiv, 2010.
5. P. Bille, G. M. Landau, and O. Weimann. Random access to grammar compressed

strings. Technical Report 1001.1565, arXiv, 2010.
6. P. Bozanis, N. Kitsios, C. Makris, and A. K. Tsakalidis. New upper bounds for

generalized intersection searching problems. In Proc. ICALP, pp. 464–474, 1995.
7. G. S. Brodal, B. Gfeller, A. G. Jørgensen, and P. Sanders. Towards optimal range

medians. Theoretical Computer Science. To appear.
8. S. Carlsson, J. I. Munro, and P. V. Poblete. An implicit binomial queue with

constant insertion time. In Proc. SWAT, pp. 1–13, 1988.
9. J. S. Culpepper, G. Navarro, S. J. Puglisi, and A. Turpin. Top-k ranked document

search in general text databases. In Proc. ESA, 2010. To appear.
10. P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed representa-

tions of sequences and full-text indexes. ACM Transactions on Algorithms (TALG),
3(2):article 20, 2007.

11. P. Ferragina and R. Venturini. A simple storage scheme for strings achieving
entropy bounds. Theoretical Computer Science, 371(1):115–121, 2007.

12. J. Fischer. Optimal succinctness for range minimum queries. In Proc. LATIN, pp.
158–169, 2010.

13. J. Fischer and V. Heun. A new succinct representation of RMQ-information and
improvements in the enhanced suffix array. In Proc. ESCAPE, pp. 459–470, 2007.

14. H. N. Gabow, J. L. Bentely, and R. E. Tarjan. Scaling and related techniques for
geometry problems. In Proc. STOC, pp. 135–143, 1984.



14 T. Gagie, G. Navarro, and S. J. Puglisi

15. T. Gagie, S. J. Puglisi, and A. Turpin. Range quantile queries: Another virtue of
wavelet trees. In Proc. SPIRE, pp. 1–6, 2009.

16. R. González and G. Navarro. Compressed text indexes with fast locate. In Proc.
CPM, pp. 216–227, 2007.

17. M. Greve, A. G. Jørgensen, K. D. Larsen, and J. Truelsen. Cell probe lower bounds
and approximations for range mode. In Proc. ICALP, pp. 605–616, 2010.

18. R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text indexes.
In Proc. SODA, pp. 636–645, 2003.

19. R. Grossi, A. Orlandi, and R. Raman. Optimal trade-offs for succinct string in-
dexes. In Proc. ICALP, pp. 678–689, 2010.

20. W.-K. Hon, R. Shah, and J. Vitter. Space-efficient framework for top-k string
retrieval problems. In Proc. FOCS, pp. 713–722, 2009.

21. W.-K. Hon, R. Shah, and S.-B. Wu. Efficient index for retrieving top-k most
frequent documents. In Proc. SPIRE, pp. 182–193, 2009.

22. I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-K query processing
techniques in relational database systems. ACM Computing Surveys, 40(4), 2008.

23. R. Janardan and M. A. Lopez. Generalized intersection searching problems. Inter-
national Journal of Computational Geometry and Applications, 3(1):39–69, 1993.

24. M. Karpinski and Y. Nekrich. Top-K color queries for document retrieval. Technical
Report 1007.1361, arXiv, 2010.

25. V. Mäkinen and G. Navarro. Succinct suffix arrays based on run-length encoding.
Nordic Journal of Computing, 12(1):40–66, 2005.

26. V. Mäkinen and G. Navarro. Rank and select revisited and extended. Theoretical
Computer Science, 387(3):332–347, 2007.

27. U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches.
SIAM Journal on Computing, 22(5):935–948, 1993.

28. G. Manzini. An analysis of the Burrows-Wheeler transform. Journal of the ACM,
48(3):407–430, 2001.

29. Y. Matias, S. Muthukrishnan, S. C. Sahinalp, and J. Ziv. Augmenting suffix trees,
with applications. In Proc. ESA, pp. 67–78, 1998.

30. R. L. Milidiú and E. S. Laber. Bounding the inefficiency of length-restricted prefix
codes. Algorithmica, 31(4):513–529, 2001.

31. S. Muthukrishnan. Efficient algorithms for document retrieval problems. In Proc.
SODA, pp. 657–666, 2002.

32. G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Computing
Surveys, 39(1):article 2, 2007.

33. R. Raman, V. Raman, and S. Rao. Succinct indexable dictionaries with applica-
tions to encoding k-ary trees and multisets. In Proc. SODA, pp. 233–242, 2002.

34. K. Sadakane. New text indexing functionalities of the compressed suffix arrays.
Journal of Algorithms, 48(2):294–313, 2003.

35. K. Sadakane. Succinct data structures for flexible text retrieval systems. Journal
of Discrete Algorithms, 5(1):12–22, 2007.

36. F. Silvestri. Sorting out the document identifier assignment problem. In Proc.
ECIR, pp. 101–112, 2007.

37. N. Välimäki and V. Mäkinen. Space-efficient algorithms for document retrieval.
In Proc. CPM, pp. 205–215, 2007.

38. P. Weiner. Linear pattern matching algorithm. In Proc. IEEE Symp. on Switching
and Automata Theory, pp. 1–11, 1973.

39. H. Yan, S. Ding, and T. Suel. Inverted index compression and query processing
with optimized document ordering. In Proc. WWW, pp. 401–410, 2009.


