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Abstract. We introduce two new index structures based on the g-gram
index. The new structures index substrings of variable length instead of
g-grams of fixed length. For both of the new indexes, we present a method
based on the suffix tree to efficiently choose the indexed substrings so
that each of them occurs almost equally frequently in the text. Our
experiments show that the resulting indexes are up to 40 % faster than
the g-gram index when they use the same space.

1 Introduction

We consider indexing a text for exact and approximate string matching. Given a
text T = tita ... 1,, a pattern P = pip2 ... pm, and an integer k, the approximate
string matching problem is to find all substrings of the text such that the edit
distance between the substrings and the pattern is at most k. The edit distance
of two strings is the minimum number of character insertions, deletions, and
substitutions needed to transform one string into the other. We treat exact
string matching as a subcase of approximate string matching with k = 0.
Partitioning into exact search is a popular technique for approximate string
matching both in the online case [1,2,11,13], where the text is not preprocessed,
and in indexing approaches [3,4,7,10,12], where an index of the text is built.
Suppose that the edit distance between two strings, S and R, is at most k. If we
split S into k + 1 pieces, then at least one piece must have an exact occurrence
in R. In the online approach, we thus split the pattern into k£ 4 1 pieces, search
for all the pieces in the text, and verify all the matches found for approximate
occurrences of the whole pattern using a dynamic programming algorithm that
runs in O(m?) time per verification. In the indexing approach we have two
options. If we index all text positions, we can proceed as in the online case: split
the pattern into k£ + 1 pieces, search for all the pieces in the index, and verify all
the matches found. Another option is to index the text at fixed intervals. Now we
search for all pattern substrings of corresponding length in the index and verify
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Fig. 1. The 2-grams and the 2-gram index of the text T' = “aaabaabbaa$”

the matches found to obtain the approximate occurrences of the whole pattern.
The g-gram index of Navarro and Baeza-Yates [7] takes the former approach,
while the g-samples index of Sutinen and Tarhio [12] utilizes the latter technique.

A problem of the g-gram index is that some g-grams may be much more
frequent than others, which raises verification costs. A technique to choose the
k + 1 optimal pieces [7] was designed to alleviate this problem. In this work we
develop two new indexes, the prefix free and the prefix coalesced index, based
on the g-gram index [7]. The new indexes index substrings of variable length
instead of g-grams of fixed length. The goal is to achieve roughly similar lengths
in all position lists. In the prefix free index the set of indexed substrings forms a
prefix free set, whereas in the prefix coalesced index this restriction is lifted. The
experimental results show that the new indexes are up to 40 % faster than the
g-gram index for the same space. Alternatively, the new indexes achieve as good
search times as the ¢-gram index using less space. For example, when m = 20
and k = 2 the new indexes are as fast as the ¢g-gram index using 30 % less space.

2 q-Gram Index

In this section we review previous work on the g-gram index [7], which indexes all
g-grams of the text and uses partitioning into exact search to locate occurrences
of a pattern. The value of ¢ is fixed at construction time, and the g-grams that
occur in the text form the vocabulary of the index. Together with each g-gram
the index stores a list of positions where the g-gram occurs in the text. To save
space the position lists are difference coded and compressed with variable length
integer coding. The g-gram index can be built in O(n) time [7]. Figure 1 shows
the 2-grams of the text “aaabaabbaa$” and the corresponding 2-gram index.

To search for a pattern P with at most k differences, we first extract k41 non-
overlapping g-grams from the pattern. We then search for all these g-grams in the
index and finally use dynamic programming to verify the positions returned by
this search. For example, to search for the pattern P = “abbab” with at most k =
1 difference in the 2-gram index of Fig. 1, we first extract two non-overlapping
2-grams from the pattern: “ab” and “ba”. Search on the index returns positions
3 and 6 for “ab” and positions 4 and 8 for “ba”. Verifying around these positions
we obtain the occurrences starting at positions 3 and 6.

In real texts some g-grams occur much more frequently than others, and if the
pattern is longer than (k+1)q, we have several different ways of choosing the k+1
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Fig. 2. The dynamic programming algorithm for the optimal partitioning of the pattern

non-overlapping g-grams. Therefore we can speed up verification considerably by
choosing the g-grams carefully. Furthermore, the pieces do not need to have the
exact length ¢. If a piece is shorter than ¢, we find all g-grams starting with the
piece in the index and verify all their positions. If the piece is longer than ¢, we
search for the first g-gram of the piece in the index. By allowing pieces shorter
than ¢, we can also search for patterns shorter than (k + 1)g.

Navarro and Baeza-Yates [7] give the following method for finding the optimal
partitioning of the pattern. It is relatively fast to compute the number of verifica-
tions a pattern piece will trigger. We use binary search to locate the ¢g-gram(s) in
the index and obtain a contiguous region of g-grams. If we store the accumulated
list lengths, the number of verifications can easily be calculated by subtracting
the accumulated list lengths at the endpoints of the region. By performing this
search for all pattern pieces, we obtain a table R where R[i, j] gives the number of
verifications for the pattern piece p; ... p;_1. Based on this table, we use dynamic
programming to compute the table P[i, k|, which gives the total number of trig-
gered verifications for the best partitioning for p; ... p,, with k differences, and
the table C[i, k], which gives the position where the next piece starts in order to
get P[i, k]. We then find the smallest entry P[{g, k] for 1 < £y < m—Ek, which gives
the final number of verifications. The pattern pieces that give this optimal num-
ber of verifications begin at ¢y, {1 = C[ly, k], b2 = Cll1,k—1] ...l = C[l_1, 1].
Figure 2 gives the pseudo code for the dynamic programming algorithm to find
the optimal partitioning of the pattern. It runs in O(km?) time, whereas R is
easily built in O(gmlogn) time, which can be reduced to O(¢gmlog o), where o
is the alphabet size, if the g-gram vocabulary is stored in trie form.

3 Prefix Free Index

Our new variants of the g-gram index index substrings of varying length instead
of g-grams of fixed length. The indexed substrings form the vocabulary of the
index. The aim is to choose the vocabulary so that each position of the text is
indexed and the lengths of the position lists are as uniform as possible. In the
first variant, the prefix free index, we further require that the vocabulary is a
prefix free set, i.e. no indexed substring is a prefix of another indexed substring.

Let a be the threshold frequency and let the frequency of a string be the
number of occurrences it has in the text T'. Note that the frequency of the empty



substring|positions|difference coded substring|positions|difference coded
positions positions
aaa 1 1 aa 1,9 1,8
aab 2,5 2,3 aab 2,5 2,3
aa$ 9 9 ab 3,6 3,3
ab 3,6 3,3 a$ 10 10
a$ 10 10 ba 4,8 4,4
b 4,7,8 4,3,1 bb 7 7
(a) Prefix free index (b) Prefix coalesced index

Fig. 8. A prefix free index and a prefix coalesced index for the text T' = “aaabaabbaa$”

string is n. The vocabulary now consists of all such substrings S = s1...s; of
the text that the frequency of S is at most « and the frequency of the prefix
S1...8i—1 is greater than a. This choice ensures that the vocabulary is a prefix
free set and no position list is longer than «. Again the position lists are difference
coded and compressed with variable length integer coding. Figure 3(a) shows an
example of a prefix free index with threshold frequency three.

To search for a pattern P with at most k differences, we first split the pattern
into k41 pieces and search for each piece in the index. If the indexed substrings
starting with the piece are longer than the piece, we return all positions associ-
ated with any substring starting with the piece. If an indexed substring is a prefix
of the piece, we return the positions associated with that indexed substring. The
positions returned by this search are then verified with the O(m?) dynamic pro-
gramming algorithm to find the approximate occurrences of the pattern. As an
example consider searching for the pattern P = “abbab” in the prefix free index
of Fig. 3(a) with at most k = 1 difference. We start by splitting the pattern into
two pieces: “ab” and “bab”. The search for “ab” in the index returns positions
3 and 6 and the search for “bab” returns positions 4, 7, and 8. We then verify
around these positions and find the occurrences starting at positions 3 and 6.

Although the lengths of the position lists are more uniform than in the g-gram
index, we still benefit from computing the optimal partitioning of the pattern.
First of all, the lengths of the position lists still vary, and thus the number of
verifications can be reduced by choosing pattern pieces with short position lists.
Secondly, if the pattern is too short to be partitioned into long enough pieces
such that we would get only one position list per pattern piece, it is not clear
how to select the pieces without the optimal partitioning technique.

Finding the optimal partitioning of the pattern works similarly to the g-gram
index. We first use binary search to locate the indexed substring(s) corresponding
to each pattern piece p;...pj—q for 1 < ¢ < j < m 4+ 1. This search returns
a contiguous region of indexed substrings. If we again store the accumulated
position list lengths, we can determine the number of triggered verifications fast.
This number is stored in the table R[i,j]. We then compute the tables PJ[i, k]
and C[i, k] and obtain from these tables the optimal partitioning of the pattern.
The overall time to find the optimal partitioning is O(m?(logn + k)).



To choose the vocabulary of the index, we use a simplified version of the
technique of Klein and Shapira [5] for constructing fixed length codes for com-
pression of text. Their technique is based on the suffix tree of the text. A cut in
a suffix tree is defined as an imaginary line that crosses exactly once each path
in the suffix tree from the root to one of the leaves. The lower border of a cut
is defined to be the nodes immediately below the imaginary line that forms the
cut. Klein and Shapira show that a lower border of a cut forms a prefix free set
and a prefix of each suffix of the text is included in the lower border. Thus the
lower border of a cut can be used as a vocabulary in the prefix free index.

We choose the vocabulary as follows. First we build the suffix tree of the text
and augment it with the frequencies of the nodes. The frequency of a node is
the frequency of the corresponding substring of the text. We then traverse the
suffix tree in depth first order. If the frequency of a node is at most the threshold
frequency «, we add the corresponding string S to the vocabulary and we also
add the corresponding leaves to the position list of the string S.

The suffix tree can be built in O(n) time. The traversal of the tree also
takes O(n) time and we do O(1) operations in each node. After the traversal
the position lists are sorted, which takes O(nlog«) total time. Finally the posi-
tion lists are difference coded and compressed taking O(n) total time. Thus the
construction of the prefix free index takes O(nlog ) time.

4 Prefix Coalesced Index

In the second new variant of the g-gram index, the prefix coalesced index, we
require that the vocabulary includes some prefix of each suffix of the text, and
if the vocabulary contains two strings S and R such that R is a proper prefix of
S, then all positions of the text starting with S are assigned only to the position
list of S. Again the position lists are difference coded and the differences are
compressed with variable length integer coding.

To choose the vocabulary, we build the suffix tree of the text and augment it
with the frequencies of the nodes. The suffix tree is traversed in depth first order
so that the children of a node are traversed in descending order of frequency.
When we encounter a node whose frequency is at most the threshold frequency
a, we add the corresponding string to the vocabulary, subtract the original fre-
quency of this node from the frequency of its parent node and reconsider adding
the string corresponding to the parent node to the vocabulary. When a string is
added to the vocabulary, we also add the leaves to its position list. Figure 3(b)
shows an example of a prefix coalesced index with threshold frequency two.

The suffix tree can again be built in O(n) time. Because we need to sort the
children of each node when traversing the suffix tree, the traversal now takes
O(nlogo) time, where o is the size of the alphabet. After the traversal the
handling of the position lists takes O(nloga) as in the prefix free index. Thus
the construction of the prefix coalesced index takes O(n(loga + log o)) time.

We refine the searching procedure as follows. We again start by splitting the
pattern into k + 1 pieces and search the index for each piece. If the piece is a



prefix of several indexed substrings, we return all position lists associated with
these indexed substrings. If an indexed substring is a proper prefix of the piece,
we return only this position list. Otherwise searching on the index and optimal
partitioning of the pattern work exactly the same way as in the prefix free index.

5 Experimental Results

To save space our implementations of the prefix free and the prefix coalesced
indexes use a suffix array [6] instead of a suffix tree when constructing the index.
The traversal of the suffix tree is simulated using binary search on the suffix array.

For compressing the position lists in all the indexes, we use bytewise com-
pression of the differences. In this scheme, the highest bit is 0 in the last byte
of the coding and 1 in other bytes. The integer is formed by concatenating the
seven lowest bits of all the bytes in the coding.

The experiments were run on a 1.0 GHz AMD Athlon dual core proces-
sor with 2 GB of memory, running Linux 2.6.23. The code is in C and compiled
with gcc using -02 optimization. We used the 200 MB English text from the Piz-
zaChili site, http://pizzachili.dcc.uchile.cl, and the patterns are random
substrings of the text. For each pattern length, 1,000 patterns were generated.

Figure 4 shows the search times for the g-gram index and the prefix free and
prefix coalesced indexes for various pattern lengths and values of k. The g-gram
index was tested with 5 values of ¢: 4, 5, 6, 7, and 8. The prefix free index was
tested with 7 values for the threshold frequency «: 200, 500, 1,000, 2,000, 5,000,
10,000, and 20,000. The prefix coalesced index was also tested with 7 values for
the threshold frequency «: 100, 200, 500, 1,000, 2,000, 5,000, and 10,000. We see
that the new indexes generally achieve the same performance as the g-gram index
using less space. The prefix coalesced index allows more flexibility in selecting
the vocabulary, and so the the position list lengths are more uniform than in the
prefix free index. Thus the search times in the prefix coalesced index are slightly
lower than in the prefix free index. However, when we reduce the available space
the prefix free index becomes faster than the prefix coalesced index.

Figure 5 shows the vocabulary size for the different indexes. We see that the
vocabulary of the g-gram index is much larger than the vocabulary of the prefix
free and the prefix coalesced indexes. Some of the g-grams are very frequent
in the text and their long position lists compress very efficiently, allowing the
g-gram index to use a larger vocabulary. In the prefix free and prefix coalesced
indexes the position lists have a more uniform length, and thus these lists do not
compress as well, so the vocabulary is much smaller. We can also see that the
vocabulary of the prefix free index is larger than the vocabulary of the prefix
coalesced index, again reflecting the lengths of the position lists.

Figure 5 also shows the construction time for the different indexes. The con-
struction time of the prefix free and prefix coalesced indexes increases only little
when space usage is increased because the most time consuming phase of their
construction is the construction of the suffix array, which takes the same time
regardless of the space usage of the final index.
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Fig. 4. Search times for the different indexes for various values of k and m. The space

fraction includes that of the text, so it is of the form 1 + Tdeﬂ
ext size

6 Conclusions and Further Work

We have presented two new indexes for exact and approximate string matching
based on the g-gram index. They index variable length substrings of the text
to achieve more uniform lengths of the position lists. The indexed substrings in
the prefix free index form a prefix free set, whereas in the prefix coalesced index
this restriction is lifted. Our experiments show that the new indexes are up to
40 % faster than the g-gram index for the same space. This shows that lists of
similar length are definitely beneficial for the search performance, although they
are not as compressible and thus shorter substrings must be indexed.

Our techniques receive a parameter «, giving the maximum allowed list
length, and produce the largest possible index that fulfills that condition. In-
stead, we could set the maximum number of substrings to index, and achieve
the most uniform possible index of that vocabulary size. For this we would insert
the suffix tree nodes into a priority queue that sorts by frequency, and extract the
most frequent nodes (with small adaptations depending on whether the index is
prefix free or prefix coalesced). The construction time becomes O(nlogn).

Future work involves extending more sophisticated techniques based on g¢-
grams and g-samples, such as those requiring several nearby pattern pieces to be
found before triggering a verification, and/or based on approximate matching of
the pattern pieces in the index [8,9].
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prefix free and prefix coalesced indexes as a function of space usage.
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