Speeding Up Pattern Matching by Text Sampling

Francisco Claude!>*, Gonzalo Navarro®*, Hannu Peltola?,
Leena Salmela?, and Jorma Tarhio?

! Department of Computer Science, University of Chile
{fclaude, gnavarro}@dcc.uchile.cl
2 Department of Computer Science and Engineering
Helsinki University of Technology
{hpeltola, lsalmela, tarhio}@cs.hut.fi

Abstract. We introduce a novel alphabet sampling technique for speed-
ing up both online and indexed string matching. We choose a subset of
the alphabet and select the corresponding subsequence of the text. On-
line or indexed searching is then carried out on that subsequence, and
candidate matches are verified in the full text. We show that this speeds
up online searching, especially for moderate to long patterns, by a factor
of up to 5. For indexed searching we achieve indexes that are as fast
as the classical suffix array, yet occupy space less than 0.5 times the
text size (instead of 4) plus text. Our experiments show no competitive
alternatives in a wide space/time range.

1 Introduction

The string matching problem is to find all the occurrences of a given pattern
P = pop1...pm—1 in a large text T" = tgt1...t,—1, both being sequences of
characters drawn from an alphabet X/ of size o.

One approach to string matching is online searching, which means the text
is not preprocessed. Thus these algorithms need to scan the text when searching
and their time cost is of the form O(n - f(m)). The worst-case complexity of the
problem is @(n), first achieved by the Knuth-Morris-Pratt algorithm [9]. The
average complexity of the problem is ©(nlog, m/m), achieved for example by
the BDM algorithm [3]. Other non-optimal algorithms such as the Boyer-Moore-
Horspool (BMH) algorithm [7] are very competitive in practice.

The second approach, indered searching, tries to speed up searching by
preprocessing the text and building a data structure that allows searching in
O(m - g(n) + occ - h(n)) time, where occ is the number of occurrences of the
pattern in the text. Popular solutions to this approach are suffix trees and suffix
arrays [10]. The first gives an O(m + occ) time solution, while the suffix array
gives an O(mlogn+ occ) time complexity which can be improved to O(m + occ)
using extra space [1]. The problem of these approaches is that the space needed
is too large for many practical situations (4 20 times the text size). Recently, a

* Partially funded by Millennium Nucleus Center for Web Research, Grant P04-067-F,
Mideplan, Chile

lot of effort has been spent to compress these indexes [13] obtaining a significant
reduction in space, but requiring considerable implementation effort [5].

In this work we explore sampling the text by removing a set of characters from
the alphabet. We first apply an online algorithm to this sampled text, obtaining
an approach in between online searching and indexed searching. We call this kind
of structure a semi-index. This is a data structure built on top of a text, which
permits searching faster than any online algorithm, yet its search complexity
is still of the form O(n - f(m)). To be interesting, a semi-index should be easy
to implement and require little extra space. Several other semi-indexes exist in
the literature, even without using that name. For example, ¢-gram indexes [12],
directly searchable compression formats [11], and other sampling approaches.

We also consider indexing the sampled text. We build a suffix array indexing
the sampled positions of the text, and get a sampled suffix array. This approach
is similar to the sparse suffix array [8] as both index a subset of the suffixes, but
the different sampling properties induce rather different, search algorithms.

A challenge in our method is how to choose the best alphabet subset to
sample. We present analytical results, supported by experiments, that simplify
this process by drastically reducing the number of combinations to try. We show
that it is sufficient in practice to sample the least frequent characters up to some
limit. In both cases, online and indexed, our sampling technique significantly
improves upon the state of the art, especially for relatively long search patterns.
For example, online searching is speeded up by a factor of up to 5 on English
text. For indexed searching we achieve indexes that are as fast as the classical
suffix array, yet occupy less than 0.5 times the text size (instead of 4) plus text.

2 Text Sampling

The main idea of our online approach is to choose a subset of the alphabet
to be the sampled alphabet and then to build a subsequence of the text by
omitting all characters not in the sampled alphabet. At regular intervals we
map the positions of the sampled text to their corresponding positions in the
original text. When searching, we build the sampled pattern from the pattern
by omitting all characters not in the sampled alphabet and then search for this
sampled pattern in the sampled text. For each candidate returned by this search
we verify a short range of the original text with the help of the position mapping.
Let T = toty ...t,_1 be the text over the alphabet X and Y C X the sampled
alphabet. The proposed semi-index is composed of the following items:

— Sampled text T: Let T = t;t;, ...t;. , be the sequence of the t;’s that

belong to the sampled alphabet Y. The length of the sampled text is 7.
— The position mapping M: A table of size |72/q| where M[i] maps the ¢-i'th
character of 1" to its corresponding position in T" so T[q - i] = T[Mi]].

Given a pattern P = pop1 ...pm—1, search on this semi-index is carried out as
follows. Let P = p;,p;, -..Dj~_, be the subsequence of p;’s that belong to the
sampled alphabet Y. The length of the sampled pattern is thus m. The sampled

‘a‘b‘a‘a‘c‘a‘b‘d‘a‘a‘ Text EEE Pattern
Omitting a's Omitting a's

| [b] [[c| [b]d] | | sampledText | |c| |b| sampled Pattem

Ll [I L Je[[]] mapping

Fig. 1. Example of preprocessing

search (T’ =tot1...ta1,P =pop1r...Pm-1,T =tot1...tn_1,
P =pop1 ...Ppm—-1,Jo,q, M[0...7/q])

1. for (i —0too—1)d[i] —m

2. for (i —0tom—2)dp;]—m—1—1i

3. pos«—0

4. while (pos < i — 1)

5. je—m-—1

6. while (j > 0 and tpostj = ;) j«— j— 1

7. if (j = —1)

8. Check for occurrence from M [pos/q| + (pos mod q) — jo
9. to M[pos/q + 1] — (¢ — pos mod q) — jo

10. pos < pos + d[lpos+m—1]

Fig. 2. Searching the sampled text for a sampled pattern with the BMH algorithm

text T is then searched for P, and for every occurrence, the positions to check in
the original text are delimited by the position mapping M. If the sampled pattern
is found in position 4, in 7', the area T[Mlir/q] + (ir mod q) — jo ... M[ir/q+
1] = (¢ — i» mod q) — jo| is checked for possible startings of real occurrences.

For example, if the text is T' = abaacabdaa, the sampled text built omitting
the a’s (¥ = {b,c,d}) is T = t1tatty = bebd. If we map every other position in
the sampled text, the position mapping M is {1,6}. For searching the pattern
acab we omit the a’s and get P= p1ps = cb. We search for P =cbin T = bebd,
finding an occurrence at position 1. The previous mapped position is M [0] = 1, so
to corresponds to t1, and the next mapped position is M[1] = 6, so t5 corresponds
to tg. Because the first sampled character in P is in position 1, we verify the
area 1...4 in the original text finding the match at position 3. Preprocessing for
the text and pattern of the previous example is shown in Fig. 1.

Because the sampled patterns tend to be quite short, we implemented the
search phase with the BMH algorithm [7], which has been found to be fast in
such settings [14]. Figure 2 shows the algorithm for this basic method.

Although the above scheme works well for most of the patterns, it is obvious
that there are some bad patterns which would be searched faster in the origi-
nal text. The average complexity of the BMH algorithm is O(n(1/m + 1/0)) =
O(n/min(m, o)) assuming a uniform and independent distribution of the charac-

ters of the alphabet [2]. If the distribution is not uniform, a better approximation
is to replace o by the the effective alphabet size &, which is defined as the in-
verse of the probability of two random characters matching, i.e. 1/5 = Y . p2,
where p. is the empirical probability of occurrence of the character c.

To determine if it would be faster to just search the pattern in the original
text we tried calculating the ratios n/ min(m,a) and n - (1/m + 1/5) both for
the sampled text and pattern and for the original text and pattern. If the ratio
is lower for the original text and pattern, we search only in the original text.
The results were better using the ratio n/ min(m, 7).

3 Optimal Sampling for Online Search

A question arises from the previous description of our sampling method: How
to form the sampled alphabet X? We will first analyze how the average running
time of the BMH algorithm changes when we sample the text and then, based on
this, we will develop a method to find the optimal sampled alphabet. Throughout
this section we assume that the characters are independent and we analyze the
approach for a general pattern not known when preprocessing the text.

Let us define by =) . pcandas =) ., p? where A C X. Now the length
of the sampled text will be bgn, the average length of the sampled pattern bgm
(assuming it distributes similarly to the text) and the probability of two random
characters matching in the sampled text ag/b%. Given the average complexity
of the BMH algorithm, O(n(1/m+1/7)), the average search cost in the sampled

text is
~ 1 @)) = 1, ag
@) (bzn <b§m+ b%)) =0 (n <m + b§)>

When considering the verification cost we assume for simplicity that the
mapping M contains the position of each sampled character in the original text,
i.e. ¢ = 1. The probability that a position has to be verified is then

" (m i m—i [05 ' as "
pver:Z<i)b§(1_b2) (f) = <f+1_b2>
=0 b)

If we assume that each verification costs O(m) then the cost of verification is
N Pyer - O(m) =n - <Z—§+1—b§) -O(m) .
z

The total cost of searching in our scheme is thus

1 ag ai m
N) 3] Y 41 _p-)
O<n (m+b§+<b§+ bE) m))

and hence the optimal sampled alphabet X minimizes the cost per text character

+<“—§+1—b§) ‘m

+ bs

BE(S) = %

S

which can be divided into the search cost in the sampled text 1/m+as/bs and
the verification cost (ag/bs +1—0s)™ - m.

The verification cost always increases when a character is removed from the
alphabet so the search cost in the sampled text must decrease for the combined
cost to decrease. If R = X\ X is the set of removed characters, the function

ha(p) = 1 +a2—aR—P2
R/ = m 1—br—p
gives the search cost in the sampled text, per text character, if an additional
character with probability p is removed. The derivative of hg(p) is

(1-br)* - (ax —ar)
(1—br—p)?

which has exactly one zero p, = (1—bgr)—+/(1 — br)? — (ax — ar) in the interval
[0,1—bg]. We can see that the function hg(p) is increasing until p, and decreasing
after that. Solving the equation hr(pr) = hr(0) we get pr = (ax—agr)/(1—bR).
So removing a single additional character decreases the search cost in the sampled
text only if the probability of occurrence for that character is larger than pg.
Otherwise both the search cost in the sampled text and the verification cost will
increase and thus removing the character is not beneficial.

Suppose now that we have already fixed whether we are going to keep or
remove each character with probability of occurrence higher than p, and now we
need to decide if we should remove the character c. If p. > pr, we will need to
explore both options as removing the character will decrease search cost in the
sampled text and increase verification cost. However, if p. < pr we know that if
we added only ¢ to R the searching time in the sampled text would also increase
and therefore we should not remove c. But could it be beneficial to remove ¢
together with a set of other characters with probabilities of occurrence less than
pr? In fact it cannot be. Suppose that we remove a character ¢ with probability
pe < pr. Now the new removed set will be R’ = RU{c} so we get ar = ar + p?
and brr = br + p.. Now the new critical probability will be

We(p) =1-

» ,_ Az —ar _GE—GR—PE
" 1—bgr 1—br—pc

We know that hr(p.) > hr(pr) = hr(0) because p. < pg. Therefore

1 —ap—p? 1 -
~ xR TPe LAY T AR
m 1—br — pe m 1—bg

and so)
o= OZTORTPe Az —ar
R 1—br —pec 1-br fe

Thus even now it is not good to remove a character with probability less than
the critical value pg for the previous set and this will again hold if another char-
acter with a small probability is removed. Therefore we do not need to consider

Ropt = {}
sort characters of X in descending order
find_opt(0, {})

return Ropt

find opt(i, R)
if (i =o0)
if (E(X\R) < E(X\Ropt))
Ropt = R
else
PR = af:b;R
if (pi > pr)
find opt(i+ 1, RU{i})
find_opt(: + 1, R)
else
0. find opt(o, R)

20 XN otk W=

Fig. 3. Pseudo code for searching for the optimal set of removed characters

removing characters with probabilities less than pr. Note however that removing
a character with a higher probability will decrease the critical probability pr and
after this it can be beneficial to remove a previously unbeneficial character. In
fact, if the sampled alphabet contains two characters with different probabilities
of occurrence, the probability of occurrence for the most frequent character in
the sampled alphabet is always larger than pr. Thus it is always beneficial for
searching in the sampled text to remove the most frequent character.

The above can be applied to prune the exhaustive search for the optimal
set of removed characters. First we sort the characters of the alphabet in the
decreasing order of frequency. We then figure out if it is beneficial for searching
in the sampled text to remove the most frequent character not considered yet.
If it is, we try both removing and not removing that character and proceed
recursively for both cases. If it is not, we prune the search here because none of
the remaining characters should be removed. Figure 3 gives the pseudo code.

In practice when using this pruning technique the number of examined sets
drops drastically as compared to the exhaustive search, although the worst case
is still exponential. For example, the number of examined sets drops from 2! to
2,810 when considering the King James Bible as the text.

In our experiments, the optimal set of removed characters always contained
the most frequent characters up to some limit depending on the length of the
pattern, as shown in Table 1. Therefore a simpler heuristic is to remove the k
most frequent characters for varying k& and choose the set that predicts the best
overall time. However, if the verification cost is very high for some reason (e.g.
going to disk to retrieve the text, or uncompressing part of it) it is possible that
the optimal set of removed characters is not a set of most frequent characters.

Sampled SA

| 1] baacabdaa
T= abaacabdaa bdaa
0123456789 cabdaa

daa

Fig. 4. The sampled suffix array for the text T' = abaacabdaa with the sampled al-
phabet X = {b, ¢, d}. The sorted suffixes are only shown for convenience. They are not
part of the structure.

4 Sampled Suffix Array

To turn the sampling approach into an index, we use a suffix array to index the
sampled positions of the text. When constructing the suffix array, only suffixes
starting with a sampled character will be considered, but the sorting will still be
done considering the full suffixes. The resulting sampled suffix array is like the
suffix array of the original text where suffixes starting with unsampled characters
have been omitted. The construction of the sampled suffix array can be done in
O(n) time using O(n) words of space if we apply the construction technique of
the word suffix array [4]. The sampled suffix array for the text T = abaacabdaa
is shown in Fig. 4, where the sampled alphabet is ¥ = {b,¢c,d}.

Search on the sampled suffix array is carried out as follows. Given a pattern
P = pop1...pm—1 we first find the first sampled character of the pattern. Let this
be at index j. The pattern is now divided into the unsampled prefix pg...p;j_1
and the suffix starting with the first sampled character p;...p,—1. We search
the sampled suffix array for this suffix of the pattern like in an ordinary suffix
array. Each candidate match returned by this search will then be verified by
comparing the unsampled prefix against the text.

We could also construct the suffix array directly for the sampled text, but
this would entail more verifications as the unsampled characters of the pattern
suffix would not be required to match. We would also need to store the sampled
text, or to skip the unsampled characters in the original text each time we read
a suffix.

The sampled suffix array resembles a sparse suffix array [8], which indexes
regularly sampled text positions. However, we only need to make one search on
the sampled suffix array, while using a sparse suffix array one would need to
make ¢ searches if the sparse suffix array indexes every ¢’th position. On the
other hand, the sampled suffix array can only be used for patterns that contain
at least one sampled character whereas the sparse suffix array can be used if
the pattern length is at least g. The variance of the search time when using the
sampled suffix array is also larger than when using a sparse suffix array because
in the sampled suffix array we have much less control over the length of the
string that is used in the suffix array search.

5 Optimal Sampling for Suffix Array

Suppose that we have enough space to create the sampled suffix array for b - n
suffixes where 0 < b < 1. How should we now choose the sampled alphabet
Y so that the search time would be optimal? Obviously by = b but we still
have a number of possible sampled alphabets to choose from. The search on the
suffix array will compare the suffix of the pattern starting with the first sampled
character against a text string O(log n) times. The comparison time is minimized
when the probability of matching for the first sampled character is minimized.
Thus the sampled alphabet X should be a set of least frequent characters.

Let us then consider the verification. The probability that two random char-
acters are unsampled and match is agr = ax — a5 where R is the set of removed
characters. Thus the average cost of a single verification is 1/(1 —ax + a5).

The probability that the suffix of the pattern starting with the first sampled
character matches a random string of equal length is

b5 0z = Sy

S

where my is the length of the suffix starting with the first sampled character.
This is also the probability of verification per character in the original text. The
average cost of verification per text character is then

)msfl

)msfl_ 1 _ as . (aE
1—ag—|—a2 1—ag+a§ bi‘

(ax

S

Because we attempt to determine the optimal sampled alphabet such that by =
b, by, and the distribution of m, do not depend on which characters we remove.
Thus we should minimize f(as) = asx/(1—ax+as). The derivative of f(ayz) is

’].—G,E
()= >0
f (G’E) (1—&24—&2)2

so the verification cost increases when a5, increases. To minimize a 5, the sampled

total cost because also the suffix array search cost is minimized by this choice.
Interestingly, this corresponds to the simplified heuristic we proposed in Sect. 3.

6 Experiments

6.1 Semi-Index

To determine the sampled alphabet, we ran the exact algorithm of Sect. 3 for dif-
ferent pattern lengths to choose the sampled alphabet that produces the smallest
estimated cost E(X). For all pattern lengths the algorithm recommended remov-
ing a set of most frequent characters. To see how well these results correspond

to practice, we tested the semi-index approach by removing the k£ most frequent

Mean Distribution

m=10 -+ m=20 ——
m=20 —<— + v*-’*‘n ,.'+"+'-+,,+ m=50 22220
25 g e T Qe]
m=70 - " ey
2 }m=100 —-o:*]
= et a
g E sf 1
g 1sf £
é . 0 xHs é 2r T
11\\@;**%*% x'*'*’ 1
‘S‘*%: - Wk S K o LT
- - [o
05 Uagiagg—aaﬁﬁﬁ—ﬂg_/."* g T T T
88888 8.8 .00 R R L
0 L L L L 0 L L L . ' : \f TR
0 5 10 15 20 0 5 10 15
Number of different characters removed Number of different characters removed

Fig. 5. The running time for various pattern lengths for the basic method. The left
figure shows the mean running time; the right shows the median, minimum, maximum,
and 25% and 75% quartiles.

Table 1. Predicted and observed optimal number of removed characters for the King
James Bible. The predicted optima are computed with the algorithm suggested by the
analysis, which in our experiments always returned a set of most frequent characters.

| m |10 20 30 40 50 60 70 80 90 100]
Predicted optimal number of removed characters| 3 7 9 11 12 13 14 15 16 16
Observed optimal number of removed characters| 3 7 11 13 14 15 17 17 16 18

characters from the text for varying k. We used a 2 MB prefix of the King James
Bible as the text, and the patterns are random substrings of the text. For each
pattern length 500 patterns were generated, and the reported running times are
averages over 200 runs with each of the patterns. The most frequent characters
in the decreasing order of frequency were “_ethaonsirdlfum,wycgbhp” where _ is
the space character. The tests were run on a 1.0 GHz AMD Athlon dual core
processor with 2 GB of memory, 64 kB L1 cache and 512 kB L2 cache, running
Linux 2.6.23. The code is in C and compiled with gcc using -03 optimization.

Figure 5 shows the results of these experiments with the basic method map-
ping every 64’th sampled character to its position in the original text. If we make
the mapping sparser the running time will start to increase a little earlier, but
the effect is quite mild. The results for zero removed characters correspond to the
original BMH algorithm. As we can see, the semi-index is up to 5 times faster,
especially when the patterns are long. Figure 5 also shows that, for each pattern
length, there is an optimal number of characters to remove. A comparison of
these optima and those given by the analysis is shown in Table 1. As we can see,
the analysis gives reasonably good results although it recommends removing too
few characters with long patterns, because we estimated the verification time
quite pessimistically. When more characters are removed it is unlikely that we
would need to scan m characters for each verified position.

Mean Distribution

m=20 ——
m=50 222270
m=100 i
4 i
@ @
E E 3r
o o
£ £
S S 2f
x 4
1k
0
Number of different characters removed Number of different characters removed

Fig. 6. The running time for various pattern lengths for the tuned version where search-
ing in the sampled text is skipped if it looks like searching in the original text is faster.
The left figure shows the mean running time; the right figure shows the median, mini-
mum, maximum, and 25% and 75% quartiles.

The results for the tuned method, where we search the original text if the
ratio n/ min(m, &) looks unfavorable for searching the sampled text, is shown
in Fig. 6. Again we are mapping every 64’th sampled character to its position
in the original text. As we can see, the optimal number of removed characters
is closer to being the same for all pattern lengths than in the basic approach.
For example by choosing to remove the 13 most frequent characters, we would
do reasonably well for all pattern lengths using just 0.18 times the original text
size to store the sampled text. Comparing Figs. 5 and 6 we see that the median
running times are almost the same, but the maximum and the 75% quartile are
lower for the tuned method. This is also reflected in the average values.

6.2 Sampled Suffix Array

Figure 7 shows the results obtained by comparing our sampled suffix array
against our implementation of the sparse suffix array [8] and the locally com-
pressed suffix array (LCSA) [6], an index that compresses the differential suffix
array using Re-Pair. Note that when the space usage of the sampled or sparse
suffix array is maximal (3.25 times the text) both of them index all suffixes and
behave exactly like a normal suffix array. The experiments were run on a Pentium
IV 2.0 GHz processor with 2 GB of RAM running SuSE Linux with kernel 2.4.31.
The code was compiled using gcc version 3.3.6 with -09 optimization. We used
50 MB texts from the PizzaChili site, http://pizzachili.dcc.uchile.cl.
Our approach performs very well for moderate to long patterns. Already for
m = 50 it starts to dominate the other alternatives. For m = 100 the sampled
suffix array behaves almost like a suffix array (and much faster than the other
methods), even when using less than 0.5 times the text size (plus text). The
novel compressed self-indexes [5,13] are designed to use much less space (e.g.
0.8 times the text size including the text) but take much more time, and thus

m=20 m=20

3 0.1
L | ' Sparse ‘SA XML —-—4--- Sbarse SA‘ English J——
* H Sampled SA XML ---&---) Sparse SA Proteins -+
25+ \ | 4 Sampled SA English —&—
— \ EB —~ 008 Sampled SA Proteins & —
5 \ \ 2 LCSA English —e—
2 2k \ i 3 LCSA Proteins e
d A\ = o
] * g g 006 g
=% . \ =%
2 ™ 2
= = 0.04 - 4
E L |l E
o o
£ £
os L] 0.02 - E
0 L L L L L L 0 L L L L L L
1 15 2 25 3 35 4 4.5 1 15 2 25 3 35 4 4.5
space (fraction of the text) space (fraction of the text)
m=50 m=100
0.1 T T T T 01 T T T T T
Sparse SA XML ---+--- Sparse SA XML ---+--
Sparse SA English —+— 4 Sparse SA English —+—
Sparse SA Proteins -+ | Sparse SA Proteins -+
~ 008 Sampled SA XML ---8--- - ~ 008 F 3 Sampled SA XML ---8--- 1
g Sampled SA English —&8— E Sampled SA English —&—
=] Sampled SA Proteins & =] *+ Sampled SA Proteins &
S LCSA English —e— S S LCSA English —e—
g 006 LCSA Proteins e | g 006 BN LCSA Proteins e |
8 8 ;
@ @
2 2
= 004 B = 004 1
& E
o o
E E
=002 q =002 q
0 L L L L L L 0 L L L L L L
1 15 2 25 3 35 4 45 1 15 2 25 3 35 4 45
space (fraction of the text) space (fraction of the text)

Fig. 7. Search times for the sampled and sparse suffix arrays and LCSA for XML,
English and protein data. LCSA uses little space for XML data but it is much slower
than the other approaches, so these results are not shown. The top figures show results

for pattern length 20 and the bottom figures show the results for pattern lengths 50
index size

and 100. The space fraction includes that of the text, so it is of the form 1+ foxt size

are inappropriate for this comparison. We chose the LCSA as an alternative that
compresses less but is much faster than the other self-indexes [6]. Its compression
performance varies widely with the text type, and is not particularly good on
English and Proteins. On XML it requires extra space equal to the size of the
text, yet its times are much higher and fall well outside the plot (and this is still
much faster than the other self-indexes!). The LCSA, on the other hand, would
perform better on shorter patterns, where our index is not competitive.

7 Conclusions and Further Work

We have presented two sampling approaches to speed up string matching with
long patterns. The sampled semi-index profits from nonuniform character distri-
bution to gain a speedup over online searching, while the sampled suffix array
works also with a uniform distribution. It is also worth noting that in the semi-
index approach the sampled text is an internal structure of the semi-index so
any transform, like compression or code splitting [15], could be applied to it.

The current approach is not applicable to small alphabets. To extend the
approach to smaller alphabets we could use ¢-grams. In the semi-index approach
we would then define a sampled alphabet for each (¢ — 1)-long context and the
sampled text would contain those characters that are sampled in the context
where they occur. When searching for a pattern, we must always discard the
first ¢ — 1 characters of the pattern as their context is not known. Using g-grams
with the sampled suffix array is simpler. The sampled suffix array would just
index all suffixes starting with a sampled ¢-gram.

Another interesting direction to minimize the extra space of the semi-index
is to replace the original text by the subsequence of the non-sampled characters,
and use a bitmap to indicate the subset each symbol of T belongs to. With
rank/ select capabilities [13] this bitmap replaces the current position mapping for
verification and permits searching on the sampled or the unsampled characters.

References

1. Abouelhoda, M., Kurtz, S.; Ohlebusch, E.: Replacing suffix trees with enchanced
suffix arrays. Journal of Discrete Algorithms 2(1) (2004) 53 86
2. Baeza-Yates, R.: String searching algorithms revisited. In Dehne, F.; Sack, J.R.,
Santoro, N., eds.: WADS 1989. LNCS, vol. 382, Springer, Heidelberg (1989) 75 96
3. Crochemore, M., Czumaj, A., Gasieniec, L., Jarominek, S., Lecroq, T., Plandowski,
W., Rytter, W.: Speeding up two string-matching algorithms. Algorithmica 12
(1994) 247-267
4. Ferragina, P.; Fischer, J.: Suffix arrays on words. In Ma, B., Zhang, K., eds.: CPM
2007. LNCS, vol. 4580, Springer, Heidelberg (2007) 328 339
5. Ferragina, P., Gonzalez, R., Navarro, G., Venturini, R.: Compressed text indexes:
From theory to practice! Manuscript. http://pizzachili.dcc.uchile.cl (2007)
6. Gonzalez, R., Navarro, G.: Compressed text indexes with fast locate. In Ma, B.,
Zhang, K., eds.: CPM 2007. LNCS, vol. 4580, Springer, Heidelberg (2007) 216-227
7. Horspool, R.N.: Practical fast searching in strings. Software — Practise & Experi-
ence 10 (1980) 501-506
8. Karkkainen, J., Ukkonen, E.: Sparse suffix trees. In Cai, J., Wong, C.K., eds.:
COCOON 1996. LNCS, vol. 1090, Springer, Heidelberg (1996) 219 230
9. Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings. STAM
Journal on Computing 6 (1977) 323 350
10. Manber, U., Myers, G.: Suffix arrays: A new method for online string searches.
STAM Journal on Computing 22(5) (1993) 935-948
11. Moura, E., Navarro, G., Ziviani, N., Baeza-Yates, R.: Fast and flexible word search-
ing on compressed text. ACM Trans. on Information Systems 18(2) (2000) 113-139
12. Navarro, G., Baeza-Yates, R., Sutinen, E.; Tarhio, J.: Indexing methods for ap-
proximate string matching. IEEE Data Engineering Bulletin 24(4) (2001) 19 27
13. Navarro, G., Mikinen, V.: Compressed full-text indexes. ACM Computing Surveys
39(1) (2007) 1 61
14. Navarro, G., Raffinot, M.: Flexible Pattern Matching in Strings Practical on-line
search algorithms for texts and biological sequences. Cambridge University Press
(2002)
15. Rautio, J., Tanninen, J., Tarhio, J.: String matching with stopper encoding and
code splitting. In Apostolico, A., Takeda, M., eds.: CPM 2002. LNCS, vol. 2373,
Springer, Heidelberg (2002) 45-52

