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t. We introdu
e a novel alphabet sampling te
hnique for speed-ing up both online and indexed string mat
hing. We 
hoose a subset ofthe alphabet and sele
t the 
orresponding subsequen
e of the text. On-line or indexed sear
hing is then 
arried out on that subsequen
e, and
andidate mat
hes are veri�ed in the full text. We show that this speedsup online sear
hing, espe
ially for moderate to long patterns, by a fa
torof up to 5. For indexed sear
hing we a
hieve indexes that are as fastas the 
lassi
al su�x array, yet o

upy spa
e less than 0.5 times thetext size (instead of 4) plus text. Our experiments show no 
ompetitivealternatives in a wide spa
e/time range.1 Introdu
tionThe string mat
hing problem is to �nd all the o

urren
es of a given pattern

P = p0p1 . . . pm−1 in a large text T = t0t1 . . . tn−1, both being sequen
es of
hara
ters drawn from an alphabet Σ of size σ.One approa
h to string mat
hing is online sear
hing, whi
h means the textis not prepro
essed. Thus these algorithms need to s
an the text when sear
hingand their time 
ost is of the form O(n · f(m)). The worst-
ase 
omplexity of theproblem is Θ(n), �rst a
hieved by the Knuth-Morris-Pratt algorithm [9℄. Theaverage 
omplexity of the problem is Θ(n logσ m/m), a
hieved for example bythe BDM algorithm [3℄. Other non-optimal algorithms su
h as the Boyer-Moore-Horspool (BMH) algorithm [7℄ are very 
ompetitive in pra
ti
e.The se
ond approa
h, indexed sear
hing, tries to speed up sear
hing byprepro
essing the text and building a data stru
ture that allows sear
hing in
O(m · g(n) + occ · h(n)) time, where occ is the number of o

urren
es of thepattern in the text. Popular solutions to this approa
h are su�x trees and su�xarrays [10℄. The �rst gives an O(m + occ) time solution, while the su�x arraygives an O(m log n+occ) time 
omplexity whi
h 
an be improved to O(m+occ)using extra spa
e [1℄. The problem of these approa
hes is that the spa
e neededis too large for many pra
ti
al situations (4�20 times the text size). Re
ently, a
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lot of e�ort has been spent to 
ompress these indexes [13℄ obtaining a signi�
antredu
tion in spa
e, but requiring 
onsiderable implementation e�ort [5℄.In this work we explore sampling the text by removing a set of 
hara
ters fromthe alphabet. We �rst apply an online algorithm to this sampled text, obtainingan approa
h in between online sear
hing and indexed sear
hing. We 
all this kindof stru
ture a semi-index. This is a data stru
ture built on top of a text, whi
hpermits sear
hing faster than any online algorithm, yet its sear
h 
omplexityis still of the form O(n · f(m)). To be interesting, a semi-index should be easyto implement and require little extra spa
e. Several other semi-indexes exist inthe literature, even without using that name. For example, q-gram indexes [12℄,dire
tly sear
hable 
ompression formats [11℄, and other sampling approa
hes.We also 
onsider indexing the sampled text. We build a su�x array indexingthe sampled positions of the text, and get a sampled su�x array. This approa
his similar to the sparse su�x array [8℄ as both index a subset of the su�xes, butthe di�erent sampling properties indu
e rather di�erent sear
h algorithms.A 
hallenge in our method is how to 
hoose the best alphabet subset tosample. We present analyti
al results, supported by experiments, that simplifythis pro
ess by drasti
ally redu
ing the number of 
ombinations to try. We showthat it is su�
ient in pra
ti
e to sample the least frequent 
hara
ters up to somelimit. In both 
ases, online and indexed, our sampling te
hnique signi�
antlyimproves upon the state of the art, espe
ially for relatively long sear
h patterns.For example, online sear
hing is speeded up by a fa
tor of up to 5 on Englishtext. For indexed sear
hing we a
hieve indexes that are as fast as the 
lassi
alsu�x array, yet o

upy less than 0.5 times the text size (instead of 4) plus text.2 Text SamplingThe main idea of our online approa
h is to 
hoose a subset of the alphabetto be the sampled alphabet and then to build a subsequen
e of the text byomitting all 
hara
ters not in the sampled alphabet. At regular intervals wemap the positions of the sampled text to their 
orresponding positions in theoriginal text. When sear
hing, we build the sampled pattern from the patternby omitting all 
hara
ters not in the sampled alphabet and then sear
h for thissampled pattern in the sampled text. For ea
h 
andidate returned by this sear
hwe verify a short range of the original text with the help of the position mapping.Let T = t0t1 . . . tn−1 be the text over the alphabet Σ and Σ̃ ⊂ Σ the sampledalphabet. The proposed semi-index is 
omposed of the following items:� Sampled text T̃ : Let T̃ = ti0ti1 . . . tiñ−1
be the sequen
e of the ti's thatbelong to the sampled alphabet Σ̃. The length of the sampled text is ñ.� The position mapping M : A table of size ⌊ñ/q⌋ where M [i] maps the q · i'th
hara
ter of T̃ to its 
orresponding position in T so T̃ [q · i] = T [M [i]].Given a pattern P = p0p1 . . . pm−1, sear
h on this semi-index is 
arried out asfollows. Let P̃ = pj0pj1 . . . pjm̃−1

be the subsequen
e of pi's that belong to thesampled alphabet Σ̃. The length of the sampled pattern is thus m̃. The sampled
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Fig. 1. Example of prepro
essingsear
h (T̃ = t̃0t̃1 . . . t̃ñ−1, P̃ = p̃0p̃1 . . . p̃m̃−1, T = t0t1 . . . tn−1,
P = p0p1 . . . pm−1, j0, q, M [0 . . . ñ/q])1. for (i← 0 to σ − 1) d[i]← m̃2. for (i← 0 to m̃− 2) d[p̃i]← m̃− 1− i3. pos← 04. while (pos < ñ− m̃)5. j ← m̃− 16. while (j ≥ 0 and t̃pos+j = p̃j) j ← j − 17. if (j = −1)8. Che
k for o

urren
e from M [pos/q] + (pos mod q)− j09. to M [pos/q + 1]− (q − pos mod q)− j010. pos← pos + d[t̃pos+m̃−1]Fig. 2. Sear
hing the sampled text for a sampled pattern with the BMH algorithmtext T̃ is then sear
hed for P̃ , and for every o

urren
e, the positions to 
he
k inthe original text are delimited by the position mapping M . If the sampled patternis found in position ir in T̃ , the area T [M [ir/q] + (ir mod q) − j0 . . .M [ir/q +

1] − (q − ir mod q) − j0] is 
he
ked for possible startings of real o

urren
es.For example, if the text is T = abaacabdaa, the sampled text built omittingthe a's (Σ̃ = {b, c, d}) is T̃ = t1t4t6t7 = bcbd. If we map every other position inthe sampled text, the position mapping M is {1, 6}. For sear
hing the pattern
acab we omit the a's and get P̃ = p1p3 = cb. We sear
h for P̃ = cb in T̃ = bcbd,�nding an o

urren
e at position 1. The previous mapped position is M [0] = 1, so
t̃0 
orresponds to t1, and the next mapped position is M [1] = 6, so t̃2 
orrespondsto t6. Be
ause the �rst sampled 
hara
ter in P is in position 1, we verify thearea 1 . . . 4 in the original text �nding the mat
h at position 3. Prepro
essing forthe text and pattern of the previous example is shown in Fig. 1.Be
ause the sampled patterns tend to be quite short, we implemented thesear
h phase with the BMH algorithm [7℄, whi
h has been found to be fast insu
h settings [14℄. Figure 2 shows the algorithm for this basi
 method.Although the above s
heme works well for most of the patterns, it is obviousthat there are some bad patterns whi
h would be sear
hed faster in the origi-nal text. The average 
omplexity of the BMH algorithm is O(n(1/m + 1/σ)) =
O(n/ min(m, σ)) assuming a uniform and independent distribution of the 
hara
-



ters of the alphabet [2℄. If the distribution is not uniform, a better approximationis to repla
e σ by the the e�e
tive alphabet size σ̄, whi
h is de�ned as the in-verse of the probability of two random 
hara
ters mat
hing, i.e. 1/σ̄ =
∑

c∈Σ p2

c ,where pc is the empiri
al probability of o

urren
e of the 
hara
ter c.To determine if it would be faster to just sear
h the pattern in the originaltext we tried 
al
ulating the ratios n/ min(m, σ̄) and n · (1/m + 1/σ̄) both forthe sampled text and pattern and for the original text and pattern. If the ratiois lower for the original text and pattern, we sear
h only in the original text.The results were better using the ratio n/ min(m, σ̄).3 Optimal Sampling for Online Sear
hA question arises from the previous des
ription of our sampling method: Howto form the sampled alphabet Σ̃? We will �rst analyze how the average runningtime of the BMH algorithm 
hanges when we sample the text and then, based onthis, we will develop a method to �nd the optimal sampled alphabet. Throughoutthis se
tion we assume that the 
hara
ters are independent and we analyze theapproa
h for a general pattern not known when prepro
essing the text.Let us de�ne bA =
∑

c∈A pc and aA =
∑

c∈A p2

c where A ⊂ Σ. Now the lengthof the sampled text will be bΣ̃n, the average length of the sampled pattern bΣ̃m(assuming it distributes similarly to the text) and the probability of two random
hara
ters mat
hing in the sampled text aΣ̃/b2

Σ̃
. Given the average 
omplexityof the BMH algorithm, O(n(1/m+1/σ̄)), the average sear
h 
ost in the sampledtext is

O

(

bΣ̃n

(

1

bΣ̃m
+

aΣ̃

b2

Σ̃

))

= O

(

n

(

1

m
+

aΣ̃

bΣ̃

))

.When 
onsidering the veri�
ation 
ost we assume for simpli
ity that themapping M 
ontains the position of ea
h sampled 
hara
ter in the original text,i.e. q = 1. The probability that a position has to be veri�ed is then
pver =

m
∑

i=0

(

m

i

)

bi

Σ̃
(1 − bΣ̃)m−i

(

aΣ̃

b2

Σ̃

)i

=

(

aΣ̃

bΣ̃

+ 1 − bΣ̃

)m

.If we assume that ea
h veri�
ation 
osts O(m) then the 
ost of veri�
ation is
n · pver · O(m) = n ·

(

aΣ̃

bΣ̃

+ 1 − bΣ̃

)m

· O(m) .The total 
ost of sear
hing in our s
heme is thus
O

(

n ·

(

1

m
+

aΣ̃

bΣ̃

+

(

aΣ̃

bΣ̃

+ 1 − bΣ̃

)m

· m

))and hen
e the optimal sampled alphabet Σ̃ minimizes the 
ost per text 
hara
ter
E(Σ̃) =

1

m
+

aΣ̃

bΣ̃

+

(

aΣ̃

bΣ̃

+ 1 − bΣ̃

)m

· m



whi
h 
an be divided into the sear
h 
ost in the sampled text 1/m + aΣ̃/bΣ̃ andthe veri�
ation 
ost (aΣ̃/bΣ̃ + 1 − bΣ̃)m · m.The veri�
ation 
ost always in
reases when a 
hara
ter is removed from thealphabet so the sear
h 
ost in the sampled text must de
rease for the 
ombined
ost to de
rease. If R = Σ\Σ̃ is the set of removed 
hara
ters, the fun
tion
hR(p) =

1

m
+

aΣ − aR − p2

1 − bR − pgives the sear
h 
ost in the sampled text, per text 
hara
ter, if an additional
hara
ter with probability p is removed. The derivative of hR(p) is
h′

R(p) = 1 −
(1 − bR)2 − (aΣ − aR)

(1 − bR − p)2whi
h has exa
tly one zero pz = (1−bR)−
√

(1 − bR)2 − (aΣ − aR) in the interval
[0, 1−bR]. We 
an see that the fun
tion hR(p) is in
reasing until pz and de
reasingafter that. Solving the equation hR(pR) = hR(0) we get pR = (aΣ−aR)/(1−bR).So removing a single additional 
hara
ter de
reases the sear
h 
ost in the sampledtext only if the probability of o

urren
e for that 
hara
ter is larger than pR.Otherwise both the sear
h 
ost in the sampled text and the veri�
ation 
ost willin
rease and thus removing the 
hara
ter is not bene�
ial.Suppose now that we have already �xed whether we are going to keep orremove ea
h 
hara
ter with probability of o

urren
e higher than pc and now weneed to de
ide if we should remove the 
hara
ter c. If pc > pR, we will need toexplore both options as removing the 
hara
ter will de
rease sear
h 
ost in thesampled text and in
rease veri�
ation 
ost. However, if pc < pR we know that ifwe added only c to R the sear
hing time in the sampled text would also in
reaseand therefore we should not remove c. But 
ould it be bene�
ial to remove ctogether with a set of other 
hara
ters with probabilities of o

urren
e less than
pR? In fa
t it 
annot be. Suppose that we remove a 
hara
ter c with probability
pc < pR. Now the new removed set will be R′ = R∪{c} so we get aR′ = aR + p2

cand bR′ = bR + pc. Now the new 
riti
al probability will be
pR′ =

aΣ − aR′

1 − bR′

=
aΣ − aR − p2

c

1 − bR − pc

.We know that hR(pc) > hR(pR) = hR(0) be
ause pc < pR. Therefore
1

m
+

aΣ − aR − p2
c

1 − bR − pc

>
1

m
+

aΣ − aR

1 − bRand so
pR′ =

aΣ − aR − p2
c

1 − bR − pc

>
aΣ − aR

1 − bR

= pR .Thus even now it is not good to remove a 
hara
ter with probability less thanthe 
riti
al value pR for the previous set and this will again hold if another 
har-a
ter with a small probability is removed. Therefore we do not need to 
onsider



Ropt = {}sort 
hara
ters of Σ in des
ending order�nd_opt(0, {})return Ropt�nd_opt(i, R)1. if (i = σ)2. if (E(Σ\R) < E(Σ\Ropt))3. Ropt = R4. else5. pR = aΣ−aR

1−bR6. if (pi > pR)7. �nd_opt(i + 1, R ∪ {i})8. �nd_opt(i + 1, R)9. else10. �nd_opt(σ, R)Fig. 3. Pseudo 
ode for sear
hing for the optimal set of removed 
hara
tersremoving 
hara
ters with probabilities less than pR. Note however that removinga 
hara
ter with a higher probability will de
rease the 
riti
al probability pR andafter this it 
an be bene�
ial to remove a previously unbene�
ial 
hara
ter. Infa
t, if the sampled alphabet 
ontains two 
hara
ters with di�erent probabilitiesof o

urren
e, the probability of o

urren
e for the most frequent 
hara
ter inthe sampled alphabet is always larger than pR. Thus it is always bene�
ial forsear
hing in the sampled text to remove the most frequent 
hara
ter.The above 
an be applied to prune the exhaustive sear
h for the optimalset of removed 
hara
ters. First we sort the 
hara
ters of the alphabet in thede
reasing order of frequen
y. We then �gure out if it is bene�
ial for sear
hingin the sampled text to remove the most frequent 
hara
ter not 
onsidered yet.If it is, we try both removing and not removing that 
hara
ter and pro
eedre
ursively for both 
ases. If it is not, we prune the sear
h here be
ause none ofthe remaining 
hara
ters should be removed. Figure 3 gives the pseudo 
ode.In pra
ti
e when using this pruning te
hnique the number of examined setsdrops drasti
ally as 
ompared to the exhaustive sear
h, although the worst 
aseis still exponential. For example, the number of examined sets drops from 261 to2,810 when 
onsidering the King James Bible as the text.In our experiments, the optimal set of removed 
hara
ters always 
ontainedthe most frequent 
hara
ters up to some limit depending on the length of thepattern, as shown in Table 1. Therefore a simpler heuristi
 is to remove the kmost frequent 
hara
ters for varying k and 
hoose the set that predi
ts the bestoverall time. However, if the veri�
ation 
ost is very high for some reason (e.g.going to disk to retrieve the text, or un
ompressing part of it) it is possible thatthe optimal set of removed 
hara
ters is not a set of most frequent 
hara
ters.
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Fig. 4. The sampled su�x array for the text T = abaacabdaa with the sampled al-phabet Σ̃ = {b, c, d}. The sorted su�xes are only shown for 
onvenien
e. They are notpart of the stru
ture.4 Sampled Su�x ArrayTo turn the sampling approa
h into an index, we use a su�x array to index thesampled positions of the text. When 
onstru
ting the su�x array, only su�xesstarting with a sampled 
hara
ter will be 
onsidered, but the sorting will still bedone 
onsidering the full su�xes. The resulting sampled su�x array is like thesu�x array of the original text where su�xes starting with unsampled 
hara
tershave been omitted. The 
onstru
tion of the sampled su�x array 
an be done in
O(n) time using O(ñ) words of spa
e if we apply the 
onstru
tion te
hnique ofthe word su�x array [4℄. The sampled su�x array for the text T = abaacabdaais shown in Fig. 4, where the sampled alphabet is Σ̃ = {b, c, d}.Sear
h on the sampled su�x array is 
arried out as follows. Given a pattern
P = p0p1 . . . pm−1 we �rst �nd the �rst sampled 
hara
ter of the pattern. Let thisbe at index j. The pattern is now divided into the unsampled pre�x p0 . . . pj−1and the su�x starting with the �rst sampled 
hara
ter pj . . . pm−1. We sear
hthe sampled su�x array for this su�x of the pattern like in an ordinary su�xarray. Ea
h 
andidate mat
h returned by this sear
h will then be veri�ed by
omparing the unsampled pre�x against the text.We 
ould also 
onstru
t the su�x array dire
tly for the sampled text, butthis would entail more veri�
ations as the unsampled 
hara
ters of the patternsu�x would not be required to mat
h. We would also need to store the sampledtext, or to skip the unsampled 
hara
ters in the original text ea
h time we reada su�x.The sampled su�x array resembles a sparse su�x array [8℄, whi
h indexesregularly sampled text positions. However, we only need to make one sear
h onthe sampled su�x array, while using a sparse su�x array one would need tomake q sear
hes if the sparse su�x array indexes every q'th position. On theother hand, the sampled su�x array 
an only be used for patterns that 
ontainat least one sampled 
hara
ter whereas the sparse su�x array 
an be used ifthe pattern length is at least q. The varian
e of the sear
h time when using thesampled su�x array is also larger than when using a sparse su�x array be
ausein the sampled su�x array we have mu
h less 
ontrol over the length of thestring that is used in the su�x array sear
h.



5 Optimal Sampling for Su�x ArraySuppose that we have enough spa
e to 
reate the sampled su�x array for b · nsu�xes where 0 < b < 1. How should we now 
hoose the sampled alphabet
Σ̃ so that the sear
h time would be optimal? Obviously bΣ̃ = b but we stillhave a number of possible sampled alphabets to 
hoose from. The sear
h on thesu�x array will 
ompare the su�x of the pattern starting with the �rst sampled
hara
ter against a text string O(log n) times. The 
omparison time is minimizedwhen the probability of mat
hing for the �rst sampled 
hara
ter is minimized.Thus the sampled alphabet Σ̃ should be a set of least frequent 
hara
ters.Let us then 
onsider the veri�
ation. The probability that two random 
har-a
ters are unsampled and mat
h is aR = aΣ − aΣ̃ where R is the set of removed
hara
ters. Thus the average 
ost of a single veri�
ation is 1/(1 − aΣ + aΣ̃).The probability that the su�x of the pattern starting with the �rst sampled
hara
ter mat
hes a random string of equal length is

bΣ̃

aΣ̃

b2

Σ̃

(aΣ)ms−1 =
aΣ̃

bΣ̃

(aΣ)ms−1where ms is the length of the su�x starting with the �rst sampled 
hara
ter.This is also the probability of veri�
ation per 
hara
ter in the original text. Theaverage 
ost of veri�
ation per text 
hara
ter is then
aΣ̃

bΣ̃

(aΣ)ms−1 ·
1

1 − aΣ + aΣ̃

=
aΣ̃

1 − aΣ + aΣ̃

·
(aΣ)ms−1

bΣ̃

.Be
ause we attempt to determine the optimal sampled alphabet su
h that bΣ̃ =
b, bΣ̃ and the distribution of ms do not depend on whi
h 
hara
ters we remove.Thus we should minimize f(aΣ̃) = aΣ̃/(1−aΣ +aΣ̃). The derivative of f(aΣ̃) is

f ′(aΣ̃) =
1 − aΣ

(1 − aΣ + aΣ̃)2
> 0so the veri�
ation 
ost in
reases when aΣ̃ in
reases. To minimize aΣ̃ the sampledalphabet Σ̃ should be a set of least frequent 
hara
ters. This also minimizes thetotal 
ost be
ause also the su�x array sear
h 
ost is minimized by this 
hoi
e.Interestingly, this 
orresponds to the simpli�ed heuristi
 we proposed in Se
t. 3.6 Experiments6.1 Semi-IndexTo determine the sampled alphabet, we ran the exa
t algorithm of Se
t. 3 for dif-ferent pattern lengths to 
hoose the sampled alphabet that produ
es the smallestestimated 
ost E(Σ̃). For all pattern lengths the algorithm re
ommended remov-ing a set of most frequent 
hara
ters. To see how well these results 
orrespondto pra
ti
e, we tested the semi-index approa
h by removing the k most frequent
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Fig. 5. The running time for various pattern lengths for the basi
 method. The left�gure shows the mean running time; the right shows the median, minimum, maximum,and 25% and 75% quartiles.Table 1. Predi
ted and observed optimal number of removed 
hara
ters for the KingJames Bible. The predi
ted optima are 
omputed with the algorithm suggested by theanalysis, whi
h in our experiments always returned a set of most frequent 
hara
ters.
m 10 20 30 40 50 60 70 80 90 100Predi
ted optimal number of removed 
hara
ters 3 7 9 11 12 13 14 15 16 16Observed optimal number of removed 
hara
ters 3 7 11 13 14 15 17 17 16 18
hara
ters from the text for varying k. We used a 2 MB pre�x of the King JamesBible as the text, and the patterns are random substrings of the text. For ea
hpattern length 500 patterns were generated, and the reported running times areaverages over 200 runs with ea
h of the patterns. The most frequent 
hara
tersin the de
reasing order of frequen
y were � ethaonsirdlfum,wy
gbp� where  isthe spa
e 
hara
ter. The tests were run on a 1.0 GHz AMD Athlon dual 
orepro
essor with 2 GB of memory, 64 kB L1 
a
he and 512 kB L2 
a
he, runningLinux 2.6.23. The 
ode is in C and 
ompiled with g

 using -O3 optimization.Figure 5 shows the results of these experiments with the basi
 method map-ping every 64'th sampled 
hara
ter to its position in the original text. If we makethe mapping sparser the running time will start to in
rease a little earlier, butthe e�e
t is quite mild. The results for zero removed 
hara
ters 
orrespond to theoriginal BMH algorithm. As we 
an see, the semi-index is up to 5 times faster,espe
ially when the patterns are long. Figure 5 also shows that, for ea
h patternlength, there is an optimal number of 
hara
ters to remove. A 
omparison ofthese optima and those given by the analysis is shown in Table 1. As we 
an see,the analysis gives reasonably good results although it re
ommends removing toofew 
hara
ters with long patterns, be
ause we estimated the veri�
ation timequite pessimisti
ally. When more 
hara
ters are removed it is unlikely that wewould need to s
an m 
hara
ters for ea
h veri�ed position.
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Fig. 6. The running time for various pattern lengths for the tuned version where sear
h-ing in the sampled text is skipped if it looks like sear
hing in the original text is faster.The left �gure shows the mean running time; the right �gure shows the median, mini-mum, maximum, and 25% and 75% quartiles.The results for the tuned method, where we sear
h the original text if theratio n/ min(m, σ̄) looks unfavorable for sear
hing the sampled text, is shownin Fig. 6. Again we are mapping every 64'th sampled 
hara
ter to its positionin the original text. As we 
an see, the optimal number of removed 
hara
tersis 
loser to being the same for all pattern lengths than in the basi
 approa
h.For example by 
hoosing to remove the 13 most frequent 
hara
ters, we woulddo reasonably well for all pattern lengths using just 0.18 times the original textsize to store the sampled text. Comparing Figs. 5 and 6 we see that the medianrunning times are almost the same, but the maximum and the 75% quartile arelower for the tuned method. This is also re�e
ted in the average values.6.2 Sampled Su�x ArrayFigure 7 shows the results obtained by 
omparing our sampled su�x arrayagainst our implementation of the sparse su�x array [8℄ and the lo
ally 
om-pressed su�x array (LCSA) [6℄, an index that 
ompresses the di�erential su�xarray using Re-Pair. Note that when the spa
e usage of the sampled or sparsesu�x array is maximal (3.25 times the text) both of them index all su�xes andbehave exa
tly like a normal su�x array. The experiments were run on a PentiumIV 2.0 GHz pro
essor with 2 GB of RAM running SuSE Linux with kernel 2.4.31.The 
ode was 
ompiled using g

 version 3.3.6 with -O9 optimization. We used50 MB texts from the PizzaChili site, http://pizza
hili.d

.u
hile.
l.Our approa
h performs very well for moderate to long patterns. Already for
m = 50 it starts to dominate the other alternatives. For m = 100 the sampledsu�x array behaves almost like a su�x array (and mu
h faster than the othermethods), even when using less than 0.5 times the text size (plus text). Thenovel 
ompressed self-indexes [5,13℄ are designed to use mu
h less spa
e (e.g.0.8 times the text size in
luding the text) but take mu
h more time, and thus
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Fig. 7. Sear
h times for the sampled and sparse su�x arrays and LCSA for XML,English and protein data. LCSA uses little spa
e for XML data but it is mu
h slowerthan the other approa
hes, so these results are not shown. The top �gures show resultsfor pattern length 20 and the bottom �gures show the results for pattern lengths 50and 100. The spa
e fra
tion in
ludes that of the text, so it is of the form 1+ index sizetext size .are inappropriate for this 
omparison. We 
hose the LCSA as an alternative that
ompresses less but is mu
h faster than the other self-indexes [6℄. Its 
ompressionperforman
e varies widely with the text type, and is not parti
ularly good onEnglish and Proteins. On XML it requires extra spa
e equal to the size of thetext, yet its times are mu
h higher and fall well outside the plot (and this is stillmu
h faster than the other self-indexes!). The LCSA, on the other hand, wouldperform better on shorter patterns, where our index is not 
ompetitive.7 Con
lusions and Further WorkWe have presented two sampling approa
hes to speed up string mat
hing withlong patterns. The sampled semi-index pro�ts from nonuniform 
hara
ter distri-bution to gain a speedup over online sear
hing, while the sampled su�x arrayworks also with a uniform distribution. It is also worth noting that in the semi-index approa
h the sampled text is an internal stru
ture of the semi-index soany transform, like 
ompression or 
ode splitting [15℄, 
ould be applied to it.



The 
urrent approa
h is not appli
able to small alphabets. To extend theapproa
h to smaller alphabets we 
ould use q-grams. In the semi-index approa
hwe would then de�ne a sampled alphabet for ea
h (q − 1)-long 
ontext and thesampled text would 
ontain those 
hara
ters that are sampled in the 
ontextwhere they o

ur. When sear
hing for a pattern, we must always dis
ard the�rst q−1 
hara
ters of the pattern as their 
ontext is not known. Using q-gramswith the sampled su�x array is simpler. The sampled su�x array would justindex all su�xes starting with a sampled q-gram.Another interesting dire
tion to minimize the extra spa
e of the semi-indexis to repla
e the original text by the subsequen
e of the non-sampled 
hara
ters,and use a bitmap to indi
ate the subset ea
h symbol of T belongs to. Withrank/sele
t 
apabilities [13℄ this bitmap repla
es the 
urrent position mapping forveri�
ation and permits sear
hing on the sampled or the unsampled 
hara
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