
Bit-Parallel Branch&Bound Algorithm for

Transposition Invariant LCS

Kjell Lemström,1 Gonzalo Navarro2 and Yoan Pinzon3

1 Department of Computer Science, University of Helsinki, Finland
2 Department of Computer Science, University of Chile

3 Department of Computer Science, King’s College, London, UK, and

Department of computer Science, Autonomous University of Bucaramanga, Colombia

Main Results. We consider the problem of longest common subsequence (LCS)
of two given strings in the case where the first may be shifted by some constant
(i.e. transposed) to match the second. For this longest common transposition
invariant subsequence (LCTS) problem, that has applications for instance in
music comparison, we develop a branch and bound algorithm with best case
time O((m2 + log log σ) log σ) and worst case time O((m2 + log σ)σ), where m
and σ are the length of the strings and the number of possible transpositions,
respectively. This compares favorably against the O(σm2) naive algorithm in
most cases and, for large m, against the O(m2 log log m) time algorithm of [2].

Technical Details. Let A = a1, . . . , an and B = b1, . . . , bm be two strings, over a
finite numeric alphabet Σ = {0 . . . σ}. A subsequence of string A is obtained by
deleting zero, one or several characters of A. The length of the longest common

subsequence of A and B, denoted LCS(A, B), is the length of the longest string
that is a subsequence both of A and B.

The conventional dynamic programming approach computes LCS(A, B) in
time O(mn), using a well-known recurrence that can be easily adapted to com-
pute LCS(A+ c, B), where A+ c = (a1 + c), . . . , (an + c), for some transposition
c, where −σ ≤ c ≤ σ:

LCSc
i,0 = 0; LCSc

0,j = 0;

LCSc
i,j = if ai + c = bj then 1 + LCSc

i−1,j−1 else max(LCSc
i−1,j , LCSc

i,j−1).

Our goal is to compute the length of the longest common transposition in-

variant subsequence,

LCTS(A, B) = max
c∈−σ...σ

LCSc(A, B).

Let X denote a subset of transpositions and LCSX(A, B) be such that
ai+1 and bj+1 match whenever bj+1 − ai+1 ∈ X . Now, it is easy to see that
LCSX(A, B) ≥ maxc∈X LCSc(A, B), so LCSX(A, B) may not contain the ac-
tual maximum LCSc(A, B) for c ∈ X but gives an upper bound. Our aim is to
find the maximum LCSc(A, B) value by successive approximations.

We form a binary tree whose nodes have the form [I, J ] and represent the
range of transpositions X = {I . . . J}. The root is [−σ, σ]. The leaves have the



form [c, c]. Every internal node [I, J ] has two children [I, ⌊(I +J)/2⌋] and [⌊(I +
J)/2⌋ + 1, J ].

The hierarchy is used to upper bound the LCSc(A, B) values. For every node
[I, J ] of the tree, if we compute LCS{I...J}(A, B), the result is an upper bound
to LCSc(A, B) for any I ≤ c ≤ J . Moreover, LCSX(A, B) is easily computed in
O(mn) time if X = {I . . . J} is a continuous range of values:

LCSX
i,0 = 0; LCSX

0,j = 0;

LCSX
i,j = if bj − ai ∈ X then 1 + LCSX

i−1,j−1 else max(LCSc
i−1,j , LCSc

i,j−1).

We already know that the LCS value of the root is min(m, n), since every
pair of characters match. The idea is now to compute its two children, and
continue with the most promising one (higher LCSX upper bound). For this
most promising one, we compute its two children, and so on. At any moment,
we have a set of subtrees to consider, each one with its own upper bound on the
leaves it contains. At every step of the algorithm, we take the most promising
subtree, compute its two children, and add them to the set of subtrees under
consideration. If the most promising subtree turns out to be a leaf node [c, c],
then the upper bound value is indeed the exact LCSc value. At this point we
can stop the process, because all the upper bounds of the remaining subtrees are
smaller or equal than the actual LCSc value we have obtained. So we are sure
of having obtained the highest value.

For the analysis, we have a best case of log2(2σ + 1) = O(log σ) iterations
and a worst case of 2(2σ + 1) − 1 = 4σ + 1 = O(σ) until we obtain the first
leaf element. Our priority queue, which performs operations in logarithmic time,
contains O(log σ) elements in the best case and O(σ) in the worst case. Hence
every iteration of the algorithm takes O(m2+log log σ) at best and O(m2+log σ)
at worst. This gives an overall best case complexity of O((m2 + log log σ) log σ)
and O((m2 + log σ)σ) for the worst case. The worst case is not worse than the
naive algorithm for m = Ω(

√
log σ), which is the case in practice.

By using bit-parallel techniques that perform several LCSX computations
at the same time [1], the algorithm can be extended to use a t-ary tree.

This technique can be applied also to any distance d satisfying minc∈X dc(A, B)
≤ dX(A, B), where dX(A, B) is computed by considering that ai+1 and bj+1

match whenever bj+1 − ai+1 ∈ X . This includes δ-LCS, general weighted edit
distance, polyphony, etc., so it enjoys of more generality than most of the previ-
ous approaches. It cannot, however, be easily converted into a search algorithm.

References

1. K. Lemström and G. Navarro. Flexible and efficient bit-parallel techniques for

transposition invariant approximate matching in music retrieval. In Proc. SPIRE’03,

LNCS 2857, pp. 224–237, 2003.

2. V. Mäkinen, G. Navarro, and E. Ukkonen. Algorithms for transposition invariant

string matching. In Proc. STACS’03, LNCS 2607, pp. 191–202, 2003.


