
Simple, Fast, and Efficient

Natural Language Adaptive Compression ⋆

Nieves R. Brisaboa1, Antonio Fariña1, Gonzalo Navarro2 and José R. Paramá1

1 Database Lab., Univ. da Coruña, Facultade de Informática, Campus de Elviña s/n,
15071 A Coruña, Spain. {brisaboa,fari,parama}@udc.es

2Center for Web Research, Dept. of Computer Science, Univ. de Chile, Blanco
Encalada 2120, Santiago, Chile. gnavarro@dcc.uchile.cl

Abstract. One of the most successful natural language compression
methods is word-based Huffman. However, such a two-pass semi-static
compressor is not well suited to many interesting real-time transmission
scenarios. A one-pass adaptive variant of Huffman exists, but it is
character-oriented and rather complex. In this paper we implement
word-based adaptive Huffman compression, showing that it obtains very
competitive compression ratios. Then, we show how End-Tagged Dense
Code, an alternative to word-based Huffman, can be turned into a faster
and much simpler adaptive compression method which obtains almost
the same compression ratios.

1 Introduction

Transmission of compressed data is usually composed of four processes:
compression, transmission, reception, and decompression. The first two are
carried out by a sender process and the last two by a receiver. This abstracts
from communication over a network, but also from writing a compressed file
to disk so as to load and decompress it later. In some scenarios, especially
the latter, compression and transmission usually complete before reception and
decompression start.

There are several interesting real-time transmission scenarios, however, where
those processes should take place concurrently. That is, the sender should
be able to start the transmission of compressed data without preprocessing
the whole text, and simultaneously the receiver should start reception and
decompress the text as it arrives. Real-time transmission is usually of interest
when communicating over a network. This kind of compression can be applied,
for example, to interactive services such as remote login or talk/chat protocols,
where small messages are exchanged during the whole communication time. It
might also be relevant to transmission of Web pages, so that the exchange of

⋆ This word is partially supported by CYTED VII.19 RIBIDI Project. It is also funded
in part (for the Spanish group) by MCyT (PGE and FEDER) grant(TIC2003-06593)
and (for the third author) by Millennium Nucleus Center for Web Research, Grant
(P01-029-F), Mideplan, Chile.

(relatively small) pages between a server and a client along the time enables
adaptive compression by installing a browser plug-in to handle decompression.
This might be also interesting for wireless communication with hand-held devices
with little bandwidth and processing power.

Real-time transmission is handled with so-called dynamic or adaptive

compression techniques. These perform a single pass over the text (so they are
also called one-pass) and begin compression and transmission as they read the
data. Currently, the most widely used adaptive compression techniques belong
to the Ziv-Lempel family [1]. When applied to natural language text, however,
the compression ratios achieved by Ziv-Lempel are not that good (around 40%).

Statistical two-pass techniques, on the other hand, use a semi-static model. A
first pass over the text to compress gathers global statistical information, which
is used to compress the text in a second pass. The computed model is transmitted
prior to the compressed data, so that the receiver can use it for decompression.
Classic Huffman code [11] is a well-known two-pass method. Its compression ratio
is rather poor for natural language texts (around 60%). In recent years, however,
new Huffman-based compression techniques for natural language have appeared,
based on the idea of taking the words, not the characters, as the source symbols
to be compressed [13]. Since in natural language texts the frequency distribution
of words is much more biased than that of characters, the gain in compression is
enormous, achieving compression ratios around 25%-30%. Additionally, since in
Information Retrieval (IR) words are the atoms searched for, these compression
schemes are well suited to IR tasks. Word-based Huffman variants focused on
fast retrieval are presented in [7], where a byte- rather than bit-oriented coding
alphabet speeds up decompression and search.

Two-pass codes, unfortunately, are not suitable for real-time transmission.
Hence, developing an adaptive compression technique with good compression
ratios for natural language texts is a relevant problem. In [8, 9] a dynamic
Huffman compression method was presented. This method was later improved
in [12, 14]. In this case, the model is not previously computed nor transmitted,
but rather computed and updated on the fly both by sender and receiver.

However, those methods are character- rather than word-oriented, and
thus their compression ratios on natural language are poor. Extending those
algorithms to build a dynamic word-based Huffman method and evaluating its
compression efficiency and processing cost is the first contribution of this paper.
We show that the compression ratios achieved are in most cases just 0.06%
over those of the semi-static version. The algorithm is also rather efficient: It
compresses 4 megabytes per second in our machine. On the other hand, it is
rather complex to implement.

Recently, a new word-based byte-oriented method called End-Tagged Dense
Code (ETDC) was presented in [3]. ETDC is not based on Huffman at all. It
is simpler and faster to build than Huffman codes, and its compression ratio
is only 2%-4% over the corresponding word-based byte-oriented Huffman code.
For IR purposes, ETDC is especially interesting because it permits direct text

searching, much as the Tagged Huffman variants developed in [7]. However,
ETDC compresses better than those fast-searchable Huffman variants.

The second contribution of this paper is to show another advantage of ETDC
compared to Huffman codes. We show that an adaptive version of ETDC is much
simpler to program and 22%-26% faster than word-oriented dynamic Huffman
codes. Moreover, its compression ratios are only 0.06% over those of semi-static
ETDC, and 2%-4% over semi-static Huffman code. From a theoretical viewpoint,
dynamic Huffman complexity is proportional to the number of target symbols
output, while dynamic ETDC complexity is proportional to the number of source
symbol processed. The latter is never larger than the former, and the difference
increases as more compression is obtained.

As a sanity check, we also present empirical results comparing our dynamic
word-based codes against two well-known compression techniques such as gzip

(fast compression and decompression, but poor compression) and bzip2 (good
compression ratio, but slower). These results show that our two techniques
provide a well balanced trade-off between compression ratio and speed.

2 Word-Based Semi-Static Codes

Since in this paper we focus on word-based natural language text compression,
we speak indistinctly of source symbols and words, and sometimes call vocabulary

the set of source symbols.

2.1 Word-Based Huffman Codes

The idea of Huffman coding [11] is to compress the text by assigning shorter
codes to more frequent symbols. Huffman algorithm obtains an optimal (shortest
total length) prefix code for a given text. A code is a prefix code if no codeword is
a prefix of any other codeword. A prefix code can be decoded without reference
to future codewords, since the end of a codeword is immediately recognizable.

The word-based Huffman byte oriented codes proposed in [7] obtain
compression ratios on natural language close to 30% by coding with bytes instead
of bits (in comparison to the bit oriented approach that achieves ratios close to
25%). In exchange, decompression and searching are much faster with byte-
oriented Huffman code because no bit manipulations are necessary. This word-
based byte-oriented Huffman code will be called Plain Huffman code in this
paper.

Another code proposed in [7] is Tagged Huffman code. This is like Plain
Huffman, except that the first bit of each byte is reserved to flag whether the
byte is the first of its codeword. Hence, only 7 bits of each byte are used for the
Huffman code. Note that the use of a Huffman code over the remaining 7 bits is
mandatory, as the flag is not useful by itself to make the code a prefix code. The
tag bit permits direct searching on the compressed text by simply compressing
the pattern and then running any classical string matching algorithm. On Plain

Huffman this does not work, as the pattern could occur in the text not aligned
to any codeword [7].

While searching Plain Huffman compressed text requires inspecting all its
bytes from the beginning, Boyer-Moore type searching (that is, skipping bytes)
[2] is possible over Tagged Huffman code. On the other hand, Tagged Huffman
code pays a price in terms of compression performance of approximately 11%,
as it stores full bytes but uses only 7 bits for coding.

2.2 End-Tagged Dense Codes

End-Tagged Dense code (ETDC) [3] is obtained by a seemingly dull change to
Tagged Huffman code. Instead of using a flag bit to signal the beginning of a
codeword, the end of a codeword is signaled. That is, the highest bit of any
codeword byte is 0 except for the last byte, where it is 1. By this change there
is no need at all to use Huffman coding in order to maintain a prefix code.

In general, ETDC can be defined over symbols of b bits, although in this
paper we focus on the byte-oriented version where b = 8. ETDC is formally
defined as follows.

Definition 1 Given source symbols {s1, . . . , sn}, End-Tagged Dense Code assigns

number i−1 to the i-th most frequent symbol. This number is represented in base

2b−1, as a sequence of digits, from most to least significant. Each such digit is

represented using b bits. The exception is the least significant digit d0, where we

represent 2b−1 + d0 instead of just d0.

That is, the first word is encoded as 1
¯
0000000, the second as 1

¯
0000001, until

the 128th as 1
¯
1111111. The 129th word is coded as 0

¯
0000000:1

¯
0000000, 130th as

0
¯
0000000:1

¯
0000001 and so on until the (1282 + 128)th word 0

¯
1111111:1

¯
1111111,

just as if we had a 14-bit number.
As it can be seen, the computation of codes is extremely simple: It is

only necessary to sort the source symbols by decreasing frequency and then
sequentially assign the codewords. The coding phase is faster than using Huffman
because obtaining the codes is simpler. Empirical results comparing ETDC
against Plain and Tagged Huffman can be found in [3].

Note that the code depends on the rank of the words, not on their actual
frequency. As a result, it is not even necessary to transmit the code of each word,
but just the sorted vocabulary, as the model to the receiver. Hence, End-Tagged
Dense Codes are simpler, faster, and compress better than Tagged Huffman
codes. Since the last bytes of codewords are distinguished, they also permit
direct search of the compressed text for the compressed pattern, using any search
algorithm.

On-the-fly Coding and Decoding. We finally observe that, for compression and
decompression, we do not really have to start by sequentially assigning the codes
to the sorted words. An on-the-fly encoding is also possible.

Sender ()
(1) V ocabulary ← {Cnew-Symbol};
(2) Initialize CodeBook;
(3) for i ∈ 1 . . . n do

(4) read si from the text;
(5) ifsi 6∈ V ocabulary then

(6) send Cnew-Symbol;
(7) send si in plain form;
(8) V ocabulary ← V ocabulary ∪ {si};
(9) f(si) ← 1;
(10) else

(11) send CodeBook(si);
(12) f(si) ← f(si) + 1;
(13) Update CodeBook;

Receiver ()
(1) V ocabulary ← {Cnew-Symbol};
(2) Initialize CodeBook;
(3) for i ∈ 1 . . . n do

(4) receive Ci;
(5) ifCi = Cnew-Symbol then

(6) receive si in plain form;
(7) V ocabulary ← V ocabulary ∪ {si};
(8) f(si) ← 1;
(9) else

(10) si ← CodeBook−1(Ci);
(11) f(si) ← f(si) + 1;
(12) output si;
(13) Update CodeBook;

Fig. 1. Sender and receiver processes in statistical dynamic text compression.

Given a word ranked i in the sorted vocabulary, the encoder can run a simple
encode function to compute the codeword Ci = encode(i). It is a matter of
expressing i − 1 in base 2b−1 (which requires just bit shifts and masking) and
outputting the sequence of digits. Function encode takes just O(l) time, where
l = O(log(i)/b) is the length in digits of codeword Ci.

At decompression time, given codeword Ci of l digits and the sorted
vocabulary, it is also possible to compute, in O(l) time, function i = decode(Ci),
essentially by interpreting Ci as a base 2b−1 number and finally adding 1. Then,
we retrieve the i-th word in the sorted vocabulary.

3 Statistical Dynamic Codes

Statistical dynamic compression techniques are one-pass. Statistics are collected
as the text is read, and consequently, the model is updated as compression
progresses. They do not transmit the model, as the receiver can figure out the
model by itself from the received codes.

In particular, zero-order compressors model the text using only the
information on source symbol frequencies, that is, f(si) is the number of times
source symbol si appears in the text (read up to now). In the discussion that
follows we focus on zero-order compressors.

In order to maintain the model up to date, dynamic techniques need a data
structure to keep the vocabulary of all symbols si and their frequencies f(si)
up to now. This data structure is used by the encoding/decoding scheme, and
is continuously updated during compression/decompression. After each change
in the vocabulary or frequencies, the codewords assigned to all source symbols
may have to be recomputed due to the frequency changes. This recomputation
must be done both by the sender and the receiver.

Figure 1 depicts the sender and receiver processes, highlighting the symmetry
of the scheme. CodeBook stands for the model, used to assign codes to source
symbols or vice versa.

3.1 Dynamic Huffman Codes

In [8, 9] an adaptive character-oriented Huffman coding algorithm was presented.
It was later improved in [12], being named FGK algorithm. FGK is the basis of
the UNIX compact command.

FGK maintains a Huffman tree for the source text already read. The tree
is adapted each time a symbol is read to keep it optimal. It is maintained both
by the sender, to determine the code corresponding to a given source symbol,
and by the receiver, to do the opposite. Thus, the Huffman tree acts as the
CodeBook of Figure 1. Consequently, it is initialized with a unique special node
called zeroNode (corresponding to new-Symbol), and it is updated every time a
new source symbol is inserted in the vocabulary or a frequency increases. The
codeword for a source symbol corresponds to the path from the tree root to the
leaf corresponding to that symbol. Any leaf insertion or frequency change may
require reorganizing the tree to restore its optimality.

The main challenge of Dynamic Huffman is how to reorganize the Huffman
tree efficiently upon leaf insertions and frequency increments. This is a complex
and potentially time-consuming process that must be carried out both by the
sender and the receiver.

The main achievement of FGK is to ensure that the tree can be updated by
doing only a constant amount of work per node in the path from the affected leaf
to the tree root. Calling l(si) the path length from the leaf of source symbol si to
the root, and f(si) its frequency, then the overall complexity of algorithm FGK

is
∑

f(si)l(si), which is exactly the length of the compressed text, measured in
number of target symbols.

3.2 Word-Based Dynamic Huffman Codes

We implemented a word-based version of algorithm FGK. This is by itself a
contribution because no existing adaptive technique obtains similar compression
ratio on natural language. As the number of text words is much larger than
the number of characters, several challenges arised to manage such a large
vocabulary. The original FGK algorithm pays little attention to these issues
because of its underlying assumption that the source alphabet is not very large.

However, the most important difference between our word-based version
and the original FGK is that we chose the code to be byte rather than bit-
oriented. Although this necessarily implies some loss in compression ratio, it
gives a decisive advantage in efficiency. Recall that the algorithm complexity
corresponds to the number of target symbols in the compressed text. A bit-
oriented approach requires time proportional to the number of bits in the
compressed text, while ours requires time proportional to the number of bytes.
Hence byte-coding is almost 8 times faster.

Being byte-oriented implies that each internal node can have up to 256
children in the resulting Huffman tree, instead of 2 as in a binary tree. This
required extending FGK algorithm in several aspects.

4 Dynamic End-Tagged Dense Code

In this section we show how ETDC can be made adaptive. Considering again
the general scheme of Figure 1, the main issue is how to maintain the CodeBook

up to date upon insertions of new source symbols and frequency increments.
In the case of ETDC, the CodeBook is essentially the array of source symbols
sorted by frequencies. If we are able to maintain such array upon insertions and
frequency changes, then we are able to code any source symbol or decode any
target symbol by using the on-the-fly encode and decode procedures explained
at the end of Section 2.2.

the

--

--

--

--

1

2

3

4

the

--

--

--

1

2

3

4

no

Word parsed

In vocabulary?

C1 theData sent

Vocabulary

state

rose

the

rose

--

--

1

2

3

4

no

C2 rose

rose

rose

the

--

--

1

2

3

4

yes

C2

is

rose

the

--

is

1

2

3

4

no

C3 is

beautiful

rose

the

is

1

2

3

4

no

C4beautiful

beautiful

rose

the

is

1

2

3

4

yes

C4

1 1

1

2

1

2

1

1

2

1

1

2

2

1

Bytes = 28

Plain text

Compressed text

beautiful
1

beautiful

1

e r o s e r o es i s b e a u t it h f u l b e a u t i f u l

h e # o s #t r e b e a u t i f uC1 C2 C4C2 C4 l #

Bytes = 36

i s #C3

Input order 0 1 2 3 4 5 6

Fig. 2. Transmission of message "the rose rose is beautiful beautiful"

Figure 2 shows how the compressor operates. At first (step 0), no words have
been read so new-Symbol is the only word in the vocabulary (it is implicitly
placed at position 1). In step 1, a new symbol "the" is read. Since it is not in
the vocabulary, C1 (the codeword of new-Symbol) is sent, followed by "the" in
plain form (bytes ’t’, ’h’, ’e’ and some terminator ’#’). Next, "the" is added
to the vocabulary (array) with frequency 1, at position 1. Implicitly, new-Symbol

has been displaced to array position 2. Step 2 shows the transmission of "rose",
which is not yet in the vocabulary. In step 3, "rose" is read again. As it was
in the vocabulary at array position 2, only codeword C2 is sent. Now, "rose"
becomes more frequent than "the", so it moves upward in the array. Note that
a hypothetical new occurrence of "rose" would be transmitted as C1, while
it was sent as C2 in step 1. In steps 4 and 5, two more new words, "is" and
"beautiful", are transmitted and added to the vocabulary. Finally, in step 6,
"beautiful" is read again, and it becomes more frequent than "is" and "the".
Therefore, it moves upward in the vocabulary by means of an exchange with
"the".

The main challenge is how to efficiently maintain the sorted array. In the
sequel we show how we obtain a complexity equal to the number of source
symbols transmitted. This is always lower than FGK complexity, because at

least one target symbol must be transmitted for each source symbol, and usually
several more if some compression is going to be achieved. Essentially, we must
be able to identify groups of words with the same frequency in the array, and be
able of fast promoting of a word to the next group when its frequency increases.

The data structures used by the sender and their functionality are shown in
Figure 3. The hash table of words keeps in word the source word characters,
in posInVoc the position of the word in the vocabulary array, and in freq

its frequency. In the vocabulary array (posInHT) the words are not explicitly
represented, but a pointer to word is stored. Finally, arrays top and last tell, for
each possible frequency, the vocabulary array positions of the first and last word
with that frequency. It always holds top[f −1] = last[f]+1 (so actually only one
array is maintained). If no words of frequency f exist, then last[f] = top[f]− 1.

ABABBCCCD

posInVoc

7 153

1 5432

posInHT

top

last

word

freq

newSymbol = 5

BACD

1324

3231

87654321

-134

-234

4321

ABABBCCC

posInVoc

word

freq

newSymbol = 47 53

1 5432

posInHT

top

last

BAC

132

323

87654321

-13-

-23-

4321

ABABBCC

posInVoc

newSymbol = 47 35

1 5432

posInHT

-12-

-13-

4321

top

last

BAC

123

322

87654321

word

freqh
a
s
h

ta
b
le

g
ro

u
p
s

w
o
rd

s

-

-

0

-

-

0

-

-

0

Fig. 3. Transmission of words: ABABBCC, ABABBCCC and ABABBCCCD.

When the sender reads word si, it uses the hash function to obtain its
position p in the hash table, so that word[p] = si. After reading f = freq[p],
it increments freq[p]. The index of si in the vocabulary array is also obtained
as i = posInV oc[p] (so it will send code Ci). Now, word si must be promoted
to its next group. For this sake, it finds the head of its group j = top[f] and
the corresponding word position h = posInHT [j], so as to swap words i and
j in the vocabulary array. The swapping requires exchanging posInHT [j] with
posInHT [i], setting posInV oc[p] = j and setting posInV oc[h] = i. Once the
swapping is done, we promote j to the next group by setting last[f +1] = j and
top[f] = j + 1.

If si turns out to be a new word, we set word[p] = si, freq[p] = 1, and
posInV oc[p] = n, where n is the number of source symbols known prior to
reading si (and considering new-Symbol). Then exactly the above procedure is
followed with f = 0 and i = n. Also, n is incremented.

The receiver works very similarly, except that it starts from i and then it
obtains p = posInHT [i]. Figure 4 shows the pseudocode.

Implementing dynamic ETDC is simpler than building dynamic word-based
Huffman. In fact, our implementation of the Huffman tree update takes about
120 C source code lines, while the update procedure takes only about 20 lines in
dynamic ETDC.

Sender (si)
(1) p ← hash(si);
(2) if word[p] = nil then // new word
(3) word[p] ← si;
(4) freq[p] ← 0;
(5) posInV oc[p] ← n;
(6) posInHT [n] ← p;
(7) n ← n + 1;
(8) f ← freq[p];
(9) freq[p] ← freq[p] + 1;
(10) i ← posInV oc[p];
(11) j ← top[f];
(12) h ← posInHT [j];
(13) posInHT [i] ↔ posInHT [j];
(14) posInV oc[p] ← j;
(15) posInV oc[h] ← i;
(16) last[f + 1] ← j;
(17) top[f] ← j + 1;

Receiver (i)
(1) p ← posInHT [i];
(2) ifword[p] = nil then // new word
(3) word[p] ← si;
(4) freq[p] ← 0;
(5) posInV oc[p] ← n;
(6) posInHT [n] ← p;
(7) n ← n + 1;
(8) f ← freq[p];
(9) freq[p] ← freq[p] + 1;
(10) i ← posInV oc[p];
(11) j ← top[f];
(12) h ← posInHT [j];
(13) posInHT [i] ↔ posInHT [j];
(14) posInV oc[p] ← j;
(15) posInV oc[h] ← i;
(16) last[f + 1] ← j;
(17) top[f] ← j + 1;

Fig. 4. Sender and receiver processes to update CodeBook in ETDC.

Plain Huffman End-Tagged Dense Code
CORPUS TEXT SIZE 2-pass dynamic Increase 2-pass dynamic Increase diffET DC

bytes ratio % ratio % diffP H ratio % ratio % diffETDC − diffP H

CALGARY 2,131,045 46.238 46.546 0.308 47.397 47.730 0.332 0.024

FT91 14,749,355 34.628 34.739 0.111 35.521 35.638 0.116 0.005

CR 51,085,545 31.057 31.102 0.046 31.941 31.985 0.045 -0.001

FT92 175,449,235 32.000 32.024 0.024 32.815 32.838 0.023 -0.001

ZIFF 185,220,215 32.876 32.895 0.019 33.770 33.787 0.017 -0.002

FT93 197,586,294 31.983 32.005 0.022 32.866 32.887 0.021 -0.001

FT94 203,783,923 31.937 31.959 0.022 32.825 32.845 0.020 -0.002

AP 250,714,271 32.272 32.294 0.021 33.087 33.106 0.018 -0.003

ALL FT 591,568,807 31.696 31.710 0.014 32.527 32.537 0.011 -0.003

ALL 1,080,719,883 32.830 32.849 0.019 33.656 33.664 0.008 -0.011

Table 1. Compression ratios of dynamic versus semi-static techniques.

5 Empirical Results

We tested the different compressors over several texts. As representative of short
texts, we used the whole Calgary corpus. We also used some large text collections
from trec-2 (AP Newswire 1988 and Ziff Data 1989-1990) and from trec-4

(Congressional Record 1993, Financial Times 1991 to 1994). Finally, two larger
collections, ALL FT and ALL, were used. ALL FT aggregates all texts from
Financial Times collection. ALL collection is composed by Calgary corpus and
all texts from trec-2 and trec-4.

A dual Intel r©Pentium r©-III 800 Mhz system, with 768 MB SDRAM-100Mhz
was used in our tests. It ran Debian GNU/Linux (kernel version 2.2.19). The
compiler used was gcc version 3.3.3 20040429 and -O9 compiler optimizations
were used. Time results measure cpu user-time. The spaceless word model [6]
was used to model the separators.

Table 1 compares the compression ratios of two-pass versus one-pass
techniques. Columns labeled diff measure the increase, in percentual points,
in the compression ratio of the dynamic codes compared against their semi-
static version. The last column shows those differences between Plain Huffman
and ETDC.

To understand the increase of size of dynamic versus semi-static codes, two
issues have to be considered: (i) each new word si parsed during dynamic

CORPUS TEXT SIZE n Dyn PH Dyn ETDC Increase Decrease

bytes time (sec) ratio% time (sec) ratio % size % time %

CALGARY 2,131,045 30,995 0.520 46.546 0.384 47.730 2.543 22.892

FT91 14,749,355 75,681 3.428 34.739 2.488 35.638 2.588 22.685

CR 51,085,545 117,713 11.450 31.102 8.418 31.985 2.839 22.629

FT92 175,449,235 284,892 41.330 32.024 31.440 32.838 2.542 26.404

ZIFF 185,220,215 237,622 44.628 32.895 33.394 33.787 2.710 22.559

FT93 197,586,294 291,427 47.118 32.005 36.306 32.887 2.755 20.840

FT94 203,783,923 295,018 48.260 31.959 36.718 32.845 2.774 22.006

AP 250,714,271 269,141 60.702 32.294 47.048 33.106 2.514 22.796

ALL FT 591,568,807 577,352 143.050 31.710 111.068 32.537 2.609 23.796

ALL 1,080,719,883 886,190 268.983 32.849 213.068 33.664 2.481 25.927

Table 2. Comparison between dynamic ETDC and dynamic PH.

compression is represented in the compressed text (or sent to the receiver) as
a pair 〈Cnew-Symbol, si〉, while in two-pass compression only the word si needs
to be stored/transmitted in the vocabulary; (ii) on the other hand, some low-
frequency words can be encoded with shorter codewords by dynamic techniques,
since by the time they appear the vocabulary may still be small.

Compression ratios are around 30-35% for the larger texts. For the smaller
ones, compression is poor because the size of the vocabulary is proportionally
too large with respect to the compressed text size (as expected from Heaps’ law
[10]). This means that proportionally too many words are transmitted in plain
form.

The increase of size of the compressed texts in ETDC compared to PH
is always under 1 percentage point, in the larger texts. On the other hand,
the dynamic versions lose very little in compression (maximum 0.02 percentage
points, 0.06%) compared to their semi-static versions. This shows that the price
paid by dynamism in terms of compression ratio is negligible. Note also that in
most cases, and in the larger texts, dynamic ETDC loses even less compression
than dynamic Plain Huffman.

Table 2 compares the time performance of our dynamic compressors. The
latter two columns measure the increase in compression ratio (in percentage)
of ETDC versus Plain Huffman, and the reduction in processing time, in
percentage.

As it can be seen, dynamic ETDC loses less than 1 percentage point (3%)
of compression ratio compared to dynamic Plain Huffman, in the larger texts.
In exchange, it is 22%-26% faster and considerably simpler to implement.
Dynamic Plain Huffman compresses 4 megabytes per second, while dynamic
ETDC reaches 5.

Tables 3 and 4 compare both dynamic Plain Huffman and dynamic
ETDC against gzip (Ziv-Lempel family) and bzip2 (Burrows-Wheeler [5] type
technique). Experiments were run setting gzip and bzip2 parameters to “best”
(-b) and “fast” (-f) compression.

As expected “bzip2 -b” achieves the best compression ratio. It is about
6 and 7 percentage points better than dynamic PH and dynamic ETDC
respectively. However, it is much slower than the other techniques tested in
both compression and decompression processes. Using the “fast” bzip2 option

CORPUS TEXT SIZE compression ratio %
bytes Dyn PH Dyn ETDC gzip -f gzip -b bzip2 -f bzip2 -b

CALGARY 2,131,045 46.546 47.730 43.530 36.840 32.827 28.924

FT91 14,749,355 34.739 35.638 42.566 36.330 32.305 27.060

CR 51,085,545 31.102 31.985 39.506 33.176 29.507 24.142

FT92 175,449,235 32.024 32.838 42.585 36.377 32.369 27.088

ZIFF 185,220,215 32.895 33.787 39.656 32.975 29.642 25.106

FT93 197,586,294 32.005 32.887 40.230 34.122 30.624 25.322

FT94 203,783,923 31.959 32.845 40.236 34.122 30.535 25.267

AP 250,714,271 32.294 33.106 43.651 37.225 33.260 27.219

ALL FT 591,568,807 31.710 32.537 40.988 34.845 31.152 25.865

ALL 1,080,719,883 32.849 33.664 41.312 35.001 31.304 25.981

Table 3. Comparison of compression ratio against gzip and bzip2.

seems to be undesirable, since compression ratio gets worse (it becomes closer
to dynamic PH) and compression and decompression speeds remain poor.

On the other hand, “gzip -f” is shown to achieve good compression speed, at
the expense of compression ratio (about 40%). It is shown that dynamic ETDC is
also a fast technique. It is able to beat “gzip -f” in compression speed (except in
the ALL corpus). Regarding to compression ratio, dynamic ETDC achieves also
best results than “gzip -b” (except in CALGARY and ZIFF corpora). However,
gzip is clearly the fastest method in decompression.

Hence, dynamic ETDC is either much faster or compresses much better than
gzip, and it is by far faster than bzip2.

CORPUS compression time (sec) decompression time (sec)

Dyn PH Dyn ETDC gzip -f bzip2 -f bzip2 -b Dyn PH Dyn ETDC gzip -f bzip2 -f bzip2 -b

CALGARY 0,498 0,384 0,360 2,180 2,660 0,330 0,240 0,090 0,775 0,830

FT91 3,218 2,488 2,720 14,380 18,200 2,350 1,545 0,900 4,655 5,890

CR 10,880 8,418 8,875 48,210 65,170 7,745 5,265 3,010 15,910 19,890

FT92 42,720 31,440 34,465 166,310 221,460 30,690 19,415 8,735 57,815 71,050

ZIFF 43,122 33,394 33,550 174,670 233,250 30,440 11,690 9,070 58,790 72,340

FT93 45,864 36,306 36,805 181,720 237,750 32,780 21,935 10,040 62,565 77,860

FT94 47,078 36,718 37,500 185,107 255,220 33,550 22,213 10,845 62,795 80,370

AP 60,940 47,048 50,330 231,785 310,620 43,660 27,233 15,990 81,875 103,010

ALL FT 145,750 91,068 117,255 558,530 718,250 104,395 66,238 36,295 189,905 235,370

ALL 288,778 213,905 188,310 996,530 1342,430 218,745 126,938 62,485 328,240 432,390

Table 4. Comparison of compression and decompression time against gzip and bzip2.

6 Conclusions

In this paper we have considered the problem of providing adaptive compression
for natural language text, with the combined aim of competitive compression
ratios and good time performance.

We built an adaptive version of word-based Huffman codes. For this sake, we
adapted an existing algorithm so as to handle very large sets of source symbols
and byte-oriented output. The latter decision sacrifices some compression ratio
in exchange for an 8-fold improvement in time performance. The resulting
algorithm obtains compression ratio very similar to its static version (0.06%
off) and compresses about 4 megabytes per second on a standard PC.

We also implemented a dynamic version of the End-Tagged Dense Code
(ETDC). The resulting adaptive version is much simpler than the Huffman-

based one, and 22%-26% faster, compressing typically 5 megabytes per second.
The compressed text is only 0.06% larger than with semi-static ETDC and 3%
larger than with Huffman.

As a result, we have obtained adaptive natural language text compressors
that obtain 30%-35% compression ratio, and compress more than 4 megabytes
per second. Empirical results show their good performance when they are
compared against other compressors such as gzip and bzip2.

Future work involves building an adaptive version of (s, c)-Code [4], an
extension to ETDC where the number of byte values that signal the end of a
codeword can be adapted to optimize compression, instead of being fixed at 128
as in ETDC. An interesting problem in this case is how to efficiently maintain
the optimal (s, c), which now vary as compression progresses.

References

1. T. C. Bell, J. G. Cleary, and I. H. Witten. Text Compression. Prentice Hall, 1990.
2. R.S. Boyer and J.S. Moore. A fast string searching algorithm. Communications of

the ACM, 20(10):762–772, October 1977.
3. N. Brisaboa, E. Iglesias, G. Navarro, and J. Paramá. An efficient compression

code for text databases. In 25th European Conference on IR Research (ECIR
2003), LNCS 2633, pages 468–481, 2003.

4. N.R. Brisaboa, A. Fariña, G. Navarro, and M.F. Esteller. (s,c)-dense coding: An
optimized compression code for natural language text databases. In Proc. 10th

International Symposium on String Processing and Information Retrieval (SPIRE
2003), LNCS 2857, pages 122–136, 2003.

5. M. Burrows and D. J. Wheeler. A block-sorting lossless data compression
algorithm. Technical Report 124, 1994.

6. E. de Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast searching on
compressed text allowing errors. In Proc. 21st Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR-98),
pages 298–306, 1998.

7. E. de Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast and flexible word
searching on compressed text. ACM Transactions on Information Systems (TOIS),
18(2):113–139, 2000.

8. N Faller. An adaptive system for data compression. In In Record of the 7th
Asilomar Conference on Circuits, Systems, and Computers, pages 593–597, 1973.

9. R.G Gallager. Variations on a theme by Huffman. IEEE Trans. on Inf. Theory,
24(6):668–674, 1978.

10. H. S. Heaps. Information Retrieval: Computational and Theoretical Aspects.
Academic Press, New York, 1978.

11. D. A. Huffman. A method for the construction of minimum-redundancy codes.
Proc. Inst. Radio Eng., 40(9):1098–1101, 1952.

12. D.E. Knuth. Dynamic Huffman coding. Journal of Algorithms, 2(6):163–180, 1985.
13. A. Moffat. Word-based text compression. Software - Practice and Experience,

19(2):185–198, 1989.
14. J.S. Vitter. Design and analysis of dynamic Huffman codes. Journal of the ACM

(JACM), 34(4):825–845, 1987.

