First Huffman, then Burrows-Wheeler:
A Simple Alphabet-Independent FM-Index

Szymon Grabowski!, Veli Mikinen?, and Gonzalo Navarro®

! Computer Engineering Dept., Tech. Univ. of L6dz, Poland.
2 Dept. of Computer Science, Univ. of Helsinki, Finland.
3 Dept. of Computer Science, Univ. of Chile, Chile.

Main Results. The basic string matching problem is to determine the oc-
currences of a short pattern P = p1ps ... py, in a large text T' = t1tg ... t,,
over an alphabet of size 0. Indexes are structures built on the text to speed
up searches, but they used to take up much space. In recent years, suc-
cinct text indexes have appeared. A prominent example is the FM-index
[2], which takes little space (close to that of the compressed text) and
replaces the text, as it can search the text (in optimal O(m) time) and
reproduce any text substring without accessing it. The main problem of
the FM-index is that its space usage depends exponentially on o, that is,
5Hin + 0%0(n) for any k, Hy, being the k-th order entropy of T'.

In this paper we present a simple variant of the FM-index, which
removes its alphabet dependence. We achieve this by, essentially (but
not exactly), Huffman-compressing the text and FM-indexing the binary
sequence. Our index needs 2n(Hy+1)(140(1)) bits, independent of o, and
it searches in O(m(Hy+1)) average time, which can be made O(mlog o) in
the worst case. Moreover, our index is considerably simpler to implement
than most other succinct indexes.

Techmical Details. The Burrows-Wheeler transform (BWT) [1] T of T
is a permutation of 7" such that 7°“[;] is the character preceding the i-th
lexicographically smallest suffix of 7. The FM-index finds the number of
occurrences of P in T' by running the following algorithm [2]:

Algorithm FM Search(P,T%")

i=m;sp=1;ep=mn;

while ((sp < ep) and (i > 1) do
c¢=P[i—1];
sp = Clc] 4+ Oce(T?™*, ¢, sp — 1)+1;
ep = Cld] 4 Oce(T?™, ¢, ep);
i=i—1;

if (ep < sp) then return “not found” else return “found (ep — sp + 1) occs”.




The index is actually formed by array C[-], such that C[c] is the num-
ber of characters smaller than ¢ in 7', and function Occ(Tb“’t, -,+), such
that Oce(T", ¢, i) is the number of occurrences of ¢ in T®*![1...i]. The
exponential alphabet dependence of the FM-index is incurred in the im-
plementation of Occ in constant time.

Our idea is first to Huffman-compress T so as to obtain 1", a binary
string of length n’ < n(Hy+1). Then, if we encode P to P’ with the same
codebook used for T', it turns out that any occurrence of P in T is also
an occurrence of P’ in T’ (but not vice versa, as P’ may match in the
middle of a code in T").

We apply the BWT to T’ to obtain array B = (T")""!, of n’ bits.
Another array Bh signals which bits of B correspond to beginning of
codewords in T”. If we apply algorithm FM_Search(P’,B), the result is
the number of occurrences of P’ in T’. Moreover, the algorithm yields
the range [sp,ep] of occurrences in B. The real occurrences of P in T
correspond to the bits set in Bh[sp...ep].

Function rank(Bh, i), which tells how many bits are set in Bh[1...1],
can be implemented in constant time by storing o(n’) bits in addition to
Bh [4]. So our number of occurrences is rank(Bh, ep) —rank(Bh, sp—1).

The advantage over the original FM-index is that this time the text
T' is binary and thus Oce(B,1,i) = rank(B,i) and Occ(B,0,i) = i —
rank(B,i). Hence we can implement Occ in constant time using o(n')
additional bits, independently of the alphabet size.

Overall we need 2n(Hy + 1)(1 4+ o(1)) bits, and can search for P in
O(m(Hgy + 1)) time if P distributes as T'. By adding 1 + ¢ bits, for any
€ > 0, we can find the text position of each occurrence in worst case time
O((1/e)(Hp + 1) logn), and display any text substring of length L in
O((1/e)(Ho + 1)(L + logn)) average time. By adding other 2n bits, we
can ensure that all O(Hy + 1) values become O(log o) in the worst case
times. For further details and experimental results refer to [3].

References

1. M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algo-
rithm. DEC SRC Research Report 124, 1994.

2. P. Ferragina and G. Manzini. Opportunistic data structures with applications. In
Proc. FOCS’00, pp. 390-398, 2000.

3. Sz. Grabowski, V. Makinen and G. Navarro. First Huffman, then
Burrows- Wheeler: A Simple Alphabet-Independent FM-Index. Technical Re-
port TR/DCC-2004-4, Dept. of Computer Science, University of Chile.
ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/huffbwt.ps.gz.

4. 1. Munro. Tables. In Proc. FSTTCS’96, pp. 37-42, 1996.



