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Abstract. Current search tools for computational biology trade effi-
ciency for precision, losing many relevant matches. We push in the di-
rection of obtaining maximum efficiency from an indexing scheme that
does not lose any relevant match. We show that it is feasible to search
the human genome efficiently on an average desktop computer.

1 Introduction

Approximate string matching [5] is a recurrent problem in many branches of
computer science, with important applications to computational biology. Effi-
ciency is crucial to handle the large databases that are emerging, so indexes are
built on the text to speed up queries later [12,8]. Although there exist several
indexed search tools like BLAST and FASTA, these usually trade time for pre-
cision, losing many relevant answers [12]. In this paper we aim at building a fast
index that does not lose any answer. We combine and optimize the best exist-
ing previous lossless approaches [3,7] and focus on the simplified case of DNA
search using Levenshtein distance. This case is important in the current stage
of analyzing gene functionality once the genome projects are completing their
first task of obtaining the DNA sequences. In particular, approximate searching
in genomes is necessary to identify homologous regions, which is fundamental to
predict evolutionary history, biochemical function, and chemical structure [12].

Our main result is a practical product that can be used to search the human
genome on an average desktop computer. Unique features of our index are: op-
timized selection of pattern pieces, bidirectional text verification, and optimized
piece neighborhood generation. Our tools can be generalized to more complex
problem such as weighted edit distances.

2 Indexed Approximate String Matching

The problem we focus on is: Given a long text T, and a (comparatively) short
pattern P;._,,, both sequences over alphabet X' of size o, retrieve all substrings
of T' (“occurrences”) whose edit distance to P is at most k. The edit distance,
ed(A, B), is the minimum number of “errors” (character insertions, deletions
and substitutions) needed to convert one string into the other. So we permit an
“error level” of @ = k/m in the occurrences of P.
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The most successful approach to indexed approximate string matching [8]
is called intermediate partitioning [3,7]. It reduces the approximate search of
P to approximate search of substrings of P. Their main principle is that, if P
matches a substring of T', j disjoint substrings are taken from P, then at least
one of these appears in the occurrence with at most |k/j| errors. These indexes
split P into j pieces, search the index for each piece allowing |k/j] errors, and
finally check whether the piece occurrences can be extended to occurrences of
P. The index is designed for exact searching of pieces, so approximate searching
is handled by generating the “d-neighborhood” of each piece S, Uy(S) = {S' €
Y* ed(S,S") < d}, and searching the index for each S' € Uy(5).

In [3] all the text g-grams (substrings of length ¢), where ¢ = [log, n|, are
stored together with their text positions. Then the pattern is recursively split
into 2 or 3 pieces at each level (dividing also the number of errors permitted),
until the final pieces are short enough to be searchable with the index (Fig. 1).
The paper is not very explicit on how the partitioning is exactly done.
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Fig. 1. The pattern is recursively split into smaller and smaller pieces, also dividing
the number of errors. Above each piece we show the number of errors we permit for it.

Assume that a bottom-level piece P? is to be searched with d; errors. Its
occurrences are found by generating its condensed d;-neighborhood UC,, (P"):
A € UCy(B) ifft A € Uy(B) and A" ¢ Uy(B) for any A’ prefix of A. Any
occurrence of P! with d; errors errors must have a prefix in UCy, (P?). Then, all
these occurrences are located fast by searching the g-gram index for each string
in UCy, (P"). These occurrences are then extended by going up the splitting
hierarchy in stepwise manner. Each step consists of merging pieces back together
and checking, with dynamic programming, whether the merged piece occurs in
the text with its permitted error threshold. This recursive process is continued
until either some internal node cannot be found, or we find the whole pattern.

In [7], a suffix array [2] is used instead of a g-gram index, so it can choose the
partition according to optimization goals rather than guided by the constraint
on the final piece lengths. They show that the optimum is j = O(m/log, n).
Other differences are that text verification uses an efficient bit-parallel algorithm
instead of dynamic programming, and that hierarchical verification is not used.

3 Our Proposal

The design of our index is based on the following four assumptions: (1) The
indexed text is a DNA sequence. (2) The whole text is available in primary



memory. (3) The index has to work efficiently on secondary memory. (4) The
error level « is typically < 0.25.

The first assumption means that the alphabet size is small, ¢ = 4, so we
can store each nucleotide in 2 bits and hence store the text in n/4 bytes. This
permits storing the human genome in about 750 MB, which makes the second
assumption more realistic in the case of the human genome. This assumption
is important when evaluating the cost of accessing the text at piece verification
time. The third assumption arises when one considers that the most efficient
indexes take a significant amount of space, and it might not be realistic to
assume that also the index will fit in main memory. Thus the index should have
a suitable structure for secondary memory. The fourth assumption is based on
the search parameters used in real computational biology applications. It is also
very convenient because no index works well for higher « values if 0 = 4.

Like [3], we use a g-gram index, d-neighborhood generation and hierarchical
verification. However, we take some elements of [7] such as optimizing pattern
partitioning and piece verification. We also consider secondary memory issues.

3.1 Index Structure

Our g-gram index is almost identical to that of Myers. Each g-gram is coded as
a base-4 number (e.g., “agct” — 03214). The index has two tables, the header
table and the occurrence location table. The header table H, contains, for each
g-gram, the start position of the interval in the location table L,, which holds
in ascending order all the locations of the g-gram in the text. The location table
L, holds the intervals of locations consecutively in increasing order numerical
representation. Hence, the occurrences of the g-gram with numerical value z are
located in Ly[Hy[z]... Hylx + 1] —1].

The value of ¢ affects the length of the pattern pieces that can be efficiently
retrieved with the index. Having a large ¢ is only a problem if the size of table
H,, O(0%), becomes an issue. This is because a g-gram index can be used also
in finding shorter substrings. The locations of the (¢ — ¢)-gram with numerical
representation x are those in the interval L,[H,[zo¢] ... Hy[(x + 1)0°] — 1]. This
corresponds to all g-grams having the given (¢ — c¢)-gram as a prefix. On the
other hand, a small ¢ may significantly degrade the performance.

Using Myers’ setting ¢ = [log, n] would result in the value ¢ = 16 when
indexing the human genome. This would result in a huge header table. Even
though the index can be in secondary memory, we prefer to keep the header
table in main memory (see Sec. 3.5). Hence we have opted to use ¢ = 12, which
results in a header table of 67 MB. With the 3 billion nucleotides human genome,
the location table is roughly 12 GB, since we use 32-bit integers for all entries.
It is straightforward to build this index in O(n + ¢7) time and space.

3.2 Optimizing the Intermediate Partitioning

We employ a hierarchical partitioning that differs from [3] in that it is done
bottom-up. We first determine the pieces and then build up the hierarchy. The
top-down partitioning (Fig. 1) has less control over which are the final pieces.



Previous partitioning methods have assigned d; = |k/j] errors to each piece
when the pattern P was partitioned into j pieces P!,..., P/. However, in [8] a
more accurate rule was proposed. If a string A contains no pattern piece P! with
d; errors, then ed(A, P) > >>7_ (d; + 1) = >°]_, d; + j, as each piece P’ needs
at least d; + 1 errors to match. So we must have >.7_ d; +j > k + 1 to ensure
that no approximate occurrence of P is missed, which can be rephrased as the
condition Y7, d; > (k+ 1) — j. Naturally the best choice is to allow the fewest
possible errors, and thus we use the strict requirement Zgzl di=k—7+1.

Since we have a g-gram index, we partition the pattern into pieces of length
at most ¢. We also fix an upper bound dy; on the d; values (see later).

We have tested two partitioning methods. A simple scheme, similar in nature
to previous methods, is to partition the pattern into j = [k/da] pieces, the
minimum yielding d; < djs. Then, the pattern is split into j pieces of lengths
|m/j] or [m/j], pruning pieces that are longer than ¢. To enforce the strict
error limit )7, d; =k — j+ 1, we set d; = |k/j] for (m modulo j) + 1 pieces
(giving preference to the longest pieces), and d; = |k/j] — 1 for the rest.

The second, more sophisticated, approach is to precompute and store for each
r-gram z, r € 1...q, and for each d € 0...min(dys, [0.25 x r] — 1), the number
of text occurrences of all the r-grams in the d-neighborhood of z. This value,
Cy,d, is used to find the optimal splitting. Let us define A, ; as the minimum
number of text positions to verify in order to search for P; _,, with ¢ errors. Then
the following recurrence holds:

M;y=0,ift<0; M;;=o00,ifi>mAt>0;

Mz'7t = min(MHl’t, min (Cpi___i+,’_71’d + Mi+r,t7d71))-, otherwise.
d€0...min(t,dr ), 7€1...q

so the minimum possible verification cost is M; ;, and we can easily retrieve from
M the optimal partitioning reaching it. Once the values C, 4 are precomputed
(at indexing time), the above algorithm adds O(gmk?) to the search time, which
is rather modest compared to the work it saves.

Precomputing C, 4 is not prohibitively slow. What is more relevant is the
amount of memory necessary to store C; 4. Since the information for d = 0 has
to be kept anyway (because it is the length of the list of occurrences of z, and
it is known also for every r < ¢), the price is dys — 1 more numbers for each
different r-gram. A way to alleviate this is to use fewer bits than necessary and
reduce the precision of the numbers stored, since even an approximation of the
true values will be enough to choose an almost optimal strategy.

We form a hierarchy on the pattern pieces similar to that of Myers (Fig. 1).
However, as we begin by optimizing the pieces at the lowest level, we form the
hierarchy in bottom-up order.

Let j, be the number of pieces and P>" the ith piece at the hth level of the
hierarchy. Also let d; 5, be the number of errors associated to piece Pi" The top
level corresponds to the whole P at the root, so j; = 1, P! = P and di1 = k.
Assume that our optimized splitting leads to an (th level partitioning with j,
pieces P1¢ ... Pi** In general the (h — 1)th level is formed by pairing together



two adjacent pieces from the hth level, P»"~1 = p2i=Lhp2ih If 4, ig odd, the
last piece will be added to the last pair, P/»-1/—1 = p2in-1=1.h p2in—1.h p2jn—1+L.h
We will always have j,_1 = [jn/2]. This is continued until we reach level 1.

‘The number of errors for piece P“"~! is found by locally enforcing the rule
Zgzl d; = k—j+1. For the piece P*"~1, this means doi—1,p+doin = din—1—2+1,
which defines d; ;. If piece P"~1 is formed by joining three pieces, then we
have d; 1 = doi—1,p + daip + daig1,n + 2. Although the lowest level pieces
may not cover P, upper level pieces are stretched to cover P. This reduces the
probability of finding them in the text.

3.3 Generating d-neighborhoods

We also use a different way of generating d-neighborhoods. Given a string A,
instead of computing Myers’ condensed d-neighborhood UC,(A), we compute
a “length-q artificial prefix-stripped” d-neighborhood U P;(A). This is done by
collecting all different strings that result from applying d errors into A in all
possible combinations, with the following restrictions: (1) Errors are applied only
within the window of the first ¢ characters. (2) A character is only substituted
by a different character. (3) No characters are inserted before or after the first
or the last character. (4) The string is aligned to the left of the length-¢ window.
That is, characters to the right of a deletion/insertion are moved one position to
the left /right. (5) A character introduced by an insertion or substitution is not
further deleted or substituted.

In practice we have noted that U Py(A) is often slightly smaller than UCy(A).
For example, if A = “atcg” and d = 1, the strings “aatcg”, “tatcg”, “catcg” and
“gatcg” belong to UCy(A), but of these only “aatcg” belongs to UP,(A). But
there are also strings in U Py(A) and not in UCy(A). For example if B = “attaa”
and d = 2, then “ataaa” is in UP4(A) but not in UCy(A), as its prefix “ataa” is
in UC,(A). However, also Myers’ index will fetch ¢g-grams with prefix “ataaa” if
q>5.

The set UP;(A) C Ug(A) can be built in O((3go)?) time [11]. In our experi-
ments with d < 2, our d-neighborhood generation was twice as fast as Myers’.

3.4 Fast Verification

In [3] they used dynamic programming approximate string matching algorithm in
the stepwise merging/checking process. They also grouped into a single interval
piece occurrences that were close to each other, so as to process the whole interval
in a single pass and avoid checking the same text multiple times. In [7] they used
a faster bit-parallel algorithm, but a more crude approach: they searched the text
between the positions j —m — k...j +m+ k whenever a piece occurrence ended
at text position j. They also merged checking of adjacent occurrences.

We check each piece occurrence separately on the bottom-level of the hier-
archy. We use a bit-parallel algorithm for computing edit distance [1] instead of
approximate string matching. This method [6] was much faster than previous
ones (Sec. 4). On the upper levels we use interval merging and a bit-parallel
approximate string matching algorithm [4].



The bottom-level verification works as follows. Let P! = P; ;. be a pattern
piece, and let A € UP;(P") occur starting from 7). Also let substring P/ =
P;_.. ity be the “parent” of P? in the hierarchy, so P! contains P Initially
we set d = dy + 1, where dy is the number of errors for P/ Value d will be the
number of errors in the best match for P/ found so far. If P is not the rightmost
piece in P7, then ed(T;. jta,Pi. itv) is computed for a = 0,1,2,... until either
6d(Tj___j+a7 P7,7,+c) Z dfor all c € [1 . ’U], or we obtain 6d(Tj___j+a, P11+v) =0.
Whenever a value ed(T}. jta, P itv) = d—1 is found, we set d = d — 1. This
forward edit distance computation will process at most v + df + 2 characters,
as after that the first stopping condition must be true. If d = dy + 1 after
stopping, we know that P/ does not occur. If d < dy, we start computing the
edit distance ed(T}j_q.. j—1,Pi—u..i—1) for a = 1,2, ... similarly as above, starting
with d = dy—d+1 and this time stopping as soon as ed(T;—q.. j—1, Pi—u..i-1) < d,
since then we have found an occurrence of P/ with at most dy errors.

3.5 Secondary Memory Issues

We discuss now how to handle indexes that do not fit in main memory. The
biggest disadvantage of secondary memory is slow seek time. That is, although
data transfer times are acceptable, performance worsens significantly if the data
is not read from a moderate number of continuous locations. When using our
g-gram index, queries will typically access more or less scattered positions of
table L,. When d-neighborhood generation is used, the number of g-gram lists
fetched, and hence seek operations over Lg, grows exponentially with d. To
limit this effect, we use bound dj;, the maximum d value. Based on practical
experience we have chosen limit dy; = 1 in secondary memory scenarios. We also
store the header table H, in main memory to avoid an extra seek operation per
g-gram. Hence the need to use a moderate ¢ so that H, fits in main memory.

The effects of secondary memory can also be considered when choosing the
partitioning. We can weight the value C; 4 of the occurrence table (Sec. 3.2) with
an estimated cost for querying the g-gram index with the strings in UP;(x). If
C'y 4 1s the weighted cost for substring = and d errors, we use the formula

wa = Cua X (verification-cost + disk-transfer-cost)
+ d-neighborhood-size(x,d) x disk-seek-cost

normalized to the form Cy g + ¢ X d-neighborhood-size(x, d). The weight value
¢ depends on the actual type of memory used in storing the index, and thus it
should be based on empirical tests.

4 Test Results

As the test results in [7] found the index of Myers to be the best method in the
case of DNA, we have compared our performance against that index. The imple-
mentation of Myers’ index, from the original author, is only a limited prototype
constrained to pattern lengths of the form ¢ x 2” and ¢ = [log, n].
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Fig. 2. On the left, Myers’ index versus three variants of our index, in main memory,
searching the = 10 MB genome of S. cerevisiae (baker’s yeast) [9]. Our variants use
simple partitioning (Sec. 3.2) and das = 2. The first method uses bidirectional verifica-
tion and the second conventional interval-merging combined with approximate string
matching. Both of these use the d-neighborhood generation method of Sec. 3.3. The
third method uses bidirectional verification combined with a d-neighborhood genera-
tion method closer to Myers’ (backtracking with edit distance computation over the
trie of all strings). We run on a P3 600 Mhz with 256 MB RAM and Linux OS, and
compile with GCC 3.2.1 using full optimization. On the right, simple versus optimized
partitioning for our index (Sec. 3.2). We use the best combination of verification/d-
neighborhood generation from the tests on the left. Now the index is on disk, we use
dyv = 1 and encode the text using 2 bits per nucleotide. The text is the Aug 8th 2001
draft of the human genome [10], of about 2.85 billion nucleotides. We run on an AMD
Athlon XP 1.33 Ghz with 1 GB RAM, 40 GB IBM Deskstar 60GXP hard disk and
Windows 2000 OS, and compile using Microsoft Visual C++ 6.0 with full optimization.



Fig. 2 (left) shows the results when searching the small S. cervisiae genome,
where the index fits in main memory. We test three variants of our index, among
which the clear winner is bidirectional verification of bottom-level pieces com-
bined with our d-neighborhood generation. This is 2 to 12 (typically above 4)
times faster than Myers’ index. In many cases a large part of our advantage is
explained by the strict rule Zle d; = k — 7 + 1. This is more clear in the plots
when k goes above m/6: at this point the index of Myers sets d; = 2 for all
the pieces, whereas our index increases the number of errors in a more steady
manner. The difference between the search mechanisms themselves is seen when
k=m/6—1or k=m/4—1, as at these points both indexes set d; = 1 or
d; = 2, respectively, for all the pieces. In these cases our fastest version is always
roughly 4 times faster than Myers’ index.

Our best combination from the above test was used for searching the human
genome, where the index is on disk. We compared simple and optimized parti-
tioning. As shown in Fig. 2 (right), in most cases using optimized partitioning
had a non-negative gain, in the range 0-300%. There were also some cases where
the effect was negative, but they were most probably due to the still imma-
ture calibration of our cost function. We also made a quick test to compare our
disk-based index with the sequential bit-parallel approximate string matching
algorithm of Myers [4]. For example in the case m = 384 and k = 95 our index
was still about 6 times faster.
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