
A Pra
ti
al Index for Genome Sear
hingHeikki Hyyr�o1? and Gonzalo Navarro2��1 Dept. of Comp. and Inf. S
ien
es, Univ. of Tampere, Finland. helmu�
s.uta.fi2 Dept. of Comp. S
ien
e, Univ. of Chile. gnavarro�d

.u
hile.
lAbstra
t. Current sear
h tools for
omputational biology trade eÆ-
ien
y for pre
ision, losing many relevant mat
hes. We push in the di-re
tion of obtaining maximum eÆ
ien
y from an indexing s
heme thatdoes not lose any relevant mat
h. We show that it is feasible to sear
hthe human genome eÆ
iently on an average desktop
omputer.1 Introdu
tionApproximate string mat
hing [5℄ is a re
urrent problem in many bran
hes of
omputer s
ien
e, with important appli
ations to
omputational biology. EÆ-
ien
y is
ru
ial to handle the large databases that are emerging, so indexes arebuilt on the text to speed up queries later [12, 8℄. Although there exist severalindexed sear
h tools like BLAST and FASTA, these usually trade time for pre-
ision, losing many relevant answers [12℄. In this paper we aim at building a fastindex that does not lose any answer. We
ombine and optimize the best exist-ing previous lossless approa
hes [3, 7℄ and fo
us on the simpli�ed
ase of DNAsear
h using Levenshtein distan
e. This
ase is important in the
urrent stageof analyzing gene fun
tionality on
e the genome proje
ts are
ompleting their�rst task of obtaining the DNA sequen
es. In parti
ular, approximate sear
hingin genomes is ne
essary to identify homologous regions, whi
h is fundamental topredi
t evolutionary history, bio
hemi
al fun
tion, and
hemi
al stru
ture [12℄.Our main result is a pra
ti
al produ
t that
an be used to sear
h the humangenome on an average desktop
omputer. Unique features of our index are: op-timized sele
tion of pattern pie
es, bidire
tional text veri�
ation, and optimizedpie
e neighborhood generation. Our tools
an be generalized to more
omplexproblem su
h as weighted edit distan
es.2 Indexed Approximate String Mat
hingThe problem we fo
us on is: Given a long text T1:::n, and a (
omparatively) shortpattern P1:::m, both sequen
es over alphabet � of size �, retrieve all substringsof T (\o

urren
es") whose edit distan
e to P is at most k. The edit distan
e,ed(A;B), is the minimum number of \errors" (
hara
ter insertions, deletionsand substitutions) needed to
onvert one string into the other. So we permit an\error level" of � = k=m in the o

urren
es of P .? Supported by the A
ademy of Finland and Tampere Graduate S
hool in InformationS
ien
e and Engineering. �� Partially supported by Fonde
yt Proje
t 1-020831.

The most su

essful approa
h to indexed approximate string mat
hing [8℄is
alled intermediate partitioning [3, 7℄. It redu
es the approximate sear
h ofP to approximate sear
h of substrings of P . Their main prin
iple is that, if Pmat
hes a substring of T , j disjoint substrings are taken from P , then at leastone of these appears in the o

urren
e with at most bk=j
 errors. These indexessplit P into j pie
es, sear
h the index for ea
h pie
e allowing bk=j
 errors, and�nally
he
k whether the pie
e o

urren
es
an be extended to o

urren
es ofP . The index is designed for exa
t sear
hing of pie
es, so approximate sear
hingis handled by generating the \d-neighborhood" of ea
h pie
e S, Ud(S) = fS0 2��; ed(S; S0) � dg, and sear
hing the index for ea
h S0 2 Ud(S).In [3℄ all the text q-grams (substrings of length q), where q = dlog� ne, arestored together with their text positions. Then the pattern is re
ursively splitinto 2 or 3 pie
es at ea
h level (dividing also the number of errors permitted),until the �nal pie
es are short enough to be sear
hable with the index (Fig. 1).The paper is not very expli
it on how the partitioning is exa
tly done.kP bk=2
 bk=2
bbk=2
=2
 bbk=2
=2
 bbk=2
=3
 bbk=2
=3
 bbk=2
=3
Fig. 1. The pattern is re
ursively split into smaller and smaller pie
es, also dividingthe number of errors. Above ea
h pie
e we show the number of errors we permit for it.Assume that a bottom-level pie
e P i is to be sear
hed with di errors. Itso

urren
es are found by generating its
ondensed di-neighborhood UCdi(P i):A 2 UCd(B) i� A 2 Ud(B) and A0 62 Ud(B) for any A0 pre�x of A. Anyo

urren
e of P i with di errors errors must have a pre�x in UCdi(P i). Then, allthese o

urren
es are lo
ated fast by sear
hing the q-gram index for ea
h stringin UCdi(P i). These o

urren
es are then extended by going up the splittinghierar
hy in stepwise manner. Ea
h step
onsists of merging pie
es ba
k togetherand
he
king, with dynami
 programming, whether the merged pie
e o

urs inthe text with its permitted error threshold. This re
ursive pro
ess is
ontinueduntil either some internal node
annot be found, or we �nd the whole pattern.In [7℄, a suÆx array [2℄ is used instead of a q-gram index, so it
an
hoose thepartition a

ording to optimization goals rather than guided by the
onstrainton the �nal pie
e lengths. They show that the optimum is j = O(m= log� n).Other di�eren
es are that text veri�
ation uses an eÆ
ient bit-parallel algorithminstead of dynami
 programming, and that hierar
hi
al veri�
ation is not used.3 Our ProposalThe design of our index is based on the following four assumptions: (1) Theindexed text is a DNA sequen
e. (2) The whole text is available in primary

memory. (3) The index has to work eÆ
iently on se
ondary memory. (4) Theerror level � is typi
ally < 0:25.The �rst assumption means that the alphabet size is small, � = 4, so we
an store ea
h nu
leotide in 2 bits and hen
e store the text in n=4 bytes. Thispermits storing the human genome in about 750 MB, whi
h makes the se
ondassumption more realisti
 in the
ase of the human genome. This assumptionis important when evaluating the
ost of a

essing the text at pie
e veri�
ationtime. The third assumption arises when one
onsiders that the most eÆ
ientindexes take a signi�
ant amount of spa
e, and it might not be realisti
 toassume that also the index will �t in main memory. Thus the index should havea suitable stru
ture for se
ondary memory. The fourth assumption is based onthe sear
h parameters used in real
omputational biology appli
ations. It is alsovery
onvenient be
ause no index works well for higher � values if � = 4.Like [3℄, we use a q-gram index, d-neighborhood generation and hierar
hi
alveri�
ation. However, we take some elements of [7℄ su
h as optimizing patternpartitioning and pie
e veri�
ation. We also
onsider se
ondary memory issues.3.1 Index Stru
tureOur q-gram index is almost identi
al to that of Myers. Ea
h q-gram is
oded asa base-4 number (e.g., \ag
t" ! 03214). The index has two tables, the headertable and the o

urren
e lo
ation table. The header table Hq
ontains, for ea
hq-gram, the start position of the interval in the lo
ation table Lq , whi
h holdsin as
ending order all the lo
ations of the q-gram in the text. The lo
ation tableLq holds the intervals of lo
ations
onse
utively in in
reasing order numeri
alrepresentation. Hen
e, the o

urren
es of the q-gram with numeri
al value x arelo
ated in Lq[Hq [x℄ : : : Hq [x+ 1℄� 1℄.The value of q a�e
ts the length of the pattern pie
es that
an be eÆ
ientlyretrieved with the index. Having a large q is only a problem if the size of tableHq , O(�q), be
omes an issue. This is be
ause a q-gram index
an be used alsoin �nding shorter substrings. The lo
ations of the (q �
)-gram with numeri
alrepresentation x are those in the interval Lq [Hq[x�
℄ : : : Hq[(x+1)�
℄� 1℄. This
orresponds to all q-grams having the given (q �
)-gram as a pre�x. On theother hand, a small q may signi�
antly degrade the performan
e.Using Myers' setting q = dlog� ne would result in the value q = 16 whenindexing the human genome. This would result in a huge header table. Eventhough the index
an be in se
ondary memory, we prefer to keep the headertable in main memory (see Se
. 3.5). Hen
e we have opted to use q = 12, whi
hresults in a header table of 67 MB. With the 3 billion nu
leotides human genome,the lo
ation table is roughly 12 GB, sin
e we use 32-bit integers for all entries.It is straightforward to build this index in O(n+ �q) time and spa
e.3.2 Optimizing the Intermediate PartitioningWe employ a hierar
hi
al partitioning that di�ers from [3℄ in that it is donebottom-up. We �rst determine the pie
es and then build up the hierar
hy. Thetop-down partitioning (Fig. 1) has less
ontrol over whi
h are the �nal pie
es.

Previous partitioning methods have assigned di = bk=j
 errors to ea
h pie
ewhen the pattern P was partitioned into j pie
es P 1; : : : ; P j . However, in [8℄ amore a

urate rule was proposed. If a string A
ontains no pattern pie
e P i withdi errors, then ed(A;P) �Pji=1(di + 1) =Pji=1 di + j, as ea
h pie
e P i needsat least di + 1 errors to mat
h. So we must have Pji=1 di + j � k + 1 to ensurethat no approximate o

urren
e of P is missed, whi
h
an be rephrased as the
onditionPji=1 di � (k+1)� j. Naturally the best
hoi
e is to allow the fewestpossible errors, and thus we use the stri
t requirement Pji=1 di = k � j + 1.Sin
e we have a q-gram index, we partition the pattern into pie
es of lengthat most q. We also �x an upper bound dM on the di values (see later).We have tested two partitioning methods. A simple s
heme, similar in natureto previous methods, is to partition the pattern into j = dk=dMe pie
es, theminimum yielding di � dM . Then, the pattern is split into j pie
es of lengthsbm=j
 or dm=je, pruning pie
es that are longer than q. To enfor
e the stri
terror limit Pji=1 di = k � j + 1, we set di = bk=j
 for (m modulo j) + 1 pie
es(giving preferen
e to the longest pie
es), and di = bk=j
 � 1 for the rest.The se
ond, more sophisti
ated, approa
h is to pre
ompute and store for ea
hr-gram x, r 2 1 : : : q, and for ea
h d 2 0 : : :min(dM ; d0:25� re � 1), the numberof text o

urren
es of all the r-grams in the d-neighborhood of x. This value,Cx;d, is used to �nd the optimal splitting. Let us de�ne Mi;t as the minimumnumber of text positions to verify in order to sear
h for Pi:::m with t errors. Thenthe following re
urren
e holds:Mi;t = 0; if t < 0; Mi;t =1; if i > m ^ t � 0;Mi;t = min(Mi+1;t; mind20:::min(t;dM);r21:::q(CPi:::i+r�1;d +Mi+r;t�d�1)); otherwise.so the minimum possible veri�
ation
ost isM1;k, and we
an easily retrieve fromM the optimal partitioning rea
hing it. On
e the values Cx;d are pre
omputed(at indexing time), the above algorithm adds O(qmk2) to the sear
h time, whi
his rather modest
ompared to the work it saves.Pre
omputing Cx;d is not prohibitively slow. What is more relevant is theamount of memory ne
essary to store Cx;d. Sin
e the information for d = 0 hasto be kept anyway (be
ause it is the length of the list of o

urren
es of x, andit is known also for every r � q), the pri
e is dM � 1 more numbers for ea
hdi�erent r-gram. A way to alleviate this is to use fewer bits than ne
essary andredu
e the pre
ision of the numbers stored, sin
e even an approximation of thetrue values will be enough to
hoose an almost optimal strategy.We form a hierar
hy on the pattern pie
es similar to that of Myers (Fig. 1).However, as we begin by optimizing the pie
es at the lowest level, we form thehierar
hy in bottom-up order.Let jh be the number of pie
es and P i;h the ith pie
e at the hth level of thehierar
hy. Also let di;h be the number of errors asso
iated to pie
e P i;h. The toplevel
orresponds to the whole P at the root, so j1 = 1, P 1;1 = P and d1;1 = k.Assume that our optimized splitting leads to an `th level partitioning with j`pie
es P 1;`; : : : ; P j`;`. In general the (h�1)th level is formed by pairing together

two adja
ent pie
es from the hth level, P i;h�1 = P 2i�1;hP 2i;h. If jh is odd, thelast pie
e will be added to the last pair, P jh�1;h�1 = P 2jh�1�1;hP 2jh�1;hP 2jh�1+1;h.We will always have jh�1 = bjh=2
. This is
ontinued until we rea
h level 1.The number of errors for pie
e P i;h�1 is found by lo
ally enfor
ing the rulePji=1 di = k�j+1. For the pie
e P i;h�1, this means d2i�1;h+d2i;h = di;h�1�2+1,whi
h de�nes di;h�1. If pie
e P i;h�1 is formed by joining three pie
es, then wehave di;h�1 = d2i�1;h + d2i;h + d2i+1;h + 2. Although the lowest level pie
esmay not
over P , upper level pie
es are stret
hed to
over P . This redu
es theprobability of �nding them in the text.3.3 Generating d-neighborhoodsWe also use a di�erent way of generating d-neighborhoods. Given a string A,instead of
omputing Myers'
ondensed d-neighborhood UCd(A), we
omputea \length-q arti�
ial pre�x-stripped" d-neighborhood UPd(A). This is done by
olle
ting all di�erent strings that result from applying d errors into A in allpossible
ombinations, with the following restri
tions: (1) Errors are applied onlywithin the window of the �rst q
hara
ters. (2) A
hara
ter is only substitutedby a di�erent
hara
ter. (3) No
hara
ters are inserted before or after the �rstor the last
hara
ter. (4) The string is aligned to the left of the length-q window.That is,
hara
ters to the right of a deletion/insertion are moved one position tothe left/right. (5) A
hara
ter introdu
ed by an insertion or substitution is notfurther deleted or substituted.In pra
ti
e we have noted that UPd(A) is often slightly smaller than UCd(A).For example, if A = \at
g" and d = 1, the strings \aat
g", \tat
g", \
at
g" and\gat
g" belong to UCd(A), but of these only \aat
g" belongs to UPd(A). Butthere are also strings in UPd(A) and not in UCd(A). For example if B = \attaa"and d = 2, then \ataaa" is in UPd(A) but not in UCd(A), as its pre�x \ataa" isin UCd(A). However, also Myers' index will fet
h q-grams with pre�x \ataaa" ifq � 5.The set UPd(A) � Ud(A)
an be built in O((3q�)d) time [11℄. In our experi-ments with d � 2, our d-neighborhood generation was twi
e as fast as Myers'.3.4 Fast Veri�
ationIn [3℄ they used dynami
 programming approximate string mat
hing algorithm inthe stepwise merging/
he
king pro
ess. They also grouped into a single intervalpie
e o

urren
es that were
lose to ea
h other, so as to pro
ess the whole intervalin a single pass and avoid
he
king the same text multiple times. In [7℄ they useda faster bit-parallel algorithm, but a more
rude approa
h: they sear
hed the textbetween the positions j�m� k : : : j+m+ k whenever a pie
e o

urren
e endedat text position j. They also merged
he
king of adja
ent o

urren
es.We
he
k ea
h pie
e o

urren
e separately on the bottom-level of the hier-ar
hy. We use a bit-parallel algorithm for
omputing edit distan
e [1℄ instead ofapproximate string mat
hing. This method [6℄ was mu
h faster than previousones (Se
. 4). On the upper levels we use interval merging and a bit-parallelapproximate string mat
hing algorithm [4℄.

The bottom-level veri�
ation works as follows. Let P i = Pi:::i+b be a patternpie
e, and let A 2 UPd(P i) o

ur starting from Tj . Also let substring P f =Pi�u:::i+v be the \parent" of P i in the hierar
hy, so P f
ontains P i. Initiallywe set d = df + 1, where df is the number of errors for P f . Value d will be thenumber of errors in the best mat
h for P f found so far. If P i is not the rightmostpie
e in P f , then ed(Tj:::j+a; Pi:::i+v) is
omputed for a = 0; 1; 2; : : : until eithered(Tj:::j+a; Pi:::i+
) � d for all
 2 [1 : : : v℄, or we obtain ed(Tj:::j+a; Pi:::i+v) = 0.Whenever a value ed(Tj:::j+a; Pi:::i+v) = d � 1 is found, we set d = d � 1. Thisforward edit distan
e
omputation will pro
ess at most v + df + 2
hara
ters,as after that the �rst stopping
ondition must be true. If d = df + 1 afterstopping, we know that P f does not o

ur. If d � df , we start
omputing theedit distan
e ed(Tj�a:::j�1; Pi�u:::i�1) for a = 1; 2; : : : similarly as above, startingwith d = df�d+1 and this time stopping as soon as ed(Tj�a:::j�1; Pi�u:::i�1) < d,sin
e then we have found an o

urren
e of P f with at most df errors.3.5 Se
ondary Memory IssuesWe dis
uss now how to handle indexes that do not �t in main memory. Thebiggest disadvantage of se
ondary memory is slow seek time. That is, althoughdata transfer times are a

eptable, performan
e worsens signi�
antly if the datais not read from a moderate number of
ontinuous lo
ations. When using ourq-gram index, queries will typi
ally a

ess more or less s
attered positions oftable Lq. When d-neighborhood generation is used, the number of q-gram listsfet
hed, and hen
e seek operations over Ld, grows exponentially with d. Tolimit this e�e
t, we use bound dM , the maximum d value. Based on pra
ti
alexperien
e we have
hosen limit dM = 1 in se
ondary memory s
enarios. We alsostore the header table Hq in main memory to avoid an extra seek operation perq-gram. Hen
e the need to use a moderate q so that Hq �ts in main memory.The e�e
ts of se
ondary memory
an also be
onsidered when
hoosing thepartitioning. We
an weight the value Cx;d of the o

urren
e table (Se
. 3.2) withan estimated
ost for querying the q-gram index with the strings in UPd(x). IfCwx;d is the weighted
ost for substring x and d errors, we use the formulaCwx;d = Cx;d � (veri�
ation-
ost+ disk-transfer-
ost)+ d-neighborhood-size(x; d) � disk-seek-
ostnormalized to the form Cx;d +
 � d-neighborhood-size(x; d). The weight value
 depends on the a
tual type of memory used in storing the index, and thus itshould be based on empiri
al tests.4 Test ResultsAs the test results in [7℄ found the index of Myers to be the best method in the
ase of DNA, we have
ompared our performan
e against that index. The imple-mentation of Myers' index, from the original author, is only a limited prototype
onstrained to pattern lengths of the form q � 2x and q = dlog� ne.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 1 2 3 4 5

tim
e

(s
ec

)

k

S. cerevisiae
m = 24

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 3 7 11 15 19 23

tim
e

(s
ec

)

k

S. cerevisiae
m = 96

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 7 15 23 31 39 47 55 63 71 79 87 95

tim
e

(s
ec

)

k

S. cerevisiae
m = 384

Ours with bidirectional verification
Ours with conventional verification
Ours with ed-computed d-neighb.

Myers’ index

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5

tim
e

(s
ec

)

k

H. sapiens
m = 24

 0

 5

 10

 15

 20

 25

 3 7 11 15 19 23

tim
e

(s
ec

)

k

H. sapiens
m = 96

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 7 15 23 31 39 47 55 63 71 79 87 95

tim
e

(s
ec

)

k

H. sapiens
m = 384

Simple
OptimizedFig. 2. On the left, Myers' index versus three variants of our index, in main memory,sear
hing the � 10 MB genome of S:
erevisiae (baker's yeast) [9℄. Our variants usesimple partitioning (Se
. 3.2) and dM = 2. The �rst method uses bidire
tional veri�
a-tion and the se
ond
onventional interval-merging
ombined with approximate stringmat
hing. Both of these use the d-neighborhood generation method of Se
. 3.3. Thethird method uses bidire
tional veri�
ation
ombined with a d-neighborhood genera-tion method
loser to Myers' (ba
ktra
king with edit distan
e
omputation over thetrie of all strings). We run on a P3 600 Mhz with 256 MB RAM and Linux OS, and
ompile with GCC 3.2.1 using full optimization. On the right, simple versus optimizedpartitioning for our index (Se
. 3.2). We use the best
ombination of veri�
ation/d-neighborhood generation from the tests on the left. Now the index is on disk, we usedM = 1 and en
ode the text using 2 bits per nu
leotide. The text is the Aug 8th 2001draft of the human genome [10℄, of about 2.85 billion nu
leotides. We run on an AMDAthlon XP 1.33 Ghz with 1 GB RAM, 40 GB IBM Deskstar 60GXP hard disk andWindows 2000 OS, and
ompile using Mi
rosoft Visual C++ 6.0 with full optimization.

Fig. 2 (left) shows the results when sear
hing the small S:
ervisiae genome,where the index �ts in main memory. We test three variants of our index, amongwhi
h the
lear winner is bidire
tional veri�
ation of bottom-level pie
es
om-bined with our d-neighborhood generation. This is 2 to 12 (typi
ally above 4)times faster than Myers' index. In many
ases a large part of our advantage isexplained by the stri
t rule Pji=1 di = k � j + 1. This is more
lear in the plotswhen k goes above m=6: at this point the index of Myers sets di = 2 for allthe pie
es, whereas our index in
reases the number of errors in a more steadymanner. The di�eren
e between the sear
h me
hanisms themselves is seen whenk = m=6 � 1 or k = m=4 � 1, as at these points both indexes set di = 1 ordi = 2, respe
tively, for all the pie
es. In these
ases our fastest version is alwaysroughly 4 times faster than Myers' index.Our best
ombination from the above test was used for sear
hing the humangenome, where the index is on disk. We
ompared simple and optimized parti-tioning. As shown in Fig. 2 (right), in most
ases using optimized partitioninghad a non-negative gain, in the range 0-300%. There were also some
ases wherethe e�e
t was negative, but they were most probably due to the still imma-ture
alibration of our
ost fun
tion. We also made a qui
k test to
ompare ourdisk-based index with the sequential bit-parallel approximate string mat
hingalgorithm of Myers [4℄. For example in the
ase m = 384 and k = 95 our indexwas still about 6 times faster.Referen
es1. H. Hyyr�o. A bit-ve
tor algorithm for
omputing Levenshtein and Damerau editdistan
es. Nordi
 Journal of Computing, 10:1{11, 2003.2. U. Manber and E. Myers. SuÆx arrays: a new method for on-line string sear
hes.SIAM Journal on Computing, pages 935{948, 1993.3. E. Myers. A sublinear algorithm for approximate keyword sear
hing. Algorithmi
a,12(4/5):345{374, O
t/Nov 1994.4. G. Myers. A fast bit-ve
tor algorithm for approximate string mat
hing based ondynami
 progamming. Journal of the ACM, 46(3):395{415, 1999.5. G. Navarro. A guided tour to approximate string mat
hing. ACM ComputingSurveys, 33(1):31{88, 2001.6. G. Navarro. NR-grep: a fast and
exible pattern mat
hing tool. Software Pra
ti
eand Experien
e, 31:1265{1312, 2001.7. G. Navarro and R. Baeza-Yates. A hybrid indexing method for approximate stringmat
hing. Journal of Dis
rete Algorithms (JDA), 1(1):205{239, 2000.8. G. Navarro, R. Baeza-Yates, E. Sutinen, and J. Tarhio. Indexing methods forapproximate string mat
hing. IEEE Data Engineering Bulletin, 24(4):19{27, 2001.9. National
enter for biote
hnology information. http://www.n
bi.nlm.nih.gov/.10. U
s
 human genome proje
t working draft. http://genome.
se.u
s
.edu/.11. Esko Ukkonen. Finding approximate patterns in strings. J. of Algorithms, 6:132{137, 1985.12. H.E. Williams and J. Zobel. Indexing and retrieval for genomi
 databases. IEEETrans. on Knowledge and Data Engineering, 14(1):63{78, 2002.

