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Abstract. This work presents (s,c)-Dense Code, a new method for
compressing natural language texts. This technique is a generalization
of a previous compression technique called End-Tagged Dense Code that
obtains better compression ratio as well as a simpler and faster encoding
than Tagged Huffman. At the same time, (s,c)-Dense Code is a prefix
code that maintains the most interesting features of Tagged Huffman
Code with respect to direct search on the compressed text. (s, c)-Dense
Coding retains all the efficiency and simplicity of Tagged Huffman, and
improves its compression ratios.

We formally describe the (s, ¢)-Dense Code and show how to compute the
parameters s and ¢ that optimize the compression for a specific corpus.
Our empirical results show that (s, c)-Dense Code improves End-Tagged
Dense Code and Tagged Huffman Code, and reaches only 0.5% overhead
over plain Huffman Code.

1 Introduction

Text compression techniques are based on exploiting redundancies in the text to
represent it using less space [2]. The amount of text collections has grown in the
last years, mainly due to the widespread use of digital libraries, documental
databases, office automation systems and the Web. Current text databases
contain hundreds of gigabytes and the Web is measured in terabytes. Although
the capacity of new devices to store data grows fast and the associated costs
decrease, the size of text collections increases also faster. Moreover, CPU speed
grows much faster than that of secondary memory devices and networks, so
storing data in compressed form reduces 1/0 time, which is more and more
convenient even at the expense of for some extra CPU time.

Another advantage of text compression techniques is that all of them allow
(and improve) the use of block addressing inderes. These indexes are smaller
than standard inverted indexes because their entries point to blocks instead of
exact word positions. Of course the price to pay is sequential text scanning of the
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pointed blocks. However, if the text is compressed with a technique that allows
direct search of words in the compressed text, then not only the index and text
size are reduced, but also the search inside candidate text blocks is much faster.
Notice that using those two techniques together, as in [8], the index is used just
as a device to filter out some blocks that do not contain the word we are looking
for. This index schema was first proposed in Glimpse [13], a widely known system
that uses a block addressing index. On the other hand compression techniques
can be used as well to compress the inverted indexes themselves, as suggested
in [8] or [10].

For these reasons, compression techniques have become attractive methods
to save space and transmission time. However, if the compression scheme does
not allow to search for words directly on the compressed text, the retrieval of
documents will be less efficient, due to the need of decompression before the
search.

Classic compression techniques, like the well-known algorithms of Ziv and
Lempel [15, 16] or the character oriented code of Huffman [4], are not suitable for
large textual databases. One important disadvantage of these techniques is the
inefficiency of searching for words directly on the compressed text. Compression
schemes based on Huffman codes are not often used on natural language because
of the poor compression ratios achieved. On the other hand, Ziv and Lempel
algorithms obtain better compression ratios, but the search for a word on the
compressed text is inefficient. Empirical results [7] showed that searching on a
Ziv-Lempel compressed text can take half the time of decompressing that text
and then searching it. However, the compressed search is twice as slow as just
searching the uncompressed version of the text.

In [12], they presented a compression scheme that uses a semi-static word-
based model and a Huffman code where the coding alphabet is byte-oriented.
This compression scheme allows the search for a word on the compressed text
without decompressing it in such a way that the search can be up to eight times
faster for certain queries. The key idea of this work (and others [6]) is to take
the words as the symbols that compose the text (and therefore the symbols that
should be compressed). Since in Information Retrieval (IR) words are the atoms
of the search, these compression schemes are particularly suitable for IR.

In [3] it is shown that, although plain Huffman Code is the prefix code that
gives the shortest possible output when a source symbol is always substituted by
the same code, Tagged Huffman Code largely underutilizes the representation.
In that paper it is shown that, by signaling the last byte instead of the
first one, the rest of the bits can be used in all their combinations and the
code is still a prefix code. The resulting code, called End-Tagged Dense Code,
becomes much closer to the compression obtained by Plain Huffman Code. This
code not only retains the ability of being searchable with any string matching
algorithm, but it is also extremely simple to build (it is not based on Huffman
at all) and permits a more compact representation of the vocabulary. Thus, the
advantages over Tagged Huffman Code are (i) better compression ratios, (i%)



same searching possibilities, (¢i7) simpler and faster coding and (iv) simpler and
smaller vocabulary representation.

In this paper we present (s,c)-Dense Coding, a generalization of the End-
Tagged Dense Code [3] that improves its compression ratio by adapting the
number of terminal and non terminal symbols to the distribution of frequencies
of the words in the corpus to be compressed. As a result, (s, c)-Dense Coding
compresses strictly better than End-Tagged Dense Code and Tagged Huffman
Code, reaching only a 0.5% overhead over Plain Huffman Code. At the same
time, (s,c)-Dense Codes retain all the simplicity and direct search capabilities
of End-Tagged Dense Codes and Tagged Huffman Codes. We present an efficient
algorithm to build (s, c)-Dense Codes, which is so fast that it can make this an
interesting alternative to Plain Huffman Codes because of speed and simplicity
of construction.

2 Related Work

Huffman is a well-known coding method [4]. The idea of Huffman coding is
to compress the text by assigning shorter codes to more frequent symbols. It
has been proven that Huffman algorithm obtains an optimal (i.e., shortest total
length) prefiz code for a given text.

A code is called a prefix code (or instantaneous code) if no codeword is a
prefix of any other codeword. A prefix code can be decoded without reference
to future codewords, since the end of a codeword is immediately recognizable.

Plain Huffman Code [3] produces an average symbol length which is at most
one extra symbol over the zero-order entropy. That is, if we call
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the zero-order entropy in base b of the text, then the average number of symbols
to code a word using Plain Huffman is

Ey,<Hy<Ep+1

2.1 Word-Based Huffman Compression

The traditional implementations of the Huffman code are character based, i.e.,
they use the characters as the symbols of the alphabet. In [5] they use the words
in the text as the symbols to be compressed. This idea joins the requirements of
compression algorithms and of IR systems, as words are the basic atoms for most
IR systems. The basic point is that a text is more compressible when regarded
as a sequence of words rather than characters.

In [12,17], a compression scheme that uses this strategy combined with
a Huffman code is presented. From a compression viewpoint, character-based
Huffman methods are able to reduce English texts to approximately 60% of



their original size, while word-based Huffman methods are able to reduce them
to 25% of their original size, because the distribution of words is much more
biased than the distribution of characters.

The compression schemes presented in [12,17] use a semi-static model, that
is, the encoder makes a first pass over the text to obtain the frequency of all
the words in the text and then the text is coded in the second pass. During
the coding phase, original symbols (words) are replaced by codewords. For each
word in the text there is a unique codeword, whose length varies depending on
the frequency of the word in the text. Using the Huffman algorithm, shorter
codewords are assigned to more frequent words.

The basic method proposed by Huffman is mostly used as a binary code,
that is, each word in the original text is coded as a sequence of bits. In [12] they
modified the code assignment such that a sequence of bytes instead of bits is
associated with each word in the text.

Experimental results have shown that, on natural language, there is no
significant degradation in the compression ratio by using bytes instead of bits.
In addition, decompression and searching are faster with byte-oriented Huffman
code because no bit manipulations are necessary.

2.2 Tagged Huffman Codes

In [12] two codes following this approach are presented. In that paper, they call
Plain Huffman Code to the one we have already described, that is, a word-based
byte-oriented Huffman code.

The second code proposed is called Tagged Huffman Code. This is just like
the previous one differing only in that the first bit of each byte is reserved to
flag whether the byte is the first byte of a codeword. Hence, only 7 bits of each
byte are used for the Huffman code. Note that the use of a Huffman code over
the remaining 7 bits is mandatory, as the flag is not useful by itself to make the
code a prefix code.

Tagged Huffman Code has a price in terms of compression performance: we
store full bytes but use only 7 bits for coding. Hence, the compressed file grows
approximately by 11%.

Tagged Huffman code, as well as Plain Huffman, is easy to analyze. It is a
Huffman code over b — 1 bits, but using b bits per symbol, hence

Ey 1 <Ty<Ep_1+1

The addition of a tag bit in the Tagged Huffman Code permits direct
searching on the compressed text by simply compressing the pattern and then
using any classical string matching algorithm. On Plain Huffman this does not
work, as the pattern could occur in the text and yet not correspond to our
codeword. The problem is that the concatenation of parts of two codewords
may form the codeword of another vocabulary word. This cannot happen in the
Tagged Huffman Code due to the use of one bit in each byte to determine if the
byte is the first byte of a codeword or not.



For this reason, searching with Plain Huffman requires inspecting all the
bytes of the compressed text from the beginning, while Boyer-Moore type
searching (that is, skipping bytes) is possible over Tagged Huffman Code.

The algorithm to search for a single word under Tagged Huffman Code
starts by finding the word in the vocabulary to obtain the codeword that
represents it in the compressed text. Then the obtained codeword is searched
for in the compressed text using any classical string matching algorithm with no
modifications. They call this technique direct searching [12,17].

Today’s IR systems require also flexibility in the search patterns. There
is a range of complex patterns that are interesting in IR systems, including
regular expressions and “approximate” searching (also known as “search allowing
errors”). See [12, 17] for more details on how Tagged Huffman Code permits these
types of search.

2.3 End-Tagged Dense Codes

The End-Tagged Dense Code [3] starts with a seemingly dull change to Tagged
Huffman Code. Instead of using the flag bit to signal the beginning of a codeword,
the flag bit is used to signal the end of a codeword. That is, the flag bit is 0 for
the first bit of any byte of a codeword except for the last one, which has a 1 in
its first bit.

This change has surprising consequences. Now the flag bit is enough to ensure
that the code is a prefix code regardless of the contents of the other 7 bits. To
see this, consider two codewords X and Y, being X shorter than Y (| X| < |Y]).
X cannot be a prefix of Y because the last byte of X has its flag bit in 1, while
the | X|-th byte of Y has its flag bit in 0.

At this point, there is no need at all to use Huffman coding over the remaining
7 bits. It is possible to use all the possible combinations of 7 bits in all the bytes,
as long as the flag bit is used to mark the last byte of the codeword.

We are not restricted to use symbols of 8 bits to form the codewords. It is
possible to use symbols of b bits. The End-Tagged Dense Code is defined as
follows:

Definition 1 Given source symbols with decreasing probabilities {p;}o<i<n the
corresponding codeword wusing the End-Tagged Dense Code is formed by a
sequence of symbols of b bits, all of them representing base-(2°~1) digits (that
is, from 0 to 2°~1 — 1), except the last one which has a value between 2°~1 and
20 — 1, and the assignment is done in a completely sequential fashion.

That is, using symbols of 8 bits, the 130-th word is encoded as
00000000:10000001, the 131-th as 00000000:10000010, and so on, just as if we
had a 14-bit number. As it can be seen, the computation of codes is extremely
simple: It is only necessary to order the vocabulary words by frequency and then
sequentially assign the codewords. Hence the coding phase will be faster than
using Huffman because obtaining the codes is simpler.



In fact, it is not necessary to physically store the results of these
computations: With a few operations we can obtain on the fly, given a word
rank 4, its {-byte codeword, in O(¢) = O(log) time.

What is perhaps less obvious is that the code depends on the rank of the
words, not on their actual frequency. That is, if we have four words 4, B, C, D
with frequencies 0.27, 0.26, 0.25 and 0.23, respectively, then the code will be the
same as if their frequencies were 0.9, 0.09, 0.009 and 0.001.

Hence, there is no need to store the codewords (in any form such as a tree)
nor the frequencies in the compressed file. It is enough to store the plain words
sorted by frequency. Therefore, the vocabulary will be slightly smaller than in
the case of the Huffman code, where some information about the shape of the
tree must be stored (even when a canonical Huffman tree is used).

In order to obtain the codewords, the decoder can run a simple computation
to obtain, from the codeword, the rank of the word, and then obtain the word
from the vocabulary sorted by frequency. A code i of £ bytes can be decoded in
O(¢) = O(log i) time.

An interesting property of this code is that it can be used as a bound for
the compression that can be obtained with a Huffman code. It is clear that the
End-Tagged Dense Code uses all the possible combinations of all bits, except
the first one, that is used as a flag as in the Tagged Huffman Code. Therefore,
calling Dy, the code length of an End-Tagged Dense Code that uses symbols of
b bits we have

Dpt1 < Hpy <Dy <Tp, < Dp—y

In [3] a more precise comparison on these three codes is presented. There, it
is shown how the End-Tagged Dense Code provides lower and upper bounds to
the compression that can be obtained by Huffman with texts in natural language
where the Zipf’s Law is assumed [14].

3 (s,c)- Dense Codes

As we have shown, End-Tagged Dense Code uses 2°~! digits, from 0 to 2= —1,
for the bytes at the beginning of a codeword, and it uses the other 2°=1 digits,
from 2°~! to 2° — 1, for the last byte of the codeword. But the question that
arises now is whether that proportion between the number of non terminal and
terminal digits is the optimal one; that is, for a given corpus with a specific
distribution of frequencies of words, it might be that a different number of non
terminal digits (continuers) and terminal digits (stoppers) could compress better
than just using 2°~!. This idea has been previously pointed out in [9]. We define
(s, c)- stop-cont codes as follows.

Definition 2 Given source symbols with probabilities {p;}to<i<n an (s,c) stop-
cont code (where ¢ and s are integers larger than zero) assigns to each source
symbol i a unique target code formed by a base-c digit sequence terminated by a
digit between ¢ and ¢+ s — 1.



It should be clear that a stop-cont coding is just a base-c¢ numerical
representation, with the exception that the last digit is between ¢ and ¢+ s — 1,
i.e., it is a base-s number that is distinguished from previous digits by adding
c. Digits between 0 and ¢ — 1 are called “continuers” and those between ¢ and
c+ s — 1 are called “stoppers” . The next property clearly follows.

Property 1. Any (s, c) stop-cont code is a prefix code.

Proof. If one code were a prefix of the other, since the shorter code must have
a final digit of value at least ¢, then the longer code must have an intermediate
digit which is not in base c. This is a contradiction. a

Among all the possible (s, ¢) stop-cont codes for a given probability distribution,
the dense code is one that minimizes the average symbol length. This is because
a dense code uses all the possible combinations of bits in each byte. That is,
codes can be assigned sequentially to the ranked symbols.

Definition 38 Given source symbols with decreasing probabilities {p;}to<i<n, the
corresponding (s, c)-Dense Code ((s,c)-DC) is an (s, c) stop-cont code where the
codewords are assigned as follows: Let k be the number of bytes in each codeword,
which is always > 1, then k will be such that

kb1 -1 k-1

s—— <i<s
c—1 — c—1

Thus, the code corresponding to source symbol i is formed by k£ — 1 base-c digits
and a final digit. If K = 1 then the code is simply the stopper c+i. Otherwise the

code is formed by the number |2 /s]| written in base ¢, followed by ¢+ (z mod s),
1

sch~1_s

c—1

where v =i —

Ezample 1. The codes assigned to symbols i € 0...15 by a (2,3)-DC are as
follows: (3), (4), (0,3), (0,4), (1,3), (1,4), (2,3), (2,4), (0,0,3), (0,0,4), (0,1,3),
(0,1,4), (0,2,3), (0,2,4), (1,0,3) and (1,0,4).

Note that the code does not depend on the exact symbol probabilities, but
just on their ordering by frequency. We now prove that the dense coding is an
optimal stop-cont coding.

Property 2. The average length of a (s, ¢)-dense code is minimal with respect to
any other (s, ¢) stop-cont code.

Proof. Let us consider an arbitrary (s, ¢) stop-cont code, and let us write all the
possible codewords in numerical order, as in Example 1, together with the symbol
they encode, if any. Then it is clear that (i) any unused code in the middle could
be used to represent the source symbol with longest codeword, hence a compact
assignment of target symbols is optimal; and (ii) if a less probable symbol with
a shorter code is swapped with a more probable symbol with a longer code then
the average code length decreases, and hence sorting the symbols by decreasing
frequency is optimal. a



Since sc*~! different codewords can be coded using k digits, let us call

_— k-1
W;f:Zst* =s——3

(where W§ = 0) the number of source symbols that can be coded with up to k

digits. Let us also call
Wi

fi= > b

=W+

the sum of probabilities of source symbols coded with k digits by an (s, ¢)-DC.
Then, the average codeword length for the (s, c)-DC, LD, .y, is

Wi

K K
LDoy=> kfi=>k > p;
k=1

k=1 j=W; ,+1

K—1 Wi K°—1 W§
=1+ k> om=ltY > p
k=1 j=Wg+1 k=1 j=W;+1

where K* = [log_,) (1 + W)], and n is the number of symbols in the
vocabulary.

It is clear from Definition 3 that the End-Tagged Dense Code [3] is a
(26=1,25=1).DC and therefore (s,c)-DC can be seen as a generalization of the
End-Tagged Dense Code where s and ¢ are adjusted to optimize the compression
for the distribution of frequencies of the vocabulary.

In [3] it is proved that (2°71,2°=1)-DC is more efficient than Tagged Huffman.
This is because Tagged Huffman is a (2°0712Y=1) (non dense) stop-cont code,
while the End-Tagged Dense Code is a (2°71,2°=1)-Dense Code.

Ezxample 2. Table 1 shows the codewords assigned to a small set of words ordered
by their frequency when using Plain Huffman (P.H.), (6,2)-DC, End-Tagged
Dense Code (ETDC) which is a (4,4)-DC, and Tagged Huffman (TH). Symbols
of three bits are used for simplicity (b=3). The last four columns present the
products of the number of bytes by the frequency for each word, and its addition,
the average codeword length, is shown in the last row.

It is easy to see that, for this example, Plain Huffman and the (6,2)-Dense
Code are better than the (4,4)-Dense Code (ETDC) and therefore they are also
better than Tagged Huffman. Notice that (6,2)-Dense Code is clearly better than
(4,4)-Dense Code because it takes advantage of the distribution of frequencies
and of the number of words in the vocabulary. However the values (6,2) for s
and ¢ are not the optimal ones since a (7,1)-Dense Code obtains an optimal
compressed text having, in this example, the same result than Plain Huffman.

The problem now consists of finding the s and ¢ values (assuming a fixed b where
2b = s+ ¢) that minimize the size of the compressed text.



Freq x bytes

Word |Freq ||P.H. (6,2)-DC |[ETDC |T.H. P.H.|(6,2)-DC|ETDC| T.H.
A ]0.2 ||[000] [010] [100] [100] 0.2 0.2 0.2 0.2
B (0.2 ||[001] [011] [101] [101] 0.2 0.2 0.2| 0.2
C 10.15 ||[010] [100] [110] [110] 0.15 0.15 0.15| 0.3
D ]0.15 ||[011] [101] [111] [111]][000] 0.15 0.15 0.15 0.3
E ]0.14 [[[100] [110] [000][100]|[111][001] 0.14 0.14] 0.28]| 0.28
F ]0.09 [|[101] [111] [000][101]|[111][010] 0.09 0.09] 0.18]| 0.18
G ]0.04 ||[110] [000][010]{[000][110]|[111][011][000]|{0.04 0.08] 0.08]| 0.12
H |0.02 ||[111][000]|[000][011]{[000][111]{[111][011][001]||0.04 0.04] 0.04| 0.05
I |0.005||[111][001]{[000][100]|[001][100]{[111][011][010]{|0.01 0.01] 0.01]0.015
J 10.005}|[111]{010]|[000][101]|[001][101]{[111][011][011]||0.01 0.01] 0.01]0.015
total compressed size|1.03 1.07| 1.30|1.67

Table 1. Comparative among compression methods

4 Optimal s and ¢ Values

Before giving the algorithm to compute the optimal s and ¢ values, s+c = 2° and
1<s<20— 1, we need to show that the size of the compressed text decreases
when we increase s until reaching the unique optimal s value. After that optimal
value, increments of s will produce a loss in the compression ratio. This is shown
in Figure 1. Of course the value of ¢ depends on the value of s because ¢ = 2° — s
always holds.

Although we have a formal proof of the uniqueness of the minimum, it is so
technically involved that it could be an article by itself. We considered such a
long proof inadequate for this conference version. So we have decided to include
only an intuitive explanation in this paper, which turns out to be considerably
simpler than the actual proof with all the details.

Intuitively, it is easy to see that when s is very small the number of high
frequency words encoded with very few bytes (that is, one or two bytes) is also
very small (s words are encoded with just one byte and s- ¢ with two bytes) but
in this case c is large and therefore words with low frequency will be encoded
with few bytes (s - ¢? words will be encoded with 3 bytes, s- ¢ with 4 bytes and
so on, but if ¢ is so large, probably 3 bytes will be enough to encode the last
word of the ranked vocabulary).

It is clear that, as s grows, highest frequency words will be encoded with less
bytes, so we improve the compression of high frequency words. But at the same
time, as s grows, lowest frequency words will need more bytes to be encoded, so
we loss compression in those words.

As consequence, if we try all the possible values of s starting at s = 1, we will
see (as in Figure 1) that, in the beginning, compression improves a lot because
each increment of s produce that words with high frequency become encoded by
a codeword that is one byte shorter.

When s becomes larger, for each increment of s the number of words encoded
with less bytes is smaller in proportion and has lower frequency. Therefore, with
each increment of s, we gain less and less compression in the highest frequency
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words. At the same time, we lose more and more compression in the lowest
frequency words, because with each increment of s they will need more bytes
to be encoded. At some point, the compression lost in the last words is larger
than the compression gained in words at the beginning, and therefore the global
compression ratio decreases. That point gives us the optimal s value. It is easy
to see in Figurel that, around of the optimal value, the compression is relatively
insensitive to the exact value of s. This fact causes the smooth bottom of the
curve.

Our algorithm takes advantage of this property. It is not necessary to check
all the values of s because we know the shape of the distribution of compression
ratios as a function of s. Our algorithm looks only for the direction of change
the in value of s, moving towards the area where compression ratio improves.

5 Algorithm to Obtain the Optimal s and ¢ Values

In this section, an algorithm to find the best s and consequently ¢ for a given
corpus and a given b is shown. A needed precondition is to have a list with the
accumulated frequencies for all the words in the corpus, arranged in decreasing
order of frequency.

The basic algorithm is presented below. It is a binary search algorithm that
initially computes the size of the compressed text for two consecutive values of
s:(|2°71] —1 and [2°71]). As has been intuitively explained there is at most one
local minimum, so the algorithm can lead the search to the point that reaches
the best compression ratio. In each new iteration the search space is reduced
by half and a new computation of the compression is obtained with two central
points of the new interval is performed.

The process consists of two parts: The algorithm findBestS computes the
best s and ¢ values for a given b and a list of accumulated frequencies. This
list can be obtained by sorting the words in decreasing order of frequency
and computing the accumulated frequency for each position. The size of the
compressed text (in bytes) is computed for specific s and ¢ values by calling
function ComputeSizeS. Finally, the s and ¢ values that minimize the length
are returned.

findBestS (b, freqList)
//Input: b value (2° = ¢ + s).
//Input: A list of accumulated frequencies for words arranged on decreasing order of frequency .
//Output: The best s and ¢ values

begin
Lp:=1; //Lp and Up the lower and upper
Up:=2°—1; //points of the interval being checked

while Lp +1 < Up do
M .= | EEEUE |
sizePp := computeSizeS(M — 1,2° — (M — 1), freqList); //size with M — 1
sizeM := computeSizeS(M, 2b — M, freqList); //size with M
if sizePp < sizeM then
Up:=M —1;
else Lp :=M
end if
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end while

if Lp <Upthen //Lp=Up-—1and M =Lp
sizeNp := computeSizeS(Up, 2% — Up, freqList); //size with M + 1
if sizeM < sizeNp then

bestS := M;
else bestS := Up
end if
else bestS:=Lp [//Lp=Up=M —1
end if

bestC := 2° — bestS;
return bestS, bestC';
end

For any given values s and ¢, next algorithm computes the size of the
compressed text.

computeSizeS (s, c, freqList)
//Inputs: s, ¢, and a list of accumulated frequencies.
// Output: length of the compressed text when using s,c

begin
k := 1; n := number ofwords in 'freqList’;
Right := min(s,n); total := freqList[Right — 1];

while Right < n do
Left := Right;
Right := Right + sck;

k:=k+1;
if Right > n then
Right := n;
end if
total := total + k x (freqList[Right — 1] — freqList[Left]);
end while
return total

end

Notice that computing the size of the compressed text for a specific value of
s costs O(log.n), except for ¢ = 1, in which case it costs O(n/s) = O(n/2%).
Hence the most expensive possible sequence of calls to computeSizeS in a
binary search is that for values ¢ = 207!, ¢ = 2072, ¢ = 2073, ... ¢ = 1. The
total cost of computeSizeS over that sequence of ¢ values is

b—1 b—1
n n 1 n
2% +;10g2b4n = §+10g2ngm = O(@ +10gn]ogb>

The other operations of the binary search are constant, and we have also an
extra O(n) cost to compute the accumulated frequencies. Hence the overall cost
to find s and cis O(n+log(n)log(b)). Since the maximum b of interest is such that
b = [logy n] (as at this point we can code each symbol using a single stopper), the
optimization algorithm costs at most O(n +log(n)loglog(n)) = O(n), assuming
the vocabulary is already sorted. We have succeeded in making the optimization
part totally negligible. Huffman algorithm is also linear once the vocabulary is
sorted, but the constant is in practice larger because it involves more operations
than just adding up frequencies.

6 Empirical Results

We used some large text collections from TREC-2 (AP Newswire 1988 and Ziff
Data 1989-1990) and from TREC-4 (Congressional Record 1993, Financial Times
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1991, 1992, 1993 and 1994). We also used a Literary Spanish corpus we created.
We have compressed them using Plain Huffman, (s,c)-Dense Code, End-Tagged
Dense Code and Tagged Huffman. We used the spaceless word model [11] to
create the vocabulary; that is, if a word was followed by a space, we just encoded
the word, otherwise both the word and the separator were encoded.

We excluded the size of the compressed vocabulary in the results (this size is
negligible and similar in all cases, although a bit smaller in (s, ¢)-DC and ETDC
because only the ranking of words is needed).

|Corpus |Num words[vocabulary size|Entropy| Plainl (s,c)-DC|ETDC[Tagged|
AP 1988 52,960,212 268,800] 1,3032]1,4778|(189,67) 1,4908|1,5166] 1,6382
Ziff 1989-90 40,548,114 237,607| 1,2732[1,4500((198,58) 1,4586(1,4909| 1,6064
C.R. 1993 9,445,990 117,713 1,2950(1,4755((195,61) 1,4874|1,5202] 1,6381
F.T. 1991 3,059,634 75,687| 1,2825|1,4555((192,64) 1,4674|1,4974| 1,6122
F.T. 1992 36,518,075 284,878 1,2946|1,4651((193,63) 1,4755(1,5042| 1,6275
F.T. 1993 41,772,135 291,404| 1,2839]1,4474((195,61) 1,4566(1,4891] 1,6131
F.T. 1994 43,039,879 294,990] 1,2843]1,4476](195,61) 1,4569]1,4897| 1,6137
Spanish Texts| 18,324,100 313,977] 1,3612|1,5486((182,74) 1,5692]1,5889] 1,7164

Table 2. Comparison of the Average Codeword Length

In Table 2 we present the average length of the codewords obtained with each
of the compression methods, as well as the zero-order entropy of the text when
words are taken as the source symbols. As it can be seen, the average codeword
length in Plain Huffman and in (s, ¢)-Dense Code is less than 1 byte larger than
the entropy. The sixth column, also gives the optimal (s,c) values found using
algorithm findBestS.

[Corpus [[Original Size[Voc. Words] 0 [Entropy[ PH.[  (s,c)-DC_ [ETDCJT.H.|
AP 1988 250,994,525 241,315|1.852045| 27.49 [31.18((189,67) 31.46] 32.00 [34.57
Ziff 1989-90 185,417,980 221,443(1.744346| 27.84 [31.71{(198,58) 31.90| 32.60 [35.13
C.R. 1993 51,085,545 114,174[1.634076| 23.94 |27.28[(195,61) 27.50| 28.11 [{30.29
F.T. 1991 14,749,355 75,597[1.449878] 26.60 [30.19](193,63) 30.44| 31.06 [33.44
F.T. 1992 175,449,248 284,904[1.630996| 26.94 [30.49[(193,63) 30.71] 31.31 [33.88
F.T. 1993 197,586,334 291,322[1.647456] 27.14 [30.60[(195,61) 30.79] 31.48 [34.10
F.T. 1994 203,783,923 295,023(1.649428| 27.12 [30.57((195,61) 30.77| 31.46 |34.08
Spanish Texts|| 105,125,124 313,977|1.480535| 23.71 [27.00((182,74) 27.36] 27.71 [29.93

Table 3. Comparison of compression ratios.

Table 3 shows the compression ratio obtained by the aforementioned codes,
as well as that corresponding to the entropy. The second column contains the
original size of the processed corpus and the following columns indicate the
number of words in the vocabulary, the 6 parameter of Zipf’s Law [14, 1], and
the compression ratio for each method. Again, in the column corresponding to
(s,¢)-DC, the optimal (s, ¢) values are shown.

As it can be seen, Plain Huffman gets the best compression ratio (as expected
since it is the optimal prefix code) and End-Tagged Dense Codes always obtain
better results than Tagged Huffman, with an improvement of up to 2.5 points.
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As expected, (s,c¢)-DC improves the results reached by (128,128)-DC (ETDC).
In fact, (s,¢)-DC is superior to (128,128)-DC and it is worse than the optimal
Plain Huffman only by less than 0.5 points on average.

In Figure 1 the size of the compressed texts and the compression ratios are
shown as a function of the s values, for Ziff and Spanish corpus. As shown in
Table 3, the optimal s value for Ziff corpus is 198, while for the Spanish corpus
the maximum compression ratio is achieved with s = 182. On the right we show
sizes and compression ratios when s values close to the optimum are used.

[s value]] ZIFF Corpus [ Spanish Corpus |

ratio size ratio size
175(| 31.9891| 59,313,463| 27.3592| 28,761,439
180(| 31.9550| 59,250,251 27.3530| 28,754,926
181|| 31.9489| 59,239,066| 27.3527| 28,754,571
182 31.9432| 59,228,446|27.3526(28,754,487
183(| 31.9378| 59,218,406| 27.3529| 28,754,757
185(| 31.9279| 59,200,048| 27.3543| 28,756,250
190(| 31.9092| 59,165,319| 27.3633| 28,765,740
195(| 31.8990| 59,146,488| 27.3814| 28,784,711

; 197|| 31.8976| 59,143,005 27.3915| 28,795,340
\“// 198(/31.8976|59,143,837| 27.3972| 28,801,304
g 199][ 31.8980| 59,144,550| 27.4033| 28,807,734

200]|| 31.8987| 59,146,012| 27.4008| 28,814,637

] 50 100 150 200 250
ues of s

Fig. 1. Compressed text sizes and compression ratios for different s values.

7 Conclusions

We have presented (s, c¢)-Dense Codes, a new method for compressing natural
language texts. This method is a generalization of the End-Tagged Dense Code
and improves its compression ratio by adapting its (s, ¢) parameters to the corpus
to be compressed.

We have given an algorithm that computes the optimal s,c values for a
given corpus, that is, the pair that maximizes the compression ratio. Instead
of sequentially computing the resulting size for each s and ¢ value, and then
choosing the best one, our algorithm uses the fact that there is a unique minimum
in the size of the compressed text as a function of the s and c¢ values, to speed
up the process. In fact, our algorithm has an O(logn x loglogn) cost. We have
presented an intuitive description of this nontrivial property of the behavior of
minima as a function of s.

We have presented some empirical results comparing our method against
other codes with similar features. Our new code is always better than End-
Tagged Dense Code and Tagged Huffman Code, reaching only 0.5% excess from
the optimal Huffman Code. It is also faster and simpler to build.

It seems that there should be some relationship between the 6 of the Zipf’s
model (more or less biased distribution of frequencies) and the optimal s and
¢ values. It can be shown that s = 20 — 20/¢. However, our empirical data do
not confirm that. The reason is that the Zipf model is a rough approximation,
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possibly useless for this case. On the other hand, we found that s is always in the
interval [182,198], and this information could be used to speed up, a little bit,
our algorithm. In order to generalize this result we would need a model (working
in practice) which, from the frequency distribution, gave us a range where the
optimum s must lie.
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