
SCM: Stru
tural Contexts Model for ImprovingCompression in Semistru
tured Text Databases?Joaquín Adiego1, Gonzalo Navarro2, and Pablo de la Fuente11Departamento de Informáti
a, Universidad de Valladolid, Valladolid, España.{jadiego, pfuente}�infor.uva.es2Departamento de Cien
ias de la Computa
ión, Universidad de Chile, Santiago,Chile. gnavarro�d

.u
hile.
lAbstra
t We des
ribe a
ompression model for semistru
tured do
u-ments,
alled Stru
tural Contexts Model, whi
h takes advantage of the
ontext information usually impli
it in the stru
ture of the text. Theidea is to use a separate semiadaptive model to
ompress the text thatlies inside ea
h di�erent stru
ture type (e.g., di�erent XML tag). Theintuition behind the idea is that the distribution of all the texts that be-long to a given stru
ture type should be similar, and di�erent from thatof other stru
ture types. We test our idea using a word-based Hu�man
oding, whi
h is the standard for
ompressing large natural languagetextual databases, and show that our
ompression method obtains sig-ni�
ant improvements in
ompression ratios. We also analyze the possi-bility that storing separate models may not pay o� if the distribution ofdi�erent stru
ture types is not di�erent enough, and present a heuristi
to merge models with the aim of minimizing the total size of the
om-pressed database. This te
hnique gives an additional improvement overthe plain te
hnique. The
omparison against existing prototypes showsthat our method is a
ompetitive
hoi
e for
ompressed text databases.Finally, we show how to apply SCM over text
hunks, whi
h allows oneto adjust the di�erent word frequen
ies as they
hange a
ross the text
olle
tion.Keywords:Text Compression, Compression Model, Semistru
tured Do
-uments.1 Introdu
tionCompression of large do
ument
olle
tions not only redu
es the amount of diskspa
e o

upied by the data, but it also de
reases the overall query pro
essingtime in text retrieval systems. Improvements in pro
essing times are a
hievedthanks to the redu
ed disk transfer times ne
essary to a

ess the text in
om-pressed form. Sin
e in the last de
ades pro
essor speeds have in
reased mu
hfaster than disk transfer speeds, trading disk transfer times by pro
essor de
om-pression times has be
ome a better and better
hoi
e. Moreover, re
ent resear
h? This work was partially supported by CYTED VII.19 RIBIDI proje
t (all authors)and Fonde
yt Proje
t 1-020831 (se
ond author).

on �dire
t�
ompressed text sear
hing, i.e., sear
hing a
ompressed text withoutde
ompressing it, has led to a win-win situation where the
ompressed text takesless spa
e and is sear
hed faster than the plain text [WMB99,ZMNBY00℄.Compressed text databases pose some requirements that outrule some
om-pression methods. The most de�nitive is the need for random a

ess to the textwithout the possibility of de
ompressing it from the beginning. This rules outmost adaptive
ompression methods su
h as Ziv-Lempel
ompression and arith-meti

oding. On the other hand, semiadaptive models su
h as Hu�man [Huf52℄yield poor
ompression. In the
ase of
ompressing natural language texts, it hasbeen shown that an ex
ellent
hoi
e is to
onsider the words, not the
hara
ters,as the sour
e symbols [Mof89℄. Thanks to the biased distribution of words, theuse of this model joined to a Hu�man
oder gives
ompression ratios
lose to25%, mu
h better than those usually obtained with the best adaptive methods.These results are barely a�e
ted if one swit
hes to byte-oriented Hu�man
od-ing, where ea
h sour
e symbol is
oded as a sequen
e of bytes instead of bits.Although
ompression ratios raise to 30% (whi
h is still
ompetitive), we havein ex
hange mu
h faster de
oding and sear
hing, whi
h are essential features for
ompressed text databases. Finally, the fa
t that the alphabet and the vo
ab-ulary of the text
olle
tions
oin
ide permits e�
ient and highly sophisti
atedsear
hing, both in the form of sequential sear
hing and in the form of
ompressedinverted indexes over the text [WMB99,ZMNBY00,NMN+00,MNZB00℄.Although the area of natural language
ompressed text databases has gonea long way sin
e the end of the eighties, it is interesting that little has beendone about
onsidering the stru
ture of the text in this pi
ture. Thanks tothe widespread a

eptan
e of SGML, HTML and XML as the standards forstoring, ex
hanging and presenting do
uments, semistru
tured text databasesare be
oming the standard. Some te
hniques to exploit the text stru
ture havebeen proposed, su
h as XMill [LS00℄ and XMLPPM [Che01℄. However, these arenot designed to permit sear
hing the text. Others, like XGrind [TH02℄, permitsear
hing but do not take advantage of the stru
ture (they just allow it).Our goal in this paper is to explore the possibility of
onsidering the textstru
ture in the
ontext of a
ompressed text database. We aim at taking ad-vantage of the stru
ture, while still retaining all the desirable features of a word-based Hu�man
ompression over a semiadaptive model. An idea like that ofXMLPPM, where the
ontext given by the path in the stru
ture tree is usedto model the text in the subtree, is based on the intuition that the text undersimilar stru
tural elements (i.e., XML tags) should follow a similar distribution.(In fa
t XMLPPM uses the full path, whi
h is more powerful.) Although this
ompression is adaptive and does not �t our sear
h purposes, a simpli�
ationwhere only the last element in the path is
onsidered
an be joined to a semi-adaptive model, whi
h is suitable for sear
hing. The idea is then to use separatesemiadaptive models to
ompress the text that lies inside di�erent tags. For ex-ample, in an email ar
hive, a di�erent model would be used for ea
h of the �eldsFrom:, Subje
t:, Date:, Body:, et
.).

While the possible gain due to this idea is
lear, the pri
e is that we haveto store several models instead of just one. This may or may not pay o�. Inour example,
oding the dates separately is probably a good idea, but
odingthe subje
ts separate from the bodies is probably not worth the extra spa
e ofstoring two models (e.g., two Hu�man trees). Hen
e we also design a te
hniqueto merge the models if we
an predi
t that this is
onvenient in terms of
om-pressed �le length. Although the problem of �nding the optimal merging seemsa hard
ombinatorial problem, we design a heuristi
 to automati
ally obtaina reasonably good merging of an initially separate set of models, one per tag.Other related te
hniques
an be found in [BCC+00℄In a text
olle
tion, some words
an be
ommon in some parts (with highfrequen
y) and rather un
ommon in others (low frequen
y). This is typi
al innews ar
hives, for example, where some subje
ts are hot issues today and fadeout in a few weeks. Considering this fa
t, another possiblility is to apply SCMover di�erent text
hunks. This idea allows us to adjust word fre
uen
ies as they
hange a
ross the text, improving
ompression rates.This model, whi
h we
all Stru
tural Contexts Model, is general and does notdepend on the
oder. We plug it to a word-based Hu�man
oder to test it. Ourexperimental results show signi�
ant gains over the methods that are insensitiveto the stru
ture and over the
urrent methods that
onsider the stru
ture. Atthe same time, we retain all the features of the original model that makes itsuitable for
ompressed text databases.2 Related WorkWith regard to
ompressing natural language texts in order to permit e�
ientretrieval from the
olle
tion, the most su

essful te
hniques are based on modelswhere the text words are taken as the sour
e symbols [Mof89℄, as opposed to thetraditional models where the
hara
ters are the sour
e symbols.On the one hand, words re�e
t mu
h better than
hara
ters the true entropyof the text [TCB90℄. For example, a semiadaptive Hu�man
oder over the modelthat
onsiders
hara
ters as symbols typi
ally obtains a
ompressed �le whosesize is around 60% of the original size, on natural language. A Hu�man
oderwhen words are the symbols obtains 25% [ZMNBY00℄. Another example is theWLZW algorithm (Ziv-Lempel on words) [BSTW86,DPS99℄.On the other hand, most information retrieval systems use words as themain information atoms, so a word-based
ompression eases the integration withan information retrieval system. Some examples of su

essful integration are[WMB99,NMN+00,MW01℄.The text in natural language is not only made up of words. There are alsopun
tuation, separators, and other spe
ial
hara
ters. The sequen
e of
hara
tersbetween every pair of
onse
utive words will be
alled a separator. In [BSTW86℄they propose to
reate two alphabets of disjoint symbols: one for
oding wordsand another for separators. En
oders that use this model
onsider texts as a stri
talternation of two independent data sour
es and en
ode ea
h one independently.

On
e we know that the text starts with a word or a separator, we know thatafter a word has been
oded we
an expe
t a separator and vi
e versa. This ideais known as the separate alphabets model.A fa
t that the separate alphabets model does not
onsider is that in most
ases a word is followed by a single blank spa
e as a separator. Sin
e at least the70% of separators in text are single blanks [Mof89℄, they propose in [MNZB00℄ anew data model whi
h uses a single alphabet for both words and separators, andrepresents the blank spa
e impli
itly. This model is known as spa
eless model.Hen
e, after ea
h word is de
oded, we assume a single blank follows unless thenext de
oded symbol is a separator.On the one hand we have to use a larger
oding alphabet and then
odelengths grow. On the other hand we do not need to
ode about 35% of thesour
e symbols. It is shown in [MNZB00℄ that
ompression improves a bit usingthis method, although the improvement is not mu
h.A
ompression method that
onsiders the do
ument stru
ture is XMill [LS00℄,developed in AT&T Labs. XMill is an XML-spe
i�

ompressor designed toex
hange and store XML do
uments, and its
ompression approa
h is not in-tended for dire
tly supporting querying or updating of the
ompressed do
ument.XMill is based on the zlib library, whi
h
ombines Ziv-Lempel
ompression (LZ77[ZL77℄) with a variant of Hu�man.Another XML
ompressor is XGrind [TH02℄, whi
h dire
tly supports queriesover the
ompressed �les. An XML do
ument
ompressed with XGrind retainsthe stru
ture of the original do
ument, permitting reuse of the standard XMLte
hniques for pro
essing the
ompressed do
ument. It does not, however, takefull advantage of the stru
ture.Other approa
hes to
ompress XML data exist, based on the use of a PPM-like
oder, where the
ontext is given by the path from the root to the tree nodethat
ontains the
urrent text. One example is XMLPPM [Che01℄, whi
h is anadaptive
ompressor pased on PPM, where the
ontext is given by the stru
ture.3 Stru
tural Contexts ModelLet us, for this paper, fo
us on a semiadaptive Hu�man
oder, as it has giventhe best results on natural language texts. Our ideas, however,
an be adaptedto other en
oders. Let us
all di
tionary the set of sour
e symbols together withtheir assigned
odes.An en
oder based on the separate alphabets model (see Se
tion 2) must usetwo sour
e symbol di
tionaries: one for all the separators and the other for allthe words in the texts. This idea is still suitable when we handle semistru
tureddo
uments �like SGML or XML do
uments�, but in fa
t we
an extend theme
hanism to do better.In most
ases, natural language texts are stru
tured in a semanti
ally mean-ingful manner. This means that we
an expe
t that, at least for some tags, thedistribution of the text that appears inside a given tag di�ers from that of an-other tag. In our example of Se
tion 1, where the tags
orrespond to the �elds of

an email ar
hive, we
an expe
t that the From: �eld
ontains names and emailaddresses, the Date: �eld
ontains dates, and the Subje
t: and Body: �elds
ontain free text.In
ases where the words under one tag have little interse
tion with wordsunder another tag, or their distribution is very di�erent, the use of separatealphabets to
ode the di�erent tags is likely to improve the
ompression ratio.On the other hand, there is a
ost in the
ase of semiadaptive models, as we haveto store several di
tionaries instead of just one. In this se
tion we assume thatea
h tag should use a separate di
tionary, and will address in the next se
tionthe way to group tags under a single di
tionary.3.1 Compressing the TextWe
ompress the text with a word-based Hu�man [Huf52,BSTW86℄. The textis seen as an alternating sequen
e of words and separators, where a word isa maximal sequen
e of alphanumeri

hara
ters and a separator is a maximalsequen
e of non-alphanumeri

hara
ters.Besides, we will take into a

ount a spe
ial
ase of words: tags. A tag is a
ode embedded in the text whi
h represents the stru
ture, format or style ofthe data. A tag is re
ognized from surrounding text by the use of delimiter
hara
ters. A
ommon delimiter
hara
ter for an XML or SGML tag are thesymbols '<' and '>'. Usually two types of tags exist: start-tags, whi
h are the�rst part of a
ontainer element, '<...>'; and end-tags, whi
h are the markupthat ends a
ontainer element, '</...>'.Tags will be wholly
onsidered (that is, in
luding their delimiter
hara
ters)as words, and will be used to determine when to swit
h di
tionaries at
ompres-sion and de
ompression time.3.2 Model Des
riptionThe stru
tural
ontexts model (as the separate alphabets model) uses one di
-tionary to store all the separators in the texts, independently of their lo
ation.Also, it assumes that words and separators alternate, otherwise, it must inserteither an empty word or an empty separator. There must be at least one worddi
tionary,
alled the default di
tionary. The default di
tionary is the one in useat the beginning of the en
oding pro
ess. If only the default di
tionary exists forwords then the model is equivalent to the separate alphabets model.We
an have a di�erent di
tionary for ea
h tag, or we
an have separatedi
tionaries for some tags and use the default for the others, or in general we
an have any grouping of tags under di
tionaries. As explained, we will assumefor now that ea
h tag has its own di
tionary and that the default is used for thetext that is not under any tag.The
ompression algorithm written below makes two passes over the text. Inthe �rst pass, the text is modeled and separate di
tionaries are built for ea
h tagand for the default and separators di
tionary. These are based on the statisti
s of

words under ea
h tag, under no tag, and separators, respe
tively. In the se
ondpass, the texts are
ompressed a

ording to the model obtained.At the begining of the modeling pro
ess, words are stored in the defaultdi
tionary. When a start-stru
ture tag appears we push the
urrent di
tionaryin a sta
k and swit
h to the appropriate di
tionary. When an end-stru
ture tagis found we must return to the previous di
tionary stored in the sta
k. Bothstart-stru
ture and end-stru
ture tags are stored and
oded using the
urrentdi
tionary and then we swit
h di
tionaries. Likewise, the en
oding and de
odingpro
esses use the same di
tionary swit
hing te
hnique.The following
ode des
ribes the di
tionary swit
hing used for modeling,
oding and de
oding.Algorithm 1 (Di
tionary Swit
hing)
urrent_di
tionary default_di
tionarywhile there are more symbols doword get_symbol()if (word is separator)then store=
ode=de
ode(word; separators_di
tionary)else store=
ode=de
ode(word;
urrent_di
tionary)if (word is a start-stru
ture tag)then push(
urrent_di
tionary)
urrent_di
tionary di
tionary(word)else if (word is an end-stru
ture tag)then
urrent_di
tionary pop()3.3 Considering Text ChunksIn addition to tags, we may de
ide to separate the text
olle
tion into a sequen
eof
hunks. There will be a di�erent di
tionary for ea
h di�erent tag appearingin ea
h
hunk. This permits the method to adapt to word frequen
ies as they
hange a
ross the text
olle
tions.For ea
h
hunk we have a separate default di
tionary, but still there is aunique separators di
tionary for the whole
olle
tion.There is a tradeo� regarding
hunk size. Too small
hunks will
reate toomany di
tionaries whi
h will require a larger header table to �nd the right di
-tionary. Even if many di
tionaries are �nally merged (Se
tion 4) and sharedby many of these headers, the header table may get too large. Also, mergingmay be
ome too expensive. On the other hand, too large
hunks will not permitadapting fast enough to
hanges in text distribution.3.4 Entropy EstimationThe entropy of a sour
e is a number that only depends on its model, and isusually measured in bits/symbol. It is also seen as a fun
tion of the probabilitydistribution of the sour
e (under the model), and refers to the average amount

of information of a sour
e symbol. The entropy gives a lower bound on the sizeof the
ompressed �le if the given model is used.De�nition 1 (Raw frequen
y) Let n be the total number of terms that appearin the text. The raw frequen
y fi of term i is given byfi = o

in (1)where o

i is the number of o

urren
es of vo
abulary term i in the text. Theraw frequen
y is also
alled o

urren
e probability of term i.The fundamental theorem of Shannon [Sha48℄ establishes that the entropy ofa probability distribution fpig isPi pi log2(1=pi) bits. That is, the optimum wayto
ode symbol i is to use log2(1=pi) bits. In a zero-order model, the probabilityof a symbol is de�ned independently of surrounding symbols. Usually one doesnot know the real symbol probabilities, but rather estimate them using the rawfrequen
ies seen in the text.De�nition 2 (Zero-order entropy estimation) Let Tv be the number of vo-
abulary terms. Bearing in mind Shannon's theorem and assuming that a singledi
tionary is used to en
ode symbols, we estimate the zero-order entropy H of atext H = TvXi=1 fi log2 1fi (2)This de�nition lets us estimate the entropy when we have only one di
tionary.If we want to estimate the entropy value when our model in
ludes multipledi
tionaries, we have to
ombine the entropies of ea
h di
tionary.De�nition 3 (Zero-order entropy estimation for a di
tionary) Let nd bethe total number of text terms in di
tionary d. Let T dv be the total number of dis-tin
t terms in di
tionary d. Let fdi be raw frequen
y of term i in di
tionary dgiven by fdi = o

dind (3)where o

di is the number of o

urren
es of vo
abulary term i of di
tionary din the texts. We
an reformulate equation 2 to get the entropy for terms indi
tionary d: Hd = TdvXi=1 fdi log2 1fdi (4)De�nition 4 (Zero-order entropy estimation with multiple di
tionaries)Let N be the total number of di
tionaries. The zero-order entropy for all di
-tionaries, H, is
omputed as the weighted average of zero-order entropies
on-tributed by ea
h di
tionary (Hd; d 2 1 : : :N):H = PNd=1 nd Hdn (5)

4 Merging Di
tionariesUp to now we have assumed that ea
h di�erent tag and
hunk uses its owndi
tionary. However, this may not be optimal be
ause of the overhead to storethe di
tionaries in the
ompressed �le. In parti
ular, if two di
tionaries happento share many terms and to have similar probability distributions, then mergingboth tags under a single di
tionary is likely to improve the
ompression ratio.In this se
tion we develop a general method to obtain a good grouping oftags/
hunks under di
tionaries. For e�
ien
y reasons we will use the entropy asthe estimation of the size of the text
ompressed using a di
tionary, instead ofa
tually running the Hu�man algorithm and
omputing the exa
t size.De�nition 5 (Estimated size
ontribution of a di
tionary) Let Vd be thesize, in bits, of the vo
abulary that
onstitutes di
tionary d, and Hd its estimatedzero-order entropy. Then the estimated size
ontribution of di
tionary d is givenby T d = Vd + ndHd (6)Considering the last de�nition we determine to merge di
tionaries i and jwhen the sum of their
ontributions is larger than the
ontribution of their union.In other words, when T i + T j > T i[j (7)To
ompute T i[j we have to
ompute the union of the vo
abularies and theentropy of that union. This
an be done in time linear in the vo
abulary sizes.De�nition 6 (Estimated saving of a merge) Let Ai[j be the estimated sav-ing of merging di
tionaries i and j. ThenAi[j = T i + T j � T i[j (8)Our optimization algorithm works as follows. We start with one separate di
-tionary per tag/
hunk, plus the default di
tionary for ea
h
hunk (the separatorsdi
tionary is not
onsidered in this pro
ess). Then, we progressively merge pairsof di
tionaries until no further merging promises to be advantageous. Obtainingthe optimal division into groups looks as a hard
ombinatorial problem, but weuse a heuristi
 whi
h produ
es good results and is reasonably fast.We start by
omputing T i for every di
tionary i, as well as T i[j for all pairsi; j of di
tionaries. With that we
ompute the savings Ai[j for all pairs. Then,we merge the pair of di
tionaries i and j that maximizes Ai[j , if this is positive.Then, we erase i and j and introdu
e i [j in the set. This pro
ess is repeateduntil all the Ai[j values are negative.The algorithm is depi
ted next. We have hidden the details on when the Tvalues are pre
omputed and updated. Its
ost is O(V N3) when there are N di
-tionaries and the vo
abulary size is V . This
an be redu
ed to O(V N2 logN) bysimple tri
ks su
h as re
omputing savings only for the newly merged di
tionariesand keeping di
tionary pairs in a priority queue sorted by gain.

Algorithm 2 (Merging Di
tionaries)do best_saving 0for 1 � i < j � N do
urrent_saving T i + T j � T i[jif (
urrent_saving > best_saving)then best_saving
urrent_savingbi i ; bj jif (best_saving > 0)then dbi merge_di
tionaries(dbi; dbj)dbj dNN N � 1while (best_saving > 0)5 Evaluation of the ModelWe have developed a prototype implementing the Stru
tural Contexts Modelwith a word-oriented Hu�man
oding, and used it to empiri
ally analyze ourmodel and evaluate its performan
e. Di
tionaries are
ompressed using arith-meti

hara
ter-based adaptive
oding. Tests were
arried out on the Linux RedHat 7.2 operating system, running on a
omputer with a Pentium III pro
essorat 500 MHz and 128 Mbytes of RAM.For the experiments we sele
ted di�erent size
olle
tions of WSJ, ZIFF andAP, from TREC-3 [Har95℄. Several
hara
teristi
s of the
olle
tions are shownin Table 1. We
on
atenated �les so as to obtain approximately similar sub
ol-le
tion sizes from the three
olle
tions, so the size in Mbytes is approximate.The stru
turing of the
olle
tions is similar: they have only one level of stru
-turing, with the tag <DOC> indi
ating do
uments, and inside ea
h do
ument tagsindi
ating do
ument identi�er, date, title, author, sour
e,
ontent, keywords, et
.Size TREC-WSJ TREC-ZIFF TREC-AP(Mb) #T.W. #V.W. Ratio #T.W. #V.W. Ratio #T.W. #V.W. Ratio1 193899 18380 9.479% 161900 12924 7.982% 195915 19103 9.750%5 874586 38750 4.430% 992067 35555 3.583% 956340 41263 4.314%10 1669506 52218 3.127% 1821015 51094 2.805% 1721137 54058 3.140%20 3370544 71832 2.131% 3489650 71136 2.038% 3486098 73820 2.117%40 6690067 97190 1.452% 6970106 102737 1.473% 6985763 101480 1.452%60 10015765 116221 1.160% 10272649 125326 1.219% 10411824 122340 1.175%100 16672690 144701 0.867% 17289782 165113 0.954% 17252119 157376 0.912%Table 1. Colle
tion
hara
teristi
s. For ea
h
olle
tion we show the total number ofwords (#T.W.), the total number of vo
abulary words (#V.W.) and the ratio betweenthe two (Ratio).

When text
hunks are not used, the average speed to
ompress all
olle
tionsis around 128 Kbytes/se
. In this value we in
lude the time needed to model,merge di
tionaries and
ompress. Time for merging di
tionaries ranges from 4.37se
onds for 1 Mb to 40.27 se
onds for 100 Mb. Its impa
t is large for the smallest
olle
tion (about 50% of the total time), but it be
omes mu
h less signi�
antfor the largest
olle
tion (about 5%). The reason is that merging time is linearin the vo
abulary size, whi
h grows sublinearly with the
olle
tion size [Hea78℄,typi
ally
lose to O(pn). Although merging time also depends quadrati
ally onthe number of di�erent tags, this number is usually small and does not growwith the
olle
tion size but depends on the DTD/s
hema.In Table 2 we show original sizes,
ompressed sizes and
ompression ratiosfor ea
h
olle
tion. It
an be seen that
ompression ratios improve for larger
olle
tions, as the impa
t of the vo
abulary is redu
ed [Hea78℄.TREC-WSJ TREC-ZIFF TREC-APOriginal Compr. Ratio Original Compr. Ratio Original Compr. Ratio1221659 484575 39.66% 1021882 376180 36.81% 1185968 492832 41.55%5516592 1793950 32.51% 6083389 1956195 32.15% 5805776 1952979 33.63%10510481 3214613 30.58% 11164171 3480842 31.17% 10469592 3315087 31.66%21235547 6190051 29.14% 21306059 6414762 30.10% 21219693 6371426 30.02%42113697 11858566 28.15% 42659558 12452756 29.19% 42523572 12307072 28.94%62963963 17498136 27.79% 62966279 18131869 28.79% 63343648 18054387 28.50%104942941 28681879 27.33% 105709264 29972861 28.35% 105018927 29479824 28.07%Table 2. Sizes and
ompression ratios for ea
h
olle
tion.In Figure 1 we
an see a
omparison, for WSJ (using up to 200 Mb this time),of the
ompression performan
e using the plain separate alphabets model (SAM)and the stru
tural
ontext model (SCM) with and without merging di
tionaries.For short texts, the vo
abulary size is signi�
ant with respe
t to the text size,so SCM without merging pays a high pri
e for the separate di
tionaries anddoes not improve upon SAM. As the text
olle
tion grows, the impa
t of thedi
tionaries gets redu
ed and we obtain nearly 10% additional
ompression. TheSCM with merging obtains similar results for large
olle
tions (12.25% additional
ompression), but its performan
e is mu
h better on small texts, where it startsobtaining 11% even for 1 Mbyte of text.Table 3 shows the number of di
tionaries merged. Column �Initial� tells howmany di
tionaries are in the beginning: The default and separators di
tionaryplus one per tag, ex
ept for <DOC>, whi
h marks the start of a do
ument anduses the default di
tionary. Column �Final� tells how many di�erent di
tionariesare left after the merge.For example, for small WSJ subsets, the tags <DOCNO> and <DOCID>, both ofwhi
h
ontain numbers and internal referen
es, were merged. The other groupthat was merged was formed by the tags <HL>, <LP> and <TEXT>, all of whi
h

26

28

30

32

34

36

38

40

50 100 150 200

C
om

pr
es

si
on

 r
at

e
(%

)

Collection size (Mbytes)

Structural Contexts Model with Merge
Structural Contexts Model without Merge

Separate Alphabets Model Size SCM+merge SCM SAM1221659 39.66% 44.64% 44.52%5516592 32.51% 35.41% 35.89%10510481 30.58% 32.76% 33.67%21235547 29.14% 30.72% 32.08%42113697 28.15% 29.24% 31.01%62963963 27.79% 28.64% 30.63%104942941 27.33% 27.95% 30.26%210009482 26.80% 27.20% 30.54%Figure 1. Compression ratios using di�erent models, for WSJ.
ontain the text of the news (headlines, summary for teletypes, and body). Onthe larger WSJ subsets, only the last group of three tags was merged. Thisshows that our intuition that similar-
ontent tags would be merged is
orre
t.The larger the
olle
tion, the less the impa
t of storing more vo
abularies, andhen
e the fewer merges will o

ur.Aprox. TREC-WSJ TREC-ZIFF TREC-APSize(Mb) Initial Final Initial Final Initial Final1 11 8 10 4 9 55 11 8 10 4 9 510 11 8 10 4 9 720 11 9 10 6 9 740 11 9 10 6 9 760 11 9 10 6 9 7100 11 9 10 7 9 7Table 3. Number of di
tionaries used.The method to predi
t the size of the merged di
tionaries from the vo
abularydistributions was quite a

urate: our predi
tion was usually 98%�99% of the �nalvalue.Let us now
onsider the use of text
hunks. In Table 4 we
an see a
ompar-ison of the
ompression performan
e using di�erents
hunks sizes over the same
olle
tion sizes for WSJ. The best gain obtained is around 0.03%, not reallysigni�
ant. This
an be due to the
hara
teristi
s of WSJ: all the texts are veryuniform, with similar distributions of words. In fa
t, all di
tionaries in di�erent
hunks of tags <HL>, <LP> and <TEXT> were merged. On the other hand, thetime for generating and merging di
tionaries grows fast as the number of di
tio-

Aprox. Chunk size (Mbytes)Size(Mb) 0 2 4 8 161 39.66% 39.66% 39.66% 39.66% 39.66%5 32.51% 32.51% 32.51% 32.51% 32.51%10 30.58% 30.57% 30.57% 30.58% 30.58%20 29.14% 29.13% 29.13% 29.13% 29.14%40 28.15% 28.13% 28.13% 28.14% 28.14%60 27.79% 27.76% 27.76% 27.76% 27.77%100 27.33% 27.28% 27.28% 27.28% 27.29%Table 4. Compression ratios using di�erents
hunk sizes in Mbytes. Zero size shows
ompression ratio without using
hunks.naries grows. With these results, we
an
on
lude that the use of
hunks is notpro�table in this
ase.Finally, we
ompared our prototype (using merging) against other
ompres-sion systems: the MG system, XMill, and XMLPPM. The MG system [WMB99℄is a publi
 domain software, versatile and of general purpose, whi
h handles textand images. MG
ompresses stru
tured do
uments by handling tags as words,and uses a variant of word-based Hu�man
ompression
alled Hu�word. On theother hand, XMill [LS00℄ is an XML-spe
i�

ompressor based on Ziv-Lempeland Hu�man, able to handle the do
ument stru
ture. XMLPPM [Che01℄ is alsospe
i�
 of XML and based on adaptive PPM over the stru
tural
ontext.We
ompressed all the
olle
tions with the four systems1 and averaged
om-pression rates for ea
h
olle
tion size. Average
ompression rates are shown inFigure 2. XGrind was not in
luded be
ause we
ould not �nd publi

ode for it.CGrep [MNZB00℄ was not in
luded be
ause it is byte-oriented and the
ompar-ison would be unfair against it.XMill obtains an average
ompression ratio roughly
onstant in all
asesbe
ause it uses zlib as its main
ompression ma
hinery. The
ompression ratioobtained is not
ompetitive in this experiment.XMLPPM, on the other hand, obtains the best
ompression. This showsthat the idea of using the stru
tural
ontext to
ompress is good. The problemof XMLPPM is that its
ompression is adaptive, and hen
e it is not suitable fordire
t a

ess on large
ompressed text databases.Our prototype is better than MG for medium and large
olle
tion sizes, butnot for small sizes. This
an be due to our penalty in storing more than onedi
tionary. SCM starts to be better from 40 Mbytes, and for 100 Mbytes itimproves over MG by 2.2%.Note also that the di�eren
e between XMLPPM and our prototype is rathersmall for large
olle
tion sizes. In any
ase, the penalty is a rather small pri
efor permitting dire
t a

ess to the text.1 XMLPPM required several
hanges to the sour
es in order to run properly, but thesedid not a�e
t the
ompressibility of the
olle
tion.

26

28

30

32

34

36

38

40

20 40 60 80 100

C
om

pr
es

si
on

 r
at

e
(%

)

Collection size (Mbytes)

SCM
MG System

XMill
XMLPPM Size SCM MG XMill XMLPPM1 39.34% 34.22% 36.46% 25.38%5 32.76% 30.72% 36.44% 25.70%10 31.13% 29.93% 36.49% 25.79%20 29.75% 29.30% 36.51% 25.80%40 28.76% 28.83% 36.55% 25.88%60 28.36% 28.67% 36.61% 25.91%100 27.91% 28.54% 36.56% 25.90%Figure 2. Comparison between SCM and other systems over WSJ, using default set-tings for all. The ratios shown in the table are average values for ea
h
olle
tion size,over the di�erent
olle
tions tested.6 Con
lusions and Future WorkWe have proposed a new model for
ompressing semistru
tured do
uments basedon the idea that texts under the same tags should have similar distributions. Thisis enri
hed with a heuristi
 that determines a good grouping of tags so as to
odeea
h group with a separate model. On the other hand, the impa
t of the modelon the retrieval performan
e is insigni�
ant, in fa
t it is similar to the retrievalperforman
e over
ompressed do
uments.We have shown that the idea a
tually improves
ompression ratios by morethan 10% with respe
t to the basi
 te
hnique. We have
ompared our prototypeagainst state-of-the-art
ompression systems, showing that our prototype obtainsthe best
ompression for medium and large
olle
tions (more than 40 Mbytes)among te
hniques that permit dire
t a

ess to the text, whi
h is essential for
ompressed text databases. On very large texts, the di�eren
e with the bestprototype, whi
h however does not permit dire
t text a

ess, is no more than7.2%. These text sizes are the most interesting for
ompressed text databases.The prototype is a basi
 implementation and we are working on several im-provements, whi
h will make it even more
ompetitive. We
an tune our methodto predi
t the out
ome of merging di
tionaries: Sin
e we know that usually ourpredi
tion is 1%�2% o�, we
ould add a mean value to our predi
tion. Also,we
an try the spa
eless model [MNZB00℄, whi
h should give a small additionalgain. However, the need to in
lude the separators in all the di
tionaries maymake this approa
h unsuitable for our
ase.Use of text
hunks did not appear to be promising, but we plan to work onde�ning them more
leverly. We still have to test their e�e
t on other
olle
tions.With respe
t to the study of the method itself, we have to investigate more indepth the relationship between the type and density of the stru
turing and theimprovements obtained with our method, sin
e its su

ess is based on a semanti

assumption and it would be interesting to see how this works on other text
olle
tions.Referen
es[BCC+00℄ A. L. Bu
hsbaum, D. F. Caldwell, K. Ward Chur
h, G. S. Fowler, andS. Muthukrishnan. Engineering the
ompression of massive tables: anexperimental approa
h. In Symposium on Dis
rete Algorithms, pages 175�184, 2000.[BSTW86℄ J. Bentley, D. Sleator, R. Tarjan, and V. Wei. A lo
ally adaptive data
ompression s
heme. Communi
ations of the ACM, 29:320�330, 1986.[Che01℄ J. Cheney. Compressing XML with multiplexed hierar
hi
al PPM models.In Pro
. Data Compression Conferen
e (DCC 2001), pages 163�, 2001.[DPS99℄ J. Dvorský, J. Pokorný, and V. Snásel. Word-based
ompression methodsand indexing for text retrieval systems. In ADBIS'99, LNCS 1691, pages75�84. Springer, 1999.[Har95℄ D. Harman. Overview of the Third Text REtrieval Conferen
e. In Pro
.Third Text REtrieval Conferen
e (TREC-3), pages 1�19, 1995. NIST Spe-
ial Publi
ation 500-207.[Hea78℄ H. S. Heaps. Information Retrieval - Computational and Theoreti
al As-pe
ts. A
ademi
 Press, 1978.[Huf52℄ D.A. Hu�man. A method for the
onstru
tion of minimum-redundan
y
odes. Pro
. Inst. Radio Engineers, 40(9):1098�1101, 1952.[LS00℄ H. Liefke and D. Su
iu. XMill: an e�
ient
ompressor for XML data. InPro
. ACM SIGMOD 2000, pages 153�164, 2000.[MNZB00℄ E. Silva de Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fastand �exible word sear
hing on
ompressed text. ACM Transa
tions onInformation Systems, 18(2):113�139, 2000.[Mof89℄ A. Mo�at. Word-based text
ompression. Software - Pra
ti
e and Expe-rien
e, 19(2):185�198, 1989.[MW01℄ A. Mo�at and R. Wan. RE-store: A system for
ompressing, browsing andsear
hing large do
uments. In Pro
. 8th Intl. Symp. on String Pro
essingand Information Retrieval (SPIRE 2001), pages 162�174, 2001.[NMN+00℄ G. Navarro, E. Silva de Moura, M. Neubert, N. Ziviani, and R. Baeza-Yates. Adding
ompression to blo
k addressing inverted indexes. Infor-mation Retrieval, 3(1):49�77, 2000.[Sha48℄ C. Shannon. A mathemati
al theory of
ommuni
ation. Bell Syst. Te
h.J., 27:398�403, July 1948.[TCB90℄ Ian H. Witten Timothy C. Bell, John G. Cleary. Text Compression. Pren-ti
e Hall, Englewood Cli�s, N.J., 1990.[TH02℄ P. Tolani and J.R. Haritsa. XGRIND: A query-friendly XML
ompressor.In ICDE, 2002.
iteseer.nj.ne
.
om/503319.html.[WMB99℄ I.H. Witten, A. Mo�at, and T.C. Bell. Managing Gigabytes. MorganKaufmann Publishers, In
., se
ond edition, 1999.[ZL77℄ J. Ziv and A. Lempel. An universal algorithm for sequential data
om-pression. IEEE Trans. on Information Theory, 23(3):337�343, 1977.[ZMNBY00℄ N. Ziviani, E. Moura, G. Navarro, and R. Baeza-Yates. Compression: Akey for next-generation text retrieval systems. IEEE Computer, 33(11):37�44, November 2000.

