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t. (Æ; 
)-Mat
hing is a string mat
hing problem with appli
a-tions to musi
 retrieval. The goal is, given a pattern P1:::m and a textT1:::n on an alphabet of integers, �nd the o

urren
es P 0 of the pat-tern in the text su
h that (i) 81 � i � m; jPi � P 0i j � Æ, and (ii)P1�i�m jPi � P 0i j � 
. Several te
hniques for (Æ; 
)-mat
hing have beenproposed. In this paper we show that a 
lassi
al string mat
hing te
h-nique that 
ombines bit-parallelism and suÆx automata 
an be su

ess-fully adapted to this problem. This is the �rst 
hara
ter-skipping algo-rithm that skips 
hara
ters using both Æ and 
. We implemented ouralgorithm and drew experimental results on real musi
 showing that ouralgorithm is superior to 
urrent alternatives.1 Introdu
tionThe string mat
hing problem is to �nd all the o

urren
es of a given patternP1:::m in a large text T1:::n, both being sequen
es of 
hara
ters drawn from a �nite
hara
ter set �. This problem is fundamental in 
omputer s
ien
e and is a basi
need of many appli
ations, su
h as text retrieval, musi
 retrieval, 
omputationalbiology, data mining, network se
urity, et
. Several of these appli
ations require,however, more sophisti
ated forms of sear
hing, in the sense of extending thebasi
 paradigm of the pattern being a simple sequen
e of 
hara
ters.In this paper we are interested in musi
 retrieval. A musi
al s
ore 
an beviewed as a string: at a very rudimentary level, the alphabet 
ould simply bethe set of notes in the 
hromati
 or diatoni
 notation, or the set of intervals thatappear between notes (e.g. pit
h may be represented as MIDI numbers and pit
hintervals as number of semitones). It is known that exa
t mat
hing 
annot be? Partly supported by CNRS and NATO.?? Supported by CYTED VII.19 RIBIDI Proje
t.



2 Maxime Cro
hemore et al.used to �nd o

urren
es of a parti
ular melody, so one resorts to di�erent formsof approximate mat
hing, where a limited amount of di�eren
es of diverse kindsare permitted between the sear
h pattern and its o

urren
e in the text.The approximate mat
hing problem has been used for a variety of musi
alappli
ations [15, 9, 19, 20, 6℄. Most 
omputer-aided musi
al appli
ations adopt anabsolute numeri
 pit
h representation (most 
ommonly MIDI pit
h and pit
h in-tervals in semitones; duration is also en
oded in a numeri
 form). The absolutepit
h en
oding, however, may be insuÆ
ient for appli
ations in tonal musi
 asit disregards tonal qualities of pit
hes and pit
h-intervals (e.g., a tonal transpo-sition from a major to a minor key results in a di�erent en
oding of the musi
alpassage and thus exa
t mat
hing 
annot dete
t the similarity between the twopassages). One way to a

ount for similarity between 
losely related but non-identi
al musi
al strings is to permit a di�eren
e of at most Æ units between thepattern 
hara
ter and its 
orresponding text 
hara
ter in an o

urren
e, e.g., aC-major f60; 64; 65; 67g and a C-minor f60; 63; 65; 67g sequen
e 
an be mat
hedif a toleran
e Æ = 1 is allowed in the mat
hing pro
ess. Additionally, we requirethat the total number of di�eren
es a
ross all the pattern positions does not ex-
eed 
, in order to limit the total number of di�eren
es while keeping suÆ
ient
exibility at individual positions.The formalization of the above problem is 
alled (Æ; 
)-mat
hing. The prob-lem is de�ned as follows: the alphabet � is assumed to be a set of integer num-bers, � � Z. Apart from the pattern P and the text T , two extra parameters,Æ; 
 2 N, are given. The goal is to �nd all the o

urren
es P 0 of P in T su
h that(i) 81 � i � m; jPi � P 0i j � Æ, and (ii) P1�i�m jPi � P 0i j � 
.Several re
ent algorithms exist to solve this problem [7, 10, 8, 11℄. Some arebased on extending well-known paradigms su
h as the Boyer-Moore family or theuse of suÆx automata. Others are based on bit-parallelism. We detail them inthe next se
tion. On the other hand, it was shown in [17, 18℄ that bit-parallelismand suÆx automata 
an be ni
ely 
ombined in order to obtain faster, simpler,and more 
exible algorithms, whi
h are espe
ially robust to handle extendedstring mat
hing problems (
lasses of 
hara
ters, wild 
ards, regular expressions,approximate sear
hing based on Hamming or edit distan
e, and so on).In this paper we extend the bit-parallel suÆx automata to handle (Æ; 
)-mat
hing: The resulting algorithm is extremely simple and mu
h faster than theexisting approa
hes. It is also the �rst truly (Æ; 
) 
hara
ter-skipping algorithm,as it skips 
hara
ters using both 
riteria. Existing approa
hes do just Æ-mat
hingand 
he
k the 
andidates for the 
-
ondition.We use the following de�nitions throughout the paper. A word x 2 �� is afa
tor (or substring) of P if P 
an be written P = uxv, u; v 2 ��. A fa
tor xof P is 
alled a suÆx (pre�x) of P if P = ux (P = xu), u 2 ��. The number ofbits in the 
omputer word is denoted w.



A Bit-parallel SuÆx Automaton Approa
h for (Æ; 
)-Mat
hing 32 Related Work2.1 (Æ; 
)-Mat
hingWe re
all three approa
hes that have been attempted to (Æ; 
)-mat
hing.Bit-Parallelism 
onsists of taking advantage of the intrinsi
 parallelism of thebit operations inside a 
omputer word [1℄, so as to pa
k several values in a singleword and manage to update them all in less operations than those ne
essary toupdate the values separately. In [7, 8℄ this approa
h was used to obtain an O(n)sear
h time algorithm for (Æ; 
)-mat
hing 
alled Shift-Plus. The algorithmpa
ksm 
ounters whose maximum value ismÆ, so it 
an pa
k all them in a single
omputer word provided mdlog2(1 + mÆ)e � w. Otherwise, several 
omputerwords have to be maintained, for a total sear
h time of O(n m log(mÆ)=w).O

urren
e Heuristi
s 
onsist of skipping some text 
hara
ters by using infor-mation on the position of some 
hara
ters in the pattern. Typi
al algorithms ofthis type are those of the Boyer-Moore family [5, 21℄. In [7℄, several algorithmsof this type were proposed for Æ-mat
hing (a restri
ted 
ase where 
 =1), andthey were extended to general (Æ; 
)-mat
hing in [10℄. These are Tuned-Boyer-Moore, Skip-Sear
h and Maximal-Shift, ea
h of whi
h have a 
ounterpartin exa
t string mat
hing. It is shown that these algorithms are faster than thebit-parallel ones, as they are simple and able to skip text 
hara
ters.Substring Heuristi
s 
onsist of skipping some text 
hara
ters by using informa-tion on the position of some pattern substrings. Typi
al algorithms of this typeare those based on suÆx automata [13, 12℄. In [10, 11℄ three algorithms based onthese ideas, 
alled Æ-BM1, Æ-BM2 and Æ-BM3, are proposed. They try to gener-alize the suÆx automata to Æ-mat
hing, but they obtain only an approximationthat a

epts more o

urren
es than ne
essary, whi
h have to be veri�ed later.In 
lassi
al string mat
hing, substring heuristi
s perform better than 
hara
terheuristi
s on small alphabets. This makes it probable that in this appli
ationsubstrings heuristi
s perform better for large Æ and 
 values.2.2 Bit-parallel SuÆx AutomataBit-parallelism provides a general method to use automata in their nondeter-ministi
 form rather than 
onverting them to deterministi
. The latter is the
lassi
al approa
h and normally involves a 
omplex 
onstru
tion algorithm andla
k of 
exibility in the resulting s
heme (see the previous 
omment on adaptingsuÆx automata to Æ-mat
hing). Nondeterministi
 automata, on the other hand,tend to be rather simple and 
an be easily extended to handle new problems.Bit-parallelism permits simulating nondeterministi
 automata as they are, sin
ethey 
an handle all the a
tive states in a single operation.In this spirit, the algorithm BNDM was developed in [17℄ as a 
ombinationbetween Shift-Or [2℄ (a bit-parallel algorithm) and BDM [13℄ (an algorithm based



4 Maxime Cro
hemore et al.on suÆx automata and able to skip 
hara
ters). The result is an algorithm withthe best of both worlds: simple, eÆ
ient, and extensible. It is shown that itoutperforms both Shift-Or and BDM, and that there is no reason for bit-parallelalgorithms not to skip 
hara
ters. BNDM was extended to handle 
lasses of
hara
ters, wild 
ards, regular expressions, and widely used forms of approximatesear
hing [18℄.2.3 Our Work in ContextOur goal in this paper is to develop an extension of BNDM to handle (Æ; 
)-mat
hing. The algorithm turns out to be simple and very eÆ
ient. In the above
ategorization, it 
orresponds to a 
rossing between bit-parallel and substring-heuristi
 algorithms. Compared to the original bit-parallel algorithm [7, 8℄, itmakes a better pa
king of values, sin
e it needs only md1 + log2(
 + 1)e bits,so the number of 
hara
ters inspe
ted has to be multiplied by O(m log(
)=w).Compared to the original substring mat
hing heuristi
s, the nondeterministi
version is able to a

ept exa
tly the patterns that qualify, without any need offurther veri�
ation. In parti
ular, all the existing methods really do Æ-mat
hingand enfor
e the 
-
ondition in a further veri�
ation, while we are able of enfor
-ing both 
onditions as we s
an the text. This makes up a mu
h more robust andeÆ
ient algorithm.3 Sear
hing with SuÆx AutomataWe des
ribe in this se
tion the BDM pattern mat
hing algorithm [12, 13℄, whi
his based on a suÆx automaton. A suÆx automaton on a pattern P1:::m (frequently
alled DAWG(P ), for Deterministi
 A
y
li
 Word Graph) is the minimal (in-
omplete) deterministi
 �nite automaton that re
ognizes all the suÆxes of thispattern. By \in
omplete" we mean that unne
essary transitions are not present.The nondeterministi
 version of this automaton has a very regular stru
ture andis shown in Figure 1.
a b c d e f g

1 2 3 4 5 6 70

I
ε ε ε ε ε ε ε εFig. 1. A nondeterministi
 suÆx automaton for the pattern P = "ab
defg". Dashedlines represent "-transitions (i.e. they o

ur without 
onsuming any input). I is theinitial state of the automatonThe (deterministi
) suÆx automaton is a well known stru
ture [12℄. The sizeof DAWG(P ) is linear in m (
ounting both nodes and edges), and a linear on-line 
onstru
tion algorithm exists [12℄. A very important fa
t for our algorithm



A Bit-parallel SuÆx Automaton Approa
h for (Æ; 
)-Mat
hing 5is that this automaton 
annot only be used to re
ognize the suÆxes of P , butalso fa
tors of P : The automaton has a
tive states as long as we have read afa
tor of P .The suÆx automaton stru
ture is used in [12, 13℄ to design a simple patternmat
hing algorithm 
alled BDM. This algorithm is O(mn) time in the worst
ase, but optimal on average (O(n logj�jm=m) time). To sear
h for P in a text T ,the suÆx automaton of P r = PmPm�1 : : : P1 (i.e., the pattern read ba
kwards)is built. A window of length m is slid along the text, from left to right. Thealgorithm sear
hes the window ba
kwards for a fa
tor of the pattern P usingthe suÆx automaton. During this sear
h, if a terminal state is rea
hed whi
hdoes not 
orrespond to the entire pattern P , the window position is re
orded(in a variable last). This 
orresponds to �nding a pre�x of the pattern startingat position last inside the window and ending at the end of the window (sin
ethe suÆxes of P r are the reverse pre�xes of P ). Sin
e we remember the lastpre�x re
ognized ba
kwards, we have the longest pre�x of P that is a suÆx ofthe window. This ba
kward sear
h ends in two possible forms:1. We fail to re
ognize a fa
tor, i.e., we rea
h a 
hara
ter � that does not
orrespond to a transition in DAWG(P r). Figure 2 illustrates this 
ase. Inthis 
ase we shift the window to the right, its starting position 
orrespondingto the position last (we 
annot miss an o

urren
e be
ause in that 
ase thesuÆx automaton would have found its pre�x in the window).
New sear
h

Window Sear
h for a fa
tor with the suÆx automaton� uFail to re
ognize a fa
tor at �.� New windowSafe shift Fig. 2. Basi
 sear
h with the suÆx automaton2. We rea
h the beginning of the window, therefore re
ognizing the pattern P .We report the o

urren
e, and shift the window exa
tly as in the previous
ase (noti
e that we have the previous last value).



6 Maxime Cro
hemore et al.4 Our AlgorithmWe �rst des
ribe a forward-s
an version that extends Shift-And and permitsus explaining the details of the bit-parallel simulation, and then a ba
kward-s
anning version that extends BNDM.We start with some terminology. A bit mask of length r is a sequen
e of bits,denoted br : : : b1. We use exponentiation to denote bit repetition (e.g. 031 =0001). We use C-like syntax for operations on the bits of 
omputer words: \j"is the bitwise-or, \&" is the bitwise-and, \ b " is the bitwise-xor and \�" 
om-plements all the bits. The shift-left operation, \<<", moves the bits to the leftand enters zeros from the right. The shift-right, \>>" moves the bits in theother dire
tion. Finally, we 
an perform arithmeti
 operations on the bits, su
has addition and subtra
tion, whi
h operate the bits as if they formed a number.For instan
e, br : : : bx10000� 1 = br : : : bx01111.4.1 Forward S
anningThe Shift-And algorithm �rst builds a table B whi
h for ea
h 
hara
ter storesa bit mask bm : : : b1. The mask in B[
℄ has the i-th bit set if and only if Pi = 
.The state of the sear
h is kept in a ma
hine word D = dm : : : d1, where di is setwhenever P1:::i mat
hes the end of the text read up to now. Therefore, we reporta mat
h whenever dm is set.We set D = 0m originally and, for ea
h new text 
hara
ter Tj , update Dusing the formula D  ((D << 1) j 0m�11) & B[Tj ℄We now extend the Shift-And algorithm. First of all, noti
e that Æ-mat
hingis trivial under the bit-parallel approa
h, as it 
an be a

ommodated using theability to sear
h for 
lasses of 
hara
ters. We de�ne that pattern 
hara
ter 
mat
hes text 
hara
ters 
� Æ : : : 
+ Æ, therefore setting the i-th bit of B[
℄ to 1if and only if jPi� 
j � Æ. The rest of the algorithm is un
hanged. On a uniformdistribution over � = f1 : : : j�jg we obtain O(n logj�j=Æ(m)=m) time for theBNDM version, and we still need dm=we 
omputer words for the simulation.However, the real 
hallenge is to do (Æ; 
)-mat
hing. In the following we assumeÆ � 
 � mÆ, otherwise the formulation makes little sense.Instead of storing just one bit di to tell whether P1:::i mat
hes Tj�i+1:::j ,we store a 
ounter 
i to re
ord the sum of the absolute di�eren
es between the
orresponding 
hara
ters. That is
i = X1�k�i jPk � Tj�i+k jIn fa
t we are only interested in storing min(
i; 
 + 1), as any value largerthan 
 is equivalent for us. For reasons that will be 
lear soon, we need torepresent 
i su
h that its highest bit is set to 1 if and only if 
i > 
. So weuse ` = 1 + dlog2(
 + 1)e bits to represent 
i, and instead of representing 
i
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h for (Æ; 
)-Mat
hing 7we represent 
i + 2`�1 � (
 + 1). This guarantees that the highest bit is setwhen 
i rea
hes 
+1 (as its representation rea
hes 2`�1). Hen
e our bit mask Dneeds m` = m(1 + dlog2(
 + 1)e) bits and our simulation needs O(m log(
)=w)
omputer words.We pre
ompute a mask B[
℄ of 
ounters as follows. The i-th 
ounter of B[
℄will store jPi � 
j if and only if jPi � 
j � Æ. Otherwise, the 
hara
ters simplydo not mat
h, in whi
h 
ase we store 
 + 1 for this 
ounter. This value ensuresthat no mat
h will be reported, as the global 
ount of di�eren
es will surpass 
.Sin
e Æ � 
, ` bits suÆ
e to store ea
h of these 
ounters.The algorithm is basi
ally the same of Shift-And, ex
ept that we add B[
℄to D in order to keep 
ount of the sum of the di�eren
es between the mat
hed
hara
ters. The over
ow is avoided as follows: we remove the highest bits fromthe 
ounters in D before adding those of B[Tj ℄, and then restore them in theresult. Therefore, (1) over
ow is impossible be
ause we are adding two valuesthat at most add up 2
+1, and we have enough spa
e to store 2`�1 � 2(
+1)�1 = 2
 + 1 di�eren
es; (2) if the highest bit was set before, it will stay set; (3)if the highest bit was not yet set then our operation with highest bits does nota�e
t the sum. Note that it is not stri
tly true that we maintain min(
i; 
 + 1),but it is true that the highest bit of ea
h 
ounter i is set if and only if 
i > 
,and this is enough for the 
orre
tness of the algorithm.This solution has some resemblan
es with that of [3℄ for Hamming distan
e.Figure 3 depi
ts the forward-s
anning algorithm. It is O(n) time if m log 
 =O(w), otherwise it takes time O(nm log(
)=w). The prepro
essing takesO(mj�j)time. We remark that previous forward s
anning versions [7, 8℄ required O(nmlog(mÆ)=w) bits, whi
h is stri
tly larger than our requirement. The di�eren
e isthat we managed to keep the 
ounters below 2
 instead of letting them grow upto mÆ.4.2 Ba
kward S
anningWe start by explaining the BNDM algorithm [17℄ and then show how to extendit. We assume m � w in the exposition for simpli
ity, although the s
heme isgeneral.The BNDM algorithm moves a window over the text. Ea
h time the windowis positioned at a new text position just after pos, it sear
hes ba
kwards thewindow Tpos+1:::pos+m using the DAWG automaton, until either m iterationsare performed (whi
h implies a mat
h in the 
urrent window) or the automaton
annot follow any transition. In this 
ase, the bit di at iteration k is set if andonly if Pm�i+1:::m�i+k = Tpos+1+m�k:::pos+m. Some observations follow{ Sin
e we begin at iteration 0, the initial value for D is 1m (re
all that weuse exponentiation to denote bit repetition).{ There is a mat
h if and only if after iteration m it holds dm = 1.{ Whenever dm = 1, we have mat
hed a pre�x of the pattern in the 
ur-rent window. The longest pre�x mat
hed (ex
luding the 
omplete pattern)
orresponds to the next window position (variable last).



8 Maxime Cro
hemore et al.Forward-S
an (P1:::m; T1:::n; Æ; 
)1. Prepro
essing2. ` 1 + dlog2(
 + 1)e3. For 
 2 � Do4. B[
℄ 0m5. For i 2 1 : : :m Do6. B[
℄ B[
℄ j (j
� Pij > Æ?
 + 1 : j
� Pij) << (`(i� 1)))7. Sear
h8. D 1m`9. For j 2 1 : : : n Do10. If D & 10m`�1 = 0m` Then11. Report an o

urren
e at j �m+ 112. D  (D << `) j (2`�1 � (
 + 1))13. H  D & (10`�1)m14. D  ((D & � H) +B[Tj ℄) j HFig. 3. Forward s
anning algorithm for (Æ; 
)-mat
hing{ Sin
e there is no initial self-loop, this automaton eventually runs out of a
tivestates. Moreover, states (m� k) : : :m are ina
tive at iteration k.The algorithm works as follows. Every time we position the window in thetext we initialize D and s
an the window ba
kwards. For ea
h new text 
hara
terwe update D. Ea
h time we �nd a pre�x of the pattern (dm = 1) we rememberthe position in the window. If we run out of 1's inD then there 
annot be a mat
hand we suspend the s
anning (this 
orresponds to not having any transition tofollow in the automaton). If we 
an performm iterations then we report a mat
h.We use a mask B whi
h stores a bit mask for ea
h 
hara
ter 
. This masksets the bits 
orresponding to the positions i where Pi = 
 (just as in Shift-And).The formula to update D isD  (D & B[Tj ℄) << 1We now extend BNDM to (Æ; 
)-mat
hing. The main di�eren
es with respe
tto the representation used in forward s
anning are (1) we initialize the 
ountersof D to 
i = 0 be
ause they 
orrespond to mat
hing empty strings; (2) aftershifting D, the fresh 
ounters that enter from the right are not important (theimportant ones are those present when we start s
anning the window); and (3)we suspend s
anning the window when all the 
ounters ex
eeded 
.Figure 4 depi
ts the ba
kward-s
anning algorithm. This is the �rst 
hara
ter-skipping algorithm that does not use veri�
ations and is able to stop s
anningtext windows that Æ-mat
h the pattern, if they do not (Æ; 
)-mat
h the pattern.
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)-Mat
hing 9Ba
kward-S
an (P1:::m; T1:::n; Æ; 
)1. Prepro
essing2. ` 1 + dlog2(
 + 1)e3. For 
 2 � Do4. B[
℄ 0m5. For i 2 1 : : : m Do6. B[
℄ B[
℄ j (j
� Pm�i+1j > Æ?
 + 1 : j
� Pm�i+1j) << (`(i� 1)))7. Sear
h8. pos 09. While pos � n�m Do10. j  m; last m11. D (2`�1 � (
 + 1))� (0`�11)m12. While D & (10`�1)m 6= (10`�1)m Do13. H  D & (10`�1)m14. D ((D & � H) +B[Tj ℄) j H15. j  j � 116. If D & 10m`�1 = 0m` Then17. If j > 0 Then last j18. Else Report an o

urren
e at pos+ 119. D (D << `) j 10`�120. pos pos+ lastFig. 4. Ba
kward s
anning algorithm for (Æ; 
)-mat
hing. Some 
ode optimizations arenot in
luded for simpli
ity5 Experimental ResultsIn this se
tion we show experimental eviden
e supporting the superiority of thenew algorithm (This) 
ompared to the (Æ; 
)-Boyer-Moore algorithm (BM2)presented in [10, 11℄, whi
h is 
urrently the most 
ompetitive 
hoi
e.The time reported in
ludes only the sear
hing phase. Prepro
essing was neg-ligible. The tests were performed using a SUN Ultra Enterprise 300MHz runningSolaris Unix with w = 32. We used the GNU g++ 
ompiler version 2.95.1. Ea
hdata point represents the median of 60 trials.We ran our experiments using both real musi
 and random text. The musi
data used for this study 
omes from a data base of MIDI �les of 
lassi
 musi
with 1.8Mb of absolute pit
hes. We also make use of this musi
 data base tomeasure the zero-order and one-order entropy to estimated the size of alphabetneeded to emulated musi
 using random text. Zero-order entropy was equivalentto having a random alphabet of size 17.35. One-order entropy was mu
h smaller,6.27. Therefore, we used random text uniformly distributed with alphabet size of10{20 for this study. Other typi
al parameter values were 0{5 for Æ, 1:5m{2:0mfor 
, and 10{200 for m.



10 Maxime Cro
hemore et al.Figure 5 shows plots of the performan
e of both algorithms using randomdata. For the di�erent 
ombinations of Æ and 
 used in these experiments, ouralgorithm (This) was signi�
antly faster than Algorithm BM2. As expe
ted,the performan
e of the algorithm degrades with smaller alphabets. However, italso degrades as m in
reases, as the implementation is limited to using m=wnumber of 
omputer words and skipping at most w 
hara
ters. To speed-up themat
hing algorithm we 
an use an alphabet redu
tion method su
h as o
taveequivalen
e [14℄.The results using real musi
 data are shown in Figure 6. Although the di�er-en
e is smaller than on syntheti
 data, 
learly This algorithm performs better.As 
an be seen, the dependen
e on Æ is signi�
ant to the extent that it 
an dou-ble (note the 
hange of s
ale) the time it takes by going from Æ =2 to Æ =4. Thedependen
e on 
, on the other hand, is not mu
h signi�
ant.In 
on
lusion the algorithm introdu
ed in this paper performs 
onsistentlybetter than previous known algorithms.
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 data6 Con
lusionsWe have presented a new bit-parallel algorithm for (Æ; 
)-mat
hing, an extendedstring mat
hing problem with appli
ations in musi
 retrieval. Our new algo-rithm is a 
rossing between bit-parallelism and suÆx automata and has severaladvantages over the previous approa
hes: it makes better use of the bits of the
omputer word, it inspe
ts less text 
hara
ters, it is simple and extensible.Our algorithms is also the �rst truly (Æ; 
) 
hara
ter-skipping algorithm, as itskips 
hara
ters using both 
riteria. Existing approa
hes do just Æ-mat
hing and
he
k the 
andidates for the 
-
ondition. This makes our algorithm a stronger
hoi
e for this problem.The algorithm we have presented is useful for short pattern lengths, as it islimited by the length of the 
omputer word. We have handled longer patternswith the naive approa
h of using as many 
omputer words as needed to representall the 
ounters. A more sophisti
ated approa
h we are pursuing is to partitionthe pattern into pie
es short enough to be handled with the basi
 algorithm.It is interesting to noti
e that if we partition the pattern into j pie
es, then atleast one of them has to mat
h with 
0 = b
=j
 di�eren
es overall, so we do(Æ; 
0)-mat
hing in the pie
es. Moreover, if Æ > 
0 we do (
0; 
0)-mat
hing. Hen
e
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hemore et al.we run j sear
hes for shorter patterns and 
he
k every mat
h of a pie
e for a
omplete o

urren
e. These pie
es 
an be grouped and sear
hed for togetherusing the so-
alled \superimposition". These ideas have been used in [4, 16℄ forapproximate string mat
hing, and should be useful here too.It is not hard to design an algorithm with the same average 
omplexity butalso linear in the worst 
ase, as done in [17℄. Despite theoreti
ally interesting, thisimprovement is usually disregarded be
ause it worsens the pra
ti
al performan
eof the algorithm.A more 
hallenging problem is to 
onsider text indexing approa
hes, that is,prepro
essing the musi
al strings in order to permit fast sear
hing of patternslater. A simple solution is the use of a suÆx tree of the text 
ombined withba
ktra
king, whi
h yields sear
h times whi
h are exponential on the patternlength but independent of the text length [22℄.We also plan to investigate further on more sophisti
ated mat
hing problemsthat arise in musi
 retrieval. For example, it would be good to extend (Æ; 
)-mat
hing in order to permit insertions and deletions of symbols.Referen
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