A Bit-parallel Suffix Automaton Approach
for (d,)-Matching in Music Retrieval

3xx
3

Maxime Crochemore!-2*, Costas S. Iliopoulos?, Gonzalo Navarro®**, and

Yoan J. Pinzon?:***

! Institut Gaspard-Monge, Université de Marne-la-Vallée, France
macQuniv-mlv.fr
wuw-igm.univ-mlv.fr/~mac
2 Dept. of Computer Science, King’s College, London, England
{csi,pinzon}@dcs.kcl.ac.uk
wuw.dcs.kcl.ac.uk/staff/csi, wuw.dcs.kcl.ac.uk/staff/pinzon
* Dept. of Computer Science, University of Chile, Chile
gnavarro@dcc.uchile.cl
www.dcc.uchile.cl/~gnavarro
4 Laboratorio de Cémputo Especializado, Universidad Auténoma de Bucaramanga,
Colombia

Abstract. (d,7)-Matching is a string matching problem with applica-
tions to music retrieval. The goal is, given a pattern P .. and a text
Ty ., on an alphabet of integers, find the occurrences P’ of the pat-
tern in the text such that (i) V1 < i < m, |P — P{| < 6, and (i7)
Y i<icm | Pi — P{| <. Several techniques for (8,7)-matching have been
proposed. In this paper we show that a classical string matching tech-
nique that combines bit-parallelism and suffix automata can be success-
fully adapted to this problem. This is the first character-skipping algo-
rithm that skips characters using both § and . We implemented our
algorithm and drew experimental results on real music showing that our
algorithm is superior to current alternatives.

1 Introduction

The string matching problem is to find all the occurrences of a given pattern
Py, in alarge text 77 ,, both being sequences of characters drawn from a finite
character set Y. This problem is fundamental in computer science and is a basic
need of many applications, such as text retrieval, music retrieval, computational
biology, data mining, network security, etc. Several of these applications require,
however, more sophisticated forms of searching, in the sense of extending the
basic paradigm of the pattern being a simple sequence of characters.

In this paper we are interested in music retrieval. A musical score can be
viewed as a string: at a very rudimentary level, the alphabet could simply be
the set of notes in the chromatic or diatonic notation, or the set of intervals that
appear between notes (e.g. pitch may be represented as MIDI numbers and pitch
intervals as number of semitones). It is known that exact matching cannot be

* Partly supported by CNRS and NATO.
** Supported by CYTED VII.19 RIBIDI Project.

2 Maxime Crochemore et al.

used to find occurrences of a particular melody, so one resorts to different forms
of approzimate matching, where a limited amount of differences of diverse kinds
are permitted between the search pattern and its occurrence in the text.

The approximate matching problem has been used for a variety of musical
applications [15,9, 19, 20, 6]. Most computer-aided musical applications adopt an
absolute numeric pitch representation (most commonly MIDI pitch and pitch in-
tervals in semitones; duration is also encoded in a numeric form). The absolute
pitch encoding, however, may be insufficient for applications in tonal music as
it disregards tonal qualities of pitches and pitch-intervals (e.g., a tonal transpo-
sition from a major to a minor key results in a different encoding of the musical
passage and thus exact matching cannot detect the similarity between the two
passages). One way to account for similarity between closely related but non-
identical musical strings is to permit a difference of at most ¢ units between the
pattern character and its corresponding text character in an occurrence, e.g., a
C-major {60, 64, 65,67} and a C-minor {60, 63, 65,67} sequence can be matched
if a tolerance § = 1 is allowed in the matching process. Additionally, we require
that the total number of differences across all the pattern positions does not ex-
ceed 7, in order to limit the total number of differences while keeping sufficient
flexibility at individual positions.

The formalization of the above problem is called (¢, y)-matching. The prob-
lem is defined as follows: the alphabet X' is assumed to be a set of integer num-
bers, ¥ C Z. Apart from the pattern P and the text T, two extra parameters,
0,7 € N, are given. The goal is to find all the occurrences P’ of P in T such that
(1) V1 <i <m, |P; — P/ <6, and (i1) 30, [P — P{| <.

Several recent algorithms exist to solve this problem [7,10,8,11]. Some are
based on extending well-known paradigms such as the Boyer-Moore family or the
use of suffix automata. Others are based on bit-parallelism. We detail them in
the next section. On the other hand, it was shown in [17, 18] that bit-parallelism
and suffix automata can be nicely combined in order to obtain faster, simpler,
and more flexible algorithms, which are especially robust to handle extended
string matching problems (classes of characters, wild cards, regular expressions,
approximate searching based on Hamming or edit distance, and so on).

In this paper we extend the bit-parallel suffix automata to handle (4,~)-
matching: The resulting algorithm is extremely simple and much faster than the
existing approaches. It is also the first truly (4,) character-skipping algorithm,
as it skips characters using both criteria. Existing approaches do just §-matching
and check the candidates for the ~y-condition.

We use the following definitions throughout the paper. A word z € ¥* is a
factor (or substring) of P if P can be written P = uzv, u,v € ¥*. A factor z
of P is called a suffiz (prefix) of P if P = uz (P = xu), u € ¥*. The number of
bits in the computer word is denoted w.

A Bit-parallel Suffix Automaton Approach for (¢,v)-Matching 3

2 Related Work

2.1 (4,v)-Matching

We recall three approaches that have been attempted to (9, v)-matching.

Bit-Parallelism consists of taking advantage of the intrinsic parallelism of the
bit operations inside a computer word [1], so as to pack several values in a single
word and manage to update them all in less operations than those necessary to
update the values separately. In [7, 8] this approach was used to obtain an O(n)
search time algorithm for (4,v)-matching called SHIFT-PrUs. The algorithm
packs m counters whose maximum value is md, so it can pack all them in a single
computer word provided m[log,(1 + md)] < w. Otherwise, several computer
words have to be maintained, for a total search time of O(n mlog(md)/w).

Occurrence Heuristics consist of skipping some text characters by using infor-
mation on the position of some characters in the pattern. Typical algorithms of
this type are those of the Boyer-Moore family [5,21]. In [7], several algorithms
of this type were proposed for d-matching (a restricted case where v = oc), and
they were extended to general (J, v)-matching in [10]. These are TUNED-BOYER-
MOORE, SKIP-SEARCH and MAXIMAL-SHIFT, each of which have a counterpart
in exact string matching. It is shown that these algorithms are faster than the
bit-parallel ones, as they are simple and able to skip text characters.

Substring Heuristics consist of skipping some text characters by using informa-
tion on the position of some pattern substrings. Typical algorithms of this type
are those based on suffix automata [13,12]. In [10, 11] three algorithms based on
these ideas, called 5-BM1, 6-BM2 and §-BM3, are proposed. They try to gener-
alize the suffix automata to d-matching, but they obtain only an approximation
that accepts more occurrences than necessary, which have to be verified later.
In classical string matching, substring heuristics perform better than character
heuristics on small alphabets. This makes it probable that in this application
substrings heuristics perform better for large 6 and ~ values.

2.2 Bit-parallel Suffix Automata

Bit-parallelism provides a general method to use automata in their nondeter-
ministic form rather than converting them to deterministic. The latter is the
classical approach and normally involves a complex construction algorithm and
lack of flexibility in the resulting scheme (see the previous comment on adapting
suffix automata to d-matching). Nondeterministic automata, on the other hand,
tend to be rather simple and can be easily extended to handle new problems.
Bit-parallelism permits simulating nondeterministic automata as they are, since
they can handle all the active states in a single operation.

In this spirit, the algorithm BNDM was developed in [17] as a combination
between Shift-Or [2] (a bit-parallel algorithm) and BDM [13] (an algorithm based

4 Maxime Crochemore et al.

on suffix automata and able to skip characters). The result is an algorithm with
the best of both worlds: simple, efficient, and extensible. It is shown that it
outperforms both Shift-Or and BDM, and that there is no reason for bit-parallel
algorithms not to skip characters. BNDM was extended to handle classes of
characters, wild cards, regular expressions, and widely used forms of approximate
searching [18].

2.3 Owur Work in Context

Our goal in this paper is to develop an extension of BNDM to handle (4,~)-
matching. The algorithm turns out to be simple and very efficient. In the above
categorization, it corresponds to a crossing between bit-parallel and substring-
heuristic algorithms. Compared to the original bit-parallel algorithm [7, 8], it
makes a better packing of values, since it needs only m[1 + log, (v + 1)] bits,
so the number of characters inspected has to be multiplied by O(m log(vy)/w).
Compared to the original substring matching heuristics, the nondeterministic
version is able to accept exactly the patterns that qualify, without any need of
further verification. In particular, all the existing methods really do J-matching
and enforce the y-condition in a further verification, while we are able of enforc-
ing both conditions as we scan the text. This makes up a much more robust and
efficient algorithm.

3 Searching with Suffix Automata

We describe in this section the BDM pattern matching algorithm [12,13], which
is based on a suffix automaton. A suffiz automaton on a pattern Py, (frequently
called DAWG(P), for Deterministic Acyclic Word Graph) is the minimal (in-
complete) deterministic finite automaton that recognizes all the suffixes of this
pattern. By “incomplete” we mean that unnecessary transitions are not present.
The nondeterministic version of this automaton has a very regular structure and
is shown in Figure 1.

L€ \}a T}s Ts € € € \}a
\ \/ ! ! ! \ \ \/
© DDA)=+
Fig. 1. A nondeterministic suffix automaton for the pattern P = "abcdefg". Dashed

lines represent e-transitions (i.e. they occur without consuming any input). I is the
initial state of the automaton

The (deterministic) suffix automaton is a well known structure [12]. The size
of DAWG(P) is linear in m (counting both nodes and edges), and a linear on-
line construction algorithm exists [12]. A very important fact for our algorithm

A Bit-parallel Suffix Automaton Approach for (¢,v)-Matching 5

is that this automaton cannot only be used to recognize the suffixes of P, but
also factors of P: The automaton has active states as long as we have read a
factor of P.

The suffix automaton structure is used in [12,13] to design a simple pattern
matching algorithm called BDM. This algorithm is O(mn) time in the worst
case, but optimal on average (O(nlog s, m/m) time). To search for P in a text T,
the suffix automaton of P" = P, P,,—1 ... Py (i.e., the pattern read backwards)
is built. A window of length m is slid along the text, from left to right. The
algorithm searches the window backwards for a factor of the pattern P using
the suffix automaton. During this search, if a terminal state is reached which
does not correspond to the entire pattern P, the window position is recorded
(in a variable last). This corresponds to finding a prefiz of the pattern starting
at position last inside the window and ending at the end of the window (since
the suffixes of P are the reverse prefixes of P). Since we remember the last
prefix recognized backwards, we have the longest prefix of P that is a suffix of
the window. This backward search ends in two possible forms:

1. We fail to recognize a factor, i.e., we reach a character o that does not
correspond to a transition in DAWG(P"). Figure 2 illustrates this case. In
this case we shift the window to the right, its starting position corresponding
to the position last (we cannot miss an occurrence because in that case the
suffix automaton would have found its prefix in the window).

Window
LTI ITITTTITTT] [[T TTTTTITTT]
Search for g factor with the suffix automaton
LITTTITTITTT [ol . [[T TTTTTITTT]

Fail to recognize a factor at o.

New sehrch

LTI e T T TP TT] [T 1]

Safe shift

New window

Fig. 2. Basic search with the suffix automaton

2. We reach the beginning of the window, therefore recognizing the pattern P.
We report the occurrence, and shift the window exactly as in the previous
case (notice that we have the previous last value).

6 Maxime Crochemore et al.

4 Owur Algorithm

We first describe a forward-scan version that extends Shift-And and permits
us explaining the details of the bit-parallel simulation, and then a backward-
scanning version that extends BNDM.

We start with some terminology. A bit mask of length r is a sequence of bits,
denoted b, ...b1. We use exponentiation to denote bit repetition (e.g. 031 =
0001). We use C-like syntax for operations on the bits of computer words: “|”
is the bitwise-or, “&” is the bitwise-and, “ " is the bitwise-xor and “~” com-
plements all the bits. The shift-left operation, “<<”, moves the bits to the left
and enters zeros from the right. The shift-right, “>>" moves the bits in the
other direction. Finally, we can perform arithmetic operations on the bits, such
as addition and subtraction, which operate the bits as if they formed a number.
For instance, b, ...b,10000 — 1 = b,....b,01111.

4.1 Forward Scanning

The Shift-And algorithm first builds a table B which for each character stores
a bit mask by, ...b;. The mask in B]c] has the i-th bit set if and ounly if P, = c.
The state of the search is kept in a machine word D = d,, ...d;, where d; is set
whenever P;_; matches the end of the text read up to now. Therefore, we report
a match whenever d,, is set.

We set D = 0™ originally and, for each new text character T}, update D
using the formula

D « ((D<<1)|0m™1'1) & B[Ty]

We now extend the Shift-And algorithm. First of all, notice that §-matching
is trivial under the bit-parallel approach, as it can be accommodated using the
ability to search for classes of characters. We define that pattern character ¢
matches text characters ¢ — ¢ ...c+ 9, therefore setting the i-th bit of B[c] to 1
if and only if |P; — ¢| < 4. The rest of the algorithm is unchanged. On a uniform
distribution over X' = {1...|X|} we obtain O(nlogy,s(m)/m) time for the
BNDM version, and we still need [m/w] computer words for the simulation.
However, the real challenge is to do (, v)-matching. In the following we assume
d < < md, otherwise the formulation makes little sense.

Instead of storing just one bit d; to tell whether P ; matches T, ;11 ;,
we store a counter ¢; to record the sum of the absolute differences between the
corresponding characters. That is

i = Y|Py Tkl
1<h<i

In fact we are only interested in storing min(c;,y + 1), as any value larger
than v is equivalent for us. For reasons that will be clear soon, we need to
represent ¢; such that its highest bit is set to 1 if and only if ¢; > 7. So we
use ¢ = 1 + [log,(y + 1)] bits to represent ¢;, and instead of representing c¢;

A Bit-parallel Suffix Automaton Approach for (¢,v)-Matching 7

we represent ¢; + 27! — (v + 1). This guarantees that the highest bit is set
when ¢; reaches v+ 1 (as its representation reaches 2°=1). Hence our bit mask D
needs m¢ = m(1 + [log,(y + 1)]) bits and our simulation needs O(m log(y)/w)
computer words.

We precompute a mask B[c] of counters as follows. The i-th counter of B]c]
will store |P; — ¢| if and only if |P; — ¢| < §. Otherwise, the characters simply
do not match, in which case we store v + 1 for this counter. This value ensures
that no match will be reported, as the global count of differences will surpass .
Since § < v, ¢ bits suffice to store each of these counters.

The algorithm is basically the same of Shift-And, except that we add Blc]
to D in order to keep count of the sum of the differences between the matched
characters. The overflow is avoided as follows: we remove the highest bits from
the counters in D before adding those of B[T}], and then restore them in the
result. Therefore, (1) overflow is impossible because we are adding two values
that at most add up 27+ 1, and we have enough space to store 2/ —1 > 2(y+1) —
1 =2y + 1 differences; (2) if the highest bit was set before, it will stay set; (3)
if the highest bit was not yet set then our operation with highest bits does not
affect the sum. Note that it is not strictly true that we maintain min(c;,y + 1),
but it is true that the highest bit of each counter i is set if and only if ¢; > 7,
and this is enough for the correctness of the algorithm.

This solution has some resemblances with that of [3] for Hamming distance.

Figure 3 depicts the forward-scanning algorithm. It is O(n) time if mlogy =
O(w), otherwise it takes time O(nm log(y)/w). The preprocessing takes O(m|X|)
time. We remark that previous forward scanning versions [7, 8] required O(nm
log(md)/w) bits, which is strictly larger than our requirement. The difference is
that we managed to keep the counters below 2 instead of letting them grow up
to md.

4.2 Backward Scanning

We start by explaining the BNDM algorithm [17] and then show how to extend
it. We assume m < w in the exposition for simplicity, although the scheme is
general.

The BNDM algorithm moves a window over the text. Each time the window
is positioned at a new text position just after pos, it searches backwards the
window Tpost1...post+m using the DAWG automaton, until either m iterations
are performed (which implies a match in the current window) or the automaton
cannot follow any transition. In this case, the bit d; at iteration k is set if and
only if Pp,_iy1. .m—itk = Tpos+i+m—k...pos+m- S0me observations follow

— Since we begin at iteration 0, the initial value for D is 1™ (recall that we
use exponentiation to denote bit repetition).

— There is a match if and only if after iteration m it holds d,, = 1.

— Whenever d,, = 1, we have matched a prefix of the pattern in the cur-
rent window. The longest prefix matched (excluding the complete pattern)
corresponds to the next window position (variable last).

8 Maxime Crochemore et al.

Forward-Scan (Pi. ., Ti..n, 6, 7)

1. Preprocessing

2. 01+ Tlog,(v+1)]

3. For ce ¥ Do

4. Blc] «+ 0™

5. For ie€1...m Do

6. Blc] < Blc] | (Jle=Fi| > 6?7y +1:|c— B|) << (£(i —1)))
7. Search

8. D+ 1™

9. For jel...n Do

10. If D & 10™" =0™" Then

11. Report an occurrence at j —m + 1
12. D+ (D<<0) | 2" —(v+1)

13. H+ D & (107 H)™

14. D« (D & ~H)+B[T;]) | H

Fig. 3. Forward scanning algorithm for (6, y)-matching

— Since there is no initial self-loop, this automaton eventually runs out of active
states. Moreover, states (m — k) ...m are inactive at iteration k.

The algorithm works as follows. Every time we position the window in the
text we initialize D and scan the window backwards. For each new text character
we update D. Each time we find a prefix of the pattern (d,, = 1) we remember
the position in the window. If we run out of 1’s in D then there cannot be a match
and we suspend the scanning (this corresponds to not having any transition to
follow in the automaton). If we can perform m iterations then we report a match.

We use a mask B which stores a bit mask for each character ¢. This mask
sets the bits corresponding to the positions i where P; = ¢ (just as in Shift-And).
The formula to update D is

D « (D & B[T}]) << 1

We now extend BNDM to (4, v)-matching. The main differences with respect
to the representation used in forward scanning are (1) we initialize the counters
of D to ¢; = 0 because they correspond to matching empty strings; (2) after
shifting D, the fresh counters that enter from the right are not important (the
important ones are those present when we start scanning the window); and (3)
we suspend scanning the window when all the counters exceeded ~.

Figure 4 depicts the backward-scanning algorithm. This is the first character-
skipping algorithm that does not use verifications and is able to stop scanning
text windows that d-match the pattern, if they do not (4, v)-match the pattern.

A Bit-parallel Suffix Automaton Approach for (¢,v)-Matching 9

Backward-Scan (Pi. ., Ti..n, 6, 7)

1. Preprocessing

2. 0+ 1+ [logy(v+1)]

3. For ce X Do

4. Blc] + 0™

5. For ie€1...m Do

6. Blc] < Blc] | (Jc = Pm—it1] > 0?7y 4+ 1:|c = Pm—it1]) << (£(i — 1)))
7. Search

8. pos < 0

9. While pos <n—m Do

10. j < m, last < m

11. D+ (21 — (v + 1)) x (0™

12. While D & (10°71)™ # (10°"1)™ Do
13. H+ D & (107 H)™

14. D« (D & ~H)+B[T;]) | H
15. j—j—1

16. If D & 10™"" =0™" Then

17. If j >0 Then last + j

18. Else Report an occurrence at pos+1
19. D+ (D<<?t) | 107!

20. pos pos + last

Fig. 4. Backward scanning algorithm for (4, v)-matching. Some code optimizations are
not included for simplicity

5 Experimental Results

In this section we show experimental evidence supporting the superiority of the
new algorithm (THIS) compared to the (,v)-Boyer-Moore algorithm (BM2)
presented in [10,11], which is currently the most competitive choice.

The time reported includes only the searching phase. Preprocessing was neg-
ligible. The tests were performed using a SUN Ultra Enterprise 300MHz running
Solaris Unix with w = 32. We used the GNU g++ compiler version 2.95.1. Each
data point represents the median of 60 trials.

We ran our experiments using both real music and random text. The music
data used for this study comes from a data base of MIDI files of classic music
with 1.8Mb of absolute pitches. We also make use of this music data base to
measure the zero-order and one-order entropy to estimated the size of alphabet
needed to emulated music using random text. Zero-order entropy was equivalent
to having a random alphabet of size 17.35. One-order entropy was much smaller,
6.27. Therefore, we used random text uniformly distributed with alphabet size of
10-20 for this study. Other typical parameter values were 0-5 for §, 1.5m—2.0m
for v, and 10 200 for m.

10 Maxime Crochemore et al.

Figure 5 shows plots of the performance of both algorithms using random
data. For the different combinations of § and ~ used in these experiments, our
algorithm (THIS) was significantly faster than Algorithm BM2. As expected,
the performance of the algorithm degrades with smaller alphabets. However, it
also degrades as m increases, as the implementation is limited to using m/w
number of computer words and skipping at most w characters. To speed-up the
matching algorithm we can use an alphabet reduction method such as octave
equivalence [14].

The results using real music data are shown in Figure 6. Although the differ-
ence is smaller than on synthetic data, clearly THiIS algorithm performs better.
As can be seen, the dependence on § is significant to the extent that it can dou-
ble (note the change of scale) the time it takes by going from § =2 to 6 =4. The
dependence on 7y, on the other hand, is not much significant.

In conclusion the algorithm introduced in this paper performs consistently
better than previous known algorithms.

25 T I T - 60 T T T
BM2 |x|=10 --—-&--- b BM2 [2[=10 ——=—- .
20 | this [Z]=10 —-— 50 H this [5]=10 -
BM2 |%|=20 e BM2 [2|=20 e
this [|=20 -~ s 40 H this [5]=20 e
P ’ s)
) 530
% 10 = &
. IR A 20 | o o
5 e T X g A o
I T I B e 10 gt g
oL (A s -
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
m m
(a) § =2 and y=1.5m (b) 6 =4 and y=1.5m
25 — —r 60 —
BM2 |Z|=10 ---m--- BM2 [£[=10 = .
20 1| this [£]=10 —--- o 50 H this |Z]=10 o
BM2 [£]=20 @ - BM2 [£]=20 @ -
this |5]=20 -0~ - 40 H _this [5]=20 o
g 15 g .
E E 30
» 10 » e
- . 20 W
- I s W --X e
5 . 10 owr
-
0 o2
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
m m
(c) 6 =2 and v=2m (d) 6 =4 and v=2m

Fig. 5. Timing figures for random data

A Bit-parallel Suffix Automaton Approach for (¢,v)-Matching 11

- T
N “m
. m
X
X
s g8
S s 7 il
& 3 b 6 -
5 z
3 . 4 5
25 % 3
2 2
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
m m
(a) § =2 and y=1.5m (b) 6 =4 and y=1.5m
14
et BM2 —=— ™
A , 12 H _this | e
5 e 10
2 7 - Fel X
S 45 - =
> > 8 e
o 4 oL @ -
) P) -
35 e 6 _
3 o 4 "
2.5
2 2
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
m m
(c) 6 =2 and v=2m (d) 6 =4 and v=2m

Fig. 6. Timing figures for real music data

6 Conclusions

We have presented a new bit-parallel algorithm for (d, v)-matching, an extended
string matching problem with applications in music retrieval. Qur new algo-
rithm is a crossing between bit-parallelism and suffix automata and has several
advantages over the previous approaches: it makes better use of the bits of the
computer word, it inspects less text characters, it is simple and extensible.

Our algorithms is also the first truly (9, v) character-skipping algorithm, as it
skips characters using both criteria. Existing approaches do just d-matching and
check the candidates for the v-condition. This makes our algorithm a stronger
choice for this problem.

The algorithm we have presented is useful for short pattern lengths, as it is
limited by the length of the computer word. We have handled longer patterns
with the naive approach of using as many computer words as needed to represent
all the counters. A more sophisticated approach we are pursuing is to partition
the pattern into pieces short enough to be handled with the basic algorithm.
It is interesting to notice that if we partition the pattern into j pieces, then at
least one of them has to match with v = |v/j] differences overall, so we do
(6,+")-matching in the pieces. Moreover, if § > 7' we do (7,7')-matching. Hence

12 Maxime Crochemore et al.

we run j searches for shorter patterns and check every match of a piece for a
complete occurrence. These pieces can be grouped and searched for together
using the so-called “superimposition”. These ideas have been used in [4,16] for
approximate string matching, and should be useful here too.

It is not hard to design an algorithm with the same average complexity but
also linear in the worst case, as done in [17]. Despite theoretically interesting, this
improvement is usually disregarded because it worsens the practical performance
of the algorithm.

A more challenging problem is to consider text indexing approaches, that is,
preprocessing the musical strings in order to permit fast searching of patterns
later. A simple solution is the use of a suffix tree of the text combined with
backtracking, which yields search times which are exponential on the pattern
length but independent of the text length [22].

We also plan to investigate further on more sophisticated matching problems
that arise in music retrieval. For example, it would be good to extend (4,~)-
matching in order to permit insertions and deletions of symbols.

References

1. R. Baeza-Yates. Text retrieval: Theory and practice. In 12th I[FIP World Computer
Congress, volume 1, pages 465 476. Elsevier Science, September 1992.

2. R. Baeza-Yates and G. Gonnet. A new approach to text searching. Comm. ACM,
35(10):74-82, October 1992.

3. R. Baeza-Yates and G. Gonnet. Fast string matching with mismatches. Information
and Computation, 108(2):187 199, 1994.

4. R. Baeza-Yates and G. Navarro. Faster approximate string matching. Algorithmica,
23(2):127-158, 1999.

5. R. S. Boyer and J. S. Moore. A fast string searching algorithm. Communications
of the ACM, 20(10):762 772, 1977.

6. E. Cambouropoulos, T. Crawford, and C. Iliopoulos. Pattern processing in melodic
sequences: Challenges, caveats and prospects. In Proc. Artificial Intelligence and
Simulation of Behaviour (AISB’99) Convention, pages 42—47, 1999.

7. E. Cambouropoulos, M. Crochemore, C. Iliopoulos, I.. Mouchard, and Y. J. Pinzon.
Algorithms for computing approximate repetitions in musical sequences. In Proc.
10th Australasian Workshop on Combinatorial Algorithms (AWOCA’99), pages
129 144, 1999.

8. E. Cambouropoulos, M. Crochemore, C. S. Iliopoulos, L. Mouchard, and Y. J.
Pinzon. Algorithms for computing approximate repetitions in musical sequences.
Int. J. Comput. Math., 79(11):1135-1148, 2002.

9. T. Crawford, C. Tliopoulos, and R. Raman. String matching techniques for musical
similarity and melodic recognition. Computing in Musicology, 11:73 100, 1998.

10. M. Crochemore, C. lliopoulos, T. Lecroq, Y. J. Pinzon, W. Plandowski, and
W. Rytter. Occurence and substring heuristics for §-matching. Fundamenta In-
formaticae, 55:1 15, 2003.

11. M. Crochemore, C. lliopoulos, T. Lecroq, W. Plandowski, and W. Rytter. Three
heuristics for 6-matching: 6-bm algorithms. In Combinatorial Pattern Matching,
CPM’2002, LNCS v. 2373, pages 178-189. Springer-Verlag, 2002.

12. M. Crochemore and W. Rytter. Text algorithms. Oxford University Press, 1994.

13

14.

15.

16.

17.

18.

19.

20.

21.

22.

A Bit-parallel Suffix Automaton Approach for (¢,v)-Matching 13

A. Czumaj, M. Crochemore, L. Gasieniec, S. Jarominek, Thierry Lecroq,
W. Plandowski, and W. Rytter. Speeding up two string-matching algorithms.
Algorithmica, 12:247-267, 1994.

K Lemstrom and J. Tarhio. Searching monophonic patterns within polyphonic
sources. In Proc. of Content-Based Multimedia Information Access, volume 2,
pages 1261-1279, 2000.

P. McGettrick. MIDIMatch: Musical Pattern Matching in Real Time. MSc. Dis-
sertation, York University, U.K., 1997.

G. Navarro and R. Baeza-Yates. Improving an algorithm for approximate string
matching. Algorithmica, 30(4):473 502, 2001.

G. Navarro and M. Raffinot. Fast and flexible string matching by combining
bit-parallelism and suffix automata. ACM Journal of Experimental Algorithmics
(JEA), 5(4), 2000.

G. Navarro and M. Raffinot. Flezible Pattern Matching in Strings Practical on-
line rch algorithms for texts and biological sequences. Cambridge University Press,
2002. ISBN 0-521-81307-7.

P. Roland and J. Ganascia. Musical pattern extraction and similarity assessment.
In E. Miranda, editor, Readings in Music and Artificial Intelligence, pages 115-144.
Harwood Academic Publishers, 2000.

L. A. Smith, E. F. Chiu, and B. L. Scott. A speech interface for building musical
score collections. In Proc. of the fifth ACM conference on Digital libraries, pages
165 173. ACM Press, 2000.

D. Sunday. A very fast substring searching algorithm. Comm. ACM, 33(8):132—
142, August 1990.

E. Ukkonen. Approximate string matching over suffix trees. In Proc. 4th Annual
Symposium on Combinatorial Pattern Matching (CPM’93), pages 228-242, 1993.

