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lAbstra
t. Re
ent resear
h in musi
 retrieval has shown that a 
ombi-natorial approa
h to the problem 
ould be fruitful. Three distinguishingrequirements of this parti
ular problem are (a) approximate sear
hingpermitting missing, extra, and distorted notes, (b) transposition invari-an
e, to allow mat
hing a sequen
e that appears in a di�erent s
ale, and(
) handling polyphoni
 musi
. These 
ombined requirements make up a
omplex 
ombinatorial problem that is 
urrently under resear
h. On theother hand, bit-parallelism has proved a powerful pra
ti
al tool for 
om-binatorial pattern mat
hing, both 
exible and eÆ
ient. In this paper weuse bit-parallelism to sear
h for several transpositions at the same time,and obtain speedups of O(w= log k) over the 
lassi
al algorithms, wherethe 
omputer word has w bits and k is the error threshold allowed inthe mat
h. Although not the best solution for the easier approximationmeasures, we show that our te
hnique 
an be adapted to 
omplex 
aseswhere no 
ompeting method exists, and that are the most interesting interms of musi
 retrieval.1 Introdu
tionCombinatorial pattern mat
hing with its many appli
ation domains have been ana
tive resear
h �eld already for several de
ades. One of the latest su
h domainsis musi
 retrieval. Indeed, musi
 
an be en
oded as sequen
es of symbols, i.e. asstrings. At a rudimentary level this is done by taking into a

ount ex
lusively theorder of the starting times of the musi
al events (i.e., the note ons) together withtheir pit
h information (i.e. the frequen
y, the per
eived height of the musi
alevent). On a more 
ompli
ated level one 
an use several distin
t attributes forea
h of the events (see e.g. [1, 9℄). Most of the interesting musi
al attributes usedin su
h symboli
 representations are dire
tly available in MIDI format [13℄ whi
his a 
ommonly used 
ompa
t symboli
 representation.A straightforward appli
ation of general string mat
hing te
hniques on sym-boli
 musi
 representation, however, does not suÆ
e for musi
ally pertinentmat
hing queries; musi
 has spe
ial features that have not been 
onsidered in? Partially supported by Fonde
yt Grant 1-020831.



general string mat
hing te
hniques. Firstly, musi
 is often polyphoni
, i.e., thereare several events o

urring simultaneously (in a 
ase where there exists no si-multaneous events the musi
 is said to be monophoni
). These simultaneousevents may have a 
olle
tive meaning and, therefore, the polyphony has to bepreserved and taken into a

ount in the mat
hing pro
ess. For instan
e, a typi
almusi
 retrieval, or sear
hing problem, is the distributed string mat
hing problem:given a set t (
alled a text or a target) of h strings (ea
h representing a voi
e)ti = ti1; : : : ; tin; i 2 f1 : : : hg, for some 
onstant h and a pattern p = p1; : : : ; pm,we say that p o

urs at position j of t if p1 = ti1j ; p2 = ti2j+1; : : : ; pm = timj+m�1for some fi1; : : : ; img 2 f1 : : : hg. The problem has been studied in [7, 10℄.Se
ondly, western people tend to listen musi
 analyti
ally by observing theintervals between the 
onse
utive pit
h values more than the a
tual pit
h valuesthemselves: A melody performed in two distin
t pit
h levels is per
eived andre
ognized as the same regardless of the performed pit
h level. This leads tothe 
on
ept of transposition invarian
e. Formally, the transposition invariantdistributed string mat
hing problem is as follows. Given a monophoni
 pattern pand a polyphoni
 target t of h voi
es, ti = ti1 � � � tin; i 2 f1; : : : ; hg, the task is to�nd all the js su
h that p1 = ti1j + 
; p2 = ti2j+1 + 
; : : : ; pm = timj+m�1 + 
 holds,for some 
onstant 
 and fi1; : : : ; img 2 f1; : : : ; hg [10℄.Thirdly, real musi
 is often de
orated, i.e., it may 
ontain gra
e notes or orna-mentations, for instan
e. The 
onventional pro
edure to over
ome this problemis to allow gaps between the 
onse
utive mat
hing elements in found o

ur-ren
es [2, 6, 16℄. The 
hoi
es are either to use parametrized gapping (as in [2, 6℄)or arbitrary gapping (as in [16℄). As we aim at a mat
hing method that �nds allthe o

urren
es (although it may also �nd spurious ones), we will use the latterapproa
h. Instead of using the geometri
 approa
h of Wiggins et al. [16℄, wewill use the string mat
hing framework and apply the indel distan
e (the dualof LCS-mat
hing) [5℄. We 
laim that it is a more fruitful approa
h not to dropany o

urren
es although in some situations it may lead to a large number ofspurious o

urren
es. The set of found o

urren
es may then be post-pro
essedby musi
ally motivated �lters, for instan
e by those dis
ussed in [12℄.Fourthly, in a typi
al transposition invariant distributed string mat
hing ap-pli
ation the query pattern is given by humming. This kind of an appli
ationis sometimes referred as "WYHIWYG" (What You Hum Is What You Get) or"query by humming". In su
h a 
ase we may expe
t that all the events in thehummed query pattern are relevant, but its (absolute) pit
h values may be some-what distorted. This distortion has the form of Gaussian distribution with themean value of the 
orre
t (desired) pit
h and with a relatively small varian
e.Therefore, in a WYHIWYG appli
ation, we would like to enable some toleran
efor su
h errors. Here we 
onsider two solutions for this problem, the �rst ofwhi
h is the so-
alled Æ-mat
hing [3℄. The pattern p = p1 � � � pm is said to have aÆ-mat
h in t1 � � � tn if pi 2 [tj+i�1�Æ; tj+i�1+Æ℄ for all i = 1; : : : ;m. Although thisapproa
h works reasonably well in pra
ti
e, it is musi
ally more appropriate topenalize an error a

ording to how mu
h the pit
h di�ers from the desired one



than to allow any distortion as long it is within the allowed toleran
e. Therefore,we will use a more general distan
e fun
tion whi
h implements the 
laim above.Although all the problems given above have been studied, no 
urrent solution
an solve them all. Most relevantly, the bit-parallel algorithm by Cro
hemore etal. [4℄ 
an 
ompute the LCS in O(m2=w) time, where w denotes the size of the
omputer word in bits. Moreover, as we dis
uss in Se
tion 5, the algorithm 
an beextended straightforwardly to deal with polyphony, transpositions and Æ mat
h-ing in O(h�m2=w) time (here � denotes the number of possible transpositions).Furthermore, the same 
omplexity is obtainable with the unit-
ost edit distan
eby using other bit-parallel algorithms [14, 8℄.Our solution is also based on bit-parallelism, whi
h is well-known for its 
ex-ibility. Our transposition invariant Æ-mat
hing algorithm for distributed stringmat
hing runs in time O(�m2 log(m)=w). Noteworthy, it is 
apable of apply-ing more general and musi
ally pertinent distan
e fun
tions than the previousrelated solutions, e.g. those that are not based on unit 
osts.2 PreliminariesLet us start this se
tion by a brief introdu
tion to string 
ombinatori
s. Let� be a �nite set of symbols, 
alled an alphabet, and � = j�j. Then any A =(a1; a2; : : : ; am) where ea
h ai is a symbol in �, is a string over �. Usually wewrite A = a1 � � � am. The length of A is jAj = m. The string of length 0 is 
alledthe empty string and denoted �. The set of strings of length i over � is denotedby �i, and the set of all strings over � by ��. If a string A is of form A = ��
,where �; �; 
 2 ��, we say that � is a fa
tor (substring) of A. Furthermore, � is
alled a pre�x of A, and 
 a suÆx of A. A string A0 is a subsequen
e of A if it 
anbe obtained from A by deleting zero or more symbols, i.e., A0 = ai1ai2 � � �aim ,where i1 : : : im is an in
reasing sequen
e of indi
es in A.To de�ne a distan
e between strings over ��, one should �rst �x the setof lo
al transformations (editing operations) T � �� � �� and a non-negativevalued 
ost fun
tion W that gives for ea
h transformation t in T a 
ost W (t).Ea
h t in T is a pair of strings t = (�; �). Observing su
h a t as a rewriting rule,suggests a notation for t, �! � (� is repla
ed by � within a string 
ontaining �),whi
h we will use below. For 
onvenien
e, if �! � 62 T , then W (�! �) =1.The de�nition of the distan
e is based on the 
on
ept of tra
e, whi
h givesa 
orresponden
e between two strings. Formally, a tra
e between two strings Aand B over ��, is formed by splitting A and B into equally many fa
tors:� = (�1; �2; : : : ; �p;�1; �2; : : : ; �p);where A = �1�2 � � ��p, and B = �1�2 � � ��p, and ea
h �i; �i (but not both) maybe an empty string over �. Thus, string B 
an be obtained from A by steps�1 ! �1; �2 ! �2; : : : ; �p ! �p.The 
ost of the tra
e � is W (�) = W (�1 ! �1) + � � � +W (�p ! �p). Thedistan
e between A and B, denoted DT;W (A;B), is de�ned as the minimum 
ostover all possible tra
es.



The general de�nition above indu
es, for instan
e, the following well-known distan
e measures. In unit-
ost edit distan
e (or Levenshtein dis-tan
e), DL(A;B), the allowed lo
al transformations are of the forms a ! b(substitution); a ! � (deletion), and � ! a (insertion), where a; b 2 �. The
osts are given as W (a ! a) = 0 for all a, W (a ! b) = 1 for all a 6= b, andW (a! �) =W (�! a) = 1 for all a. In Hamming distan
e, DH(A;B), the onlyallowed lo
al transformations are of form a! b where a and b are any membersof �, with 
ost W (a ! a) = 0 and W (a ! b) = 1, for a 6= b. Finally, the indeldistan
e, DLCS(A;B), is de�ned as Levenshtein distan
e without the possibilityto use substitutions.It is well-known that the straightforward 
omputation of these distan
es isby using re
urren
es like the following used for DLCS(A;B):di;0 = i; d0;j = j;dij = min8<:di�1;j + 1di;j�1 + 1di�1;j�1; if ai = bj :The evaluation of su
h a re
urren
e is done by dynami
 programming, where thedistan
es between the pre�xes of A and B are tabulated. Ea
h 
ell dij of thedistan
e table (dij) stores the distan
e between a1 � � �ai and b1 � � � bj (0 � i � m,0 � j � n) and (dij) is evaluated by pro
eeding row-by-row or 
olumn-by-
olumnusing the re
urren
e. Finally, dm;n gives the distan
e, in this 
ase DLCS(A;B).The dual 
ase of DLCS(A;B) is the 
al
ulation of the longest 
ommon sub-sequen
e of two strings A and B, or l
s(A;B) for short. The length of l
s(A;B),denoted by LCS(A;B), is 
omputed by the re
urren
e:LCSi;0  0; LCS0;j  0; (1)LCSi+1;j+1  if ai+1 = bj+1 then 1 + LCSi;jelse max(LCSi;j+1; LCSi+1;j):Now it is rather 
lear that LCS(A;B) = jAj+jBj�DLCS(A;B)2 .If we want to 
al
ulate the length of the longest 
ommon transposition in-variant subsequen
e, LCTS(A;B), it may be done by 
al
ulating LCS
(A;B)by all the possible 2� + 1 transpositions, and sele
t the transposition 
 whi
hgives the maximum [11℄. LCS
(A;B) is de�ned just like LCS(A;B) ex
ept thatthere is a mat
h when ai+1 + 
 = bj+1. Our idea is to simulate the 
omputationof the (d
ij) tables, for 
 = [��; �℄, so that the aligned dij values are 
omputedsimultaneously in a bit ve
tor, as long as they �t in the used 
omputed word ofw bits (see Fig. 1). Typi
al sizes of alphabet are, e.g., 88 (the number of keys inpiano) and 127 (the number of MIDI pit
h values), and 32 or 64 for the size ofthe 
urrent 
omputer word. In pra
ti
e, we need 3{8 bit-ve
tors for ea
h dij .Finally, the weighted edit distan
e that we use to make a distin
tion a

ordingto the amount of the lo
al distortion is as follows:EDi;0  i� ID; ED0;j  j � ID; (2)EDi+1;j+1  min(jai+1 � bj+1j+EDi;j ; ID +EDi;j+1; ID +EDi+1;j);
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Fig. 1. We 
al
ulate in parallel 2� + 1 (dij) tables. The idea is to present the alignednodes d��ij : : : d�ij with a single bit-ve
tor (as long as they �t in a 
omputer word).where ID is a 
onstant used for indel operations.3 A Bit-Parallel AlgorithmWe present a speedup te
hnique for the 
omputation of the 2�+1 LCS matri
es.We resort to bit-parallelism, that is, to storing several values inside the same
omputer word. For this sake we will denote the bitwise and operation as \&",the or as \j", and the bit 
omplementation as \�". Shifting i positions to the left(right) is represented as \<< i" (\>> i"), where the bits that fall are dis
ardedand the new bits that enter are zero. We 
an also perform arithmeti
 operationsover the 
omputer words. We use exponentiation to denote bit repetition, e.g.031 = 0001, and write the most signi�
ant bit as the leftmost bit. When wewrite [x℄` we mean the integer x represented in ` bits.Sin
e the values of the LCS matrix are in the range f0 : : :min(jaj; jbj)g,we need ` = dlog2(min(jaj; jbj) + 1)e bits to store them. This means that in a
omputer word of w bits we 
an store bw=`
 
ounters. For reasons that will bemade 
lear soon, we will in fa
t need `+1 bits per 
ounter, where the highest bitwill always be zero, and hen
e we will be able to store A = bw=(`+1)
 
ounters.We will divide the pro
ess of 
omputing LCS
(a; b) for every 
 2 � intod(2�+1)=Ae separate bit-parallel 
omputations, ea
h for A 
ontiguous 
 values.From now on, let us 
onsider that we are 
omputing in parallel LCS
(a; b) for
 2 fC : : : C + A� 1g.



The �rst problem to bit-parallelize Eq. (1) is its if-then-else stru
ture. For agiven 
, if ai+1+
 = bj+1 we have to use the value 1+LCS
i;j , otherwise we haveto use max(LCS
i+1;j ; LCS
i;j+1). We solve this by using a bit-mask B of lengthA(`+1), whi
h should have all 1's in the 
 values for whi
h ai+1+ 
 = bj+1, andzeros elsewhere. This means that we have 1's only for the value 
 = bj+1� ai+1.It is possible that this 
 value is outside our 
urrent range fC : : : C +A� 1g. Sothe 
omputation of B is as follows:B  if C � bj+1 � ai+1 < C +A� then 0(A+C�1�(bj+1�ai+1))(`+1) 1(`+1) 0(bj+1�ai+1�C)(`+1)else 0A(`+1)On
e we have 
omputed B, we want to take the value 1 + LCS
i;j for the 
values where B has 1's and the value max(LCS
i+1;j ; LCS
i;j+1) elsewhere. Forthe former we need to add 1 to all the 
ounters at the same time, whi
h iseasily a
hieved by adding (0`1)A. For the latter we need to 
ompute max() inbit-parallel. Let us 
all Max this fun
tion. Hen
e the value we want isLCSi+1;j+1  (B & (LCSi;j +(0`1)A)) j (� B &Max(LCSi+1;j ; LCSi;j+1))To 
ompute Max(X;Y ), where X and Y 
ontain several 
ounters prop-erly aligned, we need the aforementioned extra highest bit per 
ounter, alwayszero. We pre
ompute the bit mask J = (10`)A and perform the operationF  ((X j J) � Y ) & J . The result is that, in F , ea
h highest bit is set i�the 
ounter of X is larger than that of Y . We now 
ompute F  F � (F >> `),so that the 
ounters where X is larger than Y have all their bits set in F ,and the others have all the bits in zero. Finally, we 
hoose the maxima asMax(X;Y )  (F & X) j (� F & Y ). Also, we easily obtain Min(X;Y )  (F & Y ) j (� F & X). Fig. 2 gives the 
ode. These methods are due to [15℄.Fig. 3 shows RangeLCTS, the bit-parallel algorithm for a range of 
ountersC : : : C + A � 1. Using this algorithm we traverse all the 
 2 � values and
ompute LCTS(a; b) = max
2��:::� LCS
(a; b). This is done by LCTS.Let us now analyze the algorithm. LCTS runs (2� + 1)=A iterations ofRangeLCTS plus a minimization over 2� + 1 values. In turn, RangeLCTStakes O(jajjbj) time. Sin
e A = w= log2min(jaj; jbj)(1 + o(1)), the algorithmis O(�jajjbj log(min(jaj; jbj))=w) time. If jaj = jbj = m, the algorithm isO(�m2 log(m)=w) time, whi
h represents a speedup of 
(w= logm) over thenaive O(�m2) time algorithm.It is possible to adapt this algorithm to 
ompute Æ-LCTS(a; b), where weassume that two 
hara
ters mat
h if their di�eren
e does not ex
eed Æ. Thisis arranged at no extra 
ost by 
onsidering that there is a mat
h wheneverbj+1 � ai+1 � Æ � 
 � bj+1 � ai+1 + Æ. The only 
hange needed in our algorithmis in lines 5{7 of RangeLCTS, whi
h should be
ome:low  max(C; bj � ai � Æ)high min(C +A� 1; bj � ai + Æ)If low � high Then



Max (X; Y; `)1. J  (10`)A2. F  ((X j J)� Y ) & J3. F  F � (F >> `)4. Return (F & X) j (� F & Y )Min (X; Y; `)1. J  (10`)A2. F  ((X j J)� Y ) & J3. F  F � (F >> `)4. Return (F & Y ) j (� F & X)Fig. 2. Bit-parallel 
omputation of maximum and minimum between two sets of 
oun-ters aligned in a 
omputer word. In pra
ti
e J is pre
omputed.B  0(A+C�1�high)(`+1) 1(high�low+1)(` +1)0(low�C)(`+1)Else B  0A(`+1)4 Text Sear
hingThe above pro
edure 
an be adapted to sear
h for a pattern P of length m in atext T of length n under the indel distan
e, permitting transposition invarian
e.The goal is, given a threshold value k, report all text positions j su
h thatd(P; Tj0 :::j) � k for some j0, where d is the indel distan
e (number of 
hara
terinsertions and deletions needed to make two strings equal).Additionally, we 
an sear
h polyphoni
 text, where there are a
tually hparallel texts T 1 : : : T h, and text position j mat
hes any 
hara
ter in the setfT 1j : : : T hj g.Let us 
onsider a new re
urren
e for sear
hing. We start with a 
olumnDi = iand update D to D0 for every new text position j. For every j where Dm � kwe report text position j as the end position of a re
urren
e. The formula forsear
hing with indel distan
e using transposition 
 is as follows:D0 
0  0D0 
i+1  if Pi+1 + 
 2 fT 1j : : : T hj g then D
i else 1 +min(D0 
i ; D
i+1)where we note that we have suppressed 
olumn number j, as we will speak aboutthe 
urrent 
olumn (D0 or newD) built using the previous 
olumn (D or oldD).



RangeLCTS (a; b; C; A; `)1. For i 2 0 : : : jaj Do2. For j 2 0 : : : jbj Do3. If i = 0 _ j = 0 Then LCSi;j  0A(`+1)4. Else5. If C � bj � ai < C +A Then6. B  0(A+C�1�(bj�ai))(`+1) 1(`+1) 0(bj�ai�C)(`+1)7. Else B  0A(`+1)8. LCSi;j  (B & (LCSi�1;j�1 + (0`1)A))j (� B & Max(LCSi�1;j ; LCSi;j�1)10. Return LCSjaj;jbjLCTS (a; b; �)1. ` dlog2(min(jaj; jbj) + 1)e2. A bw=(`+ 1)
3. 
 ��4. Max 05. While 
 � � Do6. V  RangeLCTS(a; b; 
; A; `)7. For t 2 
 : : : 
+A� 1 Do8. Max max(Max; (V >> (t� 
)(`+ 1)) & 0(A�1)(`+1)01`)9. 
 
+A10. Return MaxFig. 3. Computing LCTS(a; b) using bit-parallelism. RangeLCTS 
omputesLCS
(a; b) for every 
 2 C : : : C+A�1 in bit-parallel, and returns a bit mask 
ontainingLCS
(a; b) for all those 
 values.Additionally, we note that, when a value is larger than k, all we need toknow is that it is larger than k, so we store k + 1 for those values in order torepresent smaller numbers. Hen
e the number of bits needed by a 
ounter is` = dlog2(k + 2)e.The new re
urren
e requires the same tools we have already developed forthe LCS 
omputation, ex
ept for the polyphony issue and for the k + 1 limit.Polyphony 
an be a

ommodated by or-ing the B masks 
orresponding to thedi�erent text 
hara
ters at position j. The k + 1 limit has to be taken 
are ofonly when we add 1 in the \else" 
lause of the re
urren
e.The typi
al way to solve this requires one extra bit for the 
ounters. Weprefer instead to reuse our result for bit-parallel minimum. The re
urren
e 
anbe rewritten as follows, whi
h guarantees that any value larger than k stays atk + 1.D0 
0  0D0 
i+1  if Pi+1 + 
 2 fT 1j : : : T hj g then D
i else 1 +min(D0 
i ; D
i+1; k)



Finally, we have to report every text position where Dm � k. In our setting,this means that any 
ounter di�erent from k+1 makes the 
urrent text positionto be reported.Fig. 4 shows RangeIDSear
h, whi
h sear
hes for a range of transpositionsthat �t in a 
omputer word. The general algorithm, IDSear
h, simply appliesthe former pro
edure to su

essive ranges. The algorithm is O(h�mn log(k)=w)time, whi
h represents a speedup of O(w= log k) over the 
lassi
al solution.RangeIDSear
h (P; T 1 : : : T h; k; C; A; `)1. K  [k℄`+1 � (0`1)A2. Kp1 K + (0`1)A3. For i 2 0 : : : k Do Di  [i℄`+1 � (0`1)A4. For i 2 k + 1 : : : jP j Do Di  Kp15. For j 2 1 : : : jT j Do6. oldD  07. For i 2 1 : : : jP j Do8. B  0A(`+1)9. For g 2 1 : : : h Do10. If C � T gj � Pi < C +A Then11. B  B j 0(A+C�1�(Tgj �Pi))(`+1) 1(`+1) 0((Tgj �Pi)�C)(`+1)12. newD  (B & oldD) j (� B & (Min(Min(Di�1 ; Di); K) + (0`1)A))13. oldD  Di; Di  newD14. If newD 6= Kp1 Then Report an o

urren
e ending at jIDSear
h (P; T 1 : : : T h; k; �)1. ` dlog2(k + 1)e2. A bw=(`+ 1)
3. 
 ��4. While 
 � � Do5. RangeIDSear
h(P; T 1 : : : T h; k; 
; A; `)6. 
 
+AFig. 4. Sear
hing polyphoni
 text with indel distan
e permitting any transposition.5 A More General Distan
e Fun
tionAlthough we have obtained important speedups with respe
t to 
lassi
al algo-rithms, it turns out that there exist bit-parallel te
hniques that 
an 
omputethe LCS in O(m2=w) time [4℄. Extending these algorithms naively to deal withpolyphony, transpositions and Æ mat
hing yields O(h�m2=w) time. Although ithas not been done, we believe that it is not hard to 
onvert these algorithmsinto sear
h algorithms for indel distan
e at O(h�mn=w) 
ost, whi
h is better



than ours by an O(log k) fa
tor. The same times 
an be obtained if we use editdistan
e instead of indel distan
e [14, 8℄.The strength of our approa
h resides in that we are using bit-parallelism in adi�erent dimension: rather than 
omputing several 
ells of a matrix in parallel,we 
ompute several transpositions in parallel, while the 
ells are 
omputed oneby one. This gives us extra 
exibility, be
ause we 
an handle 
omplex re
ur-ren
es among 
ells as long as we 
an do several similar operations in parallel.Parallelizing the work inside the matrix is more 
omplex, and has been a
hievedonly for unit-
ost distan
es. As explained before, a weighted edit distan
e wherethe 
ost to 
onvert a note into another is proportional to the absolute di�eren
eamong the notes is of interest in musi
 retrieval. We demonstrate the 
exibilityof our approa
h by addressing the 
omputation of the weighted edit distan
edetailed in Eq. (2). Whi
h follows is the sear
h version for a given transposition
 in polyphoni
 text, bounded by k + 1.D0 
0  0D0 
i+1  min( ming21:::h jPi+1 + 
� T gj j+D
i�1; ID +D0 
i ; ID +D
i+1; k + 1)There are two 
hallenges to bit-parallelize this re
urren
e. The �rst is thatensuring that we never surpass k + 1 is more diÆ
ult, be
ause the in
rementsare not only by 1. We 
hoose to 
ompute the full values and then take minimumwith k+1, as suggested by the re
urren
e. However, the intermediate values 
anbe larger. Sin
e ID � k (otherwise the problem is totally di�erent), the latterterms are bounded by 2k + 1. We will manage to keep also the �rst term of theminimization below 2k+2. This means that we need dlog2(2k+3)e bits for our
ounters.The se
ond 
hallenge is how to 
ompute jPi+1 + 
� T gj j in bit-parallel for aset of 
onse
utive 
 values, with the added trouble of not ex
eeding k+1 in any
ounter. Depending on the range C : : : C+A�1 of transpositions we are 
onsid-ering, these values form an in
reasing, de
reasing, or de
reasing-then-in
reasingsequen
e. For shortness, we will use [x℄ to denote [x℄`+1 in this dis
ussion. Anin
reasing sequen
e of the form It = [t+A�1℄ : : : [t+1℄ [t℄, t � 0, is obtained sim-ply as It  (0`1)A�1[t℄�(0`1)A. A version bounded by r � t is obtained as Irt  (It & 0(A�(r�t))(`+1)1(r�t)(`+1)) j ([r℄A�(r�t)0(r�t)(`+1)). Similarly, a de
reasingsequen
e Dt = [t�A+1℄ : : : [t�1℄ [t℄ is obtained as Dt  [t℄A�I0. The boundedversion is obtained similarly as for in
reasing sequen
es. Finally, a de
reasing-then-in
reasing sequen
e DIt = [A� t�1℄ [A� t�2℄ : : : [2℄ [1℄ [0℄ [1℄ : : : [t�1℄ [t℄is obtained as DIt = (I0 << t(`+ 1)) j (DA >> (A � t)(` + 1)). The boundedversionDIr is obtained similarly, using Ir andDr instead. We 
ould even a

om-modate substitution 
osts of the form jai � bj j=q for integer q by multiplying by(0q(`+1)�11)A instead of by (0`1)A. Fig. 5 gives the 
ode to build these sequen
es.It be
omes 
lear that we 
an perform approximate sear
hing using this gen-eral distan
e fun
tion, permitting transposition invarian
e and polyphony, inO(h�mn log(k)=w). This 
annot be done with previous approa
hes and illus-trates the strength of our method. Fig. 6 gives the details.



I (t; r; A; `)1. If r � t Then Return [r℄`+1 � (0`1)A2. It  ((0`1)A�10`+1 j [t℄`+1)� (0`1)A3. Return (It & 0(A�(r�t))(`+1)1(r�t)(`+1)) j ([r℄`+1 � (0`1)A�(r�t)0(r�t)(`+1))D (t; r; A; `)1. If r � t Then r t2. Dr  [r℄`+1 � (0`1)A � (0`1)A�10`+1 � (0`1)A3. Return (Dr << (t� r)(`+ 1)) j ([r℄`+1 � 0(A�(t�r))(`+1)(0`1)(t�r)(`+1))DI (t; r; A; `)1. I  I(0; r;A; `)2. D  D(A; r;A; `)3. Return (I << t(`+ 1)) j (D >> (A� t)(`+ 1))Fig. 5. Bit-parallel 
ode to obtain in
reasing, de
reasing, and de
reasing-then-in
reasing sequen
es. SUN n =10 100 1,000 10,000LCTS 0.00049 0.07334 14.6688 1,466.88CDP 0.00124 0.124173 12.4173 1,241.73Table 1. Exe
ution times (in se
) for our LCTS and CDP when running on Sun.6 ExperimentsWe 
ondu
ted a brief experiment on 
omparing the eÆ
ien
y between our LCTSmethod and an algorithm based on 
lassi
al dynami
 programming (CDB). Theexperiment was run on two distin
t 
omputers, the �rst of whi
h was a SunUltraSpar
-1 running SunOS 5.8 with 167 MHZ and 64 Mb RAM, and these
ond was a Pentium IV running Linux 2.4.10-4GB with 2 GHZ and 512 MBRAM.Both the 
odes for ourRangeLCTS algorithm and for the 
lassi
al dynami
programming were highly optimized. In the experiment we used LCS matrixes ofsize 10; 000�10; 000 (the 
ontent was pit
h values of musi
al data). We measuredthe CPU times spent by 1 iteration of the RangeLCTS (for the whole LCTSquery we then 
al
ulated the required total time for a given w) and by CDB.Moreover, sin
e both of the algorithms s
ale up well with n2, we were able toestimate the running times for distin
t ranges of n.Table 1 gives results when running the two observed algorithms when exe-
uted on Sun. Note that we are better for large n < 1; 000 (more pre
isely, upto n = 510). The reason is that our 
ounters have to maintain the 
urrent LCSvalues in w = 32 bits, whi
h 
an be as large as n.



RangeEDSear
h (P; T 1 : : : T h; k; C; A; `)1. Kp1 [k + 1℄`+1 � (0`1)A2. IDmask [ID℄`+1 � (0`1)A3. For i 2 0 : : : bk=ID
 Do Di  [i � ID℄`+1 � (0`1)A4. For i 2 k + 1 : : : jP j Do Di  Kp15. For j 2 1 : : : jT j Do6. oldD  07. For i 2 1 : : : jP j Do8. B  Kp19. For g 2 1 : : : h Do10. If T gj � Pi � C Then // In
reasing sequen
e11. B0  I(C � (T gj � Pi); k + 1; A; `)12. Else If T gj � Pi � C +A Then // De
reasing sequen
e13. B0  D((T gj � Pi)�C; k + 1; A; `)14. Else B0  DI((T gj � Pi)� C; k + 1; A; `)15. B  Min(B;B0)16. newD  Min(Min(B + oldD;Min(Di�1; Di) + IDmask);Kp1)17. oldD  Di; Di  newD18. If newD 6= Kp1 Then Report an o

urren
e ending at jEDSear
h (P; T 1 : : : T h; k; �)1. ` dlog2(2k + 3)e2. A bw=(`+ 1)
3. 
 ��4. While 
 � � Do5. RangeEDSear
h(P; T 1 : : : T h; k; 
; A; `)6. 
 
+AFig. 6. Sear
hing polyphoni
 text with weighted edit distan
e permitting any transpo-sition.We wanted also experiment on a Pentium IV due to its very optimizedpipelining, whi
h should 
ompromize the overhead in number of register opera-tions due to the bit-parallelism with the fa
t that we have broken the if-then-elsenature of the original re
urren
es.Table 2 shows that in the same setting (w = 32) with Pentium IV. This timewe are faster even for n = 10; 000, more pre
isely up to n = 65; 534. This 
oversvirtually all 
ases of interest.7 Con
lusionsIn this paper we have fo
used on musi
 retrieval. Sin
e we wanted to applythe general string mat
hing framework to this parti
ular appli
ation domain,we introdu
ed problems that are typi
al to musi
 retrieval but that are not



Pentium IV n =10 100 1,000 10,000LCTS 0.00004644 0.006912 1.3797 137.97CDP 0.000199 0.019929 1.9929 199.29Table 2. Exe
ution times for our LCTS and CDP when running on Pentium IV.taken into a

ount in the 
ombinatorial pattern mat
hing algorithms. The threedistinguishing requirements are (a) approximate sear
hing permitting missing,extra, and distorted notes, (b) transposition invarian
e, to allow mat
hing asequen
e that appears in a di�erent s
ale, and (
) handling polyphoni
 musi
.We introdu
ed a 
exible and eÆ
ient bit-parallel algorithm that takes intoa

ount all the requirements above, and obtains a speedup of O(w= log k) overthe 
lassi
al algorithms, where the 
omputer word has w bits and k is the errorthreshold allowed in the mat
h. Even though it is not the best solution when unit
ost distan
es are applied, it performs at a 
omparative level. Our algorithm,however, 
an be adapted to 
omplex 
ases where no 
ompeting method exists.Furthermore, these 
ases are the most interesting in terms of musi
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