
Flexible and EÆ
ient Bit-Parallel Te
hniques forTransposition Invariant Approximate Mat
hingin Musi
 RetrievalKjell Lemstr�om1 and Gonzalo Navarro?21 Department of Computer S
ien
e, University of Helsinki, Finland2 Department of Computer S
ien
e, University of Chileklemstro�
s.helsinki.fi, gnavarro�d

.u
hile.
lAbstra
t. Re
ent resear
h in musi
 retrieval has shown that a
ombi-natorial approa
h to the problem
ould be fruitful. Three distinguishingrequirements of this parti
ular problem are (a) approximate sear
hingpermitting missing, extra, and distorted notes, (b) transposition invari-an
e, to allow mat
hing a sequen
e that appears in a di�erent s
ale, and(
) handling polyphoni
 musi
. These
ombined requirements make up a
omplex
ombinatorial problem that is
urrently under resear
h. On theother hand, bit-parallelism has proved a powerful pra
ti
al tool for
om-binatorial pattern mat
hing, both
exible and eÆ
ient. In this paper weuse bit-parallelism to sear
h for several transpositions at the same time,and obtain speedups of O(w= log k) over the
lassi
al algorithms, wherethe
omputer word has w bits and k is the error threshold allowed inthe mat
h. Although not the best solution for the easier approximationmeasures, we show that our te
hnique
an be adapted to
omplex
aseswhere no
ompeting method exists, and that are the most interesting interms of musi
 retrieval.1 Introdu
tionCombinatorial pattern mat
hing with its many appli
ation domains have been ana
tive resear
h �eld already for several de
ades. One of the latest su
h domainsis musi
 retrieval. Indeed, musi

an be en
oded as sequen
es of symbols, i.e. asstrings. At a rudimentary level this is done by taking into a

ount ex
lusively theorder of the starting times of the musi
al events (i.e., the note ons) together withtheir pit
h information (i.e. the frequen
y, the per
eived height of the musi
alevent). On a more
ompli
ated level one
an use several distin
t attributes forea
h of the events (see e.g. [1, 9℄). Most of the interesting musi
al attributes usedin su
h symboli
 representations are dire
tly available in MIDI format [13℄ whi
his a
ommonly used
ompa
t symboli
 representation.A straightforward appli
ation of general string mat
hing te
hniques on sym-boli
 musi
 representation, however, does not suÆ
e for musi
ally pertinentmat
hing queries; musi
 has spe
ial features that have not been
onsidered in? Partially supported by Fonde
yt Grant 1-020831.

general string mat
hing te
hniques. Firstly, musi
 is often polyphoni
, i.e., thereare several events o

urring simultaneously (in a
ase where there exists no si-multaneous events the musi
 is said to be monophoni
). These simultaneousevents may have a
olle
tive meaning and, therefore, the polyphony has to bepreserved and taken into a

ount in the mat
hing pro
ess. For instan
e, a typi
almusi
 retrieval, or sear
hing problem, is the distributed string mat
hing problem:given a set t (
alled a text or a target) of h strings (ea
h representing a voi
e)ti = ti1; : : : ; tin; i 2 f1 : : : hg, for some
onstant h and a pattern p = p1; : : : ; pm,we say that p o

urs at position j of t if p1 = ti1j ; p2 = ti2j+1; : : : ; pm = timj+m�1for some fi1; : : : ; img 2 f1 : : : hg. The problem has been studied in [7, 10℄.Se
ondly, western people tend to listen musi
 analyti
ally by observing theintervals between the
onse
utive pit
h values more than the a
tual pit
h valuesthemselves: A melody performed in two distin
t pit
h levels is per
eived andre
ognized as the same regardless of the performed pit
h level. This leads tothe
on
ept of transposition invarian
e. Formally, the transposition invariantdistributed string mat
hing problem is as follows. Given a monophoni
 pattern pand a polyphoni
 target t of h voi
es, ti = ti1 � � � tin; i 2 f1; : : : ; hg, the task is to�nd all the js su
h that p1 = ti1j +
; p2 = ti2j+1 +
; : : : ; pm = timj+m�1 +
 holds,for some
onstant
 and fi1; : : : ; img 2 f1; : : : ; hg [10℄.Thirdly, real musi
 is often de
orated, i.e., it may
ontain gra
e notes or orna-mentations, for instan
e. The
onventional pro
edure to over
ome this problemis to allow gaps between the
onse
utive mat
hing elements in found o

ur-ren
es [2, 6, 16℄. The
hoi
es are either to use parametrized gapping (as in [2, 6℄)or arbitrary gapping (as in [16℄). As we aim at a mat
hing method that �nds allthe o

urren
es (although it may also �nd spurious ones), we will use the latterapproa
h. Instead of using the geometri
 approa
h of Wiggins et al. [16℄, wewill use the string mat
hing framework and apply the indel distan
e (the dualof LCS-mat
hing) [5℄. We
laim that it is a more fruitful approa
h not to dropany o

urren
es although in some situations it may lead to a large number ofspurious o

urren
es. The set of found o

urren
es may then be post-pro
essedby musi
ally motivated �lters, for instan
e by those dis
ussed in [12℄.Fourthly, in a typi
al transposition invariant distributed string mat
hing ap-pli
ation the query pattern is given by humming. This kind of an appli
ationis sometimes referred as "WYHIWYG" (What You Hum Is What You Get) or"query by humming". In su
h a
ase we may expe
t that all the events in thehummed query pattern are relevant, but its (absolute) pit
h values may be some-what distorted. This distortion has the form of Gaussian distribution with themean value of the
orre
t (desired) pit
h and with a relatively small varian
e.Therefore, in a WYHIWYG appli
ation, we would like to enable some toleran
efor su
h errors. Here we
onsider two solutions for this problem, the �rst ofwhi
h is the so-
alled Æ-mat
hing [3℄. The pattern p = p1 � � � pm is said to have aÆ-mat
h in t1 � � � tn if pi 2 [tj+i�1�Æ; tj+i�1+Æ℄ for all i = 1; : : : ;m. Although thisapproa
h works reasonably well in pra
ti
e, it is musi
ally more appropriate topenalize an error a

ording to how mu
h the pit
h di�ers from the desired one

than to allow any distortion as long it is within the allowed toleran
e. Therefore,we will use a more general distan
e fun
tion whi
h implements the
laim above.Although all the problems given above have been studied, no
urrent solution
an solve them all. Most relevantly, the bit-parallel algorithm by Cro
hemore etal. [4℄
an
ompute the LCS in O(m2=w) time, where w denotes the size of the
omputer word in bits. Moreover, as we dis
uss in Se
tion 5, the algorithm
an beextended straightforwardly to deal with polyphony, transpositions and Æ mat
h-ing in O(h�m2=w) time (here � denotes the number of possible transpositions).Furthermore, the same
omplexity is obtainable with the unit-
ost edit distan
eby using other bit-parallel algorithms [14, 8℄.Our solution is also based on bit-parallelism, whi
h is well-known for its
ex-ibility. Our transposition invariant Æ-mat
hing algorithm for distributed stringmat
hing runs in time O(�m2 log(m)=w). Noteworthy, it is
apable of apply-ing more general and musi
ally pertinent distan
e fun
tions than the previousrelated solutions, e.g. those that are not based on unit
osts.2 PreliminariesLet us start this se
tion by a brief introdu
tion to string
ombinatori
s. Let� be a �nite set of symbols,
alled an alphabet, and � = j�j. Then any A =(a1; a2; : : : ; am) where ea
h ai is a symbol in �, is a string over �. Usually wewrite A = a1 � � � am. The length of A is jAj = m. The string of length 0 is
alledthe empty string and denoted �. The set of strings of length i over � is denotedby �i, and the set of all strings over � by ��. If a string A is of form A = ��
,where �; �;
 2 ��, we say that � is a fa
tor (substring) of A. Furthermore, � is
alled a pre�x of A, and
 a suÆx of A. A string A0 is a subsequen
e of A if it
anbe obtained from A by deleting zero or more symbols, i.e., A0 = ai1ai2 � � �aim ,where i1 : : : im is an in
reasing sequen
e of indi
es in A.To de�ne a distan
e between strings over ��, one should �rst �x the setof lo
al transformations (editing operations) T � �� � �� and a non-negativevalued
ost fun
tion W that gives for ea
h transformation t in T a
ost W (t).Ea
h t in T is a pair of strings t = (�; �). Observing su
h a t as a rewriting rule,suggests a notation for t, �! � (� is repla
ed by � within a string
ontaining �),whi
h we will use below. For
onvenien
e, if �! � 62 T , then W (�! �) =1.The de�nition of the distan
e is based on the
on
ept of tra
e, whi
h givesa
orresponden
e between two strings. Formally, a tra
e between two strings Aand B over ��, is formed by splitting A and B into equally many fa
tors:� = (�1; �2; : : : ; �p;�1; �2; : : : ; �p);where A = �1�2 � � ��p, and B = �1�2 � � ��p, and ea
h �i; �i (but not both) maybe an empty string over �. Thus, string B
an be obtained from A by steps�1 ! �1; �2 ! �2; : : : ; �p ! �p.The
ost of the tra
e � is W (�) = W (�1 ! �1) + � � � +W (�p ! �p). Thedistan
e between A and B, denoted DT;W (A;B), is de�ned as the minimum
ostover all possible tra
es.

The general de�nition above indu
es, for instan
e, the following well-known distan
e measures. In unit-
ost edit distan
e (or Levenshtein dis-tan
e), DL(A;B), the allowed lo
al transformations are of the forms a ! b(substitution); a ! � (deletion), and � ! a (insertion), where a; b 2 �. The
osts are given as W (a ! a) = 0 for all a, W (a ! b) = 1 for all a 6= b, andW (a! �) =W (�! a) = 1 for all a. In Hamming distan
e, DH(A;B), the onlyallowed lo
al transformations are of form a! b where a and b are any membersof �, with
ost W (a ! a) = 0 and W (a ! b) = 1, for a 6= b. Finally, the indeldistan
e, DLCS(A;B), is de�ned as Levenshtein distan
e without the possibilityto use substitutions.It is well-known that the straightforward
omputation of these distan
es isby using re
urren
es like the following used for DLCS(A;B):di;0 = i; d0;j = j;dij = min8<:di�1;j + 1di;j�1 + 1di�1;j�1; if ai = bj :The evaluation of su
h a re
urren
e is done by dynami
 programming, where thedistan
es between the pre�xes of A and B are tabulated. Ea
h
ell dij of thedistan
e table (dij) stores the distan
e between a1 � � �ai and b1 � � � bj (0 � i � m,0 � j � n) and (dij) is evaluated by pro
eeding row-by-row or
olumn-by-
olumnusing the re
urren
e. Finally, dm;n gives the distan
e, in this
ase DLCS(A;B).The dual
ase of DLCS(A;B) is the
al
ulation of the longest
ommon sub-sequen
e of two strings A and B, or l
s(A;B) for short. The length of l
s(A;B),denoted by LCS(A;B), is
omputed by the re
urren
e:LCSi;0 0; LCS0;j 0; (1)LCSi+1;j+1 if ai+1 = bj+1 then 1 + LCSi;jelse max(LCSi;j+1; LCSi+1;j):Now it is rather
lear that LCS(A;B) = jAj+jBj�DLCS(A;B)2 .If we want to
al
ulate the length of the longest
ommon transposition in-variant subsequen
e, LCTS(A;B), it may be done by
al
ulating LCS
(A;B)by all the possible 2� + 1 transpositions, and sele
t the transposition
 whi
hgives the maximum [11℄. LCS
(A;B) is de�ned just like LCS(A;B) ex
ept thatthere is a mat
h when ai+1 +
 = bj+1. Our idea is to simulate the
omputationof the (d
ij) tables, for
 = [��; �℄, so that the aligned dij values are
omputedsimultaneously in a bit ve
tor, as long as they �t in the used
omputed word ofw bits (see Fig. 1). Typi
al sizes of alphabet are, e.g., 88 (the number of keys inpiano) and 127 (the number of MIDI pit
h values), and 32 or 64 for the size ofthe
urrent
omputer word. In pra
ti
e, we need 3{8 bit-ve
tors for ea
h dij .Finally, the weighted edit distan
e that we use to make a distin
tion a

ordingto the amount of the lo
al distortion is as follows:EDi;0 i� ID; ED0;j j � ID; (2)EDi+1;j+1 min(jai+1 � bj+1j+EDi;j ; ID +EDi;j+1; ID +EDi+1;j);

0c=

σc=

−σc=

m

n

2σ+1

ij(d)σ

ij d σ

ij d 0

Fig. 1. We
al
ulate in parallel 2� + 1 (dij) tables. The idea is to present the alignednodes d��ij : : : d�ij with a single bit-ve
tor (as long as they �t in a
omputer word).where ID is a
onstant used for indel operations.3 A Bit-Parallel AlgorithmWe present a speedup te
hnique for the
omputation of the 2�+1 LCS matri
es.We resort to bit-parallelism, that is, to storing several values inside the same
omputer word. For this sake we will denote the bitwise and operation as \&",the or as \j", and the bit
omplementation as \�". Shifting i positions to the left(right) is represented as \<< i" (\>> i"), where the bits that fall are dis
ardedand the new bits that enter are zero. We
an also perform arithmeti
 operationsover the
omputer words. We use exponentiation to denote bit repetition, e.g.031 = 0001, and write the most signi�
ant bit as the leftmost bit. When wewrite [x℄` we mean the integer x represented in ` bits.Sin
e the values of the LCS matrix are in the range f0 : : :min(jaj; jbj)g,we need ` = dlog2(min(jaj; jbj) + 1)e bits to store them. This means that in a
omputer word of w bits we
an store bw=`

ounters. For reasons that will bemade
lear soon, we will in fa
t need `+1 bits per
ounter, where the highest bitwill always be zero, and hen
e we will be able to store A = bw=(`+1)

ounters.We will divide the pro
ess of
omputing LCS
(a; b) for every
 2 � intod(2�+1)=Ae separate bit-parallel
omputations, ea
h for A
ontiguous
 values.From now on, let us
onsider that we are
omputing in parallel LCS
(a; b) for
 2 fC : : : C + A� 1g.

The �rst problem to bit-parallelize Eq. (1) is its if-then-else stru
ture. For agiven
, if ai+1+
 = bj+1 we have to use the value 1+LCS
i;j , otherwise we haveto use max(LCS
i+1;j ; LCS
i;j+1). We solve this by using a bit-mask B of lengthA(`+1), whi
h should have all 1's in the
 values for whi
h ai+1+
 = bj+1, andzeros elsewhere. This means that we have 1's only for the value
 = bj+1� ai+1.It is possible that this
 value is outside our
urrent range fC : : : C +A� 1g. Sothe
omputation of B is as follows:B if C � bj+1 � ai+1 < C +A� then 0(A+C�1�(bj+1�ai+1))(`+1) 1(`+1) 0(bj+1�ai+1�C)(`+1)else 0A(`+1)On
e we have
omputed B, we want to take the value 1 + LCS
i;j for the
values where B has 1's and the value max(LCS
i+1;j ; LCS
i;j+1) elsewhere. Forthe former we need to add 1 to all the
ounters at the same time, whi
h iseasily a
hieved by adding (0`1)A. For the latter we need to
ompute max() inbit-parallel. Let us
all Max this fun
tion. Hen
e the value we want isLCSi+1;j+1 (B & (LCSi;j +(0`1)A)) j (� B &Max(LCSi+1;j ; LCSi;j+1))To
ompute Max(X;Y), where X and Y
ontain several
ounters prop-erly aligned, we need the aforementioned extra highest bit per
ounter, alwayszero. We pre
ompute the bit mask J = (10`)A and perform the operationF ((X j J) � Y) & J . The result is that, in F , ea
h highest bit is set i�the
ounter of X is larger than that of Y . We now
ompute F F � (F >> `),so that the
ounters where X is larger than Y have all their bits set in F ,and the others have all the bits in zero. Finally, we
hoose the maxima asMax(X;Y) (F & X) j (� F & Y). Also, we easily obtain Min(X;Y) (F & Y) j (� F & X). Fig. 2 gives the
ode. These methods are due to [15℄.Fig. 3 shows RangeLCTS, the bit-parallel algorithm for a range of
ountersC : : : C + A � 1. Using this algorithm we traverse all the
 2 � values and
ompute LCTS(a; b) = max
2��:::� LCS
(a; b). This is done by LCTS.Let us now analyze the algorithm. LCTS runs (2� + 1)=A iterations ofRangeLCTS plus a minimization over 2� + 1 values. In turn, RangeLCTStakes O(jajjbj) time. Sin
e A = w= log2min(jaj; jbj)(1 + o(1)), the algorithmis O(�jajjbj log(min(jaj; jbj))=w) time. If jaj = jbj = m, the algorithm isO(�m2 log(m)=w) time, whi
h represents a speedup of
(w= logm) over thenaive O(�m2) time algorithm.It is possible to adapt this algorithm to
ompute Æ-LCTS(a; b), where weassume that two
hara
ters mat
h if their di�eren
e does not ex
eed Æ. Thisis arranged at no extra
ost by
onsidering that there is a mat
h wheneverbj+1 � ai+1 � Æ �
 � bj+1 � ai+1 + Æ. The only
hange needed in our algorithmis in lines 5{7 of RangeLCTS, whi
h should be
ome:low max(C; bj � ai � Æ)high min(C +A� 1; bj � ai + Æ)If low � high Then

Max (X; Y; `)1. J (10`)A2. F ((X j J)� Y) & J3. F F � (F >> `)4. Return (F & X) j (� F & Y)Min (X; Y; `)1. J (10`)A2. F ((X j J)� Y) & J3. F F � (F >> `)4. Return (F & Y) j (� F & X)Fig. 2. Bit-parallel
omputation of maximum and minimum between two sets of
oun-ters aligned in a
omputer word. In pra
ti
e J is pre
omputed.B 0(A+C�1�high)(`+1) 1(high�low+1)(` +1)0(low�C)(`+1)Else B 0A(`+1)4 Text Sear
hingThe above pro
edure
an be adapted to sear
h for a pattern P of length m in atext T of length n under the indel distan
e, permitting transposition invarian
e.The goal is, given a threshold value k, report all text positions j su
h thatd(P; Tj0 :::j) � k for some j0, where d is the indel distan
e (number of
hara
terinsertions and deletions needed to make two strings equal).Additionally, we
an sear
h polyphoni
 text, where there are a
tually hparallel texts T 1 : : : T h, and text position j mat
hes any
hara
ter in the setfT 1j : : : T hj g.Let us
onsider a new re
urren
e for sear
hing. We start with a
olumnDi = iand update D to D0 for every new text position j. For every j where Dm � kwe report text position j as the end position of a re
urren
e. The formula forsear
hing with indel distan
e using transposition
 is as follows:D0
0 0D0
i+1 if Pi+1 +
 2 fT 1j : : : T hj g then D
i else 1 +min(D0
i ; D
i+1)where we note that we have suppressed
olumn number j, as we will speak aboutthe
urrent
olumn (D0 or newD) built using the previous
olumn (D or oldD).

RangeLCTS (a; b; C; A; `)1. For i 2 0 : : : jaj Do2. For j 2 0 : : : jbj Do3. If i = 0 _ j = 0 Then LCSi;j 0A(`+1)4. Else5. If C � bj � ai < C +A Then6. B 0(A+C�1�(bj�ai))(`+1) 1(`+1) 0(bj�ai�C)(`+1)7. Else B 0A(`+1)8. LCSi;j (B & (LCSi�1;j�1 + (0`1)A))j (� B & Max(LCSi�1;j ; LCSi;j�1)10. Return LCSjaj;jbjLCTS (a; b; �)1. ` dlog2(min(jaj; jbj) + 1)e2. A bw=(`+ 1)
3.
 ��4. Max 05. While
 � � Do6. V RangeLCTS(a; b;
; A; `)7. For t 2
 : : :
+A� 1 Do8. Max max(Max; (V >> (t�
)(`+ 1)) & 0(A�1)(`+1)01`)9.

+A10. Return MaxFig. 3. Computing LCTS(a; b) using bit-parallelism. RangeLCTS
omputesLCS
(a; b) for every
 2 C : : : C+A�1 in bit-parallel, and returns a bit mask
ontainingLCS
(a; b) for all those
 values.Additionally, we note that, when a value is larger than k, all we need toknow is that it is larger than k, so we store k + 1 for those values in order torepresent smaller numbers. Hen
e the number of bits needed by a
ounter is` = dlog2(k + 2)e.The new re
urren
e requires the same tools we have already developed forthe LCS
omputation, ex
ept for the polyphony issue and for the k + 1 limit.Polyphony
an be a

ommodated by or-ing the B masks
orresponding to thedi�erent text
hara
ters at position j. The k + 1 limit has to be taken
are ofonly when we add 1 in the \else"
lause of the re
urren
e.The typi
al way to solve this requires one extra bit for the
ounters. Weprefer instead to reuse our result for bit-parallel minimum. The re
urren
e
anbe rewritten as follows, whi
h guarantees that any value larger than k stays atk + 1.D0
0 0D0
i+1 if Pi+1 +
 2 fT 1j : : : T hj g then D
i else 1 +min(D0
i ; D
i+1; k)

Finally, we have to report every text position where Dm � k. In our setting,this means that any
ounter di�erent from k+1 makes the
urrent text positionto be reported.Fig. 4 shows RangeIDSear
h, whi
h sear
hes for a range of transpositionsthat �t in a
omputer word. The general algorithm, IDSear
h, simply appliesthe former pro
edure to su

essive ranges. The algorithm is O(h�mn log(k)=w)time, whi
h represents a speedup of O(w= log k) over the
lassi
al solution.RangeIDSear
h (P; T 1 : : : T h; k; C; A; `)1. K [k℄`+1 � (0`1)A2. Kp1 K + (0`1)A3. For i 2 0 : : : k Do Di [i℄`+1 � (0`1)A4. For i 2 k + 1 : : : jP j Do Di Kp15. For j 2 1 : : : jT j Do6. oldD 07. For i 2 1 : : : jP j Do8. B 0A(`+1)9. For g 2 1 : : : h Do10. If C � T gj � Pi < C +A Then11. B B j 0(A+C�1�(Tgj �Pi))(`+1) 1(`+1) 0((Tgj �Pi)�C)(`+1)12. newD (B & oldD) j (� B & (Min(Min(Di�1 ; Di); K) + (0`1)A))13. oldD Di; Di newD14. If newD 6= Kp1 Then Report an o

urren
e ending at jIDSear
h (P; T 1 : : : T h; k; �)1. ` dlog2(k + 1)e2. A bw=(`+ 1)
3.
 ��4. While
 � � Do5. RangeIDSear
h(P; T 1 : : : T h; k;
; A; `)6.

+AFig. 4. Sear
hing polyphoni
 text with indel distan
e permitting any transposition.5 A More General Distan
e Fun
tionAlthough we have obtained important speedups with respe
t to
lassi
al algo-rithms, it turns out that there exist bit-parallel te
hniques that
an
omputethe LCS in O(m2=w) time [4℄. Extending these algorithms naively to deal withpolyphony, transpositions and Æ mat
hing yields O(h�m2=w) time. Although ithas not been done, we believe that it is not hard to
onvert these algorithmsinto sear
h algorithms for indel distan
e at O(h�mn=w)
ost, whi
h is better

than ours by an O(log k) fa
tor. The same times
an be obtained if we use editdistan
e instead of indel distan
e [14, 8℄.The strength of our approa
h resides in that we are using bit-parallelism in adi�erent dimension: rather than
omputing several
ells of a matrix in parallel,we
ompute several transpositions in parallel, while the
ells are
omputed oneby one. This gives us extra
exibility, be
ause we
an handle
omplex re
ur-ren
es among
ells as long as we
an do several similar operations in parallel.Parallelizing the work inside the matrix is more
omplex, and has been a
hievedonly for unit-
ost distan
es. As explained before, a weighted edit distan
e wherethe
ost to
onvert a note into another is proportional to the absolute di�eren
eamong the notes is of interest in musi
 retrieval. We demonstrate the
exibilityof our approa
h by addressing the
omputation of the weighted edit distan
edetailed in Eq. (2). Whi
h follows is the sear
h version for a given transposition
 in polyphoni
 text, bounded by k + 1.D0
0 0D0
i+1 min(ming21:::h jPi+1 +
� T gj j+D
i�1; ID +D0
i ; ID +D
i+1; k + 1)There are two
hallenges to bit-parallelize this re
urren
e. The �rst is thatensuring that we never surpass k + 1 is more diÆ
ult, be
ause the in
rementsare not only by 1. We
hoose to
ompute the full values and then take minimumwith k+1, as suggested by the re
urren
e. However, the intermediate values
anbe larger. Sin
e ID � k (otherwise the problem is totally di�erent), the latterterms are bounded by 2k + 1. We will manage to keep also the �rst term of theminimization below 2k+2. This means that we need dlog2(2k+3)e bits for our
ounters.The se
ond
hallenge is how to
ompute jPi+1 +
� T gj j in bit-parallel for aset of
onse
utive
 values, with the added trouble of not ex
eeding k+1 in any
ounter. Depending on the range C : : : C+A�1 of transpositions we are
onsid-ering, these values form an in
reasing, de
reasing, or de
reasing-then-in
reasingsequen
e. For shortness, we will use [x℄ to denote [x℄`+1 in this dis
ussion. Anin
reasing sequen
e of the form It = [t+A�1℄ : : : [t+1℄ [t℄, t � 0, is obtained sim-ply as It (0`1)A�1[t℄�(0`1)A. A version bounded by r � t is obtained as Irt (It & 0(A�(r�t))(`+1)1(r�t)(`+1)) j ([r℄A�(r�t)0(r�t)(`+1)). Similarly, a de
reasingsequen
e Dt = [t�A+1℄ : : : [t�1℄ [t℄ is obtained as Dt [t℄A�I0. The boundedversion is obtained similarly as for in
reasing sequen
es. Finally, a de
reasing-then-in
reasing sequen
e DIt = [A� t�1℄ [A� t�2℄ : : : [2℄ [1℄ [0℄ [1℄ : : : [t�1℄ [t℄is obtained as DIt = (I0 << t(`+ 1)) j (DA >> (A � t)(` + 1)). The boundedversionDIr is obtained similarly, using Ir andDr instead. We
ould even a

om-modate substitution
osts of the form jai � bj j=q for integer q by multiplying by(0q(`+1)�11)A instead of by (0`1)A. Fig. 5 gives the
ode to build these sequen
es.It be
omes
lear that we
an perform approximate sear
hing using this gen-eral distan
e fun
tion, permitting transposition invarian
e and polyphony, inO(h�mn log(k)=w). This
annot be done with previous approa
hes and illus-trates the strength of our method. Fig. 6 gives the details.

I (t; r; A; `)1. If r � t Then Return [r℄`+1 � (0`1)A2. It ((0`1)A�10`+1 j [t℄`+1)� (0`1)A3. Return (It & 0(A�(r�t))(`+1)1(r�t)(`+1)) j ([r℄`+1 � (0`1)A�(r�t)0(r�t)(`+1))D (t; r; A; `)1. If r � t Then r t2. Dr [r℄`+1 � (0`1)A � (0`1)A�10`+1 � (0`1)A3. Return (Dr << (t� r)(`+ 1)) j ([r℄`+1 � 0(A�(t�r))(`+1)(0`1)(t�r)(`+1))DI (t; r; A; `)1. I I(0; r;A; `)2. D D(A; r;A; `)3. Return (I << t(`+ 1)) j (D >> (A� t)(`+ 1))Fig. 5. Bit-parallel
ode to obtain in
reasing, de
reasing, and de
reasing-then-in
reasing sequen
es. SUN n =10 100 1,000 10,000LCTS 0.00049 0.07334 14.6688 1,466.88CDP 0.00124 0.124173 12.4173 1,241.73Table 1. Exe
ution times (in se
) for our LCTS and CDP when running on Sun.6 ExperimentsWe
ondu
ted a brief experiment on
omparing the eÆ
ien
y between our LCTSmethod and an algorithm based on
lassi
al dynami
 programming (CDB). Theexperiment was run on two distin
t
omputers, the �rst of whi
h was a SunUltraSpar
-1 running SunOS 5.8 with 167 MHZ and 64 Mb RAM, and these
ond was a Pentium IV running Linux 2.4.10-4GB with 2 GHZ and 512 MBRAM.Both the
odes for ourRangeLCTS algorithm and for the
lassi
al dynami
programming were highly optimized. In the experiment we used LCS matrixes ofsize 10; 000�10; 000 (the
ontent was pit
h values of musi
al data). We measuredthe CPU times spent by 1 iteration of the RangeLCTS (for the whole LCTSquery we then
al
ulated the required total time for a given w) and by CDB.Moreover, sin
e both of the algorithms s
ale up well with n2, we were able toestimate the running times for distin
t ranges of n.Table 1 gives results when running the two observed algorithms when exe-
uted on Sun. Note that we are better for large n < 1; 000 (more pre
isely, upto n = 510). The reason is that our
ounters have to maintain the
urrent LCSvalues in w = 32 bits, whi
h
an be as large as n.

RangeEDSear
h (P; T 1 : : : T h; k; C; A; `)1. Kp1 [k + 1℄`+1 � (0`1)A2. IDmask [ID℄`+1 � (0`1)A3. For i 2 0 : : : bk=ID
 Do Di [i � ID℄`+1 � (0`1)A4. For i 2 k + 1 : : : jP j Do Di Kp15. For j 2 1 : : : jT j Do6. oldD 07. For i 2 1 : : : jP j Do8. B Kp19. For g 2 1 : : : h Do10. If T gj � Pi � C Then // In
reasing sequen
e11. B0 I(C � (T gj � Pi); k + 1; A; `)12. Else If T gj � Pi � C +A Then // De
reasing sequen
e13. B0 D((T gj � Pi)�C; k + 1; A; `)14. Else B0 DI((T gj � Pi)� C; k + 1; A; `)15. B Min(B;B0)16. newD Min(Min(B + oldD;Min(Di�1; Di) + IDmask);Kp1)17. oldD Di; Di newD18. If newD 6= Kp1 Then Report an o

urren
e ending at jEDSear
h (P; T 1 : : : T h; k; �)1. ` dlog2(2k + 3)e2. A bw=(`+ 1)
3.
 ��4. While
 � � Do5. RangeEDSear
h(P; T 1 : : : T h; k;
; A; `)6.

+AFig. 6. Sear
hing polyphoni
 text with weighted edit distan
e permitting any transpo-sition.We wanted also experiment on a Pentium IV due to its very optimizedpipelining, whi
h should
ompromize the overhead in number of register opera-tions due to the bit-parallelism with the fa
t that we have broken the if-then-elsenature of the original re
urren
es.Table 2 shows that in the same setting (w = 32) with Pentium IV. This timewe are faster even for n = 10; 000, more pre
isely up to n = 65; 534. This
oversvirtually all
ases of interest.7 Con
lusionsIn this paper we have fo
used on musi
 retrieval. Sin
e we wanted to applythe general string mat
hing framework to this parti
ular appli
ation domain,we introdu
ed problems that are typi
al to musi
 retrieval but that are not

Pentium IV n =10 100 1,000 10,000LCTS 0.00004644 0.006912 1.3797 137.97CDP 0.000199 0.019929 1.9929 199.29Table 2. Exe
ution times for our LCTS and CDP when running on Pentium IV.taken into a

ount in the
ombinatorial pattern mat
hing algorithms. The threedistinguishing requirements are (a) approximate sear
hing permitting missing,extra, and distorted notes, (b) transposition invarian
e, to allow mat
hing asequen
e that appears in a di�erent s
ale, and (
) handling polyphoni
 musi
.We introdu
ed a
exible and eÆ
ient bit-parallel algorithm that takes intoa

ount all the requirements above, and obtains a speedup of O(w= log k) overthe
lassi
al algorithms, where the
omputer word has w bits and k is the errorthreshold allowed in the mat
h. Even though it is not the best solution when unit
ost distan
es are applied, it performs at a
omparative level. Our algorithm,however,
an be adapted to
omplex
ases where no
ompeting method exists.Furthermore, these
ases are the most interesting in terms of musi
 retrieval.Referen
es1. E. Cambouropoulos. A general pit
h interval representation: Theory and appli
a-tions. Journal of New Musi
 Resear
h, 25:231{251, 1996.2. M. Cro
hemore, C. S. Iliopoulos, Y. J. Pinzon, and W. Rytter. Finding motifswith gaps. In First International Symposium on Musi
 Information Retrieval (IS-MIR'2000), Plymouth, MA, 2000.3. M. Cro
hemore, C.S. Iliopoulos, G. Navarro, and Y. Pinzon. A bit-parallel suÆxautomaton approa
h for (Æ;
)-mat
hing in musi
 retrieval. To appear in Pro
.SPIRE 2003.4. M. Cro
hemore, C.S. Iliopoulos, Y.J. Pinzon, and J.F. Reid. A fast and pra
ti
albit-ve
tor algorithm for the longest
ommon subsequen
e problem. InformationPro
essing Letters, 80(6):279{285, 2001.5. M. Cro
hemore and W. Rytter. Text Algorithms. Oxford University Press, 1994.6. M.J. Dovey. A te
hnique for \regular expression" style sear
hing in polyphoni
musi
. In the 2nd Annual International Symposium on Musi
 Information Retrieval(ISMIR'2001), pages 179{185, Bloomington, IND, O
tober 2001.7. J. Holub, C.S. Iliopoulos, and L. Mou
hard. Distributed string mat
hing using�nite automata. Journal of Automata, Languages and Combinatori
s, 6(2):191{204, 2001.8. H. Hyyr�o and G. Navarro. Faster bit-parallel approximate string mat
hing. InPro
. 13th Annual Symposium on Combinatorial Pattern Mat
hing (CPM 2002),pages 203{224, 2002. LNCS 2373.9. K. Lemstr�om and P. Laine. Musi
al information retrieval using musi
al parameters.In Pro
eedings of the 1998 International Computer Musi
 Conferen
e, pages 341{348, Ann Arbor, MI, 1998.10. K. Lemstr�om and J. Tarhio. Transposition invariant pattern mat
hing for multi-tra
k strings. Nordi
 Journal of Computing, 2003. (to appear).

11. K. Lemstr�om and E. Ukkonen. In
luding interval en
oding into edit distan
e basedmusi

omparison and retrieval. In Pro
eedings of the AISB'2000 Symposium onCreative & Cultural Aspe
ts and Appli
ations of AI & Cognitive S
ien
e, pages53{60, Birmingham, April 2000.12. D. Meredith, K. Lemstr�om, and G.A. Wiggins. Algorithms for dis
overing repeatedpatterns in multidimensional representations of polyphoni
 musi
. Journal of NewMusi
 Resear
h, 31(4):321{345, 2002.13. MIDI Manufa
turers Asso
iation, Los Angeles, California. The Complete DetailedMIDI 1.0 Spe
i�
ation, 1996.14. G. Myers. A fast bit-ve
tor algorithm for approximate string mat
hing based ondynami
 programming. Journal of the ACM, 46(3):395{415, 1999. Earlier versionin Pro
. CPM'98, LNCS 1448.15. W. Paul and J. Simon. De
ision trees and random a

ess ma
hines. In Pro
. Int'l.Symp. on Logi
 and Algorithmi
, pages 331{340, Zuri
h, 1980.16. G.A. Wiggins, K. Lemstr�om, and D. Meredith. Sia(M): A family of eÆ
ientalgorithms for translation-invariant pattern mat
hing in multidimensional datasets.(submitted).

