Flexible and Efficient Bit-Parallel Techniques for
Transposition Invariant Approximate Matching
in Music Retrieval

Kjell Lemstrom! and Gonzalo Navarro*?

! Department of Computer Science, University of Helsinki, Finland

2 Department of Computer Science, University of Chile
klemstro@cs.helsinki.fi, gnavarro@dcc.uchile.cl

Abstract. Recent research in music retrieval has shown that a combi-
natorial approach to the problem could be fruitful. Three distinguishing
requirements of this particular problem are (a) approximate searching
permitting missing, extra, and distorted notes, (b) transposition invari-
ance, to allow matching a sequence that appears in a different scale, and
(¢) handling polyphonic music. These combined requirements make up a
complex combinatorial problem that is currently under research. On the
other hand, bit-parallelism has proved a powerful practical tool for com-
binatorial pattern matching, both flexible and efficient. In this paper we
use bit-parallelism to search for several transpositions at the same time,
and obtain speedups of O(w/ log k) over the classical algorithms, where
the computer word has w bits and k is the error threshold allowed in
the match. Although not the best solution for the easier approximation
measures, we show that our technique can be adapted to complex cases
where no competing method exists, and that are the most interesting in
terms of music retrieval.

1 Introduction

Combinatorial pattern matching with its many application domains have been an
active research field already for several decades. One of the latest such domains
is music retrieval. Indeed, music can be encoded as sequences of symbols, i.e. as
strings. At a rudimentary level this is done by taking into account exclusively the
order of the starting times of the musical events (i.e., the note ons) together with
their pitch information (i.e. the frequency, the perceived height of the musical
event). On a more complicated level one can use several distinct attributes for
each of the events (see e.g. [1,9]). Most of the interesting musical attributes used
in such symbolic representations are directly available in MIDI format [13] which
is a commonly used compact symbolic representation.

A straightforward application of general string matching techniques on sym-
bolic music representation, however, does not suffice for musically pertinent
matching queries; music has special features that have not been considered in

* Partially supported by Fondecyt Grant 1-020831.

general string matching techniques. Firstly, music is often polyphonic, i.e., there
are several events occurring simultaneously (in a case where there exists no si-
multaneous events the music is said to be monophonic). These simultaneous
events may have a collective meaning and, therefore, the polyphony has to be
preserved and taken into account in the matching process. For instance, a typical
music retrieval, or searching problem, is the distributed string matching problem:
given a set t (called a text or a target) of h strings (each representing a wvoice)
t'=1t{,...,t,, i€ {l...h}, for some constant h and a pattern p = p1,...,pm,
we say that p occurs at position j of ¢ if p; = t}l,pg = t}’j_l, e Pm = t}’j_mil
for some {i1,...,4,} € {1...h}. The problem has been studied in [7,10].

Secondly, western people tend to listen music analytically by observing the
intervals between the consecutive pitch values more than the actual pitch values
themselves: A melody performed in two distinct pitch levels is perceived and
recognized as the same regardless of the performed pitch level. This leads to
the concept of transposition invariance. Formally, the transposition invariant
distributed string matching problem is as follows. Given a monophonic pattern p
and a polyphonic target ¢ of h voices, t' =t} ---t! i € {1,...,h}, the task is to
find all the js such that p; =t + ¢, pp =t +¢,...,pm =%, + ¢ holds,
for some constant ¢ and {i1,...,i,} € {1,...,h} [10].

Thirdly, real music is often decorated, i.e., it may contain grace notes or orna-
mentations, for instance. The conventional procedure to overcome this problem
is to allow gaps between the consecutive matching elements in found occur-
rences [2, 6, 16]. The choices are either to use parametrized gapping (as in [2, 6])
or arbitrary gapping (as in [16]). As we aim at a matching method that finds all
the occurrences (although it may also find spurious ones), we will use the latter
approach. Instead of using the geometric approach of Wiggins et al. [16], we
will use the string matching framework and apply the indel distance (the dual
of LCS-matching) [5]. We claim that it is a more fruitful approach not to drop
any occurrences although in some situations it may lead to a large number of
spurious occurrences. The set of found occurrences may then be post-processed
by musically motivated filters, for instance by those discussed in [12].

Fourthly, in a typical transposition invariant distributed string matching ap-
plication the query pattern is given by humming. This kind of an application
is sometimes referred as "WYHIWYG” (What You Hum Is What You Get) or
”query by humming”. In such a case we may expect that all the events in the
hummed query pattern are relevant, but its (absolute) pitch values may be some-
what distorted. This distortion has the form of Gaussian distribution with the
mean value of the correct (desired) pitch and with a relatively small variance.
Therefore, in a WYHIWYG application, we would like to enable some tolerance
for such errors. Here we consider two solutions for this problem, the first of
which is the so-called d-matching [3]. The pattern p = p; - - - py, is said to have a
d-matchin ty - -, if p; € [tj3i-1—0,tj4i_1+0] for all ¢ = 1, ..., m. Although this
approach works reasonably well in practice, it is musically more appropriate to
penalize an error according to how much the pitch differs from the desired one

than to allow any distortion as long it is within the allowed tolerance. Therefore,
we will use a more general distance function which implements the claim above.

Although all the problems given above have been studied, no current solution
can solve them all. Most relevantly, the bit-parallel algorithm by Crochemore et
al. [4] can compute the LCS in O(m?/w) time, where w denotes the size of the
computer word in bits. Moreover, as we discuss in Section 5, the algorithm can be
extended straightforwardly to deal with polyphony, transpositions and ¢ match-
ing in O(hom? /w) time (here o denotes the number of possible transpositions).
Furthermore, the same complexity is obtainable with the unit-cost edit distance
by using other bit-parallel algorithms [14, 8].

Our solution is also based on bit-parallelism, which is well-known for its flex-
ibility. Our transposition invariant d-matching algorithm for distributed string
matching runs in time O(om? log(m)/w). Noteworthy, it is capable of apply-
ing more general and musically pertinent distance functions than the previous
related solutions, e.g. those that are not based on unit costs.

2 Preliminaries

Let us start this section by a brief introduction to string combinatorics. Let
XY be a finite set of symbols, called an alphabet, and o = |¥|. Then any A =

write A = ay - - - ay,. The length of A is |A| = m. The string of length 0 is called
the empty string and denoted A. The set of strings of length i over X' is denoted
by X%, and the set of all strings over X by X*. If a string A is of form A = Ba~,
where «, 8,7 € X*, we say that « is a factor (substring) of A. Furthermore, /3 is
called a prefix of A, and v a suffiz of A. A string A’ is a subsequence of A if it can
be obtained from A by deleting zero or more symbols, i.e., A" = a;,a:, -+ a4, ,
where i ...1,, is an increasing sequence of indices in A.

To define a distance between strings over Y¥*, one should first fix the set
of local transformations (editing operations) T' C ¥* x Y* and a non-negative
valued cost function W that gives for each transformation ¢ in T a cost W ().
Each ¢ in T is a pair of strings t = («,). Observing such a t as a rewriting rule,
suggests a notation for ¢, « — 3 (« is replaced by /8 within a string containing),
which we will use below. For convenience, if « — § ¢ T, then W(a —) = .

The definition of the distance is based on the concept of trace, which gives
a correspondence between two strings. Formally, a trace between two strings A
and B over X is formed by splitting A and B into equally many factors:

T = (a11a27"'7ap;ﬂ17ﬂ21"'7ﬂp)7

where A = ayag - ap, and B = (102 - - - fp, and each a;, B; (but not both) may
be an empty string over Y. Thus, string B can be obtained from A by steps

The cost of the trace 7is W(r) = W(ar = p1) + -+ W(ap, = Bp). The
distance between A and B, denoted D7 w (A, B), is defined as the minimum cost
over all possible traces.

The general definition above induces, for instance, the following well-
known distance measures. In wunit-cost edit distance (or Levenshtein dis-
tance), D (A, B), the allowed local transformations are of the forms a — b
(substitution), a — A (deletion), and A\ — a (insertion), where a,b € Y. The
costs are given as W(a — a) = 0 for all a, W(a — b) = 1 for all a # b, and
W(a — A) =W (A — a) =1 for all a. In Hamming distance, Dy (A, B), the only
allowed local transformations are of form a — b where a and b are any members
of X, with cost W(a — a) =0 and W(a — b) = 1, for a # b. Finally, the indel
distance, Dcs(A, B), is defined as Levenshtein distance without the possibility
to use substitutions.

It is well-known that the straightforward computation of these distances is
by using recurrences like the following used for Dy cs(A, B):

dip =1 doj = J;
difl,j +1

dij = min di,jfl + 1
di717j717if a; = bj.

The evaluation of such a recurrence is done by dynamic programming, where the
distances between the prefixes of A and B are tabulated. Each cell d;; of the
distance table (d,;) stores the distance between a; - --a; and by ---b; (0 <7 < m,
0 < j < n) and (d;;) is evaluated by proceeding row-by-row or column-by-column
using the recurrence. Finally, d,, ,, gives the distance, in this case Dycs(A, B).

The dual case of Djcs(A, B) is the calculation of the longest common sub-
sequence of two strings A and B, or les(A, B) for short. The length of lcs(A, B),
denoted by LC'S(A, B), is computed by the recurrence:

LCSLO — 0; LCSOJ‘ < 0; (1)
LCSZ‘+17]‘+1 «— if Aip1 = bj+1 then 1+ LCSZ‘J
else max(LCSi7j+1,LC’Si+17j).

Now it is rather clear that LC'S(A, B) = ‘A‘+‘B‘72LCS(A7B).

If we want to calculate the length of the longest common transposition in-
variant subsequence, LCTS(A, B), it may be done by calculating LCS®(A, B)
by all the possible 20 4+ 1 transpositions, and select the transposition ¢ which
gives the maximum [11]. LC'S°(A, B) is defined just like LC'S(A, B) except that
there is a match when a; 1 + ¢ = b;41. Our idea is to simulate the computation
of the (df;) tables, for ¢ = [0, 0], so that the aligned d;; values are computed
simultaneously in a bit vector, as long as they fit in the used computed word of
w bits (see Fig. 1). Typical sizes of alphabet are, e.g., 88 (the number of keys in
piano) and 127 (the number of MIDI pitch values), and 32 or 64 for the size of
the current computer word. In practice, we need 3 8 bit-vectors for each d;;.

Finally, the weighted edit distance that we use to make a distinction according
to the amount of the local distortion is as follows:

EDio « i x ID; EDo, « j x ID; 2)
EDj1,j+1 + min(lait1 — bjy1| + ED; j, ID + ED; jy1,1D + EDit1,5),

0
\ r

oo
)

)

Fig. 1. We calculate in parallel 20 + 1 (d;;) tables. The idea is to present the aligned
nodes d;;” ... d7; with a single bit-vector (as long as they fit in a computer word).

where ID is a constant used for indel operations.

3 A Bit-Parallel Algorithm

We present a speedup technique for the computation of the 20 4+1 LC'S matrices.
We resort to bit-parallelism, that is, to storing several values inside the same
computer word. For this sake we will denote the bitwise and operation as “&”,
the or as “|”, and the bit complementation as “~”. Shifting ¢ positions to the left
(right) is represented as “<< 4" (“>> "), where the bits that fall are discarded
and the new bits that enter are zero. We can also perform arithmetic operations
over the computer words. We use exponentiation to denote bit repetition, e.g.
031 = 0001, and write the most significant bit as the leftmost bit. When we
write [z]; we mean the integer x represented in ¢ bits.

Since the values of the LC'S matrix are in the range {0...min(|al, |b])},
we need ¢ = [log,(min(|al,|b]) + 1)] bits to store them. This means that in a
computer word of w bits we can store |w/¢] counters. For reasons that will be
made clear soon, we will in fact need £+ 1 bits per counter, where the highest bit
will always be zero, and hence we will be able to store A = |w/(¢+1)] counters.

We will divide the process of computing LCS¢(a,b) for every ¢ € X into
[(20 +1)/A] separate bit-parallel computations, each for A contiguous ¢ values.
From now on, let us consider that we are computing in parallel LCS(a,b) for
ce{C...C+A-1}.

The first problem to bit-parallelize Eq. (1) is its if-then-else structure. For a
given ¢, if a1 +¢ = bjt1 we have to use the value 1+ LCSY ;, otherwise we have
to use max(LCSf,, ;, LCS{ ;.). We solve this by using a bit-mask B of length
A(€+1), which should have all 1’s in the ¢ values for which a;41 +¢ = bj4+1, and
zeros elsewhere. This means that we have 1’s only for the value ¢ = b1 — aj41.
It is possible that this ¢ value is outside our current range {C'...C + A —1}. So
the computation of B is as follows:

B+ ifCSijfaH_l <C+A
then 0QAFC—1=(bjr1—=aip1))(l+1) 1(€+1) (bj41—ait1—C)(L+1)
{else 0A(+1)

Once we have computed B, we want to take the value 1 + LCS; ; for the ¢
values where B has 1’s and the value max(LCS{,, ;,LCS; ;) elsewhere. For
the former we need to add 1 to all the counters at the same time, which is
easily achieved by adding (01)#. For the latter we need to compute max() in

bit-parallel. Let us call Max this function. Hence the value we want is
LCSit1j+1 + (B& (LCS;;+(0'1)*) | (~ B & Max(LCSit1,5, LCS; j11))

To compute Maxz(X,Y), where X and Y contain several counters prop-
erly aligned, we need the aforementioned extra highest bit per counter, always
zero. We precompute the bit mask J = (1094 and perform the operation
F « (X | J)=Y) & J. The result is that, in F', each highest bit is set iff
the counter of X is larger than that of Y. We now compute F' + F — (F >> (),
so that the counters where X is larger than Y have all their bits set in F|,
and the others have all the bits in zero. Finally, we choose the maxima as
Maz(X,)Y) « (F & X) | (~ F & Y). Also, we easily obtain Min(X,Y) «
(F&Y) | (~F & X). Fig. 2 gives the code. These methods are due to [15].

Fig. 3 shows RangeLCTS, the bit-parallel algorithm for a range of counters
C...C + A — 1. Using this algorithm we traverse all the ¢ € X values and
compute LCTS(a,b) = max.c_,. , LCS(a,b). This is done by LCTS.

Let us now analyze the algorithm. LCTS runs (20 + 1)/A iterations of
RangeLCTS plus a minimization over 20 + 1 values. In turn, RangeLCTS
takes O(|al|b|) time. Since A = w/log, min(|al,]b])(1 + o(1)), the algorithm
is O(olal|b|log(min(|al, |b]))/w) time. If |a|] = [b] = m, the algorithm is
O(om? log(m)/w) time, which represents a speedup of 2(w/logm) over the
naive O(om?) time algorithm.

It is possible to adapt this algorithm to compute 0-LCTS(a,b), where we
assume that two characters match if their difference does not exceed §. This
is arranged at no extra cost by considering that there is a match whenever
bjt1 —aip1 — 6 < ¢ <bjy1 — a1 + 0. The only change needed in our algorithm
is in lines 5-7 of RangeLCTS, which should become:

low <~ max(C,b; —a; —0)
high < min(C + A —1,b; — a; + 0)
If low < high Then

Max (X, Y, ()

1. J+« (1097

2. F—(X]H)-Y)&J

3. F+— F—(F>>0)

4 Return (F & X) | (~F &Y)

Min (X, Y, ()

1. J+« (1097

2 Fe(X|D)=-Y)&J
3. F+— F—(F>>0)
4 \

Return (F&Y) | (~ F & X)

Fig. 2. Bit-parallel computation of maximum and minimum between two sets of coun-
ters aligned in a computer word. In practice .J is precomputed.

B « (A+C—=1=high)(¢+1) {(high—low+1)(¢ +1)(low—C)(£+1)
Else B « 04+

4 Text Searching

The above procedure can be adapted to search for a pattern P of length m in a
text T' of length n under the indel distance, permitting transposition invariance.
The goal is, given a threshold value k, report all text positions j such that
d(P,Ty . ;) < k for some j', where d is the indel distance (number of character
insertions and deletions needed to make two strings equal).

Additionally, we can search polyphonic text, where there are actually h
parallel texts T'...T", and text position j matches any character in the set
{le . .Tjh}.

Let us consider a new recurrence for searching. We start with a column D; =1
and update D to D’ for every new text position j. For every 7 where D,, < k
we report text position j as the end position of a recurrence. The formula for
searching with indel distance using transposition c is as follows:

D'§+0
D¢y «if Py +ce{T)...T}} then D{ else 1+min(D'§, Df,,)

where we note that we have suppressed column number 7, as we will speak about
the current column (D' or newD) built using the previous column (D or oldD).

RangeLCTS (a, b, C, A, ¢)
Fori€0...|a| Do
For j €0...]b| Do
Ifi=0V j=0 Then LCS;; + 041
Else
IfC <bj —a; < C+ A Then
B « A+C—1=(bj—ai))(t+1) {(L+1) (bj—a;=C)(L+1)
Else B « 04¢+D
LOS;j + (B & (LCSi—1,;-1+ (0°1)™"))
| (~B & Max(LCS;-1,j,LCS; ;1)

PN Ot WD =

10. Return LCS|,

LCTS (a, b, o)

£ <~ Tlog, (minal,[b) + 1)1

A |w/(l+1)]

c+ —0o

Max <0

While ¢ < o Do
V + RangeLCTS(a,b,c, A, ()
Fortec...c+A—1Do

Mazx < max(Maz, (V >> (t —c)(0 + 1)) & 04 DEFD1Y)

c+—c+ A

0. Return Max

e e A i

Fig. 3. Computing LCTS(a,b) wusing bit-parallelism. RangeLCTS computes
LCS¢(a,b) for every ¢ € C'...C+A—1in bit-parallel, and returns a bit mask containing
LCS¢(a,b) for all those ¢ values.

Additionally, we note that, when a value is larger than k, all we need to
know is that it is larger than k, so we store k + 1 for those values in order to
represent smaller numbers. Hence the number of bits needed by a counter is
¢ = [log,(k + 2)].

The new recurrence requires the same tools we have already developed for
the LCS computation, except for the polyphony issue and for the & + 1 limit.
Polyphony can be accommodated by or-ing the B masks corresponding to the
different text characters at position j. The k& + 1 limit has to be taken care of
only when we add 1 in the “else” clause of the recurrence.

The typical way to solve this requires one extra bit for the counters. We
prefer instead to reuse our result for bit-parallel minimum. The recurrence can
be rewritten as follows, which guarantees that any value larger than £ stays at
k+1.

D'§+0
D'y «—if Pyi+ce{T)...T} then D else 1+ min(D'¢, DS, k)

Finally, we have to report every text position where D,, < k. In our setting,
this means that any counter different from % + 1 makes the current text position
to be reported.

Fig. 4 shows RangeIDSearch, which searches for a range of transpositions
that fit in a computer word. The general algorithm, IDSearch, simply applies
the former procedure to successive ranges. The algorithm is O(homn log(k)/w)
time, which represents a speedup of O(w/ logk) over the classical solution.

RangelDSearch (P, T'...T" k, C, A, ()

1. K ¢ [kleg1 x (0°1)7

2. Kpl« K+ (0‘1)*

3. Fori€0...k Do D; ¢ [i]+1 x (0°1)*

4. Fori€k+1...|P| Do D; + Kpl

5. For jel...|T| Do

6. oldD + 0

7. Forie€l...|P| Do

8. B+ 04D

9. Forgel...h Do

10. IfC’ST].g—Pi<C'+AThen

1 B« B | QATOTImT/ =P (41) ((T]=P)=C)(t+1)
12. newD + (B & oldD) | (~ B & (Min(Min(Di—1, D;), K) + (0°1)%))
13. oldD < D;, D; < newD

14. If newD # Kpl Then Report an occurrence ending at j

IDSearch (P, 17" ... 7", k, o)

0+ [logy(k+1)]

A+ |w/(+1)]

c+ —0o

While ¢ < o Do
RangeIDSearch(P,T" ... T" k, ¢, A, ()
c—c+ A

S TR W N =

Fig. 4. Searching polyphonic text with indel distance permitting any transposition.

5 A More General Distance Function

Although we have obtained important speedups with respect to classical algo-
rithms, it turns out that there exist bit-parallel techniques that can compute
the LCS in O(m?/w) time [4]. Extending these algorithms naively to deal with
polyphony, transpositions and § matching yields O(hom?/w) time. Although it
has not been done, we believe that it is not hard to convert these algorithms
into search algorithms for indel distance at O(homn/w) cost, which is better

than ours by an O(log k) factor. The same times can be obtained if we use edit
distance instead of indel distance [14, 8].

The strength of our approach resides in that we are using bit-parallelism in a
different dimension: rather than computing several cells of a matrix in parallel,
we compute several transpositions in parallel, while the cells are computed one
by one. This gives us extra flexibility, because we can handle complex recur-
rences among cells as long as we can do several similar operations in parallel.
Parallelizing the work inside the matrix is more complex, and has been achieved
only for unit-cost distances. As explained before, a weighted edit distance where
the cost to convert a note into another is proportional to the absolute difference
among the notes is of interest in music retrieval. We demonstrate the flexibility
of our approach by addressing the computation of the weighted edit distance
detailed in Eq. (2). Which follows is the search version for a given transposition
¢ in polyphonic text, bounded by & + 1.

DG« 0
D¢, min(gginh\PHl +e—=T)|+Di_,ID+D'{,ID+ Dy, k+1)

There are two challenges to bit-parallelize this recurrence. The first is that
ensuring that we never surpass k + 1 is more difficult, because the increments
are not only by 1. We choose to compute the full values and then take minimum
with £+ 1, as suggested by the recurrence. However, the intermediate values can
be larger. Since ID < k (otherwise the problem is totally different), the latter
terms are bounded by 2k + 1. We will manage to keep also the first term of the
minimization below 2k + 2. This means that we need [log,(2k + 3)] bits for our
counters.

The second challenge is how to compute |P;1 + ¢ — T/| in bit-parallel for a
set of consecutive ¢ values, with the added trouble of not exceeding k£ + 1 in any
counter. Depending on the range C'...C + A —1 of transpositions we are consid-
ering, these values form an increasing, decreasing, or decreasing-then-increasing
sequence. For shortness, we will use [z] to denote [z]s4+1 in this discussion. An
increasing sequence of the form I; = [t+A—1]...[t+1] [t], t > 0, is obtained sim-
ply as I; < (0¢1)A~1[t] x (0°1)". A version bounded by r > t is obtained as I] +
(I; & OA=(r=t) (D= +1)) | ([p]A- (= =D(+1)) - Similarly, a decreasing
sequence Dy = [t — A+1]...[t—1] [t] is obtained as D; < [t]* — Iy. The bounded
version is obtained similarly as for increasing sequences. Finally, a decreasing-
then-increasing sequence DIy = [A—t—1] [A—t—2]...[2] [1] [0] [1]...[t —1] [¢]
is obtained as DI; = (Iy << t({+ 1)) | (Da >> (A —t)(£ + 1)). The bounded
version D" is obtained similarly, using I" and D" instead. We could even accom-
modate substitution costs of the form |a; — b;|/q for integer ¢ by multiplying by
(094D =11)4 instead of by (0°1)4. Fig. 5 gives the code to build these sequences.

It becomes clear that we can perform approximate searching using this gen-
eral distance function, permitting transposition invariance and polyphony, in
O(homnlog(k)/w). This cannot be done with previous approaches and illus-
trates the strength of our method. Fig. 6 gives the details.

I(t, r, A 0)

1. If r <t Then Return [r];4; x (0°1)4

2. o= (0D | [Hesa) x (0°1)7

3. Return ([; & A= UEFD =0y | (0], % (0°1)A- D =D+

D, r A 0

1. If r >t Then r + ¢

2 Dy = [r]eg1 x (0°F1)* — (0f1)A- 10! x (0f1)4

3 Return (D, << (t —=7)(£+ 1)) | ([Flegr x 0AEmmERD gl E=r) (1))

DI (¢, r, A, ()

1. I+ 1(0,r, A L)

2. D+ D(A,r AL

3. Return (I <<t(l+1)) | (D>>(A—-1)((+1))

Fig. 5. Bit-parallel code to obtain increasing, decreasing, and decreasing-then-
increasing sequences.

SUN | n =10 100 1,000 | 10,000
LCTS|0.00049| 0.07334 [14.6688|1,466.88
CDP (0.00124|0.124173|12.4173|1,241.73
Table 1. Execution times (in sec) for our LCTS and CDP when running on Sun.

6 Experiments

We conducted a brief experiment on comparing the efficiency between our LCTS
method and an algorithm based on classical dynamic programming (CDB). The
experiment was run on two distinct computers, the first of which was a Sun
UltraSparc-1 running SunOS 5.8 with 167 MHZ and 64 Mb RAM, and the
second was a Pentium IV running Linux 2.4.10-4GB with 2 GHZ and 512 MB
RAM.

Both the codes for our RangeLCTS algorithm and for the classical dynamic
programming were highly optimized. In the experiment we used LCS matrixes of
size 10,000 x 10, 000 (the content was pitch values of musical data). We measured
the CPU times spent by 1 iteration of the RangeLCTS (for the whole LCTS
query we then calculated the required total time for a given w) and by CDB.
Moreover, since both of the algorithms scale up well with n?, we were able to
estimate the running times for distinct ranges of n.

Table 1 gives results when running the two observed algorithms when exe-
cuted on Sun. Note that we are better for large n < 1,000 (more precisely, up
to n = 510). The reason is that our counters have to maintain the current LCS
values in w = 32 bits, which can be as large as n.

RangeEDSearch (P, T'...T" k, C, A, 0)

1. Kpl«[k+1]0 x (01)4

2. IDmask « [ID];11 x (0°1)4

3. Fori€O0...|k/ID] Do D; + [i- D] x (0°1)*

4. Forick+1...|P| Do D; + Kpl

5. For jel...|T| Do

6. oldD + 0

7. Foriel...|P| Do

8. B+ Kpl

9. For ge1l...h Do

10. If Tjg — P; < C Then // Increasing sequence

11. B « L(C —(T? = P),k+1,A,0)

12. Else If T/ — P; > C' + A Then // Decreasing sequence
13. B« D((T! — P;) = O,k +1,A,0)

14. Else B' « DI((T — P;) — C,k +1,A,0)

15. B+ Min(B,B')’

16. newD < Min(Min(B + oldD, Min(D;_1, D;) + I Dmask), Kpl)
17. oldD < D;, D; + newD

18. If newD # Kpl Then Report an occurrence ending at j

EDSearch (P, T'...T" k&, o)
1 { + [log,(2k + 3)]
2 A+ |w/(l+1)]
3. c+ —0o

4. While ¢ < o Do
5 RangeEDSearch(P, 1" ... 17" k, ¢, A, ()
6 c—c+ A

Fig. 6. Searching polyphonic text with weighted edit distance permitting any transpo-
sition.

We wanted also experiment on a Pentium IV due to its very optimized
pipelining, which should compromize the overhead in number of register opera-
tions due to the bit-parallelism with the fact that we have broken the if-then-else
nature of the original recurrences.

Table 2 shows that in the same setting (w = 32) with Pentium IV. This time
we are faster even for n = 10, 000, more precisely up to n = 65,534. This covers
virtually all cases of interest.

7 Conclusions

In this paper we have focused on music retrieval. Since we wanted to apply
the general string matching framework to this particular application domain,
we introduced problems that are typical to music retrieval but that are not

Pentium IV| n =10 | 100 | 1,000 {10,000
LCTS 0.00004644|0.006912 1.3797|137.97
CDP 0.000199 |0.019929 1.9929/199.29
Table 2. Execution times for our LCTS and CDP when running on Pentium IV.

taken into account in the combinatorial pattern matching algorithms. The three
distinguishing requirements are (a) approximate searching permitting missing,
extra, and distorted notes, (b) transposition invariance, to allow matching a
sequence that appears in a different scale, and (¢) handling polyphonic music.
We introduced a flexible and efficient bit-parallel algorithm that takes into
account all the requirements above, and obtains a speedup of O(w/logk) over
the classical algorithms, where the computer word has w bits and k is the error
threshold allowed in the match. Even though it is not the best solution when unit
cost distances are applied, it performs at a comparative level. Our algorithm,
however, can be adapted to complex cases where no competing method exists.
Furthermore, these cases are the most interesting in terms of music retrieval.

References

1. E. Cambouropoulos. A general pitch interval representation: Theory and applica-
tions. Journal of New Music Research, 25:231-251, 1996.

2. M. Crochemore, C. S. Tliopoulos, Y. J. Pinzon, and W. Rytter. Finding motifs
with gaps. In First International Symposium on Music Information Retrieval (IS-
MIR’2000), Plymouth, MA, 2000.

3. M. Crochemore, C.S. Iliopoulos, G. Navarro, and Y. Pinzon. A bit-parallel suffix
automaton approach for (§,7)-matching in music retrieval. To appear in Proc.
SPIRE 2003.

4. M. Crochemore, C.S. Tliopoulos, Y.J. Pinzon, and J.F. Reid. A fast and practical
bit-vector algorithm for the longest common subsequence problem. Information
Processing Letters, 80(6):279 285, 2001.

5. M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, 1994.

6. M.J. Dovey. A technique for “regular expression” style searching in polyphonic
music. In the 2nd Annual International Symposium on Music Information Retrieval
(ISMIR’2001), pages 179-185, Bloomington, IND, October 2001.

7. J. Holub, C.S. Tliopoulos, and L. Mouchard. Distributed string matching using
finite automata. Journal of Automata, Languages and Combinatorics, 6(2):191
204, 2001.

8. H. Hyyro and G. Navarro. Faster bit-parallel approximate string matching. In
Proc. 13th Annual Symposium on Combinatorial Pattern Matching (CPM 2002),
pages 203 224, 2002. LNCS 2373.

9. K. Lemstrom and P. Laine. Musical information retrieval using musical parameters.
In Proceedings of the 1998 International Computer Music Conference, pages 341
348, Ann Arbor, MI, 1998.

10. K. Lemstrom and J. Tarhio. Transposition invariant pattern matching for multi-
track strings. Nordic Journal of Computing, 2003. (to appear).

11.

12.

13.

14.

15.

16.

K. Lemstrom and E. Ukkonen. Including interval encoding into edit distance based
music comparison and retrieval. In Proceedings of the AISB’2000 Symposium on
Creative & Cultural Aspects and Applications of Al € Cognitive Science, pages
53 60, Birmingham, April 2000.

D. Meredith, K. Lemstrom, and G.A. Wiggins. Algorithms for discovering repeated
patterns in multidimensional representations of polyphonic music. Journal of New
Music Research, 31(4):321 345, 2002.

MIDI Manufacturers Association, Los Angeles, California. The Complete Detailed
MIDI 1.0 Specification, 1996.

G. Myers. A fast bit-vector algorithm for approximate string matching based on
dynamic programming. Journal of the ACM, 46(3):395 415, 1999. Earlier version
in Proc. CPM’98, LNCS 1448.

W. Paul and J. Simon. Decision trees and random access machines. In Proc. Int’l.
Symp. on Logic and Algorithmic, pages 331 340, Zurich, 1980.

G.A. Wiggins, K. Lemstrom, and D. Meredith. Sia(M): A family of efficient
algorithms for translation-invariant pattern matching in multidimensional datasets.
(submitted).

