Fully Dynamic Spatial Approximation Trees*

Gonzalo Navarrband Nora Reyés

L Center for Web Research, Dept. of Computer Science, UritiyersChile,
Blanco Encalada 2120, Santiago, Chgeavar r o@icc. uchil e. cl
2 Depto. de Informatica, Universidad Nacional de San Luis,
Ejército de los Andes 950, San Luis, Argentinaeyes@nsl . edu. ar

Abstract. The Spatial Approximation Trees-treg is a recently proposed data
structure for searching in metric spaces. It has been shoatrittcompares fa-
vorably against alternative data structures in spacesbf diimension or queries
with low selectivity. Its main drawbacks are: costly constion time, poor per-
formance in low dimensional spaces or queries with highctigley, and the fact
of being a static data structure, that is, once built, onectadd or delete ele-
ments. These facts rule it out for many interesting appboat

In this paper we overcome these weaknesses. We present midyversion of
the sa-treethat handles insertions and deletions, showing expereigribat the
price of adding dynamism is rather low. This is remarkabldtbglf since very
few data structures for metric spaces are fully dynamicdhtiteon, we show how
to obtain large improvements in construction and search tonlow dimensional
spaces or highly selective queries. The outcome is a mucle practical data
structure that can be useful in a wide range of applications.

1 Introduction

The concept of “approximate” searching has applicationa imst number of fields.
Some examples are non-traditional databases (e.g. stonages, fingerprints or au-
dio clips, where the concept of exact search is of no use andeaech instead for
similar objects); text searching (to find words and phrasea text database allow-
ing a small number of typographical or spelling errors)pimfiation retrieval (to look
for documents that are similar to a given query or documenégchine learning and
classification (to classify a new element according to ibsebt representative); image
quantization and compression (where only some vectors earfresented and we
code the others as their closest representable point); e@tignal biology (to find a
DNA or protein sequence in a database allowing some erre@g@mutations); and
function prediction (to search for the most similar behawiba function in the past so
as to predict its probable future behavior).

All those applications have some common characteristiesrdis a univers# of
objects and a nonnegativdistance function! : U x U — R* defined among them.
This distance may (and ideally does) satisfy the three axithiait make the setraetric
space strict positivenessd(z,y) = 0 < = = y), symmetry {(z,y) = d(y,z))

* This work has been partially supported CYTED VII.19 RIBIDioiect (both authors) and
Millenium Nucleus Center for Web Research, Grant P01-029ifleplan, Chile (first author).

and triangle inequalityd(z, z) < d(z,y) + d(y, 2)). The smaller the distance between
two objects, the more “similar” they are. We have a firdetabaseS C U, which

is a subset of the universe of objects and can be preprocésskdild an index, for
example). Later, given a new object from the universeueryq), we must retrieve all
similar elements found in the database. There are two tygiezies of this kind:

Range query: Retrieve all elements within distancéo ¢ in S. Thisis,{z € S, d(z,q) <
r}.

Nearest neighbor query (k-NN): Retrieve thek closest elements t@in S. That is, a
setA C SsuchthatAd| = kandVz € A,y € S — A,d(z,q) < d(y,q).

The distance is considered expensive to compute (thinknétance, in comparing
two fingerprints). Hence, it is customary to define the coipjeof the search as the
number of distance evaluations performed, disregardimgratomponents such as CPU
time for side computations, and even I/O time. Given a da@lwd|.S| = n objects,
queries can be trivially answered by performinglistance evaluations. The goal is to
structure the database such that we perform less distantieaéions.

A particular case of this problem arises when the space i$ af §8-dimensional
points and the distance belongs to the MinkowBkifamily: L, = (3>, ,«p i —

yi|P)'/?. For examplg = 2 yields Euclidean distance. There are effective methods to
search inD-dimensional spaces [4, 1]. However, for roughly 20 dimensior more
those structures cease to work well. We focus in this papeyemreral metric spaces,
although the solutions are well suited also fddimensional spaces. It is interesting to
notice that the concept of “dimensionality” can be traredaio metric spaces as well:
the typical feature in high dimensional spaces withdistances is that the probability
distribution of distances among elements has a very coratedthistogram (with larger
mean as the dimension grows), making the work of any sinylaarch algorithm
more difficult [2, 3]. We say that a general metric space ihldgnensional when its
histogram of distances is concentrated.

For general metric spaces, there exist a number of meth@aspoocess the database
in order to reduce the number of distance evaluations [3]thélse structures work on
the basis of discarding elements using the triangle inégiuahd most use the classical
divide-and-conquer approach (which is not specific of mefpiace searching).

The Spatial Approximation Treesg-treg is a recently proposed data structure of
this kind [5, 6], based on a novel concept: rather than digidhe search space, ap-
proach the query spatially, that is, start at some point enghace and get closer and
closer to the query. Apart from being algorithmically irgsting by itself, it has been
shown that thesa-treegives better space-time tradeoffs than the other existing-s
tures on metric spaces of high dimension or queries with lelectivity, which is the
case in many applications.

The sa-tree however, has some important weaknesses. The first is thrapared
to other indexes, it is relatively costly to build in low dim&ons (it is harder to build
in high dimensions, but in this case the competing indexe®aen more costly). The
second is that, in low dimensions or for queries with higkestity (smallr or k), its
search performance is poor when compared to simple alteesafl he third is that it
is a static data structure: once built, it is hard to addtéeddements to/from it. These

weaknesses make tBa-treeunsuitable for important applications such as multimedia
databases.

Overcoming these drawbacks is the aim of this paper. We prasgynamic version
of the sa-treethat handles insertions and deletions. We show that therdigrea-tree
can be built incrementally (i.e., by successive inserji@gshe same cost of its static
version, and that the search performance is unaffected.ISeshow that one can re-
move elements from the structure at about the same cost ofsantion, with a very
small penalty in the search performance.

Full dynamism is not so common in metric data structures\[@hile permitting
efficientinsertions is quite usual, deletions are raretydtad. In several indexes one can
delete some elements, but there are selected elementsatimatde deleted at all. This
is particularly problematic in the metric space scenaribere objects could be very
large (e.g., images) and deleting them physically may bedatamy. Our algorithms
permit deleting any element fronsa-tree This is remarkable on a data structure whose
original conception was markedly static [5].

In addition to the above achievement, we find out how to obiéae improvements
in construction and search time for low dimensional spacésghly selective queries.
The method consists of limiting the tree arity and involves/ralgorithmic insights on
this data structure. The lower the arity, the cheaper tallihi tree. However, at search
time, the best arity depends on the dimension and the qulesstiséy. In particular, for
low dimensions, we obtain improved construction and setinod simultaneously.

The outcome is a much more practical data structure that earséful in a wide
range of applications. We expect the dynasaetreeto replace the static version in the
developments to come.

This work builds over [7], where it was shown that insertiomsthesa-treecould
be reasonably handled. We improve their insertion algeriimd also permit deletions,
thus obtaining a fully dynamic data structure. In additiwa,capture in the tree arity the
parameter that permits adapting it better to different disi@ns. The originasa-tree
adapts itself to the dimension, but not optimally.

For the experiments of this paper we have selected two negtaices. The firstis a
dictionary of 69,069 English words. The distance is the diditance, that is, the min-
imum number of character insertions, deletions and repiecés to make the strings
equal. The second space is the real unitary cube in dimedSiarsing Euclidean dis-
tance, where we generated 100,000 random points with unifiistribution.

In both cases, we built the indexes with 90% of the points es@tiuhe other 10%
(randomly chosen) as queries. For the experiments withidetein an index of: el-
ements, we select at random a fraction of thoslements and delete them from the
index. The results on these two spaces are representativesaf on several other metric
spaces we tested: NASA images, dictionaries in other lagegj&aussian distributions,
other dimensions, etc.

2 The Spatial Approximation Tree

We describe briefly in this section the stad&-treedata structure. It need3(n) space,
O(nlog® n/ loglog n) construction time, and sublinear search tién' ~©(1/loglogn))

in high dimensions and(n®) (0 < a < 1) in low dimensions. It is experimentally
shown to offer better space-time tradeoffs than other datatsres when the dimension
is high or the query radius is large. For more details see tigénal work [5, 6].

2.1 Construction

We select a random elemente S to be the root of the tree. We then select a suitable
set of neighboréV (a) satisfying

Condition 1: (givena,S) Vx € S, z € N(a) & Yy € N(a) — {z}, d(z,y) >
d(z,a).

That is, the neighbors af form a set such that any neighbor is closentthan to
any other neighbor. The “only if"<€) part of the definition guarantees that if we can
get closer to any € S then an element itV (a) is closer tob thana, because we put
as direct neighbors all those elements that are not closardther neighbor. The “if”
part (=) aims at putting as few neighbors as possible.

Notice that the selV(a) is defined in terms of itself in a non-trivial way and that
multiple solutions fit the definition. For example difis far fromb andc and these are
close to each other, then ba¥ia) = {b} andN(a) = {c} satisfy the definition.

Finding the smallest possible st a) seems to be a nontrivial combinatorial op-
timization problem, since by including an element we needat@ out others (this
happens betwednandc in the example of the previous paragraph). However, simple
heuristics which add more neighbors than necessary woik Welbegin with the ini-
tial nodea and its “bag” holding all the rest . We first sort the bag by distancedo
Then, we start adding nodesAd(a) (which is initially empty). Each time we consider
a new nodé, we check whether it is closer to some elemeni¥gt:) than toa itself. If
that is not the case, we addo N (a).

At this point we have a suitable set of neighbors. Note thatdtmn 1 is satisfied
thanks to the fact that we have considered the elements ér ofdncreasing distance
to a. The “only if” part of Condition 1 is clearly satisfied becauany element not
satisfying it is inserted itV (a). The “if” part is more delicate. Let # y € N(a). If y
is closer tan thanz theny was considered first. Our construction algorithm guarantee
that if we insertedr in N(a) thend(z,a) < d(z,y). If, on the other hand is closer
to a thany, thend(y, z) > d(y,a) > d(z,a) (thatis, a neighbor cannot be removed by
a new neighbor inserted later).

We now must decide in which neighbor’s bag we put the restefibdes. We put
each node notifa} U N (a) in the bag of its closest element df(a) (best-fitstrategy).
Observe that this requires a second pass o0@s is fully determined.

We are done now witla, and process recursively all its neighbors, each one with
the elements of its bag. Note that the resulting structueetige that can be searched
for anyq € S by spatial approximation for nearest neighbor queries.reason why
this works is that, at search time, we repeat exactly whapéagd withg during the
construction process (i.e. we enter into the subtree of ¢ighibor closest tqg), until
we reachy. This is is becausgis present in the tree, i.e., we are doing an exact search
after all.

Finally, we save some comparisons at search time by stotiegch node: its
covering radius, i.e., the maximum distanBéu) betweena and any element in the
subtree rooted by. The way to use this information is made clear in Section 2.2.

Figure 1 depicts the construction process. Itis first indksBui | dTr ee(a, S—
{a}) wherea is a random element d. Note that, except for the first level of the
recursion, we already know all the distandiés, a) for everyv € S and hence do not
need to recompute them. Similarly, some of the, ¢) distances at line 9 is already
known from line 6. The information stored by the data streetis the roota and the
N() andR() values of all the nodes.

BuildTree (Node a, Set of nodes S5)

1. N(a)« 0 /'l neighbors of a
2. R(a)«0 /'l covering radius
4. For ve S in increasing distance to a Do

5. R(a) < max(R(a),d(v,a))
6. If Vbe N(a), d(v,a) < d(v,b) Then N(a) + N(a)U {v}
7. For be N(a) Do S(b) « 0
8. For ve S—N(a) Do
9. ¢« argmin, ¢ y(,)d(v, b)
10. S(c) + S(c) U{v}
11. For b€ N(a) Do BuildTree (b, S(b))

Fig. 1. Algorithm to build thesa-tree

2.2 Searching

Of course it is of little interest to search only for elemeits S. The tree we have
described can, however, be used as a device to solve quédary type for anyy € U.
We consider first range queries with radius

The key observation is that, evengif¢ S, the answers to the query are elements
q¢' € S. So we use the tree to pretend that we are searching for areietre S. We
do not knowg', but sinceld(q, ¢') < r, we can obtain frong some distance information
regardingg’: by the triangle inequality it holds that for any € U, d(z,q) — r <
d(z,q") < d(z,q) + 1.

Hence, instead of simply going to the closest neighbor, wed&termine the closest
neighborc of ¢ among{a} U N(a). We then enter intall neighbors) € N(a) such
thatd(q, b) < d(g, c) + 2r. This is because the virtual elemehsought can differ from
q by at mostr at any distance evaluation, so it could have been insertéddrany of
thoseb nodes. In the process, we report all the noglewe found close enough t@

(A more sophisticated search scheme is given in [6], butnihoabe applied to our
dynamic version, so we prefer to omit it.)

Finally, the covering radiug(a) is used to further prune the search, by not entering
into subtrees such thd{q, a) > R(a) + r, since they cannot contain useful elements.

Figure 2 illustrates the search process on the left, stpftom the tree roop; .
Only pg is in the result, but all the bold edges are traversed. Onigfint, we give the
search algorithm, initially invoked aRangeSear ch(a, ¢,) , wherea is the tree
root. Note that in the recursive invocatiod(, q) is already computed.

RangeSearch (Node a, Query gq,
Radi us r)

If d(a,q) < R(a)+r Then

If d(a,q) <r Then Report a

dmin +min {d(c,q), c€ {a} UN(a)}

For be N(a) Do

If d(b,q) < dmin +2r Then
RangeSear ch (b, q, r)

curwNE

Fig. 2. On the left, an example of the search process. On the righltorithm to search fay
with radiusr in asa-tree

We can also perform nearest neighbor searching by simglatiange search where
the search radius is reduced as we proceed. We have a pgoéte of subtrees sorted
by the known lower bound distance between the subtregyahmitially, we insert the
sa-treeroot in the data structure. Iteratively, we extract the gass it is known) closest
subtree, process its root, and insert all its subtrees imtieeie. This is repeated until
the queue gets empty or the lower bound distance is largetheor lack of space we
omit further details.

3 Incremental Construction

The construction of thea-treeneeds to know all the elements Sfin advance. In
particular, it is difficult to add new elements once the tiealready built. To insert a
new element, we should go down the tree by the closest neighbor umtilist become
a neighbor of the current node that is, untilz is closer toa than to anyb € N(a)
(Condition 1). All the subtree rooted @must be rebuilt from scratch, since some nodes
that went into another neighbor could prefer now to get ineoriew neighbot.

Several insertion alternatives have been previously densd [7, 6]. The best me-
thods turned out to be the so-called “timestamping” andeitisn at the fringe”. We
propose here a novel technique based on ideas from thesedthods.

Timestamping permits inserting an element with a techniggry similar to that
of the static construction, by recording the time every elehwas inserted. Remark-
ably, this technique obtained a performance very similah#a of the static version,
by avoiding any reconstruction. Insertion at the fringe,tioa other hand, limits the
maximum tree size where a new element can be inserted, véthith of reconstruct-
ing only small subtrees. The technique permits us avoidiegrtion at the point where
Condition 1 would require it, delaying it to a point downwatrtthe tree. Surprisingly,

this technigue eveimprovedthe performance in low dimensions, so there was a factor
largely compensating the cost of the reconstructions. &/ttes factor came from was
not clear at that time [7].

We have pursued this line and determined that the key falohighese trees have a
reduced arity. Moreover, the main reason of the poor perdoica of thesa-treein low
dimensional spaces is its excessively high arity (the toeenaatically adapts its arity to
the dimension, but not optimally). Hence we decided to fatitectly on the maximum
permitted arity and made it a tuning parameter. The sameideglaechnique used to
limit the tree size to rebuild is now used to limit the treeyarMoreover, by merging
this technique with timestamping, we have no reconstrocast to compensate, so we
get the best of both worlds.

Observe that one of the nice features of the origgsatreewas that it had no pa-
rameter to set, so any non-expert could just use it. Our neanpeter does not harm
in this sense, because it can be sekt@o obtain the same performance of the original
sa-tree On the other hand, very large improvements can be obtaimlesvidimensions
by appropriately setting the maximum tree arity. We get thiodetails now.

3.1 Insertion

To construct thesa-treeincrementally we fix a maximum tree arity, and also keep a
timestamp of the insertion time of each element. When iimgggt new element, we
add it as a neighbor at the appropriate peif€ondition 1) only if the arity of node is

not already maximal. Otherwise, even whers closer toa than to anyb € N(a), we
forcez to choose the closest neighbor¥{a) and keep walking down the tree, until
we reach a node where Condition 1 is satisfied (s closer tau than to any € N(a))

and the arity of node is not maximal (this eventually occurs at a tree leaf). Asthi
point we addr at the end of the lisV (a), put the current timestamp toand increment
the current timestamp.

Note that by reading neighbors from left to right we have éasing timestamps.
It also holds that the parent is always older than its childiote also that now it is
not sure anymore that a new inserted elemei#t a neighbor of the first node that
satisfies Condition 1 in its path. It may be that the arityzoflas maximal and: was
forced to choose a neighbor @f This has implications in the search process that will
be considered soon.

Figure 3 illustrates the insertion process. We follow omg path from the tree root
to the parent of the inserted element. The function is indas® nsert (a, z) , where
a is the tree root and is the element to be inserted. Tha-treecan now be built by
starting with a first single nodewhereN (a) = § andR(a) = 0, and then performing
successive insertions.

Figure 4 compares the cost of incremental constructiorgusim technique against
static construction for increasing subsets of the databslseshow arities 4, 8, 16 and
32. In both cases, the construction performance improvegazduce the tree arity,
being by far better than the static construction (twice as da strings and four times
faster on vectors). Note that if we permit a sufficiently legity (e.g., 32 on strings) the
incremental version becomes somewhat worse than thewtasion (whose arity is un-
limited). This shows that the reduced arity is a key factdowering construction costs.

Distance evaluations (x 10000)

Insert (Node a, Elenent z)

1. R(a)+ max(R(a),d(a,z))

2. ¢+ argming v, d(b, 7)

3. If d(a,z) <d(c,z) AN|N(a)| < MaxArity Then
4. N(a) + N(a)U {z}

5 N(z)« 0, R(z)+0

6 time(z) - CurrentTime

7 El se Insert (¢,)

Fig. 3. Insertion of a new elementinto a dynamicsa-treewith roota. Max Arity is the maxi-
mum tree arity an@urrentTime is the current time, incremented in each insertion.

This is clear, as the insertion cost with arityis Alog 4 n. On unlimited arity the aver-
age arity isA = O(log n), so the construction cost per elemen®ifog® n/ loglog n)
[6]. We consider next how a reduced arity affects search.time

Construction cost for n = 69,069 words Construction cost for n = 100,000 vectors dimension 15

600 1400

Static construction —— " static ——

Arity 4 —=— Arity 4 —=—

500 | Arity 8 —e— 1200 | Arity 8 —e—
Arity 16 —e— Arity 16 —e—

Arity 32 —— Arity 32 ——

1000 |
400 -

800
300 -
600 -

200
400 -

Distance evaluations (x 10000)

100 200

0

. 0 n
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Percentage of database used Percentage of database used

Fig. 4. Static versus dynamic construction costs.

3.2 Searching

At search time we have to consider two facts. The first is thiathe time an element
x was inserted, a nodein its path may not have been chosen as its parent because its
arity was already maximal. So instead of choosing the ctasesamong{a} U N(a),
we may have chosen only amonya). This means that we have to remojwe} from
the minimization of line 3 in Figure 2. The second fact to ddasis that, at the time
was inserted, elements with higher timestamp were not ptésehe tree, sa: could
choose its best neighbor only among elements older thdh itse

Hence, we consider the neighbdps, ..., b;} of a from oldest to newest, disre-
gardinga, and perform the minimization as we traverse the list. Théans that we
enter into the subtree &f if d(q,b;) < min(d(q,b1),...,d(q,b;_1)) + 2r. Thatis, we
always enter intd,; we enter intob, if d(q,b2) < d(q,b1) + 2r; and so on. Let us

stress again the reason: between the insertidn andb;, ; there may have appeared
new elements that cho$e just becausé, ; was not yet present, so we may miss an
element if we do not enter intly because of the existencelgf; ;.

Up to now we do not really need the exact timestamps but justép the neighbors
sorted by timestamp. We can make better use of the timestafopriation in order
to reduce the work done inside older neighbors. Say dt@th;) > d(q, bit;) + 2r.
We have to enter into the subtreetgfanyway becausg is older. However, only the
elements with timestamp smaller than thakgf; should be considered when searching
insideb;; younger elements have segn; and they cannot be interesting for the search
if they are insideh;. As parent nodes are older than their descendants, as sae® as
find a node inside the subtreelpfwith timestamp larger than that 6f, ; we can stop
the search in that branch, because all its subtree is everggou

Figure 5 shows the search algorithm, initially invokedRasge Sear ch(a, g, r, 00) ,
wherea is the tree root. Note thal(a, ¢) is always known except in the first invocation.
Despite of the quadratic nature of the loop implicit in linksand 6, the query is of
course compared only once against each neighbor.

RangeSearch (Node a, Query ¢, Radius r, Tinestanp t)
1. If time(a) <t A d(a,q) < R(a)+r Then

2 If d(a,q) <r Then Report a

3. dmin — o0

4. For b, € N(a) in increasing tinmestanp order Do
5 I'f d(bi,q) < dmin +2r Then

6 k<« min {j >, d(bi,q) > d(bj,q)+ 2r}

7 RangeSear ch (b, q, r, time(by))

8 dmin — min{dmin, d(bi, q)}

Fig. 5. Searching; with radiusr in a dynamicsa-tree

Figure 6 compares this technique against the static ondeledse of strings, the
static method provides slightly better search time congptreéhe dynamic technique.
In vector spaces of dimension 15, arities 16 and 32 improyea(bmall margin) the
static performance. We have also included an example inrdior 5, showing that in
low dimensions small arities largely improve the searctetohthe static method. The
best arity for searching depends on the metric space, butitbef thumb is that low
arities are good for low dimensions or small search radii.

The percentage retrieved in the space of strings for seaditig 1 is 0.003%, for 2
is 0.037%, for 3 is 0.326% and for 4 is 1.757% aproximately.

We consider the number of distance evaluations insteadeo€f#U time because
the CPU overhead over the number of distance evaluatioregigible in thesa-tree
unlike other structures.

It is important to notice that we have obtained dynamism dsd bhave improved
the construction performance. In some cases we have atgelffaimproved the search
performance, while in other cases we have paid a small psideé dynamism. Overall,

Distance evaluations

this turns out to be a very convenient choice. This techn@prebe easily adapted to
nearest neighbor searching with the same results.

Query cost for n = 69,069 words Query cost for n = 100,000 vectors dim. 15

50000 85000

45000 - 80000 |

40000 +

75000
35000

30000 - 70000 -

25000 - 65000 -

20000

Distance evaluations

60000
15000 |

10000 55000

Avity 32 —o—

5000 50000 :
1 0

.01 0.1 1
Search Radius Percentage of database retrieved

Query cost for n = 100,000 vectors dim. 5
18000 T

16000 - Arity 4 —=—

14000 Arity 32 ——
12000
10000

8000

Distance evaluations

6000
4000

2000

0 .
0.01 0.1 1
Percentage of database retrieved

Fig. 6. Static versus dynamic search costs.

4 Deletions

To delete an element, the first step is to find it in the tree. Unlike most classicatlad
structures, doing this is not equivalent to simulating tisertion ofr and seeing where
it leads us to in the tree. The reason is that the tree wageiiffat the timer was
inserted. Ifz were inserted again, it could choose to enter a differerit pathe tree,
which did not exist at the time of its first insertion.

An elegant solution to this problem is to perform a range dearith radius zero,
that is, a query of the forri;, 0). This is reasonably cheap and will lead us to all the
places in the tree wherecould have been inserted.

On the other hand, whether this search is necessary is appticdependent. The
application could return a handle when an object was indént® the database. This
handle can contain a pointer to the corresponding tree nadi@ing pointers to the
parent in the tree would permit to locate the path for freedmms of distance compu-

tations). Hence, in which follows, we do not consider theattan of the object as part
of the deletion problem, although we have shown how to prddagecessary.

We have studied several alternatives to delete elements &aynamicsa-tree
From the beginning we have discarded the trivial option ofkimg the element as
deleted without actually deleting it. As explained, thidikely to be unacceptable in
most applications. We assume that the element has to becplysieleted. We may, if
desired, keep its node in the tree, but not the object itself.

It should be clear that a tree leaf can always be removed wtidnoy complication,
so we focus on how to remove internal tree nodes.

4.1 FakeNodes

Ouir first alternative to delete elemants to leave its node in the tree (without content)
and mark it as deleted. We call these nofdd® Although cheap and simple at deletion
time, we must now figure out how to carry out a consistent $eateen some nodes do
not contain an object.

Basically, if nodeb € N(a) is fake, we do not have enough information to avoid
entering into the subtree éfonce we have reached So we cannot includé in the
minimization and have to enter always its subtree (excepeitan use the timestamp
information ofb to prune the search).

The search performed at insertion time, on the other hargltdéollow just one
path in the tree. In this case, one is free to choose insettimgew element into any
fake neighbor of the current node, or into the closest née-feeighbor. A good policy
is, however, trying not to increase the size of subtreerbat fake nodes, as eventually
they will have to be rebuilt (see later).

Hence, although deletion is simple, the search processdesgiits performance.

4.2 Reinserting Subtrees

A widespread idea in the Euclidean range search communityaisreinserting the
elements of a disk page may be benefical because, with maneels in the tree, the
space can be clustered better. We follow this principle nmwtitain a method with
costly deletions but good search performance.

When noder is deleted, we disconnect the subtree rooted fabm the main tree.
This operation does not affect the correctness of the ranwiree, but we have now to
reinsert the subtrees rooted at the node¥ ¢f). To do this efficiently we try to reinsert
complete subtrees whenever possible.

In order to reinsert a subtree rootedjaive follow the same steps as for inserting
a fresh objecy, so as to find the insertion point The difference is that we have to
assume thay is a “fat” object with radiusR(y). That is, we can choose to put the
whole subtree rooted gtas a new neighbor ef only if d(y,a) + R(y) is smaller than
d(y,b) for anyb € N(a). Similarly, we can choose to go down by neighbat N (a)
only if d(y,c) + R(y) is smaller thani(y, b) for anyb € N(a). When none of these
conditions hold, we are forced to split the subtree rootegiato its elements: one is
a single elemeng, and the others are the subtrees rooted/ §). Once we split the
subtree, we continue the insertion process with each ¢oestiseparately.

Every time we insert a node or a subtree, we pick a fresh temgstfor the node
or the root of the subtree. The elements inside the subt@mddhet fresh timestamps
while keeping the relative ordering among the subtree aisndhe easiest way to
do this is to assume that timestamps are stored relativeosetbf their parent. In this
way, nothing has to be done. We need, however, to store atrestdnthe maximum
differential time stored in the subtree, so as to updaterentTime appropriately
when a whole subtree is reinserted. This is easily done attina time and omitted in
the pseudocode for simplicity.

During reinsertion, we also modify the covering radii of thee nodes traversed.
When inserting a whole subtree we have to digl a) + R(y), which may be larger
than necessary. This involves at search time a price fongaginserted a whole subtree
in one shot.

Note that it may seem that, when searching the place to mitteesubtrees of a
removed node:, one could save some time by starting the search at the pafrent
However, the tree has changed since the time the subtreenafs created, and new
choices may exist now.

Figure 7 shows the algorithm to reinsert a tree with rpatto a dynamicsa-tree
rooted ata. The deletion of a node is done by first locating it in the tree (say, €
N (b)), then removing it fromV (b), and finally reinserting every subtrgee N(x)
usingRei nsert (a, y) .

Reinsert (Node a, Node y)

1. If |N(a)] < MazArity Then M + {a}UN(a) El se M+ N(a)
2. 1 < argming,,d(b,y)

3. c2 ¢« argmingc g3 d(b,Y)

4. If d(ei,y)+ R(y) <d(c2,y) Then // keep subtree together
5. R(a) + max(R(a),d(a,y) + R(y))

6. If ¢t =a Then // insert it here

7. N(a) + N(a) U {y}

8. time(y) < CurrentTime [/ subtree shifts autonmatically
9. El se Reinsert (ci, y) // go down

10. Else // split subtree

11. For z€ N(y) Do Reinsert (a, 2)

12. N(y) < 0, R(y)«0

13. Rei nsert (a, y)

Fig. 7. Simple algorithm to reinsert a subtree with rganto a dynamicsa-treewith roota.

Optimization. A further optimization to the subtree reinsertion proces&es a more
clever use of timestamps. Say thawill be deleted, and leti(x) be the set of ancestors
of x, that is, all the nodes in the path from the rootitd=or each node belonging to
the subtree rooted at we haveA(z) C A(c). So, when node was inserted, it was
compared against all the neighbors of every nodé(ia) whose timestamp was lower
than that ofe. Using this information we can avoid evaluating distancethése nodes

when revisiting them at the time of reinsertingrhat is, when looking for the neighbor
closest tae, we know that the one id () is closer toc than any older neighbor, so we
have to consider only newer neighbors. Note that this ighadilong as we reenter the
same path wherewas inserted previously.

The average cost of subtree reinsertion is as follows. Asghat we just reinsert the
elements one by one. Assuming that the tree has alwaysAudiyd that it is perfectly
balanced, the average size of a randomly chosen subtressowirto bdog 4, n. As every
(re)insertions costd log 4 n, the average deletion costislog? n. This is much more
costly than an insertion.

4.3 Combining both Methods

We have two methods. Fake nodes delete elements for freeegradk the search per-
formance of the tree. Subtree reinsertion make a costlyesileinsertion but try to

maintain the search quality of the tree. Note that the costioberting a subtree would
not be much different if it contained fake nodes, so we coefdave all the fake nodes
with a single subtree reinsertion, therefore amortizirgtiigh cost of the reinsertion
over many deletions.

Our idea is to ensure that every subtree has at most a fractidriake nodes. We
say that such subtrees are “balanced”. When we mark a newmnasiéake, we check
if we have not unbalanced it. In this casds discarded and its subtrees reinserted. The
only difference is that we never insert a subtree whose mfatlie, rather, we split the
subtree and discard the fake root.

A complication is that removing the subtree rootedcatnay unbalance several
ancestors oft, even if z is just a leaf that can be directly removed, and even if the
ancestor is not rooted at a fake node. As an example, corssidwary tree of heigtn
where all the nodes at distan8efrom the root;i > 0, are fake. The three is balanced
for a = 1/3, butremoving the leaf or marking as fake its parent unbaaeeery node.

We opt for a simple solution. We look for the lowest ancesfar that gets unbal-
anced and reinsert all the subtree rooted.&ecause of this complication, we reinsert
whole subtrees only when they have no fake nodes.

This technique has a nice performance property. Even if inseeted the elements
one by one (instead of whole subtrees), we would have theagtes that we would
reinsert a subtree only when a fractiarof its elements were fake. This would mean
that if the size of the subtree to rebuild werg we would paymn(1 — «) reinsertions
for eacham deletions made in the subtree. Hence the amortized cost efediah
would be at mostl — «) /« times the cost of an insertion, that {3,—) /a Alog 4 n.
Asymptotically, the tree would work as if we permanently haadractiona of fake
nodes. Hence, we can control the tradeoff between deletidrsearch cost. Note that
pure fake nodes correspondsite= 1 and pure subtree reinsertiondo= 0.

4.4 Experimental Comparison

Let us now compare the three methods to handle deletionsmsptice of words using
arity 16. Figure 8 shows the deletion cost for the first 10%)(ler 40% (right) of the

Distance evaluations x 1000

database. On the left we have shown the case of full subtireseréon (that is, reinsert-
ing the subtrees after each deletion), with and without thel fiptimization proposed.
As it can be seen, we save about 50% of the deletion cost watloptimization. We
also show that one can only rarely insert whole subtreesgiasarting the elements
one by one has almost the same cost. Hence the algorithnéslesimplified without
sacrificing much. We also show the combined method with 1%, 3% and 5%. On
the right we have shown much larger valueswpfrom 0% (full reinsertion) until 200%
(pure fake nodes), as well as larger percentages of dedgbory the optimized version
of reinsertions is used from now on).

We compare the methods deleting different percentageseofléihabase to make
appreciable not only the deletion cost per element but alshaw the cumulative effect
of deletions over the structure.

It can be seen that, even with full reinsertion, the indiaddeletion cost is not so
high. For example, the average insertion cost in this sgaabadut 58 distance compu-
tations per element. With the optimized method, each deletbsts about 173 distance
computations, i.e., 3 times the cost of an insertion. Thelinad method largely im-
proves over this: using as low as 1% we have a deletion cost of 65 distance computa-
tions, which is close to the cost of insertions, and with3% this reduces to 35.

Deletion cost for n = 69,069 words Arity 16 Deletion cost for n = 69,069 words Arity 16

4500

2500 T y y T T T T T y T T T T
Full subtree reinsertion — Full reinsertion (0% fake) —

Full subtree reinsertion (opt) —x— 4000 | 1% fake nodes ——
Elementwise reinsertion (opt) —— 3% fake nodes —x—
2000 Combined --- 1% fake nodes (opt) —e— 3500 | 10% fake nodes —e
Combined --- 3% fake nodes (opt) —— 30% fake nodes —
Combined --- 5% fake nodes (opt) —— 50% fake nodes ——

3000 F pyre fake nodes (100% fake)

2500

1500 |

2000
1000 |

1500

Distance evaluations x 1000

500 | 1000 f

500

n | b n .
1 2 3 4 5 6 7 8 9 10 0 5 10 15 20 25 30 35 40
Percentage of database deleted Percentage of database deleted

Fig. 8. Deletion costs using different methods.

Let us now consider how the search costs are affected byatedetWe search on an
index built on half of the elements of the database. Thisikditilt by inserting more
elements and then removing enough elements to leave 50% sEthin the index. So
we compare the search on sets of the same size where a pgecehthe elements has
been deleted in order to leave the set in that size. For exa®@ deletions means that
we inserted 49,335 elements and then removed 14,800, sdess/®34,534 elements
(half of the set).

Figure 9 shows the results. As it can be seen, even with finsegtions ¢ = 0%)
the search quality degrades, albeit hardly noticeably ammdmonotonically with the
number of deletions made. Asgrows, the search costs increase because of the need to
enter every children of fake nodes. The difference in seemshceases to be reasonable

Distance evaluations

Distance evaluations

as early asx = 10%, and in fact it is significant even far= 1%. So one has to choose
the right tradeoff between deletion and search cost depgrati the application. A
good tradeoff for strings i& = 1%.

Query cost for n = 34,534 words Arity 16, alpha = 0% Query cost for n = 34,534 words Arity 16, alpha = 1%
30000 T T 30000
25000 r 25000 r
)
=
2
20000 S 20000
©
>
o
@
15000 ¢ £ 15000 |
B
0% deleted —— e 0% deleted ——
10000 10% deleted —<— 1 10000 g 10% deleted —<— 1
20% deleted —»— 20% deleted —»—
30% deleted —=— 30% deleted —=—
40% deleted —=— 40% deleted —=—
5000 - - 5000 - .
1 2 3 4 1 2 3 4
Search radius Search radius
Query cost for n = 34,534 words Arity 16, alpha = 3% Query cost for n = 34,534 words Arity 16, alpha = 10%
30000 T T 30000 T T
25000 - 25000 r
)
2
2
20000 & 20000 -
S
o
@
15000 £ 15000 |
©
0% deleted —— e 0% deleted ——
10000 10% deleted —<— 4 10000 10% deleted —<— 4
20% deleted —»— 20% deleted —»—
30% deleted —=— 30% deleted —=—
40% deleted —=— 40% deleted —=—
5000 - - 5000 - -
1 2 3 4 1 2 3 4
Search radius Search radius

Fig. 9. Search costs using different deletion methods. In readidgrave show the cases af=
0%, 1%, 3% and 10%.

Figure 10 shows the same data in a way that permits comp&erahange in search
cost asy grows.

5 Conclusions

We have presented a dynamic version of slaetreedata structure, which is able of
handling insertions and deletions efficiently without affeg its search quality. Very
few data structures for searching metric spaces are fulhadyc. Furthermore, we
have shown how to improve the behavior of #zetreein low dimensional spaces, both
for construction and search costs.

Thesa-treewas a promising data structure for metric space searchiitig several
drawbacks that prevented it from being practical: high troregion cost in low dimen-
sional spaces, poor search performance in low dimensipaaks or queries with high
selectivity, and unability to accommodate insertions aglétibns.

Distance evaluations

Query Cost for n = 34,534 words Arity 16, 10% deleted Query cost for n = 34,534 words Arity 16, 40% deleted
30000 T T 30000

25000 25000

20000 20000

15000 15000 ¢ 1
alpha=0% ——
alpha=1% —<—
alpha=3% —*—
alpha=10% —=— 4
alpha=30% —=—
alpha=50% —e—
alpha =100% —e—

alpha=0% ——
alpha=1% —<—
alpha=3% —*—
alpha=10% —=— 4 10000
alpha=30% —=—
alpha=50% —e—
alpha =100% —e—

Distance evaluations

10000

- 5000 -
2 3 4 1 2 3 4
Search radius Search radius

5000
1

Fig. 10. Search costs using different deletion methods, comparir@n the left we have deleted
10% of the database, on the right, 40%.

We have addressed all these weaknesses. Our new dyeartreestand out as a
practical and efficient data structure that can be used irde winge of applications,
while retaining the good features of the original data strrec

As an example to give an idea of the behavior of our dynasaitree let us con-
sider the space of vectors in dimension 15 using arity 16.&Ve §2.63% of the static
construction cost, and improve the search time by 0.91% erage. A deletion with
full element reinsertion costs on average 143 distanceiatiahs, which is 2.43 times
the cost of an insertion. If we allow 10% of fake nodes in tliacttre, then the cost of
a deletion drops to 17 and the search time becomes 3.04% tharséhe static version.

We are currently pursuing in the direction of making geetreework efficiently
in secondary memory. In that case both the number of distemegputations and disk
accesses are relevant.

References

1. C. Bohm, S. Berchtold, and D. Keim. Searching in highatisional spaces: Index struc-
tures for improving the performance of multimedia databasACM Computing Surveys
33(3):322-373, September 2001.

2. S. Brin. Near neighbor search in large metric spacePrdo. 21st Conference on Very Large
Databases (VLDB'95)pages 574-584, 1995.

3. E. Chavez, G. Navarro, R. Baeza-Yates, and J. Marrodgggarching in metric spaceACM
Computing Survey83(3):273—-321, September 2001.

4. V. Gaede and O. Gunther. Multidimensional access mseth@dCM Computing Surveys
30(2):170-231, 1998.

5. G. Navarro. Searching in metric spaces by spatial appratkdon. InProc. String Processing
and Information Retrieval (SPIRE'99)ages 141-148. IEEE CS Press, 1999.

6. G. Navarro. Searching in metric spaces by spatial appraton. The VLDB Journgl2002.
To appear.

7. G. Navarro and N. Reyes. Dynamic spatial approximatieesr InProc. XXI Conference of
the Chilean Computer Science Society (SCCG’'pages 213-222. IEEE CS Press, 2001.

