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Abstract. A i-spanner, a subgraph that approximates graph distances
within a precision factor ¢, is a well known concept in graph theory.
In this paper we use it in a novel way, namely as a data structure for
searching metric spaces. The key idea is to consider the t-spanner as an
approximation of the complete graph of distances among the objects,
and use it as a compact device to simulate the large matrix of distances
required by successful search algorithms like AESA [Vidal 1986]. The
t-spanner provides a time-space tradeoff where full AESA is just one
extreme. We show that the resulting algorithm is competitive against
current approaches, e.g., 1.5 times the time cost of AESA using only
3.21% of its space requirement, in a metric space of strings; and 1.09
times the time cost of AESA using only 3.83 % of its space requirement,
in a metric space of documents. We also show that t-spanners provide
better space-time tradeoffs than classical alternatives such as pivot-based
indexes. Furthermore, we show that the concept of ¢-spanners has po-
tential for large improvements.

1 Introduction

The concept of “approximate” searching has applications in a vast number of
fields. Some examples are non-traditional databases (where the concept of ex-
act search is of no use and we search for similar objects, e.g. databases storing
images, fingerprints or audio clips); machine learning and classification (where
a new element must be classified according to its closest existing element); im-
age quantization and compression (where only some vectors can be represented
and those that cannot must be coded as their closest representable point); text
retrieval (where we look for words in a text database allowing a small number
of errors, or we look for documents which are similar to a given query or docu-
ment); computational biology (where we want to find a DNA or protein sequence
in a database allowing some errors due to typical variations); function prediction
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(where we want to search the most similar behavior of a function in the past so
as to predict its probable future behavior); etc.

All those applications have some common characteristics. There is a universe
X of objects, and a nonnegative distance function d : X x X — R defined
among them. This distance satisfies the three axioms that make the set a metric
space

dlz,y) =0 & z=y
d(z,y) = d(y, )
d(z,z) < d(z,y) +d(y,z)

where the last one is called the “triangle inequality” and is valid for many rea-
sonable similarity functions. The smaller the distance between two objects, the
more “similar” they are. This distance is considered expensive to compute (think,
for instance, in comparing two fingerprints). We have a finite database U C X
which is a subset of the universe of objects and can be preprocessed (to build an
index, for instance). Later, given a new object from the universe (a query q), we
must retrieve all similar elements found in the database. There are two typical
queries of this kind:

(a) Retrieve all elements which are within distance r to q.
This is, {z € U / d(z,q) <7}
(b) Retrieve the k closest elements to ¢ in U.
This is, A C U such that |A| =k and Vo € A,y € U— A,d(z,q) < d(y, q).

Given a database of |U = n objects, all those queries can be trivially
answered by performing n distance evaluations. The goal is to structure the
database such that we perform less distance evaluations. Since the distance is
usually expensive to compute, we take the number of distance evaluations as the
measure of the search complexity. This is the approach we take in this paper.

A particular case of this problem arises when the space is R* . There are effec-
tive methods for this case, such as kd-trees, R-trees, X-trees, etc. [6]. However,
for roughly 20 dimensions or more those structures cease to work well. We focus
in this paper in general metric spaces, although the solutions are well suited
also for k-dimensional spaces. It is interesting to notice that the concept of “di-
mensionality” can be translated to metric spaces as well: the typical feature in
high dimensional spaces is that the probability distribution of distances among
elements has a very concentrated histogram (with larger mean as the dimension
grows), difficulting the work of any similarity search algorithm [4]. We say that
a general metric space is high dimensional when its histogram of distances is
concentrated.

There are a number of methods to preprocess the set in order to reduce the
number of distance evaluations. All them work by discarding elements with the
triangle inequality. See [4] for a recent survey.

By far, the most successful technique for searching metric spaces ever pro-
posed is AESA [10]. Its main problem is that it requires precomputing and



storing a matrix with all the O(n?) distances among the objects of U. This high
space requirement has prevented it from being seriously considered except in
very small domains.

On the other hand, the concept of a t-spanner is well known in graph theory
[9]. Let G be a connected graph G(V, E) with a nonnegative cost function d(e)
assigned to its edges e € E, and d¢(u,v) be the cost of the cheapest path between
u,v € V. Then, a ¢-spanner of G is a subgraph G'(V, E') where E' C E and
Vu,v € V, dg (u,v) < t-dg(u,v). (It should be clear that dg(u,v) < dg: (u,v)
also holds because G is a subgraph of G.) Several algorithms to build ¢-spanners
are known [5, 7], and we have proposed some specific construction algorithms for
our present metric space application [8] (complete GG, metric costs, and ¢t < 2).
The naive construction algorithm is O(n?) time. On euclidean spaces, this drops
to O(nlogn). Our construction complexity [8] for general metric spaces is around
O(n??) in practice.

Our main idea is to combine both concepts so as to use the t-spanner as a
controlled approximation to the full AESA distance matrix, so as to obtain a
competitive space-time tradeoff. We show experimentally that ¢-spanners provide
competitive performance as simple replacements of AESA. At the end, we argue
that they give us tools for several improvements that are under study.

We apply the idea to approximate dictionary searching under the edit dis-
tance, which is a common problem in text databases. As an example, if we
search permitting one error, a 1.4-spanner (needing only a 3.2% of the memory
of AESA) needs only 26% distance evaluations over AESA. If we permit two
errors the overhead in distance computations is 15%, and 46% for three errors.
A classical pivot-based technique using the same amount of memory needs much
more distance evaluations.

We also apply the idea to approximate document retrieval form textual
database using the cosine distance. As an example, if we use a 2.0-spanner we
need only a 3.8% of the memory of AESA for the index. With the 2.0-spanner
index, we need only 9% distance evaluations over AESA in order to retrieve 1
document on average, and 8% distance evaluations over AESA to retrieve 10
documents on average.

2 Previous Work

Different data structures have been proposed to filter out elements at search time
based on the triangle inequality [4]. In this paper we will focus on a particular
class of algorithms called “pivot-based”. These algorithms select a set of pivots
{p1...pr} C U and store a table of kn distances d(p;,u), i € {1...k}, u € U
To solve a range query (g, r), we measure d(q, p;) and use the fact that, because
of the triangle inequality,

d(q,u) > |d(q,p) —d(u,p)|,

so we can discard every u € U such that |d(gq,p1) — d(u,p1)| > r, as this implies
d(g,u) > r. Once we are done with p; we try to discard elements from the



remaining set using ps and so on until we use all the k& pivots. The elements u
that still cannot be discarded at the end are directly compared against ¢. Fig. 1
(left) shows the concept graphically.
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Fig. 1. On the left, the ring of elements not discarded by pivot p. On the right, the
relaxed ring used when using a t-spanner. We denote as D the (real or approximated)
distance between p and gq.

In AESA [10] this idea is taken to the extreme k = n, that is, every element
is a potential pivot and hence we need a matrix with all the n(n —1)/2 distances
precomputed. Since we are free to choose any pivot, the “next” pivot is chosen
from the remaining set of elements, which improves locality and the search cost.
Additionally, as it is well known that pivots closer to the query are much more
effective, candidates to pivots u are sorted according to the sum of their lower
bound distances to ¢ up to now. That is, if we have used pivots {p; ...p;} and
want to choose pivot p;+1, we choose the element u minimizing

SumLB(u) = Zld(pj7q) — d(pj, u)| (1)

AESA is experimentally shown to have almost constant cost as a function of
n. The problem is that storing O(n?) distances is unrealistic for most applica-
tions. This has restricted an excellent algorithm to the few applications where
n is small. Our goal in this paper is to overcome this weakness.

3 Our Proposal

Our main idea is to use t-spanners as low memory replacement of the full distance
matrix, allowing a controlled approximation to the true distances. Let us assume



we have a complete graph G(U,U x U), where d(u,v) = dg(u,v) is the metric
space distance between elements u and v. A t-spanner G'(U, E) of G would
permit us estimate the distance between every pair of objects within a factor ¢,
without the need to store O(n?) distances but only |E| edges. We note that, for
every u,v € U,

d(u,v) < dg(u,v) < t-d(u,v) (2)

which permits us adapting AESA to this approximated distance.
Let us return to the condition to discard an element u with a pivot p. The
condition to be outside the ring can be rewritten as

d(p,u) < d(p,qg) —r or d(p,u) > d(p,q)+r . (3)

If we only know dg/ (p, u), we can use Egs. (2) and (3) to obtain a new condition
that implies Eq. (3) and hence guarantees that d(q,u) > r:

dg(p,u) < d(p,q) —r or dg(p,u) > t-(d(p,q)+7r) . (4)

Therefore, a pivot p can discard every element outside the ring dg (p,u) €
[d(p,q) —r , t-(d(p,q) +1)]. Fig. 1 (right) illustrates.

What we have obtained is a relaxed version of AESA, which requires less
memory (O(|E|) instead of O(n?)) and, in exchange, discards less element per
pivot. As t tends to 1, our approximation becomes better but we need more and
more edges. Hence we have a space-time tradeoff where the full AESA is just
one extreme.

Since we have only an approximation to the distance, we cannot directly use
Eq. (1). To compensate the effect of the precision factor ¢, we define a;, and
rewrite Eq. (1) as follows:

_2/t+1
03

k—1
sumLB'(w) = 3 |d(pira) ~ dor (i) -, o (5)
1=0

Our search algorithm is as follows. We start with a set of candidate nodes C,
which is initially U. Then, we choose a node p € C minimizing SumLB’ (Eq. (5))
and remove it from C. We measure D = d(p, q) and report p if D < r. Now,
we run Dijkstra’s shortest path algorithm in the ¢-spanner starting at p, until
the last node v whose distance to p gets computed satisfies dg (v, p) > t(D +r).
(Since Dijkstra’s algorithm gives the distances to p in increasing order, we know
that all the remaining nodes will be farther away.) By Eq. (4), we keep from C
only the nodes u such that D —r < dg/(p,u) < t(D + r). We repeat these steps
until C' = (. Fig. 2 depicts the algorithm.

The analysis is similar to that of AESA. Let n; be the number of pivots we
have to consider before we can remove node w; from C (it may be necessary to
finally compare ¢ against u; directly). Then the number of distance computations
made by AESA is max;—. , n; and its extra CPU cost is >, ; , n; (which is
between O(n) and O(n?)). In practice it is shown that the number of distance
evaluations is close to O(1) and the extra CPU time to O(n) [10].



Search (Query ¢, Radius r, t{-Spanner G"H

C+U
ap + (2/t+1)/3
for p € C do SumLB(p) <+ 0
while C'# 0 do
p < argmin, . SumLB'(c)
C+ C—{p}
D «d(q,p)
if D <r then Report p
dg' + Dijkstra(G',p,t(D +71))
for u € C do
if dg(p,u) & [D —r,t(D +r)] then
C+ C—A{u}
else SumLB'(u) + SumLB'(u) +|D —de (p,v) - ol

Fig. 2. Search algorithm. Dijkstra(G’,p,z) computes the distances from p in G’ for
all nodes up to distance z, and marks the remaining ones as “farther away”.

In our case, however, we have the additional cost of running Dijkstra. Albeit
we are interested only in the nodes belonging to C, we need to compute the
distances to all the others to obtain the ones we need. We remark that this
algorithm works only up to the point where the next closest element it extracts
is far enough. Overall, this can be as bad as O(n|E|logn) or O(n®) depending
on the version of Dijkstra we use. On the other hand, if we assume that we
work to obtain little more than the distances we preserve in C', the overall cost
is only that of AESA multiplied by O(logn). In any case, we remind that we
are focusing on applications where the cost to compute d dominates even heavy
extra CPU costs.

4 Experimental Results

We have tested our t-spanner on two real-world metric spaces. The first is a
string metric space using the edit distance (a discrete function that measures
the minimum number of character insertions, deletions and replacements needed
to make them equal). The strings form an English dictionary, where we index
a subset of n = 23,023 words. The second is a space of 1,215 documents under
the Cosine distance, which is used to retrieve documents with higher rank with
respect to a query (i.e., closer to the query point under Cosine distance) [1].
Both spaces are of interest to Information Retrieval applications.

As our index data structure we use t-spanners with precision factors ¢t €
[1.4,2.0], and compare them against AESA. Since t-spanners offer a time-space
tradeoff and AESA does not, we consider also pivot-based indexes with varying
number of pivots. For every ¢ value, we measure the size of the resulting ¢-spanner



and build a pivot-based index using the same amount of memory (pivots are
chosen at random). This way we compare ¢-spanners against the classical space-
time alternative tradeoff. Note that AESA needs more than 250 millions of cells
(1 gigabytes of memory) even for the relatively small example of strings.

Since in some cases the pivots were too many compared to the average num-
ber of candidates to eliminate, we decided to stop using the pivots when the
remaining set of candidates was smaller than the remaining set of pivots to use.
This way we never pay more for having more pivots available than necessary.
Also, it turns out that even the smallest number of pivots shown is beyond the
optimal sometimes. In these cases we show also the result with less pivots until
we reach the optimum.

4.1 Strings under Edit Distance

In the space of strings, we select 100 queries randomly from dictionary words not
included in the index, and search with radii r = 1, 2, 3, which return 0.0041%,
0.036% and 0.29% of the database, respectively. Tables 1, 2 and 3 show the size
of the index structures tested, as well as the distance evaluations required for
searching.

|t ] |E'] | r=1 ] r=2 ] r=3
1.4 8,507,720 27.66 | 98.54 [ 723.20
L5 3,740,705 34.55 | 135.59 | 944.13
1.6 2,658,556 39.00 | 167.36 | 1188.44
1.7 1,861,260 4253 | 185.24 | 1205.32
1.8 1,249,313 56.15 | 267.22 [ 1581.68
1.9 901,577 62.79 | 293.80 [ 1763.81
2.0 626,266 96.25 | 471.35 [ 2306.07

Table 1. ¢-Spanner index size and distance evaluations at query time. Every edge
needs two machine words of storage.

| nn=1/2 [ r=11]r=2 1] r=3 |
| 265,017,753 [ 21.83 | 85.05 | 495.05 |

Table 2. AESA structure size and distance evaluations at query time. Every cell entry
needs one machine word of storage.

As seen in Tables 1 and 2, our indexes are competitive against AESA and
use only a fraction of its space (e.g., only 3.21% for ¢ = 1.4). With respect to



| t | equivalent # of pivots | r=1 | r=2 | r=23 |

1.4 739 539.48 | 642.65 | 1251.15
1.5 325 248.13 | 318.57 | 1685.52
1.6 230 181.80 268.40 | 2129.34
1.7 161 132.13 256.17 | 2845.85
1.8 108 86.75 321.08 | 3956.21
1.9 78 64.26 465.84 | 5047.14
2.0 54 49.29 748.81 | 6082.60

Table 3. Pivot table structure and distance evaluations at query time. Every table cell
needs one machine word. We have computed the amount of pivots that corresponds to
the t-spanner size for every t.

pivots (Tables 1 and 3), in almost every case the corresponding ¢-spanners use
the space better.

Figures 3, 4 and 5 present the results graphically. We have chosen to draw
a line to represent AESA although, since it permits no space-time tradeoffs, a
point would be the correct representation. The position of this point in the x
axis would be 132.5, far away from the right end of the plot.
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Fig. 3. Distance evaluations, search radius r = 1.

4.2 Documents under Cosine Distance

In the space of documents, we select 50 queries randomly from the document
database not included in the index, and search with radii chosen to retrieve 1
or 10 documents per query (r = 0.1325,0.167 respectively). Tables 4, 5 and 6
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Fig. 5. Distance evaluations, search radius r = 3.

show the size of the index structures tested, as well as the distance evaluations
required for searching.

As seen in Tables 4 and 5, our indexes are very competitive against AESA
and use only a fraction of its space (e.g., only 3.84% for t = 2.0). With respect to
pivots (Tables 4 and 6), in all cases the corresponding ¢-spanners use the space
better.

Figures 6 and 7 present the results graphically. We have chosen to draw a
line to represent AESA.

5 Conclusions

We have presented a new approach to metric space searching, which is based
on using a t-spanner data structure as an approximate map of the space. This



retrieving retrieving
t |E'| 1 document 10 documents
1.4 266,590 191.60 210.84
1.5 190,145 193.04 212.78
1.6 125,358 195.14 212.30
1.7 109,387 194.96 215.30
1.8 87,618 197.20 216.38
1.9 43,336 201.76 218.98
2.0 28,239 205.60 223.02

Table 4. ¢t-Spanner index size and distance evaluations at query time. Every edge
needs two machine words of storage.

retrieving retrieving
n(n —1)/2 1 document 10 documents
| 737505 [ 18732 ] 206.26

Table 5. AESA structure size and distance evaluations at query time. Every cell entry
needs one machine word of storage.

permits us trading space for query time. We have shown experimentally that
the alternative is competitive against existing solutions. In particular we have
shown that t-spanners are specially competitive in applications of interest to
Information Retrieval: strings under edit distance and documents under cosine
distance. For example, in an approximate string matching scenario typical of
text databases, we show that ¢-spanners provide better space-time tradeoffs com-
pared to the classical pivot-based solutions. It also permits approximating AESA |
which is an unbeaten index, within 50% of extra time using only about 3% of the
space it requires. This becomes a feasible approximation to AESA, which in its

retrieving retrieving
t equivalent # of pivots 1 document 10 documents
1.4 438 256.54 288.54
1.5 312 273.80 281.28
1.6 206 281.98 307.46
1.7 180 275.42 319.20
1.8 144 279.48 307.04
1.9 71 251.30 269.70
2.0 46 232.98 252.20

Table 6. Pivot table structure and distance evaluations at query time. Every table cell
needs one machine word. We have computed the amount of pivots that corresponds to
the t-spanner size for every t.



290

‘ t—Spanneré —
280 Pivots Algorithm —<— -
AESA ———
270 + 4
» 260 g
5
k= 250 + 4
p=}
Tg 240 + 4
1]
o 230 | g
2
8220 + 4
R4l
8 210 f
200 ¢ \\'\v_’\‘__\_“ |
190 4
180 . . . . .
0 50 100 150 200 250 300

|E| x 1,000

Fig. 6. Distance evaluations, search radius r = 0.1325, retrieving 1 document.
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Fig. 7. Distance evaluations, search radius r = 0.167, retrieving 10 documents.

original form cannot be implemented in practice because of its quadratic mem-
ory requirements. Furthermore, for document retrieval in a textual database, we
need a 9% extra time over AESA, using only 4% of its memory requirement.

On the other hand, ¢-spanners have a large potential for improvements we
are pursuing. A first one is that we do not really need the same precision ¢ for
all the edges. Shorter edges are more important than longer edges, as Dijkstra
tends to use shorter edges to build the shortest paths. Using a ¢ that depends
on the distance to estimate may give us better space-time tradeoffs.

Another idea is that we can build a #-spanner and use it as a t'-spanner,
for t' < t. This may lose some relevant elements but improves the search time.
The result is a probabilistic algorithm, which is a new successful trend in metric
space searching [3,2]. In particular, we have observed that in order to build a
t-spanner, many distances are estimated better than ¢ times the real one, so



this idea seems promising. For example, a preliminary experiment in the string
metric space shows that, with a 2.0-spanner and using ¢’ = 1.9, we need only
53% of the distance computations to retrieve the 92% of the result.

Finally, another idea is to use the t-spanner as a navigational device. A pivot

is much more effective if it is closer to the query, as the ball of candidate elements
has much smaller volume. We can use the #-spanner edges to start at a random
node and approach the query by neighbors.
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