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t. A t-spanner, a subgraph that approximates graph distan
eswithin a pre
ision fa
tor t, is a well known 
on
ept in graph theory.In this paper we use it in a novel way, namely as a data stru
ture forsear
hing metri
 spa
es. The key idea is to 
onsider the t-spanner as anapproximation of the 
omplete graph of distan
es among the obje
ts,and use it as a 
ompa
t devi
e to simulate the large matrix of distan
esrequired by su

essful sear
h algorithms like AESA [Vidal 1986℄. Thet-spanner provides a time-spa
e tradeo� where full AESA is just oneextreme. We show that the resulting algorithm is 
ompetitive against
urrent approa
hes, e.g., 1.5 times the time 
ost of AESA using only3.21% of its spa
e requirement, in a metri
 spa
e of strings; and 1.09times the time 
ost of AESA using only 3.83 % of its spa
e requirement,in a metri
 spa
e of do
uments. We also show that t-spanners providebetter spa
e-time tradeo�s than 
lassi
al alternatives su
h as pivot-basedindexes. Furthermore, we show that the 
on
ept of t-spanners has po-tential for large improvements.1 Introdu
tionThe 
on
ept of \approximate" sear
hing has appli
ations in a vast number of�elds. Some examples are non-traditional databases (where the 
on
ept of ex-a
t sear
h is of no use and we sear
h for similar obje
ts, e.g. databases storingimages, �ngerprints or audio 
lips); ma
hine learning and 
lassi�
ation (wherea new element must be 
lassi�ed a

ording to its 
losest existing element); im-age quantization and 
ompression (where only some ve
tors 
an be representedand those that 
annot must be 
oded as their 
losest representable point); textretrieval (where we look for words in a text database allowing a small numberof errors, or we look for do
uments whi
h are similar to a given query or do
u-ment); 
omputational biology (where we want to �nd a DNA or protein sequen
ein a database allowing some errors due to typi
al variations); fun
tion predi
tion? This work has been supported in part by the Millenium Nu
leus Center for WebResear
h, Grant P01-029-F, Mideplan, Chile (1st and 2nd authors), CYTED VII.19RIBIDI Proje
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(where we want to sear
h the most similar behavior of a fun
tion in the past soas to predi
t its probable future behavior); et
.All those appli
ations have some 
ommon 
hara
teristi
s. There is a universeX of obje
ts, and a nonnegative distan
e fun
tion d : X � X �! R+ de�nedamong them. This distan
e satis�es the three axioms that make the set a metri
spa
e d(x; y) = 0 , x = yd(x; y) = d(y; x)d(x; z) � d(x; y) + d(y; z)where the last one is 
alled the \triangle inequality" and is valid for many rea-sonable similarity fun
tions. The smaller the distan
e between two obje
ts, themore \similar" they are. This distan
e is 
onsidered expensive to 
ompute (think,for instan
e, in 
omparing two �ngerprints). We have a �nite database U � X,whi
h is a subset of the universe of obje
ts and 
an be prepro
essed (to build anindex, for instan
e). Later, given a new obje
t from the universe (a query q), wemust retrieve all similar elements found in the database. There are two typi
alqueries of this kind:(a) Retrieve all elements whi
h are within distan
e r to q.This is, fx 2 U = d(x; q) � rg.(b) Retrieve the k 
losest elements to q in U.This is, A � U su
h that jAj = k and 8x 2 A; y 2 U �A; d(x; q) � d(y; q).Given a database of jUj = n obje
ts, all those queries 
an be triviallyanswered by performing n distan
e evaluations. The goal is to stru
ture thedatabase su
h that we perform less distan
e evaluations. Sin
e the distan
e isusually expensive to 
ompute, we take the number of distan
e evaluations as themeasure of the sear
h 
omplexity. This is the approa
h we take in this paper.A parti
ular 
ase of this problem arises when the spa
e is Rk . There are e�e
-tive methods for this 
ase, su
h as kd-trees, R-trees, X-trees, et
. [6℄. However,for roughly 20 dimensions or more those stru
tures 
ease to work well. We fo
usin this paper in general metri
 spa
es, although the solutions are well suitedalso for k-dimensional spa
es. It is interesting to noti
e that the 
on
ept of \di-mensionality" 
an be translated to metri
 spa
es as well: the typi
al feature inhigh dimensional spa
es is that the probability distribution of distan
es amongelements has a very 
on
entrated histogram (with larger mean as the dimensiongrows), diÆ
ulting the work of any similarity sear
h algorithm [4℄. We say thata general metri
 spa
e is high dimensional when its histogram of distan
es is
on
entrated.There are a number of methods to prepro
ess the set in order to redu
e thenumber of distan
e evaluations. All them work by dis
arding elements with thetriangle inequality. See [4℄ for a re
ent survey.By far, the most su

essful te
hnique for sear
hing metri
 spa
es ever pro-posed is AESA [10℄. Its main problem is that it requires pre
omputing and



storing a matrix with all the O(n2) distan
es among the obje
ts of U. This highspa
e requirement has prevented it from being seriously 
onsidered ex
ept invery small domains.On the other hand, the 
on
ept of a t-spanner is well known in graph theory[9℄. Let G be a 
onne
ted graph G(V;E) with a nonnegative 
ost fun
tion d(e)assigned to its edges e 2 E, and dG(u; v) be the 
ost of the 
heapest path betweenu; v 2 V . Then, a t-spanner of G is a subgraph G0(V;E0) where E0 � E and8u; v 2 V; dG0(u; v) � t � dG(u; v). (It should be 
lear that dG(u; v) � dG0(u; v)also holds be
ause G0 is a subgraph of G.) Several algorithms to build t-spannersare known [5, 7℄, and we have proposed some spe
i�
 
onstru
tion algorithms forour present metri
 spa
e appli
ation [8℄ (
omplete G, metri
 
osts, and t < 2).The naive 
onstru
tion algorithm is O(n4) time. On eu
lidean spa
es, this dropsto O(n logn). Our 
onstru
tion 
omplexity [8℄ for general metri
 spa
es is aroundO(n2:2) in pra
ti
e.Our main idea is to 
ombine both 
on
epts so as to use the t-spanner as a
ontrolled approximation to the full AESA distan
e matrix, so as to obtain a
ompetitive spa
e-time tradeo�. We show experimentally that t-spanners provide
ompetitive performan
e as simple repla
ements of AESA. At the end, we arguethat they give us tools for several improvements that are under study.We apply the idea to approximate di
tionary sear
hing under the edit dis-tan
e, whi
h is a 
ommon problem in text databases. As an example, if wesear
h permitting one error, a 1.4-spanner (needing only a 3.2% of the memoryof AESA) needs only 26% distan
e evaluations over AESA. If we permit twoerrors the overhead in distan
e 
omputations is 15%, and 46% for three errors.A 
lassi
al pivot-based te
hnique using the same amount of memory needs mu
hmore distan
e evaluations.We also apply the idea to approximate do
ument retrieval form textualdatabase using the 
osine distan
e. As an example, if we use a 2.0-spanner weneed only a 3.8% of the memory of AESA for the index. With the 2.0-spannerindex, we need only 9% distan
e evaluations over AESA in order to retrieve 1do
ument on average, and 8% distan
e evaluations over AESA to retrieve 10do
uments on average.2 Previous WorkDi�erent data stru
tures have been proposed to �lter out elements at sear
h timebased on the triangle inequality [4℄. In this paper we will fo
us on a parti
ular
lass of algorithms 
alled \pivot-based". These algorithms sele
t a set of pivotsfp1 : : : pkg � U and store a table of kn distan
es d(pi; u); i 2 f1 : : : kg; u 2 U.To solve a range query (q; r), we measure d(q; p1) and use the fa
t that, be
auseof the triangle inequality,d(q; u) � jd(q; p)� d(u; p)j ;so we 
an dis
ard every u 2 U su
h that jd(q; p1)� d(u; p1)j > r, as this impliesd(q; u) > r. On
e we are done with p1 we try to dis
ard elements from the



remaining set using p2 and so on until we use all the k pivots. The elements uthat still 
annot be dis
arded at the end are dire
tly 
ompared against q. Fig. 1(left) shows the 
on
ept graphi
ally.
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Fig. 1. On the left, the ring of elements not dis
arded by pivot p. On the right, therelaxed ring used when using a t-spanner. We denote as D the (real or approximated)distan
e between p and q.In AESA [10℄ this idea is taken to the extreme k = n, that is, every elementis a potential pivot and hen
e we need a matrix with all the n(n�1)=2 distan
espre
omputed. Sin
e we are free to 
hoose any pivot, the \next" pivot is 
hosenfrom the remaining set of elements, whi
h improves lo
ality and the sear
h 
ost.Additionally, as it is well known that pivots 
loser to the query are mu
h moree�e
tive, 
andidates to pivots u are sorted a

ording to the sum of their lowerbound distan
es to q up to now. That is, if we have used pivots fp1 : : : pig andwant to 
hoose pivot pi+1, we 
hoose the element u minimizingSumLB(u) = iXj=1 jd(pj ; q)� d(pj ; u)j (1)AESA is experimentally shown to have almost 
onstant 
ost as a fun
tion ofn. The problem is that storing O(n2) distan
es is unrealisti
 for most appli
a-tions. This has restri
ted an ex
ellent algorithm to the few appli
ations wheren is small. Our goal in this paper is to over
ome this weakness.3 Our ProposalOur main idea is to use t-spanners as low memory repla
ement of the full distan
ematrix, allowing a 
ontrolled approximation to the true distan
es. Let us assume



we have a 
omplete graph G(U;U � U), where d(u; v) = dG(u; v) is the metri
spa
e distan
e between elements u and v. A t-spanner G0(U; E) of G wouldpermit us estimate the distan
e between every pair of obje
ts within a fa
tor t,without the need to store O(n2) distan
es but only jEj edges. We note that, forevery u; v 2 U, d(u; v) � dG0(u; v) � t � d(u; v) (2)whi
h permits us adapting AESA to this approximated distan
e.Let us return to the 
ondition to dis
ard an element u with a pivot p. The
ondition to be outside the ring 
an be rewritten asd(p; u) < d(p; q)� r or d(p; u) > d(p; q) + r : (3)If we only know dG0(p; u), we 
an use Eqs. (2) and (3) to obtain a new 
onditionthat implies Eq. (3) and hen
e guarantees that d(q; u) > r:dG0(p; u) < d(p; q)� r or dG0(p; u) > t � (d(p; q) + r) : (4)Therefore, a pivot p 
an dis
ard every element outside the ring dG0(p; u) 2[d(p; q)� r ; t � (d(p; q) + r)℄. Fig. 1 (right) illustrates.What we have obtained is a relaxed version of AESA, whi
h requires lessmemory (O(jEj) instead of O(n2)) and, in ex
hange, dis
ards less element perpivot. As t tends to 1, our approximation be
omes better but we need more andmore edges. Hen
e we have a spa
e-time tradeo� where the full AESA is justone extreme.Sin
e we have only an approximation to the distan
e, we 
annot dire
tly useEq. (1). To 
ompensate the e�e
t of the pre
ision fa
tor t, we de�ne �t, andrewrite Eq. (1) as follows:sumLB0(u) = k�1Xi=0 ���d(pi; q)� dG0(pi; u) � �t���; �t = 2=t+ 13 (5)Our sear
h algorithm is as follows. We start with a set of 
andidate nodes C,whi
h is initially U. Then, we 
hoose a node p 2 C minimizing SumLB0 (Eq. (5))and remove it from C. We measure D = d(p; q) and report p if D � r. Now,we run Dijkstra's shortest path algorithm in the t-spanner starting at p, untilthe last node v whose distan
e to p gets 
omputed satis�es dG0(v; p) > t(D+ r).(Sin
e Dijkstra's algorithm gives the distan
es to p in in
reasing order, we knowthat all the remaining nodes will be farther away.) By Eq. (4), we keep from Conly the nodes u su
h that D� r � dG0(p; u) � t(D + r). We repeat these stepsuntil C = ;. Fig. 2 depi
ts the algorithm.The analysis is similar to that of AESA. Let ni be the number of pivots wehave to 
onsider before we 
an remove node ui from C (it may be ne
essary to�nally 
ompare q against ui dire
tly). Then the number of distan
e 
omputationsmade by AESA is maxi=1:::n ni and its extra CPU 
ost is Pi=1:::n ni (whi
h isbetween O(n) and O(n2)). In pra
ti
e it is shown that the number of distan
eevaluations is 
lose to O(1) and the extra CPU time to O(n) [10℄.



Sear
h (Query q, Radius r, t-Spanner G0)C  U�t  (2=t+ 1)=3for p 2 C do SumLB(p) 0while C 6= ; dop argmin
2CSumLB0(
)C  C � fpgD  d(q; p)if D � r then Report pdG0  Dijkstra(G0; p; t(D + r))for u 2 C doif dG0(p; u) 62 [D � r; t(D + r)℄ thenC  C � fugelse SumLB0(u) SumLB0(u) + jD � dG0(p; v) � �tjFig. 2. Sear
h algorithm. Dijkstra(G0; p; x) 
omputes the distan
es from p in G0 forall nodes up to distan
e x, and marks the remaining ones as \farther away".In our 
ase, however, we have the additional 
ost of running Dijkstra. Albeitwe are interested only in the nodes belonging to C, we need to 
ompute thedistan
es to all the others to obtain the ones we need. We remark that thisalgorithm works only up to the point where the next 
losest element it extra
tsis far enough. Overall, this 
an be as bad as O(njEj logn) or O(n3) dependingon the version of Dijkstra we use. On the other hand, if we assume that wework to obtain little more than the distan
es we preserve in C, the overall 
ostis only that of AESA multiplied by O(logn). In any 
ase, we remind that weare fo
using on appli
ations where the 
ost to 
ompute d dominates even heavyextra CPU 
osts.4 Experimental ResultsWe have tested our t-spanner on two real-world metri
 spa
es. The �rst is astring metri
 spa
e using the edit distan
e (a dis
rete fun
tion that measuresthe minimum number of 
hara
ter insertions, deletions and repla
ements neededto make them equal). The strings form an English di
tionary, where we indexa subset of n = 23,023 words. The se
ond is a spa
e of 1,215 do
uments underthe Cosine distan
e, whi
h is used to retrieve do
uments with higher rank withrespe
t to a query (i.e., 
loser to the query point under Cosine distan
e) [1℄.Both spa
es are of interest to Information Retrieval appli
ations.As our index data stru
ture we use t-spanners with pre
ision fa
tors t 2[1:4; 2:0℄, and 
ompare them against AESA. Sin
e t-spanners o�er a time-spa
etradeo� and AESA does not, we 
onsider also pivot-based indexes with varyingnumber of pivots. For every t value, we measure the size of the resulting t-spanner



and build a pivot-based index using the same amount of memory (pivots are
hosen at random). This way we 
ompare t-spanners against the 
lassi
al spa
e-time alternative tradeo�. Note that AESA needs more than 250 millions of 
ells(1 gigabytes of memory) even for the relatively small example of strings.Sin
e in some 
ases the pivots were too many 
ompared to the average num-ber of 
andidates to eliminate, we de
ided to stop using the pivots when theremaining set of 
andidates was smaller than the remaining set of pivots to use.This way we never pay more for having more pivots available than ne
essary.Also, it turns out that even the smallest number of pivots shown is beyond theoptimal sometimes. In these 
ases we show also the result with less pivots untilwe rea
h the optimum.4.1 Strings under Edit Distan
eIn the spa
e of strings, we sele
t 100 queries randomly from di
tionary words notin
luded in the index, and sear
h with radii r = 1, 2, 3, whi
h return 0.0041%,0.036% and 0.29% of the database, respe
tively. Tables 1, 2 and 3 show the sizeof the index stru
tures tested, as well as the distan
e evaluations required forsear
hing. t jE0j r = 1 r = 2 r = 31.4 8,507,720 27.66 98.54 723.201.5 3,740,705 34.55 135.59 944.131.6 2,658,556 39.00 167.36 1188.441.7 1,861,260 42.53 185.24 1205.321.8 1,249,313 56.15 267.22 1581.681.9 901,577 62.79 293.80 1763.812.0 626,266 96.25 471.35 2306.07Table 1. t-Spanner index size and distan
e evaluations at query time. Every edgeneeds two ma
hine words of storage.
n(n� 1)=2 r = 1 r = 2 r = 3265,017,753 21.83 85.05 495.05Table 2. AESA stru
ture size and distan
e evaluations at query time. Every 
ell entryneeds one ma
hine word of storage.As seen in Tables 1 and 2, our indexes are 
ompetitive against AESA anduse only a fra
tion of its spa
e (e.g., only 3.21% for t = 1:4). With respe
t to



t equivalent # of pivots r = 1 r = 2 r = 31.4 739 539.48 642.65 1251.151.5 325 248.13 318.57 1685.521.6 230 181.80 268.40 2129.341.7 161 132.13 256.17 2845.851.8 108 86.75 321.08 3956.211.9 78 64.26 465.84 5047.142.0 54 49.29 748.81 6082.60Table 3. Pivot table stru
ture and distan
e evaluations at query time. Every table 
ellneeds one ma
hine word. We have 
omputed the amount of pivots that 
orresponds tothe t-spanner size for every t.pivots (Tables 1 and 3), in almost every 
ase the 
orresponding t-spanners usethe spa
e better.Figures 3, 4 and 5 present the results graphi
ally. We have 
hosen to drawa line to represent AESA, although, sin
e it permits no spa
e-time tradeo�s, apoint would be the 
orre
t representation. The position of this point in the xaxis would be 132.5, far away from the right end of the plot.
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Fig. 3. Distan
e evaluations, sear
h radius r = 1.4.2 Do
uments under Cosine Distan
eIn the spa
e of do
uments, we sele
t 50 queries randomly from the do
umentdatabase not in
luded in the index, and sear
h with radii 
hosen to retrieve 1or 10 do
uments per query (r = 0:1325; 0:167 respe
tively). Tables 4, 5 and 6
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Fig. 5. Distan
e evaluations, sear
h radius r = 3.show the size of the index stru
tures tested, as well as the distan
e evaluationsrequired for sear
hing.As seen in Tables 4 and 5, our indexes are very 
ompetitive against AESAand use only a fra
tion of its spa
e (e.g., only 3.84% for t = 2:0). With respe
t topivots (Tables 4 and 6), in all 
ases the 
orresponding t-spanners use the spa
ebetter.Figures 6 and 7 present the results graphi
ally. We have 
hosen to draw aline to represent AESA.5 Con
lusionsWe have presented a new approa
h to metri
 spa
e sear
hing, whi
h is basedon using a t-spanner data stru
ture as an approximate map of the spa
e. This



retrieving retrievingt jE0j 1 do
ument 10 do
uments1.4 266,590 191.60 210.841.5 190,145 193.04 212.781.6 125,358 195.14 212.301.7 109,387 194.96 215.301.8 87,618 197.20 216.381.9 43,336 201.76 218.982.0 28,239 205.60 223.02Table 4. t-Spanner index size and distan
e evaluations at query time. Every edgeneeds two ma
hine words of storage.retrieving retrievingn(n� 1)=2 1 do
ument 10 do
uments737,505 187.32 206.26Table 5. AESA stru
ture size and distan
e evaluations at query time. Every 
ell entryneeds one ma
hine word of storage.permits us trading spa
e for query time. We have shown experimentally thatthe alternative is 
ompetitive against existing solutions. In parti
ular we haveshown that t-spanners are spe
ially 
ompetitive in appli
ations of interest toInformation Retrieval: strings under edit distan
e and do
uments under 
osinedistan
e. For example, in an approximate string mat
hing s
enario typi
al oftext databases, we show that t-spanners provide better spa
e-time tradeo�s 
om-pared to the 
lassi
al pivot-based solutions. It also permits approximating AESA,whi
h is an unbeaten index, within 50% of extra time using only about 3% of thespa
e it requires. This be
omes a feasible approximation to AESA, whi
h in itsretrieving retrievingt equivalent # of pivots 1 do
ument 10 do
uments1.4 438 256.54 288.541.5 312 273.80 281.281.6 206 281.98 307.461.7 180 275.42 319.201.8 144 279.48 307.041.9 71 251.30 269.702.0 46 232.98 252.20Table 6. Pivot table stru
ture and distan
e evaluations at query time. Every table 
ellneeds one ma
hine word. We have 
omputed the amount of pivots that 
orresponds tothe t-spanner size for every t.
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Fig. 7. Distan
e evaluations, sear
h radius r = 0:167, retrieving 10 do
uments.original form 
annot be implemented in pra
ti
e be
ause of its quadrati
 mem-ory requirements. Furthermore, for do
ument retrieval in a textual database, weneed a 9% extra time over AESA, using only 4% of its memory requirement.On the other hand, t-spanners have a large potential for improvements weare pursuing. A �rst one is that we do not really need the same pre
ision t forall the edges. Shorter edges are more important than longer edges, as Dijkstratends to use shorter edges to build the shortest paths. Using a t that dependson the distan
e to estimate may give us better spa
e-time tradeo�s.Another idea is that we 
an build a t-spanner and use it as a t0-spanner,for t0 < t. This may lose some relevant elements but improves the sear
h time.The result is a probabilisti
 algorithm, whi
h is a new su

essful trend in metri
spa
e sear
hing [3, 2℄. In parti
ular, we have observed that in order to build at-spanner, many distan
es are estimated better than t times the real one, so



this idea seems promising. For example, a preliminary experiment in the stringmetri
 spa
e shows that, with a 2.0-spanner and using t0 = 1:9, we need only53% of the distan
e 
omputations to retrieve the 92% of the result.Finally, another idea is to use the t-spanner as a navigational devi
e. A pivotis mu
h more e�e
tive if it is 
loser to the query, as the ball of 
andidate elementshas mu
h smaller volume. We 
an use the t-spanner edges to start at a randomnode and approa
h the query by neighbors.Referen
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