Indexing Text using the Ziv-Lempel Trie

Gonzalo Navarro

Dept. of Computer Science, Univ. of Chile. Blanco Encalada 2120, Santiago, Chile.
gnavarro@dcc.uchile.cl.
Partially supported by Fondecyt Grant 1-020831.

Abstract. Let a text of u characters over an alphabet of size o be
compressible to n symbols by the LZ78 or LZW algorithm. We show
that it is possible to build a data structure based on the Ziv-Lempel trie
that takes 4n log, n(1+o0(1)) bits of space and reports the R occurrences
of a pattern of length m in worst case time O(m? log(mo)+(m+R)logn).

1 Introduction

Modern text databases have to face two opposed goals. On the one hand,
they have to provide fast access to the text. On the other, they have to
use as little space as possible. The goals are opposed because, in order to
provide fast access, an indez has to be built on the text. An index is a data
structure built on the text and stored in the database, hence increasing
the space requirement. In recent years there has been much research on
compressed text databases, focusing on techniques to represent the text
and the index in succinct form, yet permitting efficient text searching.

Let our text 137, , be a sequence of characters over an alphabet X of
size o, and let the search pattern Pj_,, be another (short) sequence over
3. Then the text search problem consists of finding all the occurrences
of PinT.

Despite that there has been some work on succinct inverted indexes
for natural language for a while [24,21], until a short time ago it was
believed that any general index for string matching would need (2(u)
space. In practice, the smaller indexes available were the suffix arrays
[17], requiring ulog, u bits to index a text of u characters, which required
ulog, o bits to be represented, so the index is in practice larger than the
text (typically 4 times the text size).

In the last decade, several attempts to reduce the space of the suffix
trees [2] or arrays have been made by Kérkkainen and Ukkonen [10, 13],
Kurtz [15] and Mékinen [16], obtaining reasonable improvements, albeit
no spectacular ones (at best 9 times the text size). Moreover, they have

concentrated on the space requirement of the data structure only, needing
the text separately available.

Grossi and Vitter [8] presented a suffix array compression method for
binary texts, which needed O(u) bits and was able to report all the R

occurrences of P in T in O (”glu + (R+1)log® u) time. However, they

lo
need the text as well as the index in order to answer queries.

Following this line, Sadakane [22] presented a suffix array im-
plementation for general texts (not only binary) that requires
u (%Ho + 8 + 3log, HU) (1 + 0(1)) + ology o bits, where Hy is the zero-
order entropy of the text. This index can search in time O(mlogu +
Rlog® u) and contains enough information to reproduce the text: any
piece of text of length L is obtained in O(L + log®) time. This means
that the index replaces the text, which can hence be deleted. This is an
opportunistic scheme, i.e., the index takes less space if the text is com-
pressible. Yet there is a minimum of 8u bits of space which has to be paid
independently of the entropy of the text.

Ferragina and Manzini [5] presented a different approach to compress
the suffix array based on the Burrows-Wheeler transform and block sort-
ing. They need 5uHy + O (u%) bits and can answer queries in
O(m—+ Rlog® u) time, where Hy, is the k-th order entropy and the formula
is valid for any constant k. This scheme is also opportunistic. However,
there is a large constant o log o involved in the sublinear part which does
not decrease with the entropy, and a huge additive constant larger than
0?. (In a real implementation [6] they removed these constants at the
price of a not guaranteed search time.)

However, there are older attempts to produce succinct indexes, by
Karkkéinen and Ukkonen [12, 11]. Their main idea is to use a suffix tree
that indexes only the beginnings of the blocks produced by a Ziv-Lempel
compression (see next section if not familiar with Ziv-Lempel). This is
the only index we are aware of which is based on this type of compres-
sion. In [11] they obtain a range of space-time trade-offs. The smallest

indexes need O (u (logo + %)) bits, i.e., the same space of the original

text, and are able to answer queries in O (}%E—ZmZ + mlogu + %RlogE u)
time. Note, however, that this index is not opportunistic, as it takes space
proportional to the text, and indeed needs the text besides the data of
the index.

In this paper we propose a new index on these lines. Instead of using a
generic Ziv-Lempel algorithm, we stick to the LZ78/LZW format and its

specific properties. We do not build a suffix tree on the strings produced

by the LZ78 algorithm. Rather, we use the very same LZ78 trie that is
produced during compression, plus other related structures. We borrow
some ideas from Karkkainen and Ukkonen’s work, but in our case we have
to face additional complications because the LZ78 trie has less information
than the suffix tree of the blocks. As a result, our index is smaller but has
a higher search time. If we call n the number of blocks in the compressed
text, then our index takes 4nlogyn(l + o(1)) bits of space and answers
queries in O(m?log(ma) + (m + R)logn). It is shown in [14, 7] that Ziv-
Lempel compression asymptotically approaches Hy for any k. Since this
compressed text needs at least nlog, n bits of storage, we have that our
index is opportunistic, taking at most 4uHj, bits, for any k. There are no
large constants involved in the sublinear part.

This representation, moreover, contains the information to reproduce
the text. We can reproduce a text context of length L around an oc-
currence found (and in fact any sequence of blocks) in O(Llog o) time,
or obtain the whole text in time O(ulogo). The index can be built in
O(ulog o) time. Finally, the time can be reduced to O(m?log(mao) +
mlogn + Rlog® n) provided we pay O (%n log 17) space.

About at the same time and independently of us [7], Ferragina and
Manzini have proposed another idea combining compressed suffix arrays
and Ziv-Lempel compression. They achieve optimal O(m+ R) search time
at the price of O(uHjlog® u) space. Moreover, this space includes two
compressed suffix arrays of the previous type [5] and their large constant
terms. It is interesting that they share, like us, several ideas of previous
work on sparse suffix trees [12, 11].

What is unique in our approach is the reconstruction of the occur-
rences using a data structure that does not record full suffix information
but just of text substrings, thus addressing the problem of reconstructing
pattern occurrences from these pieces information.

2 Ziv-Lempel Compression

The general idea of Ziv-Lempel compression is to replace substrings in
the text by a pointer to a previous occurrence of them. If the pointer
takes less space than the string it is replacing, compression is obtained.
Different variants over this type of compression exist, see for example
[3]. We are particularly interested in the LZ78/LZW format, which we
describe in depth.

The Ziv-Lempel compression algorithm of 1978 (usually named LZ78
[25]) is based on a dictionary of blocks, in which we add every new block

computed. At the beginning of the compression, the dictionary contains
a single block by of length 0. The current step of the compression is as
follows: if we assume that a prefix 77 ; of T has been already compressed
in a sequence of blocks Z = by ...0b,, all them in the dictionary, then we
look for the longest prefix of the rest of the text T , which is a block
of the dictionary. Once we have found this block, say by of length ¢, we
construct a new block b1 = (s,Tj1¢,41), we write the pair at the end of
the compressed file Z, i.e Z = by ...b,b,41, and we add the block to the
dictionary. It is easy to see that this dictionary is prefix-closed (i.e. any
prefix of an element is also an element of the dictionary) and a natural
way to represent it is a trie.

LZW [23] is just a coding variant of LZ78, so we will focus in LZ78 in
this paper, understanding that the algorithms can be trivially ported to
LZW.

An interesting property of this compression format is that every block
represents a different text substring. The only possible exception is the
last block. We use this property in our algorithm, and deal with the
exception by adding a special character “$” (not in the alphabet) at the
end of the text. The last block will contain this character and thus will
be unique too.

Another concept that is worth reminding is that a set of strings can
be lexicographically sorted, and we call the rank of a string its position
in the lexicographically sorted set. Moreover, if the set is arranged in a
trie data structure, then all the strings represented in a subtree form a
lexicographical interval of the universe. We remind that, in lexicographic
order, ¢ < x, ax < by if a < b, and azx < ay if x < y, for any strings x,y
and characters a, b.

3 Basic Technique

We now present the basic idea to search for a pattern P;_,, in a text
1., which has been compressed using the LZ78 or LZW algorithm into
n + 1 blocks T = By...B,, such that By = ¢; Vk # (, By # By; and
Vk>1, A <k,ce X, B,=By-c.

3.1 Data Structures

We start by defining the data structures used, without caring for the exact
way they are represented. The problem of their succinct representation,
and consequently the space occupancy and time complexity, is considered
in the next section.

1. LZTrie : is the trie formed by all the blocks By...B,. Given the
properties of LZ78 compression, this trie has exactly n+1 nodes, each
one corresponding to a string. LZTrie stores enough information so
as to permit the following operations on every node x:

(a) idy(x) gives the node identifier, i.e., the number k such that x
represents By;

(b) leftranky(x) and rightrank;(z) give the minimum and maximum
lexicographical position of the blocks represented by the nodes in
the subtree rooted at x, among the set By ... By;

(¢) parent(x) gives the tree position of the parent node of x; and

(d) child(x,c) gives the tree position of the child of node = by char-
acter ¢, or null if no such child exists.

Additionally, the trie must implement the operation rth;(rank), which

given a rank r gives the r-th string in By... B, in lexicographical

order.

2. RevTrie : is the trie formed by all the reverse strings By ... B;,. For
this structure we do not have the nice properties that the LZ78/LZW
algorithm gives to LZTrie: there could be internal nodes not repre-
senting any block. We need the same operations for RevI'rie than for
LZTrie, which are called id,, leftrank,, rightrank,, parent,, child,
and rth,.

. Node : is a mapping from block identifiers to their node in LZTrie.

4. Range : is a data structure for two-dimensional searching in the
space [0...n] x [0...n]. The points stored in this structure are
{(revrank(By), rank(Byy1)), k € 0...n — 1}, where revrank is the
lexicographical rank in By ... B] and rank is the lexicographical rank
in By ... B,. For each such point, the corresponding k value is stored.

w

3.2 Search Algorithm

Let us now consider the search process. We distinguish three types of
occurrences of P in T, depending on the block layout (see Figure 1):

(a) the occurrence lies inside a single block;

(b) the occurrence spans two blocks, By and By, such that a prefix
Py ; matches a suffix of By and the suffix Py _,, matches a prefix of
Bjy1; and

(c) the occurrence spans three or more blocks, By, ... By, such that P, ; =
Byi1...By_q, Pi.; 1 matches a suffix of By and Pjyq 5, matches a
prefix of By.

Note that each possible occurrence of P lies exactly in one of the three
cases above. We explain now how each type of occurrence is found.

LZ78 block numbers

1 2 3 4 56 7
| | I
Pinsidea P spans 2 P spans 4
block blocks blocks

Fig. 1. Different situations in which P can match inside T

Occurrences lying inside a single block.

Given the properties of LZ78/LZW, every block By containing P is

formed by a shorter block By concatenated to a letter c¢. If P does not
occur at the end of By, then B, contains P as well. We want to find the
shortest possible block B in the referencing chain for By that contains
the occurrence of P. This block B finishes with the string P, hence it can
be easily found by searching for P" in RevT'rie.

Hence, in order to detect all the occurrences that lie inside a single

block we do as follows:

1.

2.

Search for P" in RevT'rie. We arrive at a node x such that every string
stored in the subtree rooted at x represents a block ending with P.
Evaluate leftrank,(z) and rightrank,(z), obtaining the lexicograph-
ical interval (in the reversed blocks) of blocks finishing with P.

For every rank r € leftrank,(x)...rightrank,(x), obtain the corre-
sponding node in LZT'rie, y = Node(rth,(r)). Now we have identified
the nodes in the normal trie that finish with P and have to report all
their extensions, i.e., all their subtrees.

For every such y, traverse all the subtree rooted at y and report every
node found. In this process we can know the exact distance between
the end of P and the end of the block. Note that a single block con-
taining several occurrences will report them several times, since we
will report a subtree that is contained in another subtree reported.
To avoid this we keep track of the last m characters that the current
node represents. When this string equals P, we have arrived at an-
other node that has been or will be reported elsewhere so we stop that
branch. The equality condition can be tested in constant time using
a KMP-like algorithm.

Occurrences spanning two blocks.

We do not know the position where P has been split, so we have
to try them all. The idea is that, for every possible split, we search for
the reverse pattern prefix in RevT'rie and the pattern suffix in LZT'rie.
Now we have two ranges, one in the space of reversed strings (i.e., blocks
finishing with the first part of P) and one in that of the normal strings
(i.e. blocks starting with the second part of P), and need to find the
pairs of blocks (k,k 4+ 1) such that k is in the first range and k£ + 1 is in
the second range. This is what the range searching data structure is for.
Hence the steps are:

1. Foreveryi € 1...m — 1, split Pin pref = P,_; and suff = Piy1. m
and do the next steps.

2. Search for pref” in RevI'rie, obtaining x. Search for suf f in LZTrie,
obtaining y.

3. Search for the range [leftrank,(x)...rightrank,(x)] x
[leftrank:(y)...rightrank:(y)] using the Range data structure.

4. For every pair (k,k + 1) found, report k. We know that P; is aligned
at the end of By.

Occurrences spanning three blocks or more.

We need one more observation for this part. Recall that the
LZ78/LZW algorithm guarantees that every block represents a different
string. Hence, there is at most one block matching P; _; for each choice of
1 and 7. This fact severely limits the number of occurrences of this class
that may exist.

The idea is, first, to identify the only possible block that matches ev-
ery substring P; ;. We store the block numbers in m arrays A;, where
A; stores the blocks corresponding to F; ; for all j. Then, we try to find
concatenations of successive blocks By, Byyi1, etc. that match contigu-
ous pattern substrings. Again, there is only one candidate (namely Byy1)
to follow an occurrence of By in the pattern. Finally, for each maximal
concatenation of blocks P; ; = By, ... By contained in the pattern, we de-
termine whether Bj_ finishes with Py ;1 and By starts with Pjy .
If this is the case we can report an occurrence. Note that there cannot be
more than O(m?) occurrences of this type. So the algorithm is as follows:

1. For every 1 < i < j < m, search for P; ; in LZTrie and record the
node z found in C; ; = x, as well as add (id;(x),j) to array A;. The
search is made for increasing ¢ and for each i value we increase j. This
way we perform a single search in the trie for each i. If there is no

node corresponding to P; ; we stop searching and adding entries to

Aj;, and store null values in Cj j» for j' > j. At the end of every i-turn,

we sort A; by block number. Mark every Cj ; as unused.

2. For every 1 <1 < j < m, for increasing j, try to extend the match of
P; j to the right. We do not extend to the left because this, if useful,
has been done already (we mark used ranges to avoid working on a
sequence that has been tried already from the left). Let S and Sy
denote id;(C;), and find (S +1,7) in Ajq. If r exists, mark Cjqq,
as used, increment S and repeat the process from j = r. Stop when
the occurrence cannot be extended further (no such r is found).

(a) For each maximal occurrence P; , found ending at block
S such that r < m, check whether block S 4 1 starts
with P,y1. m, le., whether leftranki(Node(S + 1)) €
leftrank(Cri1,m) - - - rightrank(Cyq1,m). Note that
leftrank;(Node(S + 1)) is the exact rank of node S + 1,
since every internal node is the first among the ranks of its
subtree. Note also that there cannot be an occurrence if Cy 1, is
null. If » < m and block S + 1 does not start with P41, then
stop here and move to the next maximal occurrence.

(b) If i > 1, then check whether block Sy — 1 finishes with P;_; 1.
For this sake, find Node(Sy — 1) and use the parent; operation to
check whether the last i — 1 nodes, read backward, equal P; ; ;.
If ¢ > 1 and block Sy — 1 does not finish with P, _;_1, then stop
here and move to the next maximal occurrence.

(c) Report node Sy — 1 as the one containing the beginning of the
match. We know that P; 1 is aligned at the end of this block.

Note that we have to make sure that the occurrences reported span
at least 3 blocks.

Figure 3.2 depicts the whole algorithm. Occurrences are reported in
the format (k,offset), where k is the identifier of the block where the
occurrence starts and off set is the distance between the beginning of the
occurrence and the end of the block.

If we want to show the text surrounding an occurrence (k, offset), we
just go to LZTrie using Node(k) and use the parent; pointers to obtain
the characters of the block in reverse order. If the occurrence spans more
than one block, we do the same for blocks k+ 1, k4 2 and so on until the
whole pattern is shown. We also can show larger block numbers as well
as blocks k — 1, k — 2, etc. in order to show a larger text context around
the occurrence. Indeed, we can recover the whole text by repeating this
process for k € 0...n.

Search (Pi...,, LZTrie, RevTrie, Node, Range)
1. /* Lying inside a single block */
2. x < search for P" in RevTrie
3. For r € leftrank,(x) ... rightrank,(z) Do
4. y < Node(rth,(r))
5. For z in the subtree rooted at y not containing P again Do
6. Report (idi(2), m + depth(y) — depth(z))
7. /* Spanning two blocks */
8. Foriel...m—1Do
9. x < search for P{ _; in RevTrie
10. y < search for Pi41...m in LZTrie
11. Search for [le ftrank,(z)...rightrank,(x)]
x[leftrank:(y)...rightrank:(y)] in Range
12. For (k,k + 1) in the result of this search Do Report (&, 1)
13. /* Spanning three or more blocks */
14. Foriel...m Do
15. x < root node of LZT'rie
16. A+ 0
17. For jei...m Do
18. If © # null Then z «+ child(z, Pj)
19. Oi,j — T
20. used; j < FALSE
21. If © # null Then A; « A; U (id(z),)
22. Forjel...m Do
23. Forici...j Do
24. If C; ; # null AND used; ; = FALSE Then
25. So — idt(C,-,]-)
26. S+ So—1, r+j—1
27. While (S +1,7') € A,41 Do /* always exists the 1st time */
28. used, 1,1 < TRUE
29. r<r, S+« S+1
30. span < S — Sp + 1
31. If i > 1 Then span <+ span + 1
32. If r < m Then span < span + 1
33. If span > 3 AND Cr41,m # null Then
34. If leftrank,(Node(S + 1)) € leftrank(Cyr41,m) - - -
rightrank:(Cr+1,m) Then
35. @« Node(So — 1), i' +i—1
36. While i’ > 0 AND parent:(z) # null
AND z = child(parent(z), Py) Do
37. x + parenty(x), i + i’ —1
38. If i/ = 0 Then Report (So — 1,7 — 1)

Fig. 2. The search algorithm. The value depth(y) — depth(z) is determined on the fly
since we traverse the whole subtree of z.

4 A Succinct Index Representation

We show now how the data structures used in the algorithm can be im-
plemented using little space.

Let us first consider the tries. Munro and Raman [19] show that it is
possible to store a binary tree of N nodes using 2N + o(N) bits such that
the operations parent(x), leftchild(x), rightchild(x) and subtreesize(x)
can be answered in constant time. Munro et al. [20] show that, us-
ing the same space, the following operations can also be answered in
constant time: leafrank(x) (number of leaves to the left of node z),
leafsize(x) (number of leaves in the subtree rooted at x), leftmost(x)
and rightmost(z) (leftmost and rightmost leaves in the subtree rooted at

In the same paper [20] they show that a trie can be represented using
this same structure by representing the alphabet X' in binary. This trie
is able to point to an array of identifiers, so that the identity of each
leaf can be known. Moreover, path compressed tries (where unary paths
are compressed and a skip value is kept to indicate how many nodes
have been compressed) can be represented without any extra space cost,
as long as there exists a separate representation of the strings stored
readily available to compare the portions of the pattern skipped at the
compressed paths.

We use the above representation for LZTrie as follows. We do not
use path compression, but rather convert the alphabet to binary and
store the n + 1 strings corresponding to each block, in binary form, into
LZTrie. For reasons that are made clear soon, we prefix every binary
representation with the bit “1”. So every node in the binary LZTrie will
have a path of length 1+ log, o to its real parent in the original LZTrze,
creating at most 1 + log, 0 internal nodes. We make sure that all the
binary trie nodes that correspond to true nodes in the original LZTrie
are leaves in the binary trie. For this sake, we use the extra bit allocated:
at every true node that happens to be internal, we add a leaf by the bit
“0”, while all the other children necessarily descend by the bit “1”.

Hence we end up with a binary tree of n(1 + log, o) nodes, which
can be represented using 2n(1 + log, o) + o(nlog o) bits. The identity
associated to each leaf = will be id;(z). This array of node identifiers
is stored in order of increasing rank, which requires nlog,n bits, and
permits implementing rth; in constant time.

The operations parent; and child; can therefore be implemented in
O(log o) time. The remaining operations, leftrank(x) and rightrank(x),

are computed in constant time using leafrank(leftmost(x)) and
leafrank(rightmost(x)), since the number of leafs to the left corresponds
to the rank in the original trie.

For RevI'rie we have up to n leaves, but there may be up to u internal
nodes. We use also the binary string representation and the trick of the
extra bit to ensure that every node that represents a block is a leaf. In
this trie we do use path compression to ensure that, even after converting
the alphabet to binary, there are only n nodes to be represented. Hence,
all the operations can be implemented using only 2n + o(n) bits, plus
nlogy n bits for the identifiers. Searching in RevT'rie has the same cost
as in LZTrie.

It remains to explain how we store the representation of the strings
in the reverse trie, since in order to compress paths one needs the strings
readily available elsewhere. Instead of an explicit representation, we use
the same LZTrie: given the target node x of an edge we want to traverse,
we obtain using Node(rth,(leftrank,(x))) a node in LZTrie that repre-
sents a binary string whose (reversed) suffix matches the edge we want to
traverse. Then, we use the parent; pointers to read upwards the (reverse)
string associated to the block in the reverse trie.

For the Node mapping we simply have a full array of nlog, n bits.

Finally, we need to represent the data structure for range search-
ing, Range, where we store n block identifiers k (representing the pair
(k,k+1)). Among the plethora of data structures offering different space-
time tradeoffs for range searching [1, 11], we prefer one of minimal space
requirement by Chazelle [4]. This structure is a perfect binary tree divid-
ing the points along one coordinate plus a bucketed bitmap for every tree
node indicating which points (ranked by the other coordinate) belong to
the left child. There are in total nlogyn bits in the bucketed bitmaps
plus an array of the point identifiers ranked by the first coordinate which
represents the leaves of the tree.

This structure permits two dimensional range searching in a grid of
n pairs of integers in the range [0...n] x [0...n], answering queries in
O((R + 1)logn) time, where R is the number of occurrences reported.
A newer technique for bucketed bitmaps [9, 18] needs N + o(N) bits to
represent a bitmap of length N, and permits the rank operation and its
inverse in constant time. Using this technique, the structure of Chazelle
requires just nlogyn(l + o(1)) bits to store all the bitmaps. Moreover,
we do not need the information at the leaves, which maps rank (in a
coordinate) to block identifiers: as long as we know that the r-th block

qualifies in normal (or reverse) lexicographical order, we can use rth; (or
rthy) to obtain the identifier & + 1 (or k).

5 Space and Time Complexity

From the previous section it becomes clear that the total space require-
ment of our index is n[logyn](4 + o(1)). The o(1) term does not hide

large constants, just 221082 ijg’j LOg? log, 1 +o0(1/logn). The tries and Node

can be built in O(ulog o) time, while Range needs O(nlogn) construc-
tion time. Since nlogn = O(ulog o) [3], the overall construction time is
O(ulog o).

Let us now consider the search time of the algorithm.

Finding the blocks that totally contain P requires a search in RevT'rie
of cost O(mlog o). Later, we may do an indeterminate amount of work,
but for each unit of work we report a distinct occurrence, so we cannot
work more than R, the size of the result.

Finding the occurrences that span two blocks requires m searches in
LZTrie and m searches in RevTrie, for a total cost of O(m? log o), as well
as m range searches requiring O(mlogn + Rlogn) (since every distinct
occurrence is reported only once).

Finally, searching for occurrences that span three blocks or more re-
quires m searches in LZTrie (all the C; ; for the same i are obtained with
a single search), at a cost of O(m?log o). Extending the occurrences costs
O(m?logm). To see this, consider that, for each unit of work done in the
loop of lines 27 29, we mark one C' cell as used and never work again on
that cell. There are O(m?) such cells. This means that we make O(m?)
binary searches in the A; arrays. The cost to sort the m arrays of size
m is also O(m?logm). The final verifications to the right and to the left
cost O(1) and O(m log o), respectively.

Hence the total search cost to report the R occurrences of pattern
Py is O(m?log(ma) + (m + R)logn). If we consider the alphabet size
as constant then the algorithm is O(m?logm + (m + R)logn). The ex-
istence problem can be solved in O(m?log(mo) + mlogn) time (note
that we can disregard in this case blocks totally containing P, since these
occurrences extend others of the other two types). Finally, we can uncom-
press and show the text of length L surrounding any occurrence reported
in O(Llogo) time, and uncompress the whole text T;. , in O(ulogo)
time.

Chazelle [4] permits several space-time tradeoffs in his data structure.

£

In particular, by paying O (1 nlog n) space, reporting time can be reduced

to O(log® n). If we pay for this space complexity, then our search time
becomes O(m?log(mao) + mlogn + Rlog® n).

6 Conclusions

We have presented an index for text searching based on the LZ78/LZW
compression. At the price of 4nlog, n(1 + o(1)) bits, we are able to find
the R occurrences of a pattern of length m in a text of n blocks in
O(m?log(mo) + (m + R)log n) time.

Future work involves obtaining a real implementation of this index.
Some numerical exercises show that the index should be practical. For
example, assume a typical English text of 1 Mb, which is compressed
by Unixz’s Compress to about 1/3 of its size. Given the space used by
this program to code each block, we have that there are about n =~ u/10
blocks. Our index needs 4nlog, n(1 + o(1)) = 9.7u bits, little more than
the size of the uncompressed text (8u bits in ASCII). This should stabilize
for longer texts: the 11-th order entropy of English text has been found to
be 2.4 bits per symbol [3], and our index takes under this model 4uH;; =
9.6u bits of space. It is estimated [3] that the true entropy H of English
text is around 1.3 bits per symbol (considering orders of 100 or more).
Under this model our index takes 4uHigg = 5.2u bits, smaller than the
uncompressed text. Note that in this space we also store the compressed
representation of the text.

References

1. P. Agarwal and J. Erickson. Geometric range searching and its relatives. Contem-
porary Mathematics, 23: Advances in Discrete and Computational Geometry:1 56,
1999.

2. A. Apostolico. The myriad virtues of subword trees. In Combinatorial Algorithms

on Words, NATO ISI Series, pages 85 96. Springer-Verlag, 1985.

T. Bell, J. Cleary, and I. Witten. Text compression. Prentice Hall, 1990.

4. B. Chazelle. A functional approach to data structures and its use in multidimen-
sional searching. STAM Journal on Computing, 17(3):427-462, 1988.

5. P. Ferragina and G. Manzini. Opportunistic data structures with applications.
In Proc. 41st IEEE Symp. Foundations of Computer Science (FOCS’00), pages
390-398, 2000.

6. P. Ferragina and G. Manzini. An experimental study of an opportunistic index. In
Proc. 12th ACM Symp. on Discrete Algorithms (SODA’01), pages 269 278, 2001.

7. P. Ferragina and G. Manzini. On compressing and indexing data. Technical Report
TR-02-01, Dipartamento di Informatica, Univ. of Pisa, 2002.

8. R. Grossi and J.S. Vitter. Compressed suffix arrays and suffix trees with applica-
tions to text indexing and string matching. In Proc. 32nd ACM Symp. Theory of
Computing (STOC’00), pages 397 406, 2000.

w

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

G. Jacobson. Space-efficient static trees and graphs. In Proc. 30th IEEE Symp.
Foundations of Computer Science (FOCS’89), pages 549-554, 1989.

J. Karkkéinen. Suffix cactus: a cross between suffix tree and suffix array. In Proc.
6th Ann. Symp. Combinatorial Pattern Matching (CPM’95), LNCS 937, pages
191-204, 1995.

J. Karkkainen. Repetition-based text inderes. PhD thesis, Dept. of Computer
Science, University of Helsinki, Finland, 1999. .

J. Karkkainen and E. Ukkonen. Lempel-Ziv parsing and sublinear-size index struc-
tures for string matching. In Proc. 3rd South American Workshop on String Pro-
cessing (WSP’96), pages 141 155. Carleton University Press, 1996.

J. Kérkkédinen and E. Ukkonen. Sparse suffix trees. In Proc. 2nd Ann. Intl.
Conference on Computing and Combinatorics (COCOON’96), LNCS 1090, 1996.
R. Kosaraju and G. Manzini. Compression of low entropy strings with Lempel-Ziv
algorithms. STAM Journal on Computing, 29(3):893-911, 1999.

S. Kurtz. Reducing the space requirements of suffix trees. Report 98-03, Technische
Kakultat, Universitat Bielefeld, 1998.

V. Maékinen. Compact suffix array. In Proc. 11th Ann. Symp. Combinatorial
Pattern Matching (CPM’00), LNCS 1848, pages 305-319, 2000.

U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches.
SIAM Journal on Computing, pages 935-948, 1993. .

I. Munro. Tables. In Proc. 16th Foundations of Software Technology and Theoret-
ical Computer Science (FSTTCS’96), LNCS 1180, pages 37 42, 1996.

I. Munro and V. Raman. Succint representation of balanced parentheses, static
trees and planar graphs. In Proc. 38th IEEE Symp. Foundations of Computer
Science (FOCS’97), pages 118 126, 1997.

I. Munro, V. Raman, and S. Rao. Space efficient suffix trees. Journal of Algorithms,
pages 205222, 2001.

G. Navarro, E. Moura, M. Neubert, N. Ziviani, and R. Baeza-Yates. Adding com-
pression to block addressing inverted indexes. Information Retrieval, 3(1):49-77,
2000.

K. Sadakane. Compressed text databases with efficient query algorithms based on
the compressed suffix array. In Proc. 11th Intl. Symp. Algorithms and Computation
(ISAAC’00), LNCS 1969, pages 410-421, 2000.

T. Welch. A technique for high performance data compression. IEEE Computer
Magazine, 17(6):8-19, June 1984.

I. Witten, A. Moffat, and T. Bell. Managing Gigabytes. Morgan Kaufmann Pub-
lishers, New York, second edition, 1999.

J. Ziv and A. Lempel. Compression of individual sequences via variable length
coding. IEEE Trans. on Information Theory, 24:530 536, 1978.

