
Indexing Text using the Ziv-Lempel TrieGonzalo NavarroDept. of Computer Siene, Univ. of Chile. Blano Enalada 2120, Santiago, Chile.gnavarro�d.uhile.l.Partially supported by Fondeyt Grant 1-020831.Abstrat. Let a text of u haraters over an alphabet of size � beompressible to n symbols by the LZ78 or LZW algorithm. We showthat it is possible to build a data struture based on the Ziv-Lempel triethat takes 4n log2 n(1+o(1)) bits of spae and reports the R ourrenesof a pattern of lengthm in worst ase timeO(m2 log(m�)+(m+R) log n).1 IntrodutionModern text databases have to fae two opposed goals. On the one hand,they have to provide fast aess to the text. On the other, they have touse as little spae as possible. The goals are opposed beause, in order toprovide fast aess, an index has to be built on the text. An index is a datastruture built on the text and stored in the database, hene inreasingthe spae requirement. In reent years there has been muh researh onompressed text databases, fousing on tehniques to represent the textand the index in suint form, yet permitting eÆient text searhing.Let our text T1:::u be a sequene of haraters over an alphabet � ofsize �, and let the searh pattern P1:::m be another (short) sequene over�. Then the text searh problem onsists of �nding all the ourrenesof P in T .Despite that there has been some work on suint inverted indexesfor natural language for a while [24, 21℄, until a short time ago it wasbelieved that any general index for string mathing would need
(u)spae. In pratie, the smaller indexes available were the suÆx arrays[17℄, requiring u log2 u bits to index a text of u haraters, whih requiredu log2 � bits to be represented, so the index is in pratie larger than thetext (typially 4 times the text size).In the last deade, several attempts to redue the spae of the suÆxtrees [2℄ or arrays have been made by K�arkk�ainen and Ukkonen [10, 13℄,Kurtz [15℄ and M�akinen [16℄, obtaining reasonable improvements, albeitno spetaular ones (at best 9 times the text size). Moreover, they have

onentrated on the spae requirement of the data struture only, needingthe text separately available.Grossi and Vitter [8℄ presented a suÆx array ompression method forbinary texts, whih needed O(u) bits and was able to report all the Rourrenes of P in T in O � mlog u + (R+ 1) log" u� time. However, theyneed the text as well as the index in order to answer queries.Following this line, Sadakane [22℄ presented a suÆx array im-plementation for general texts (not only binary) that requiresu�1"H0 + 8 + 3 log2H0� (1 + o(1)) + � log2 � bits, where H0 is the zero-order entropy of the text. This index an searh in time O(m log u +R log" u) and ontains enough information to reprodue the text: anypiee of text of length L is obtained in O(L + log" u) time. This meansthat the index replaes the text, whih an hene be deleted. This is anopportunisti sheme, i.e., the index takes less spae if the text is om-pressible. Yet there is a minimum of 8u bits of spae whih has to be paidindependently of the entropy of the text.Ferragina and Manzini [5℄ presented a di�erent approah to ompressthe suÆx array based on the Burrows-Wheeler transform and blok sort-ing. They need 5uHk+O �u log log u+� log �log u � bits and an answer queries inO(m+R log" u) time, where Hk is the k-th order entropy and the formulais valid for any onstant k. This sheme is also opportunisti. However,there is a large onstant � log � involved in the sublinear part whih doesnot derease with the entropy, and a huge additive onstant larger than��. (In a real implementation [6℄ they removed these onstants at theprie of a not guaranteed searh time.)However, there are older attempts to produe suint indexes, byK�arkk�ainen and Ukkonen [12, 11℄. Their main idea is to use a suÆx treethat indexes only the beginnings of the bloks produed by a Ziv-Lempelompression (see next setion if not familiar with Ziv-Lempel). This isthe only index we are aware of whih is based on this type of ompres-sion. In [11℄ they obtain a range of spae-time trade-o�s. The smallestindexes need O �u�log � + 1"�� bits, i.e., the same spae of the originaltext, and are able to answer queries in O � log �log um2 +m log u+ 1"R log" u�time. Note, however, that this index is not opportunisti, as it takes spaeproportional to the text, and indeed needs the text besides the data ofthe index.In this paper we propose a new index on these lines. Instead of using ageneri Ziv-Lempel algorithm, we stik to the LZ78/LZW format and itsspei� properties. We do not build a suÆx tree on the strings produed

by the LZ78 algorithm. Rather, we use the very same LZ78 trie that isprodued during ompression, plus other related strutures. We borrowsome ideas from K�arkk�ainen and Ukkonen's work, but in our ase we haveto fae additional ompliations beause the LZ78 trie has less informationthan the suÆx tree of the bloks. As a result, our index is smaller but hasa higher searh time. If we all n the number of bloks in the ompressedtext, then our index takes 4n log2 n(1 + o(1)) bits of spae and answersqueries in O(m2 log(m�) + (m+R) log n). It is shown in [14, 7℄ that Ziv-Lempel ompression asymptotially approahes Hk for any k. Sine thisompressed text needs at least n log2 n bits of storage, we have that ourindex is opportunisti, taking at most 4uHk bits, for any k. There are nolarge onstants involved in the sublinear part.This representation, moreover, ontains the information to reproduethe text. We an reprodue a text ontext of length L around an o-urrene found (and in fat any sequene of bloks) in O(L log �) time,or obtain the whole text in time O(u log �). The index an be built inO(u log �) time. Finally, the time an be redued to O(m2 log(m�) +m log n+R log" n) provided we pay O �1"n log n� spae.About at the same time and independently of us [7℄, Ferragina andManzini have proposed another idea ombining ompressed suÆx arraysand Ziv-Lempel ompression. They ahieve optimal O(m+R) searh timeat the prie of O(uHk log" u) spae. Moreover, this spae inludes twoompressed suÆx arrays of the previous type [5℄ and their large onstantterms. It is interesting that they share, like us, several ideas of previouswork on sparse suÆx trees [12, 11℄.What is unique in our approah is the reonstrution of the our-renes using a data struture that does not reord full suÆx informationbut just of text substrings, thus addressing the problem of reonstrutingpattern ourrenes from these piees information.2 Ziv-Lempel CompressionThe general idea of Ziv-Lempel ompression is to replae substrings inthe text by a pointer to a previous ourrene of them. If the pointertakes less spae than the string it is replaing, ompression is obtained.Di�erent variants over this type of ompression exist, see for example[3℄. We are partiularly interested in the LZ78/LZW format, whih wedesribe in depth.The Ziv-Lempel ompression algorithm of 1978 (usually named LZ78[25℄) is based on a ditionary of bloks, in whih we add every new blok

omputed. At the beginning of the ompression, the ditionary ontainsa single blok b0 of length 0. The urrent step of the ompression is asfollows: if we assume that a pre�x T1:::j of T has been already ompressedin a sequene of bloks Z = b1 : : : br, all them in the ditionary, then welook for the longest pre�x of the rest of the text Tj+1:::u whih is a blokof the ditionary. One we have found this blok, say bs of length `s, weonstrut a new blok br+1 = (s; Tj+`s+1), we write the pair at the end ofthe ompressed �le Z, i.e Z = b1 : : : brbr+1, and we add the blok to theditionary. It is easy to see that this ditionary is pre�x-losed (i.e. anypre�x of an element is also an element of the ditionary) and a naturalway to represent it is a trie.LZW [23℄ is just a oding variant of LZ78, so we will fous in LZ78 inthis paper, understanding that the algorithms an be trivially ported toLZW.An interesting property of this ompression format is that every blokrepresents a di�erent text substring. The only possible exeption is thelast blok. We use this property in our algorithm, and deal with theexeption by adding a speial harater \$" (not in the alphabet) at theend of the text. The last blok will ontain this harater and thus willbe unique too.Another onept that is worth reminding is that a set of strings anbe lexiographially sorted, and we all the rank of a string its positionin the lexiographially sorted set. Moreover, if the set is arranged in atrie data struture, then all the strings represented in a subtree form alexiographial interval of the universe. We remind that, in lexiographiorder, " � x, ax � by if a < b, and ax � ay if x � y, for any strings x; yand haraters a; b.3 Basi TehniqueWe now present the basi idea to searh for a pattern P1:::m in a textT1:::u whih has been ompressed using the LZ78 or LZW algorithm inton + 1 bloks T = B0 : : : Bn, suh that B0 = "; 8k 6= `; Bk 6= B`; and8k � 1; 9` < k; 2 �; Bk = B` � .3.1 Data StruturesWe start by de�ning the data strutures used, without aring for the exatway they are represented. The problem of their suint representation,and onsequently the spae oupany and time omplexity, is onsideredin the next setion.

1. LZTrie : is the trie formed by all the bloks B0 : : : Bn. Given theproperties of LZ78 ompression, this trie has exatly n+1 nodes, eahone orresponding to a string. LZTrie stores enough information soas to permit the following operations on every node x:(a) idt(x) gives the node identi�er, i.e., the number k suh that xrepresents Bk;(b) leftrankt(x) and rightrankt(x) give the minimum and maximumlexiographial position of the bloks represented by the nodes inthe subtree rooted at x, among the set B0 : : : Bn;() parentt(x) gives the tree position of the parent node of x; and(d) hildt(x;) gives the tree position of the hild of node x by har-ater , or null if no suh hild exists.Additionally, the trie must implement the operation rtht(rank), whihgiven a rank r gives the r-th string in B0 : : : Bn in lexiographialorder.2. RevTrie : is the trie formed by all the reverse strings Br0 : : : Brn. Forthis struture we do not have the nie properties that the LZ78/LZWalgorithm gives to LZTrie: there ould be internal nodes not repre-senting any blok. We need the same operations for RevTrie than forLZTrie, whih are alled idr, leftrankr, rightrankr, parentr, hildrand rthr.3. Node : is a mapping from blok identi�ers to their node in LZTrie.4. Range : is a data struture for two-dimensional searhing in thespae [0 : : : n℄ � [0 : : : n℄. The points stored in this struture aref(revrank(Brk); rank(Bk+1)); k 2 0 : : : n � 1g, where revrank is thelexiographial rank in Br0 : : : Brn and rank is the lexiographial rankin B0 : : : Bn. For eah suh point, the orresponding k value is stored.3.2 Searh AlgorithmLet us now onsider the searh proess. We distinguish three types ofourrenes of P in T , depending on the blok layout (see Figure 1):(a) the ourrene lies inside a single blok;(b) the ourrene spans two bloks, Bk and Bk+1, suh that a pre�xP1:::i mathes a suÆx of Bk and the suÆx Pi+1:::m mathes a pre�x ofBk+1; and() the ourrene spans three or more bloks, Bk : : : B`, suh that Pi:::j =Bk+1 : : : B`�1, P1:::i�1 mathes a suÆx of Bk and Pj+1:::m mathes apre�x of B`.Note that eah possible ourrene of P lies exatly in one of the threeases above. We explain now how eah type of ourrene is found.

1 2 3 4 5 6 7

LZ78 block numbers

P inside a
block

P spans 2
blocks

P spans 4
blocksFig. 1. Di�erent situations in whih P an math inside T .Ourrenes lying inside a single blok.Given the properties of LZ78/LZW, every blok Bk ontaining P isformed by a shorter blok B` onatenated to a letter . If P does notour at the end of Bk, then B` ontains P as well. We want to �nd theshortest possible blok B in the referening hain for Bk that ontainsthe ourrene of P . This blok B �nishes with the string P , hene it anbe easily found by searhing for P r in RevTrie.Hene, in order to detet all the ourrenes that lie inside a singleblok we do as follows:1. Searh for P r in RevTrie. We arrive at a node x suh that every stringstored in the subtree rooted at x represents a blok ending with P .2. Evaluate leftrankr(x) and rightrankr(x), obtaining the lexiograph-ial interval (in the reversed bloks) of bloks �nishing with P .3. For every rank r 2 leftrankr(x) : : : rightrankr(x), obtain the orre-sponding node in LZTrie, y = Node(rthr(r)). Now we have identi�edthe nodes in the normal trie that �nish with P and have to report alltheir extensions, i.e., all their subtrees.4. For every suh y, traverse all the subtree rooted at y and report everynode found. In this proess we an know the exat distane betweenthe end of P and the end of the blok. Note that a single blok on-taining several ourrenes will report them several times, sine wewill report a subtree that is ontained in another subtree reported.To avoid this we keep trak of the last m haraters that the urrentnode represents. When this string equals P , we have arrived at an-other node that has been or will be reported elsewhere so we stop thatbranh. The equality ondition an be tested in onstant time usinga KMP-like algorithm.Ourrenes spanning two bloks.

We do not know the position where P has been split, so we haveto try them all. The idea is that, for every possible split, we searh forthe reverse pattern pre�x in RevTrie and the pattern suÆx in LZTrie.Now we have two ranges, one in the spae of reversed strings (i.e., bloks�nishing with the �rst part of P) and one in that of the normal strings(i.e. bloks starting with the seond part of P), and need to �nd thepairs of bloks (k; k + 1) suh that k is in the �rst range and k + 1 is inthe seond range. This is what the range searhing data struture is for.Hene the steps are:1. For every i 2 1 : : : m� 1, split P in pref = P1:::i and suff = Pi+1:::mand do the next steps.2. Searh for pref r in RevTrie, obtaining x. Searh for suff in LZTrie,obtaining y.3. Searh for the range [leftrankr(x) : : : rightrankr(x)℄ �[leftrankt(y) : : : rightrankt(y)℄ using the Range data struture.4. For every pair (k; k + 1) found, report k. We know that Pi is alignedat the end of Bk.Ourrenes spanning three bloks or more.We need one more observation for this part. Reall that theLZ78/LZW algorithm guarantees that every blok represents a di�erentstring. Hene, there is at most one blok mathing Pi:::j for eah hoie ofi and j. This fat severely limits the number of ourrenes of this lassthat may exist.The idea is, �rst, to identify the only possible blok that mathes ev-ery substring Pi:::j . We store the blok numbers in m arrays Ai, whereAi stores the bloks orresponding to Pi:::j for all j. Then, we try to �ndonatenations of suessive bloks Bk, Bk+1, et. that math ontigu-ous pattern substrings. Again, there is only one andidate (namely Bk+1)to follow an ourrene of Bk in the pattern. Finally, for eah maximalonatenation of bloks Pi:::j = Bk : : : B` ontained in the pattern, we de-termine whether Bk�1 �nishes with P1:::i�1 and B`+1 starts with Pj+1:::m.If this is the ase we an report an ourrene. Note that there annot bemore than O(m2) ourrenes of this type. So the algorithm is as follows:1. For every 1 � i � j � m, searh for Pi:::j in LZTrie and reord thenode x found in Ci;j = x, as well as add (idt(x); j) to array Ai. Thesearh is made for inreasing i and for eah i value we inrease j. Thisway we perform a single searh in the trie for eah i. If there is no

node orresponding to Pi:::j we stop searhing and adding entries toAi, and store null values in Ci;j0 for j0 � j. At the end of every i-turn,we sort Ai by blok number. Mark every Ci;j as unused.2. For every 1 � i � j < m, for inreasing j, try to extend the math ofPi:::j to the right. We do not extend to the left beause this, if useful,has been done already (we mark used ranges to avoid working on asequene that has been tried already from the left). Let S and S0denote idt(Ci;j), and �nd (S + 1; r) in Aj+1. If r exists, mark Cj+1;ras used, inrement S and repeat the proess from j = r. Stop whenthe ourrene annot be extended further (no suh r is found).(a) For eah maximal ourrene Pi:::r found ending at blokS suh that r < m, hek whether blok S + 1 startswith Pr+1:::m, i.e., whether leftrankt(Node(S + 1)) 2leftrankt(Cr+1;m) : : : rightrankt(Cr+1;m). Note thatleftrankt(Node(S + 1)) is the exat rank of node S + 1,sine every internal node is the �rst among the ranks of itssubtree. Note also that there annot be an ourrene if Cr+1;m isnull. If r < m and blok S + 1 does not start with Pr+1:::m, thenstop here and move to the next maximal ourrene.(b) If i > 1, then hek whether blok S0 � 1 �nishes with P1:::i�1.For this sake, �nd Node(S0 � 1) and use the parentt operation tohek whether the last i� 1 nodes, read bakward, equal P r1:::i�1.If i > 1 and blok S0 � 1 does not �nish with P1:::i�1, then stophere and move to the next maximal ourrene.() Report node S0 � 1 as the one ontaining the beginning of themath. We know that Pi�1 is aligned at the end of this blok.Note that we have to make sure that the ourrenes reported spanat least 3 bloks.Figure 3.2 depits the whole algorithm. Ourrenes are reported inthe format (k; offset), where k is the identi�er of the blok where theourrene starts and offset is the distane between the beginning of theourrene and the end of the blok.If we want to show the text surrounding an ourrene (k; offset), wejust go to LZTrie using Node(k) and use the parentt pointers to obtainthe haraters of the blok in reverse order. If the ourrene spans morethan one blok, we do the same for bloks k+1, k+2 and so on until thewhole pattern is shown. We also an show larger blok numbers as wellas bloks k � 1, k � 2, et. in order to show a larger text ontext aroundthe ourrene. Indeed, we an reover the whole text by repeating thisproess for k 2 0 : : : n.

Searh (P1:::m, LZTrie, RevTrie, Node, Range)1. /* Lying inside a single blok */2. x searh for P r in RevTrie3. For r 2 leftrankr(x) : : : rightrankr(x) Do4. y Node(rthr(r))5. For z in the subtree rooted at y not ontaining P again Do6. Report (idt(z);m+ depth(y)� depth(z))7. /* Spanning two bloks */8. For i 2 1 : : : m� 1 Do9. x searh for P r1:::i in RevTrie10. y searh for Pi+1:::m in LZTrie11. Searh for [leftrankr(x) : : : rightrankr(x)℄�[leftrankt(y) : : : rightrankt(y)℄ in Range12. For (k; k + 1) in the result of this searh Do Report (k; i)13. /* Spanning three or more bloks */14. For i 2 1 : : : m Do15. x root node of LZTrie16. Ai ;17. For j 2 i : : :m Do18. If x 6= null Then x hildt(x; Pj)19. Ci;j x20. usedi;j false21. If x 6= null Then Ai Ai [(idt(x); j)22. For j 2 1 : : :m Do23. For i 2 i : : : j Do24. If Ci;j 6= null and usedi;j = false Then25. S0 idt(Ci;j)26. S S0 � 1; r j � 127. While (S + 1; r0) 2 Ar+1 Do /* always exists the 1st time */28. usedr+1;r0 true29. r r0; S S + 130. span S � S0 + 131. If i > 1 Then span span+ 132. If r < m Then span span+ 133. If span � 3 and Cr+1;m 6= null Then34. If leftrankt(Node(S + 1)) 2 leftrankt(Cr+1;m) : : :rightrankt(Cr+1;m) Then35. x Node(S0 � 1); i0 i� 136. While i0 > 0 and parentt(x) 6= nulland x = hild(parentt(x); Pi0) Do37. x parentt(x); i0 i0 � 138. If i0 = 0 Then Report (S0 � 1; i� 1)Fig. 2. The searh algorithm. The value depth(y)� depth(z) is determined on the ysine we traverse the whole subtree of z.

4 A Suint Index RepresentationWe show now how the data strutures used in the algorithm an be im-plemented using little spae.Let us �rst onsider the tries. Munro and Raman [19℄ show that it ispossible to store a binary tree of N nodes using 2N +o(N) bits suh thatthe operations parent(x), lefthild(x), righthild(x) and subtreesize(x)an be answered in onstant time. Munro et al. [20℄ show that, us-ing the same spae, the following operations an also be answered inonstant time: leafrank(x) (number of leaves to the left of node x),leafsize(x) (number of leaves in the subtree rooted at x), leftmost(x)and rightmost(x) (leftmost and rightmost leaves in the subtree rooted atx). In the same paper [20℄ they show that a trie an be represented usingthis same struture by representing the alphabet � in binary. This trieis able to point to an array of identi�ers, so that the identity of eahleaf an be known. Moreover, path ompressed tries (where unary pathsare ompressed and a skip value is kept to indiate how many nodeshave been ompressed) an be represented without any extra spae ost,as long as there exists a separate representation of the strings storedreadily available to ompare the portions of the pattern skipped at theompressed paths.We use the above representation for LZTrie as follows. We do notuse path ompression, but rather onvert the alphabet to binary andstore the n+ 1 strings orresponding to eah blok, in binary form, intoLZTrie. For reasons that are made lear soon, we pre�x every binaryrepresentation with the bit \1". So every node in the binary LZTrie willhave a path of length 1+ log2 � to its real parent in the original LZTrie,reating at most 1 + log2 � internal nodes. We make sure that all thebinary trie nodes that orrespond to true nodes in the original LZTrieare leaves in the binary trie. For this sake, we use the extra bit alloated:at every true node that happens to be internal, we add a leaf by the bit\0", while all the other hildren neessarily desend by the bit \1".Hene we end up with a binary tree of n(1 + log2 �) nodes, whihan be represented using 2n(1 + log2 �) + o(n log �) bits. The identityassoiated to eah leaf x will be idt(x). This array of node identi�ersis stored in order of inreasing rank, whih requires n log2 n bits, andpermits implementing rtht in onstant time.The operations parentt and hildt an therefore be implemented inO(log �) time. The remaining operations, leftrank(x) and rightrank(x),

are omputed in onstant time using leafrank(leftmost(x)) andleafrank(rightmost(x)), sine the number of leafs to the left orrespondsto the rank in the original trie.For RevTrie we have up to n leaves, but there may be up to u internalnodes. We use also the binary string representation and the trik of theextra bit to ensure that every node that represents a blok is a leaf. Inthis trie we do use path ompression to ensure that, even after onvertingthe alphabet to binary, there are only n nodes to be represented. Hene,all the operations an be implemented using only 2n + o(n) bits, plusn log2 n bits for the identi�ers. Searhing in RevTrie has the same ostas in LZTrie.It remains to explain how we store the representation of the stringsin the reverse trie, sine in order to ompress paths one needs the stringsreadily available elsewhere. Instead of an expliit representation, we usethe same LZTrie: given the target node x of an edge we want to traverse,we obtain using Node(rthr(leftrankr(x))) a node in LZTrie that repre-sents a binary string whose (reversed) suÆx mathes the edge we want totraverse. Then, we use the parentt pointers to read upwards the (reverse)string assoiated to the blok in the reverse trie.For the Node mapping we simply have a full array of n log2 n bits.Finally, we need to represent the data struture for range searh-ing, Range, where we store n blok identi�ers k (representing the pair(k; k+1)). Among the plethora of data strutures o�ering di�erent spae-time tradeo�s for range searhing [1, 11℄, we prefer one of minimal spaerequirement by Chazelle [4℄. This struture is a perfet binary tree divid-ing the points along one oordinate plus a buketed bitmap for every treenode indiating whih points (ranked by the other oordinate) belong tothe left hild. There are in total n log2 n bits in the buketed bitmapsplus an array of the point identi�ers ranked by the �rst oordinate whihrepresents the leaves of the tree.This struture permits two dimensional range searhing in a grid ofn pairs of integers in the range [0 : : : n℄ � [0 : : : n℄, answering queries inO((R + 1) log n) time, where R is the number of ourrenes reported.A newer tehnique for buketed bitmaps [9, 18℄ needs N + o(N) bits torepresent a bitmap of length N , and permits the rank operation and itsinverse in onstant time. Using this tehnique, the struture of Chazellerequires just n log2 n(1 + o(1)) bits to store all the bitmaps. Moreover,we do not need the information at the leaves, whih maps rank (in aoordinate) to blok identi�ers: as long as we know that the r-th blok

quali�es in normal (or reverse) lexiographial order, we an use rtht (orrthr) to obtain the identi�er k + 1 (or k).5 Spae and Time ComplexityFrom the previous setion it beomes lear that the total spae require-ment of our index is ndlog2 ne(4 + o(1)). The o(1) term does not hidelarge onstants, just 5+2 log2 �+2 log2 log2 nlog2 n +o(1= log n). The tries and Nodean be built in O(u log �) time, while Range needs O(n log n) onstru-tion time. Sine n log n = O(u log �) [3℄, the overall onstrution time isO(u log �).Let us now onsider the searh time of the algorithm.Finding the bloks that totally ontain P requires a searh in RevTrieof ost O(m log �). Later, we may do an indeterminate amount of work,but for eah unit of work we report a distint ourrene, so we annotwork more than R, the size of the result.Finding the ourrenes that span two bloks requires m searhes inLZTrie andm searhes in RevTrie, for a total ost of O(m2 log �), as wellas m range searhes requiring O(m log n + R log n) (sine every distintourrene is reported only one).Finally, searhing for ourrenes that span three bloks or more re-quiresm searhes in LZTrie (all the Ci;j for the same i are obtained witha single searh), at a ost of O(m2 log �). Extending the ourrenes ostsO(m2 logm). To see this, onsider that, for eah unit of work done in theloop of lines 27{29, we mark one C ell as used and never work again onthat ell. There are O(m2) suh ells. This means that we make O(m2)binary searhes in the Ai arrays. The ost to sort the m arrays of sizem is also O(m2 logm). The �nal veri�ations to the right and to the leftost O(1) and O(m log �), respetively.Hene the total searh ost to report the R ourrenes of patternP1:::m is O(m2 log(m�) + (m+R) log n). If we onsider the alphabet sizeas onstant then the algorithm is O(m2 logm + (m + R) log n). The ex-istene problem an be solved in O(m2 log(m�) + m log n) time (notethat we an disregard in this ase bloks totally ontaining P , sine theseourrenes extend others of the other two types). Finally, we an unom-press and show the text of length L surrounding any ourrene reportedin O(L log �) time, and unompress the whole text T1:::u in O(u log �)time.Chazelle [4℄ permits several spae-time tradeo�s in his data struture.In partiular, by paying O �1"n log n� spae, reporting time an be redued

to O(log" n). If we pay for this spae omplexity, then our searh timebeomes O(m2 log(m�) +m log n+R log" n).6 ConlusionsWe have presented an index for text searhing based on the LZ78/LZWompression. At the prie of 4n log2 n(1 + o(1)) bits, we are able to �ndthe R ourrenes of a pattern of length m in a text of n bloks inO(m2 log(m�) + (m+R) log n) time.Future work involves obtaining a real implementation of this index.Some numerial exerises show that the index should be pratial. Forexample, assume a typial English text of 1 Mb, whih is ompressedby Unix's Compress to about 1=3 of its size. Given the spae used bythis program to ode eah blok, we have that there are about n � u=10bloks. Our index needs 4n log2 n(1 + o(1)) � 9:7u bits, little more thanthe size of the unompressed text (8u bits in ASCII). This should stabilizefor longer texts: the 11-th order entropy of English text has been found tobe 2.4 bits per symbol [3℄, and our index takes under this model 4uH11 =9:6u bits of spae. It is estimated [3℄ that the true entropy H of Englishtext is around 1.3 bits per symbol (onsidering orders of 100 or more).Under this model our index takes 4uH100 = 5:2u bits, smaller than theunompressed text. Note that in this spae we also store the ompressedrepresentation of the text.Referenes1. P. Agarwal and J. Erikson. Geometri range searhing and its relatives. Contem-porary Mathematis, 23: Advanes in Disrete and Computational Geometry:1{56,1999.2. A. Apostolio. The myriad virtues of subword trees. In Combinatorial Algorithmson Words, NATO ISI Series, pages 85{96. Springer-Verlag, 1985.3. T. Bell, J. Cleary, and I. Witten. Text ompression. Prentie Hall, 1990.4. B. Chazelle. A funtional approah to data strutures and its use in multidimen-sional searhing. SIAM Journal on Computing, 17(3):427{462, 1988.5. P. Ferragina and G. Manzini. Opportunisti data strutures with appliations.In Pro. 41st IEEE Symp. Foundations of Computer Siene (FOCS'00), pages390{398, 2000.6. P. Ferragina and G. Manzini. An experimental study of an opportunisti index. InPro. 12th ACM Symp. on Disrete Algorithms (SODA'01), pages 269{278, 2001.7. P. Ferragina and G. Manzini. On ompressing and indexing data. Tehnial ReportTR-02-01, Dipartamento di Informatia, Univ. of Pisa, 2002.8. R. Grossi and J.S. Vitter. Compressed suÆx arrays and suÆx trees with applia-tions to text indexing and string mathing. In Pro. 32nd ACM Symp. Theory ofComputing (STOC'00), pages 397{406, 2000.

9. G. Jaobson. Spae-eÆient stati trees and graphs. In Pro. 30th IEEE Symp.Foundations of Computer Siene (FOCS'89), pages 549{554, 1989.10. J. K�arkk�ainen. SuÆx atus: a ross between suÆx tree and suÆx array. In Pro.6th Ann. Symp. Combinatorial Pattern Mathing (CPM'95), LNCS 937, pages191{204, 1995.11. J. K�arkk�ainen. Repetition-based text indexes. PhD thesis, Dept. of ComputerSiene, University of Helsinki, Finland, 1999. .12. J. K�arkk�ainen and E. Ukkonen. Lempel-Ziv parsing and sublinear-size index stru-tures for string mathing. In Pro. 3rd South Amerian Workshop on String Pro-essing (WSP'96), pages 141{155. Carleton University Press, 1996.13. J. K�arkk�ainen and E. Ukkonen. Sparse suÆx trees. In Pro. 2nd Ann. Intl.Conferene on Computing and Combinatoris (COCOON'96), LNCS 1090, 1996.14. R. Kosaraju and G. Manzini. Compression of low entropy strings with Lempel-Zivalgorithms. SIAM Journal on Computing, 29(3):893{911, 1999.15. S. Kurtz. Reduing the spae requirements of suÆx trees. Report 98-03, TehnisheKakult�at, Universit�at Bielefeld, 1998.16. V. M�akinen. Compat suÆx array. In Pro. 11th Ann. Symp. CombinatorialPattern Mathing (CPM'00), LNCS 1848, pages 305{319, 2000.17. U. Manber and G. Myers. SuÆx arrays: a new method for on-line string searhes.SIAM Journal on Computing, pages 935{948, 1993. .18. I. Munro. Tables. In Pro. 16th Foundations of Software Tehnology and Theoret-ial Computer Siene (FSTTCS'96), LNCS 1180, pages 37{42, 1996.19. I. Munro and V. Raman. Suint representation of balaned parentheses, statitrees and planar graphs. In Pro. 38th IEEE Symp. Foundations of ComputerSiene (FOCS'97), pages 118{126, 1997.20. I. Munro, V. Raman, and S. Rao. Spae eÆient suÆx trees. Journal of Algorithms,pages 205{222, 2001.21. G. Navarro, E. Moura, M. Neubert, N. Ziviani, and R. Baeza-Yates. Adding om-pression to blok addressing inverted indexes. Information Retrieval, 3(1):49{77,2000.22. K. Sadakane. Compressed text databases with eÆient query algorithms based onthe ompressed suÆx array. In Pro. 11th Intl. Symp. Algorithms and Computation(ISAAC'00), LNCS 1969, pages 410{421, 2000.23. T. Welh. A tehnique for high performane data ompression. IEEE ComputerMagazine, 17(6):8{19, June 1984.24. I. Witten, A. Mo�at, and T. Bell. Managing Gigabytes. Morgan Kaufmann Pub-lishers, New York, seond edition, 1999.25. J. Ziv and A. Lempel. Compression of individual sequenes via variable lengthoding. IEEE Trans. on Information Theory, 24:530{536, 1978.

