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t. Let a text of u 
hara
ters over an alphabet of size � be
ompressible to n symbols by the LZ78 or LZW algorithm. We showthat it is possible to build a data stru
ture based on the Ziv-Lempel triethat takes 4n log2 n(1+o(1)) bits of spa
e and reports the R o

urren
esof a pattern of lengthm in worst 
ase timeO(m2 log(m�)+(m+R) log n).1 Introdu
tionModern text databases have to fa
e two opposed goals. On the one hand,they have to provide fast a

ess to the text. On the other, they have touse as little spa
e as possible. The goals are opposed be
ause, in order toprovide fast a

ess, an index has to be built on the text. An index is a datastru
ture built on the text and stored in the database, hen
e in
reasingthe spa
e requirement. In re
ent years there has been mu
h resear
h on
ompressed text databases, fo
using on te
hniques to represent the textand the index in su

in
t form, yet permitting eÆ
ient text sear
hing.Let our text T1:::u be a sequen
e of 
hara
ters over an alphabet � ofsize �, and let the sear
h pattern P1:::m be another (short) sequen
e over�. Then the text sear
h problem 
onsists of �nding all the o

urren
esof P in T .Despite that there has been some work on su

in
t inverted indexesfor natural language for a while [24, 21℄, until a short time ago it wasbelieved that any general index for string mat
hing would need 
(u)spa
e. In pra
ti
e, the smaller indexes available were the suÆx arrays[17℄, requiring u log2 u bits to index a text of u 
hara
ters, whi
h requiredu log2 � bits to be represented, so the index is in pra
ti
e larger than thetext (typi
ally 4 times the text size).In the last de
ade, several attempts to redu
e the spa
e of the suÆxtrees [2℄ or arrays have been made by K�arkk�ainen and Ukkonen [10, 13℄,Kurtz [15℄ and M�akinen [16℄, obtaining reasonable improvements, albeitno spe
ta
ular ones (at best 9 times the text size). Moreover, they have




on
entrated on the spa
e requirement of the data stru
ture only, needingthe text separately available.Grossi and Vitter [8℄ presented a suÆx array 
ompression method forbinary texts, whi
h needed O(u) bits and was able to report all the Ro

urren
es of P in T in O � mlog u + (R+ 1) log" u� time. However, theyneed the text as well as the index in order to answer queries.Following this line, Sadakane [22℄ presented a suÆx array im-plementation for general texts (not only binary) that requiresu�1"H0 + 8 + 3 log2H0� (1 + o(1)) + � log2 � bits, where H0 is the zero-order entropy of the text. This index 
an sear
h in time O(m log u +R log" u) and 
ontains enough information to reprodu
e the text: anypie
e of text of length L is obtained in O(L + log" u) time. This meansthat the index repla
es the text, whi
h 
an hen
e be deleted. This is anopportunisti
 s
heme, i.e., the index takes less spa
e if the text is 
om-pressible. Yet there is a minimum of 8u bits of spa
e whi
h has to be paidindependently of the entropy of the text.Ferragina and Manzini [5℄ presented a di�erent approa
h to 
ompressthe suÆx array based on the Burrows-Wheeler transform and blo
k sort-ing. They need 5uHk+O �u log log u+� log �log u � bits and 
an answer queries inO(m+R log" u) time, where Hk is the k-th order entropy and the formulais valid for any 
onstant k. This s
heme is also opportunisti
. However,there is a large 
onstant � log � involved in the sublinear part whi
h doesnot de
rease with the entropy, and a huge additive 
onstant larger than��. (In a real implementation [6℄ they removed these 
onstants at thepri
e of a not guaranteed sear
h time.)However, there are older attempts to produ
e su

in
t indexes, byK�arkk�ainen and Ukkonen [12, 11℄. Their main idea is to use a suÆx treethat indexes only the beginnings of the blo
ks produ
ed by a Ziv-Lempel
ompression (see next se
tion if not familiar with Ziv-Lempel). This isthe only index we are aware of whi
h is based on this type of 
ompres-sion. In [11℄ they obtain a range of spa
e-time trade-o�s. The smallestindexes need O �u�log � + 1"�� bits, i.e., the same spa
e of the originaltext, and are able to answer queries in O � log �log um2 +m log u+ 1"R log" u�time. Note, however, that this index is not opportunisti
, as it takes spa
eproportional to the text, and indeed needs the text besides the data ofthe index.In this paper we propose a new index on these lines. Instead of using ageneri
 Ziv-Lempel algorithm, we sti
k to the LZ78/LZW format and itsspe
i�
 properties. We do not build a suÆx tree on the strings produ
ed



by the LZ78 algorithm. Rather, we use the very same LZ78 trie that isprodu
ed during 
ompression, plus other related stru
tures. We borrowsome ideas from K�arkk�ainen and Ukkonen's work, but in our 
ase we haveto fa
e additional 
ompli
ations be
ause the LZ78 trie has less informationthan the suÆx tree of the blo
ks. As a result, our index is smaller but hasa higher sear
h time. If we 
all n the number of blo
ks in the 
ompressedtext, then our index takes 4n log2 n(1 + o(1)) bits of spa
e and answersqueries in O(m2 log(m�) + (m+R) log n). It is shown in [14, 7℄ that Ziv-Lempel 
ompression asymptoti
ally approa
hes Hk for any k. Sin
e this
ompressed text needs at least n log2 n bits of storage, we have that ourindex is opportunisti
, taking at most 4uHk bits, for any k. There are nolarge 
onstants involved in the sublinear part.This representation, moreover, 
ontains the information to reprodu
ethe text. We 
an reprodu
e a text 
ontext of length L around an o
-
urren
e found (and in fa
t any sequen
e of blo
ks) in O(L log �) time,or obtain the whole text in time O(u log �). The index 
an be built inO(u log �) time. Finally, the time 
an be redu
ed to O(m2 log(m�) +m log n+R log" n) provided we pay O �1"n log n� spa
e.About at the same time and independently of us [7℄, Ferragina andManzini have proposed another idea 
ombining 
ompressed suÆx arraysand Ziv-Lempel 
ompression. They a
hieve optimal O(m+R) sear
h timeat the pri
e of O(uHk log" u) spa
e. Moreover, this spa
e in
ludes two
ompressed suÆx arrays of the previous type [5℄ and their large 
onstantterms. It is interesting that they share, like us, several ideas of previouswork on sparse suÆx trees [12, 11℄.What is unique in our approa
h is the re
onstru
tion of the o

ur-ren
es using a data stru
ture that does not re
ord full suÆx informationbut just of text substrings, thus addressing the problem of re
onstru
tingpattern o

urren
es from these pie
es information.2 Ziv-Lempel CompressionThe general idea of Ziv-Lempel 
ompression is to repla
e substrings inthe text by a pointer to a previous o

urren
e of them. If the pointertakes less spa
e than the string it is repla
ing, 
ompression is obtained.Di�erent variants over this type of 
ompression exist, see for example[3℄. We are parti
ularly interested in the LZ78/LZW format, whi
h wedes
ribe in depth.The Ziv-Lempel 
ompression algorithm of 1978 (usually named LZ78[25℄) is based on a di
tionary of blo
ks, in whi
h we add every new blo
k




omputed. At the beginning of the 
ompression, the di
tionary 
ontainsa single blo
k b0 of length 0. The 
urrent step of the 
ompression is asfollows: if we assume that a pre�x T1:::j of T has been already 
ompressedin a sequen
e of blo
ks Z = b1 : : : br, all them in the di
tionary, then welook for the longest pre�x of the rest of the text Tj+1:::u whi
h is a blo
kof the di
tionary. On
e we have found this blo
k, say bs of length `s, we
onstru
t a new blo
k br+1 = (s; Tj+`s+1), we write the pair at the end ofthe 
ompressed �le Z, i.e Z = b1 : : : brbr+1, and we add the blo
k to thedi
tionary. It is easy to see that this di
tionary is pre�x-
losed (i.e. anypre�x of an element is also an element of the di
tionary) and a naturalway to represent it is a trie.LZW [23℄ is just a 
oding variant of LZ78, so we will fo
us in LZ78 inthis paper, understanding that the algorithms 
an be trivially ported toLZW.An interesting property of this 
ompression format is that every blo
krepresents a di�erent text substring. The only possible ex
eption is thelast blo
k. We use this property in our algorithm, and deal with theex
eption by adding a spe
ial 
hara
ter \$" (not in the alphabet) at theend of the text. The last blo
k will 
ontain this 
hara
ter and thus willbe unique too.Another 
on
ept that is worth reminding is that a set of strings 
anbe lexi
ographi
ally sorted, and we 
all the rank of a string its positionin the lexi
ographi
ally sorted set. Moreover, if the set is arranged in atrie data stru
ture, then all the strings represented in a subtree form alexi
ographi
al interval of the universe. We remind that, in lexi
ographi
order, " � x, ax � by if a < b, and ax � ay if x � y, for any strings x; yand 
hara
ters a; b.3 Basi
 Te
hniqueWe now present the basi
 idea to sear
h for a pattern P1:::m in a textT1:::u whi
h has been 
ompressed using the LZ78 or LZW algorithm inton + 1 blo
ks T = B0 : : : Bn, su
h that B0 = "; 8k 6= `; Bk 6= B`; and8k � 1; 9` < k; 
 2 �; Bk = B` � 
.3.1 Data Stru
turesWe start by de�ning the data stru
tures used, without 
aring for the exa
tway they are represented. The problem of their su

in
t representation,and 
onsequently the spa
e o

upan
y and time 
omplexity, is 
onsideredin the next se
tion.



1. LZTrie : is the trie formed by all the blo
ks B0 : : : Bn. Given theproperties of LZ78 
ompression, this trie has exa
tly n+1 nodes, ea
hone 
orresponding to a string. LZTrie stores enough information soas to permit the following operations on every node x:(a) idt(x) gives the node identi�er, i.e., the number k su
h that xrepresents Bk;(b) leftrankt(x) and rightrankt(x) give the minimum and maximumlexi
ographi
al position of the blo
ks represented by the nodes inthe subtree rooted at x, among the set B0 : : : Bn;(
) parentt(x) gives the tree position of the parent node of x; and(d) 
hildt(x; 
) gives the tree position of the 
hild of node x by 
har-a
ter 
, or null if no su
h 
hild exists.Additionally, the trie must implement the operation rtht(rank), whi
hgiven a rank r gives the r-th string in B0 : : : Bn in lexi
ographi
alorder.2. RevTrie : is the trie formed by all the reverse strings Br0 : : : Brn. Forthis stru
ture we do not have the ni
e properties that the LZ78/LZWalgorithm gives to LZTrie: there 
ould be internal nodes not repre-senting any blo
k. We need the same operations for RevTrie than forLZTrie, whi
h are 
alled idr, leftrankr, rightrankr, parentr, 
hildrand rthr.3. Node : is a mapping from blo
k identi�ers to their node in LZTrie.4. Range : is a data stru
ture for two-dimensional sear
hing in thespa
e [0 : : : n℄ � [0 : : : n℄. The points stored in this stru
ture aref(revrank(Brk); rank(Bk+1)); k 2 0 : : : n � 1g, where revrank is thelexi
ographi
al rank in Br0 : : : Brn and rank is the lexi
ographi
al rankin B0 : : : Bn. For ea
h su
h point, the 
orresponding k value is stored.3.2 Sear
h AlgorithmLet us now 
onsider the sear
h pro
ess. We distinguish three types ofo

urren
es of P in T , depending on the blo
k layout (see Figure 1):(a) the o

urren
e lies inside a single blo
k;(b) the o

urren
e spans two blo
ks, Bk and Bk+1, su
h that a pre�xP1:::i mat
hes a suÆx of Bk and the suÆx Pi+1:::m mat
hes a pre�x ofBk+1; and(
) the o

urren
e spans three or more blo
ks, Bk : : : B`, su
h that Pi:::j =Bk+1 : : : B`�1, P1:::i�1 mat
hes a suÆx of Bk and Pj+1:::m mat
hes apre�x of B`.Note that ea
h possible o

urren
e of P lies exa
tly in one of the three
ases above. We explain now how ea
h type of o

urren
e is found.



1 2 3 4 5 6 7

LZ78 block numbers

P inside a
block

P spans 2
blocks

P spans 4
blocksFig. 1. Di�erent situations in whi
h P 
an mat
h inside T .O

urren
es lying inside a single blo
k.Given the properties of LZ78/LZW, every blo
k Bk 
ontaining P isformed by a shorter blo
k B` 
on
atenated to a letter 
. If P does noto

ur at the end of Bk, then B` 
ontains P as well. We want to �nd theshortest possible blo
k B in the referen
ing 
hain for Bk that 
ontainsthe o

urren
e of P . This blo
k B �nishes with the string P , hen
e it 
anbe easily found by sear
hing for P r in RevTrie.Hen
e, in order to dete
t all the o

urren
es that lie inside a singleblo
k we do as follows:1. Sear
h for P r in RevTrie. We arrive at a node x su
h that every stringstored in the subtree rooted at x represents a blo
k ending with P .2. Evaluate leftrankr(x) and rightrankr(x), obtaining the lexi
ograph-i
al interval (in the reversed blo
ks) of blo
ks �nishing with P .3. For every rank r 2 leftrankr(x) : : : rightrankr(x), obtain the 
orre-sponding node in LZTrie, y = Node(rthr(r)). Now we have identi�edthe nodes in the normal trie that �nish with P and have to report alltheir extensions, i.e., all their subtrees.4. For every su
h y, traverse all the subtree rooted at y and report everynode found. In this pro
ess we 
an know the exa
t distan
e betweenthe end of P and the end of the blo
k. Note that a single blo
k 
on-taining several o

urren
es will report them several times, sin
e wewill report a subtree that is 
ontained in another subtree reported.To avoid this we keep tra
k of the last m 
hara
ters that the 
urrentnode represents. When this string equals P , we have arrived at an-other node that has been or will be reported elsewhere so we stop thatbran
h. The equality 
ondition 
an be tested in 
onstant time usinga KMP-like algorithm.O

urren
es spanning two blo
ks.



We do not know the position where P has been split, so we haveto try them all. The idea is that, for every possible split, we sear
h forthe reverse pattern pre�x in RevTrie and the pattern suÆx in LZTrie.Now we have two ranges, one in the spa
e of reversed strings (i.e., blo
ks�nishing with the �rst part of P ) and one in that of the normal strings(i.e. blo
ks starting with the se
ond part of P ), and need to �nd thepairs of blo
ks (k; k + 1) su
h that k is in the �rst range and k + 1 is inthe se
ond range. This is what the range sear
hing data stru
ture is for.Hen
e the steps are:1. For every i 2 1 : : : m� 1, split P in pref = P1:::i and suff = Pi+1:::mand do the next steps.2. Sear
h for pref r in RevTrie, obtaining x. Sear
h for suff in LZTrie,obtaining y.3. Sear
h for the range [leftrankr(x) : : : rightrankr(x)℄ �[leftrankt(y) : : : rightrankt(y)℄ using the Range data stru
ture.4. For every pair (k; k + 1) found, report k. We know that Pi is alignedat the end of Bk.O

urren
es spanning three blo
ks or more.We need one more observation for this part. Re
all that theLZ78/LZW algorithm guarantees that every blo
k represents a di�erentstring. Hen
e, there is at most one blo
k mat
hing Pi:::j for ea
h 
hoi
e ofi and j. This fa
t severely limits the number of o

urren
es of this 
lassthat may exist.The idea is, �rst, to identify the only possible blo
k that mat
hes ev-ery substring Pi:::j . We store the blo
k numbers in m arrays Ai, whereAi stores the blo
ks 
orresponding to Pi:::j for all j. Then, we try to �nd
on
atenations of su

essive blo
ks Bk, Bk+1, et
. that mat
h 
ontigu-ous pattern substrings. Again, there is only one 
andidate (namely Bk+1)to follow an o

urren
e of Bk in the pattern. Finally, for ea
h maximal
on
atenation of blo
ks Pi:::j = Bk : : : B` 
ontained in the pattern, we de-termine whether Bk�1 �nishes with P1:::i�1 and B`+1 starts with Pj+1:::m.If this is the 
ase we 
an report an o

urren
e. Note that there 
annot bemore than O(m2) o

urren
es of this type. So the algorithm is as follows:1. For every 1 � i � j � m, sear
h for Pi:::j in LZTrie and re
ord thenode x found in Ci;j = x, as well as add (idt(x); j) to array Ai. Thesear
h is made for in
reasing i and for ea
h i value we in
rease j. Thisway we perform a single sear
h in the trie for ea
h i. If there is no



node 
orresponding to Pi:::j we stop sear
hing and adding entries toAi, and store null values in Ci;j0 for j0 � j. At the end of every i-turn,we sort Ai by blo
k number. Mark every Ci;j as unused.2. For every 1 � i � j < m, for in
reasing j, try to extend the mat
h ofPi:::j to the right. We do not extend to the left be
ause this, if useful,has been done already (we mark used ranges to avoid working on asequen
e that has been tried already from the left). Let S and S0denote idt(Ci;j), and �nd (S + 1; r) in Aj+1. If r exists, mark Cj+1;ras used, in
rement S and repeat the pro
ess from j = r. Stop whenthe o

urren
e 
annot be extended further (no su
h r is found).(a) For ea
h maximal o

urren
e Pi:::r found ending at blo
kS su
h that r < m, 
he
k whether blo
k S + 1 startswith Pr+1:::m, i.e., whether leftrankt(Node(S + 1)) 2leftrankt(Cr+1;m) : : : rightrankt(Cr+1;m). Note thatleftrankt(Node(S + 1)) is the exa
t rank of node S + 1,sin
e every internal node is the �rst among the ranks of itssubtree. Note also that there 
annot be an o

urren
e if Cr+1;m isnull. If r < m and blo
k S + 1 does not start with Pr+1:::m, thenstop here and move to the next maximal o

urren
e.(b) If i > 1, then 
he
k whether blo
k S0 � 1 �nishes with P1:::i�1.For this sake, �nd Node(S0 � 1) and use the parentt operation to
he
k whether the last i� 1 nodes, read ba
kward, equal P r1:::i�1.If i > 1 and blo
k S0 � 1 does not �nish with P1:::i�1, then stophere and move to the next maximal o

urren
e.(
) Report node S0 � 1 as the one 
ontaining the beginning of themat
h. We know that Pi�1 is aligned at the end of this blo
k.Note that we have to make sure that the o

urren
es reported spanat least 3 blo
ks.Figure 3.2 depi
ts the whole algorithm. O

urren
es are reported inthe format (k; offset), where k is the identi�er of the blo
k where theo

urren
e starts and offset is the distan
e between the beginning of theo

urren
e and the end of the blo
k.If we want to show the text surrounding an o

urren
e (k; offset), wejust go to LZTrie using Node(k) and use the parentt pointers to obtainthe 
hara
ters of the blo
k in reverse order. If the o

urren
e spans morethan one blo
k, we do the same for blo
ks k+1, k+2 and so on until thewhole pattern is shown. We also 
an show larger blo
k numbers as wellas blo
ks k � 1, k � 2, et
. in order to show a larger text 
ontext aroundthe o

urren
e. Indeed, we 
an re
over the whole text by repeating thispro
ess for k 2 0 : : : n.



Sear
h (P1:::m, LZTrie, RevTrie, Node, Range)1. /* Lying inside a single blo
k */2. x sear
h for P r in RevTrie3. For r 2 leftrankr(x) : : : rightrankr(x) Do4. y  Node(rthr(r))5. For z in the subtree rooted at y not 
ontaining P again Do6. Report (idt(z);m+ depth(y)� depth(z))7. /* Spanning two blo
ks */8. For i 2 1 : : : m� 1 Do9. x sear
h for P r1:::i in RevTrie10. y  sear
h for Pi+1:::m in LZTrie11. Sear
h for [leftrankr(x) : : : rightrankr(x)℄�[leftrankt(y) : : : rightrankt(y)℄ in Range12. For (k; k + 1) in the result of this sear
h Do Report (k; i)13. /* Spanning three or more blo
ks */14. For i 2 1 : : : m Do15. x root node of LZTrie16. Ai  ;17. For j 2 i : : :m Do18. If x 6= null Then x 
hildt(x; Pj)19. Ci;j  x20. usedi;j  false21. If x 6= null Then Ai  Ai [ (idt(x); j)22. For j 2 1 : : :m Do23. For i 2 i : : : j Do24. If Ci;j 6= null and usedi;j = false Then25. S0  idt(Ci;j)26. S  S0 � 1; r j � 127. While (S + 1; r0) 2 Ar+1 Do /* always exists the 1st time */28. usedr+1;r0  true29. r r0; S  S + 130. span S � S0 + 131. If i > 1 Then span span+ 132. If r < m Then span span+ 133. If span � 3 and Cr+1;m 6= null Then34. If leftrankt(Node(S + 1)) 2 leftrankt(Cr+1;m) : : :rightrankt(Cr+1;m) Then35. x Node(S0 � 1); i0  i� 136. While i0 > 0 and parentt(x) 6= nulland x = 
hild(parentt(x); Pi0 ) Do37. x parentt(x); i0  i0 � 138. If i0 = 0 Then Report (S0 � 1; i� 1)Fig. 2. The sear
h algorithm. The value depth(y)� depth(z) is determined on the 
ysin
e we traverse the whole subtree of z.



4 A Su

in
t Index RepresentationWe show now how the data stru
tures used in the algorithm 
an be im-plemented using little spa
e.Let us �rst 
onsider the tries. Munro and Raman [19℄ show that it ispossible to store a binary tree of N nodes using 2N +o(N) bits su
h thatthe operations parent(x), left
hild(x), right
hild(x) and subtreesize(x)
an be answered in 
onstant time. Munro et al. [20℄ show that, us-ing the same spa
e, the following operations 
an also be answered in
onstant time: leafrank(x) (number of leaves to the left of node x),leafsize(x) (number of leaves in the subtree rooted at x), leftmost(x)and rightmost(x) (leftmost and rightmost leaves in the subtree rooted atx). In the same paper [20℄ they show that a trie 
an be represented usingthis same stru
ture by representing the alphabet � in binary. This trieis able to point to an array of identi�ers, so that the identity of ea
hleaf 
an be known. Moreover, path 
ompressed tries (where unary pathsare 
ompressed and a skip value is kept to indi
ate how many nodeshave been 
ompressed) 
an be represented without any extra spa
e 
ost,as long as there exists a separate representation of the strings storedreadily available to 
ompare the portions of the pattern skipped at the
ompressed paths.We use the above representation for LZTrie as follows. We do notuse path 
ompression, but rather 
onvert the alphabet to binary andstore the n+ 1 strings 
orresponding to ea
h blo
k, in binary form, intoLZTrie. For reasons that are made 
lear soon, we pre�x every binaryrepresentation with the bit \1". So every node in the binary LZTrie willhave a path of length 1+ log2 � to its real parent in the original LZTrie,
reating at most 1 + log2 � internal nodes. We make sure that all thebinary trie nodes that 
orrespond to true nodes in the original LZTrieare leaves in the binary trie. For this sake, we use the extra bit allo
ated:at every true node that happens to be internal, we add a leaf by the bit\0", while all the other 
hildren ne
essarily des
end by the bit \1".Hen
e we end up with a binary tree of n(1 + log2 �) nodes, whi
h
an be represented using 2n(1 + log2 �) + o(n log �) bits. The identityasso
iated to ea
h leaf x will be idt(x). This array of node identi�ersis stored in order of in
reasing rank, whi
h requires n log2 n bits, andpermits implementing rtht in 
onstant time.The operations parentt and 
hildt 
an therefore be implemented inO(log �) time. The remaining operations, leftrank(x) and rightrank(x),



are 
omputed in 
onstant time using leafrank( leftmost(x)) andleafrank(rightmost(x)), sin
e the number of leafs to the left 
orrespondsto the rank in the original trie.For RevTrie we have up to n leaves, but there may be up to u internalnodes. We use also the binary string representation and the tri
k of theextra bit to ensure that every node that represents a blo
k is a leaf. Inthis trie we do use path 
ompression to ensure that, even after 
onvertingthe alphabet to binary, there are only n nodes to be represented. Hen
e,all the operations 
an be implemented using only 2n + o(n) bits, plusn log2 n bits for the identi�ers. Sear
hing in RevTrie has the same 
ostas in LZTrie.It remains to explain how we store the representation of the stringsin the reverse trie, sin
e in order to 
ompress paths one needs the stringsreadily available elsewhere. Instead of an expli
it representation, we usethe same LZTrie: given the target node x of an edge we want to traverse,we obtain using Node(rthr(leftrankr(x))) a node in LZTrie that repre-sents a binary string whose (reversed) suÆx mat
hes the edge we want totraverse. Then, we use the parentt pointers to read upwards the (reverse)string asso
iated to the blo
k in the reverse trie.For the Node mapping we simply have a full array of n log2 n bits.Finally, we need to represent the data stru
ture for range sear
h-ing, Range, where we store n blo
k identi�ers k (representing the pair(k; k+1)). Among the plethora of data stru
tures o�ering di�erent spa
e-time tradeo�s for range sear
hing [1, 11℄, we prefer one of minimal spa
erequirement by Chazelle [4℄. This stru
ture is a perfe
t binary tree divid-ing the points along one 
oordinate plus a bu
keted bitmap for every treenode indi
ating whi
h points (ranked by the other 
oordinate) belong tothe left 
hild. There are in total n log2 n bits in the bu
keted bitmapsplus an array of the point identi�ers ranked by the �rst 
oordinate whi
hrepresents the leaves of the tree.This stru
ture permits two dimensional range sear
hing in a grid ofn pairs of integers in the range [0 : : : n℄ � [0 : : : n℄, answering queries inO((R + 1) log n) time, where R is the number of o

urren
es reported.A newer te
hnique for bu
keted bitmaps [9, 18℄ needs N + o(N) bits torepresent a bitmap of length N , and permits the rank operation and itsinverse in 
onstant time. Using this te
hnique, the stru
ture of Chazellerequires just n log2 n(1 + o(1)) bits to store all the bitmaps. Moreover,we do not need the information at the leaves, whi
h maps rank (in a
oordinate) to blo
k identi�ers: as long as we know that the r-th blo
k



quali�es in normal (or reverse) lexi
ographi
al order, we 
an use rtht (orrthr) to obtain the identi�er k + 1 (or k).5 Spa
e and Time ComplexityFrom the previous se
tion it be
omes 
lear that the total spa
e require-ment of our index is ndlog2 ne(4 + o(1)). The o(1) term does not hidelarge 
onstants, just 5+2 log2 �+2 log2 log2 nlog2 n +o(1= log n). The tries and Node
an be built in O(u log �) time, while Range needs O(n log n) 
onstru
-tion time. Sin
e n log n = O(u log �) [3℄, the overall 
onstru
tion time isO(u log �).Let us now 
onsider the sear
h time of the algorithm.Finding the blo
ks that totally 
ontain P requires a sear
h in RevTrieof 
ost O(m log �). Later, we may do an indeterminate amount of work,but for ea
h unit of work we report a distin
t o

urren
e, so we 
annotwork more than R, the size of the result.Finding the o

urren
es that span two blo
ks requires m sear
hes inLZTrie andm sear
hes in RevTrie, for a total 
ost of O(m2 log �), as wellas m range sear
hes requiring O(m log n + R log n) (sin
e every distin
to

urren
e is reported only on
e).Finally, sear
hing for o

urren
es that span three blo
ks or more re-quiresm sear
hes in LZTrie (all the Ci;j for the same i are obtained witha single sear
h), at a 
ost of O(m2 log �). Extending the o

urren
es 
ostsO(m2 logm). To see this, 
onsider that, for ea
h unit of work done in theloop of lines 27{29, we mark one C 
ell as used and never work again onthat 
ell. There are O(m2) su
h 
ells. This means that we make O(m2)binary sear
hes in the Ai arrays. The 
ost to sort the m arrays of sizem is also O(m2 logm). The �nal veri�
ations to the right and to the left
ost O(1) and O(m log �), respe
tively.Hen
e the total sear
h 
ost to report the R o

urren
es of patternP1:::m is O(m2 log(m�) + (m+R) log n). If we 
onsider the alphabet sizeas 
onstant then the algorithm is O(m2 logm + (m + R) log n). The ex-isten
e problem 
an be solved in O(m2 log(m�) + m log n) time (notethat we 
an disregard in this 
ase blo
ks totally 
ontaining P , sin
e theseo

urren
es extend others of the other two types). Finally, we 
an un
om-press and show the text of length L surrounding any o

urren
e reportedin O(L log �) time, and un
ompress the whole text T1:::u in O(u log �)time.Chazelle [4℄ permits several spa
e-time tradeo�s in his data stru
ture.In parti
ular, by paying O �1"n log n� spa
e, reporting time 
an be redu
ed



to O(log" n). If we pay for this spa
e 
omplexity, then our sear
h timebe
omes O(m2 log(m�) +m log n+R log" n).6 Con
lusionsWe have presented an index for text sear
hing based on the LZ78/LZW
ompression. At the pri
e of 4n log2 n(1 + o(1)) bits, we are able to �ndthe R o

urren
es of a pattern of length m in a text of n blo
ks inO(m2 log(m�) + (m+R) log n) time.Future work involves obtaining a real implementation of this index.Some numeri
al exer
ises show that the index should be pra
ti
al. Forexample, assume a typi
al English text of 1 Mb, whi
h is 
ompressedby Unix's Compress to about 1=3 of its size. Given the spa
e used bythis program to 
ode ea
h blo
k, we have that there are about n � u=10blo
ks. Our index needs 4n log2 n(1 + o(1)) � 9:7u bits, little more thanthe size of the un
ompressed text (8u bits in ASCII). This should stabilizefor longer texts: the 11-th order entropy of English text has been found tobe 2.4 bits per symbol [3℄, and our index takes under this model 4uH11 =9:6u bits of spa
e. It is estimated [3℄ that the true entropy H of Englishtext is around 1.3 bits per symbol (
onsidering orders of 100 or more).Under this model our index takes 4uH100 = 5:2u bits, smaller than theun
ompressed text. Note that in this spa
e we also store the 
ompressedrepresentation of the text.Referen
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