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Abstract

A metric space consists of a collection of objects and
a distance function defined among them, which satis-
fies the triangular inequality. The goal is to prepro-
cess the set so that, given a set of objects and a query,
retrieve those objects close enough to the query. The
number of distances computed to achieve this goal is
the complexity measure. The problem is very difficult
in the so-called high-dimensional metric spaces, where
the histogram of distances has a large mean and a small
variance. A recent survey on methods to indexr met-
ric spaces has shown that the so-called clustering algo-
rithms are better suited than their competitors, pivot-
based algorithms, to cope with high-dimensional met-
ric spaces. In this paper we present a new clustering
method that achieves much better performance than all
the existing data structures. We present analytical and
experimental results that support our claims and that
give the users the tuning parameters to make optimal
use of this data structure.

1. Introduction

The concept of “proximity” searching has applica-
tions in a vast number of fields. Some examples are
non-traditional databases (where the concept of exact
search is of no use and we search for similar objects, e.g.
databases storing images, fingerprints or audio clips);
machine learning and classification (where a new ele-
ment must be classified according to its closest existing
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element); image quantization and compression (where
only some vectors can be represented and those that
cannot must be coded as their closest representable
point); text retrieval (where we look for words in a
text database allowing a small number of errors, or we
look for documents which are similar to a given query
or document); computational biology (where we want
to find a DNA or protein sequence in a database al-
lowing some errors due to typical variations); function
prediction (where we want to search the most similar
behavior of a function in the past so as to predict its
probable future behavior); etc.

All those applications have some common charac-
teristics. There is a universe X of objects, and a non-
negative distance function d : X x X — R7T defined
among them. This distance satisfies the three axioms
that make the set a metric space

d(:cv y) =0 & z=y
d(:c, y) = d(yv :c)
d(z,z) < d(z,y)+d(y,2)

where the last one is called the “triangular inequality”
and is valid for many reasonable similarity functions.
The smaller the distance between two objects, the more
“similar” they are. This distance is considered expen-
sive to compute (think, for instance, in comparing two
fingerprints). We have a finite database U C X, which
is a subset of the universe of objects and can be prepro-
cessed (to build an index, for instance). Later, given a
new object from the universe (a query q), we must re-
trieve all similar elements found in the database. There
are three typical queries of this kind:

Range queries: retrieve all elements which are
within distance r to g.

That is, (¢,7) = {u € U / d(u,q) < r}.



Nearest neighbor (NN) queries: retrieve the clos-
est elements to ¢ in 1.
That is, nn(q) = {u € U / Vv € U, d(u,q) <
d(v,q)}.

k-NN queries: retrieve the k closest elements to g in
U.
That is, retrieve a set nng(¢) C U such that
|nne(g)] = k and Yu € nng(g),v € U —
nnk(q), d(u, q) < d(vv q)'

Given a database of |U| = n objects, all those queries
can be trivially answered by performing n distance
evaluations. Since the distance function is assumed to
be expensive to compute, the goal is to structure the
database so that we perform few distance evaluations.
All the existing techniques work by discarding elements
using the triangular inequality.

We concentrate in range queries in this paper, as the
others can be systematically built over these [10]. The
set of points of X that are at distance at most r to ¢ is
called the “query ball”, so (g,7) is the intersection of
the query ball and U.

A particular case of this problem arises when the
space is R*. There are effective methods for this case,
such as kd-trees [3] or R-trees [13]. However, for more
than roughly 20 dimensions those structures cease to
work well. We focus in this paper in general metric
spaces, although the solutions are well suited also for
k-dimensional spaces.

It is interesting to notice that the concept of “di-
mensionality” can be translated to metric spaces as
well: the typical feature in high dimensional spaces is
that the probability distribution of distances among el-
ements has a very concentrated histogram (with larger
mean as the dimension grows), hampering the work
of any similarity search algorithm [5, 7]. In the ex-
treme case we have a space where d(z,z) = 0 and
Vy # z, d(z,y) = 1, where it is impossible to avoid
a single distance evaluation at search time. We say
that a general metric space is high dimensional when
its histogram of distances is concentrated. We use in
this paper a quantitative definition of the intrinsic di-
mensionality proposed in [10]:

Definition: The intrinsic dimensionality of a metric

space is defined as p = 5, where u and o? are the
mean and variance of its histogram of distances.

Under this definition, a random vector space with &
coordinates has intrinsic dimension ©(k), so the defi-
nition extends naturally that of vector spaces.

In the same survey [10] a number of approaches to
solve the problem of proximity searching in general

metric spaces are considered, which are divided in two
classes:

e Pivot-based algorithms: which select a number of
“pivots” from the database and classify all the
other elements according to their distances to the
pivots. The distances between elements and pivots
and between the query g and the pivots are used
together with the triangular inequality to filter out
elements of the database without actually measur-
ing their distance to ¢. These algorithms generally
improve as more pivots are added, although the
space requirements of the indexes increase as well.

e Clustering algorithms: which divide the set into
spatial zones which are as compact as possible, and
are able to discard complete zones by performing
few distance evaluations (e.g. between the query
g and a centroid of the zone). The partition into
zones can be hierarchical, but the indexes use a
fixed amount of memory and cannot be improved
by giving them more space.

As shown in [10], clustering algorithms deal bet-
ter with high dimensional metric spaces. Despite that
pivot-based algorithms can improve by using more
memory, they need more and more memory to beat
clustering algorithms as the dimension grows. For in-
trinsic dimension around 20 they already need imprac-
tical amounts of extra space. Therefore, clustering al-
gorithms seem a promising alternative to index high
dimensional metric spaces.

In this paper we present a new clustering algo-
rithm based on an asymmetrical querying process. We
present analytical results based on the intrinsic dimen-
sion to analyze its different alternatives and tuning op-
tions, and later we present experimental results show-
ing that it outperforms by far all the existing schemes.

2. Related Work

Different data structures have been proposed to fil-
ter out elements based on the triangular inequality (see
[10] for a complete survey). We divide the exposition
according to the two classes of techniques.

2.1. Pivot-based Algorithms

Burkhard-Keller Trees (bk-trees) [6] are designed for
discrete distance functions: they select a pivot element
p as the root of the tree, and put at child z the elements
which are at distance ¢ to the pivot. Each subtree is
recursively built with the same technique until there



are b elements or less, in which case the elements are
simply stored in a “bucket” at the tree leaf. A range
query ¢ with tolerance radius r is searched by mea-
suring d(p, ¢), reporting p if appropriate, and entering
only into subtrees numbered d(p,q) — r to d(p,q) + 7.
The rest need not be considered because of the the tri-
angle inequality. The buckets reached are exhaustively
compared against q.

Fixed Queries Trees (fq-trees) [2] are an evolution
where the same pivot is used for all the nodes of the
same level of the tree. In this case the pivot does not
need to belong to the subtree. Many comparisons are
saved in the backtracking process because only one dif-
ferent pivot per level exists. However, the tree is taller.
A variant called Fixed Height fg-tree (fhg-tree) is also
proposed where all the leaves are at the same depth A,
regardless of the bucket size.

Vantage Point Trees (vp-trees) [20, 22] are designed
for continuous distance functions. The root has two
equal-size subtrees that divide the elements in closer
to and farther from the root. This can be extended to
m-ary trees (mvp-trees) [5, 4].

Finally, algorithms like AESA [21], LAESA [16, 15]
and its variants [18, 8] and Fixed Queries Arrays (fg-
arrays [9]) are based in a common idea: k pivots are
selected and each object is mapped to k coordinates
which are its distances to the pivots. Later, the query
g is also mapped and if it differs from an object in
more than r along some coordinate then the element
is filtered out by the triangle inequality. That is, if for
some pivot p; and some element v of the set it holds
|d(q, pi) — d(v,pi)| > 7, then we know that d(q,v) > r
without need to evaluate d(v,q). The elements that
cannot be filtered out using this rule are directly com-
pared.

An interesting feature of most of these algorithms
is that they can reduce the number of distance eval-
uations by increasing the number of pivots. Define
Dy (z,y) = maxic;<k|d(z,p;) — d(y,p;)|. Using the
pivots pi, ..., pi is equivalent to discarding elements u
such that Dy (g,u) > r. As more pivots are added we
need to perform more distance evaluations (exactly k)
to compute Dy(q, *), but on the other hand Dg(q, *)
increases its value and hence it has a higher chance
of filtering out more elements. It follows that there
exists an optimum k&, This optimum, however, cannot
be normally reached because it is too high in terms of
space requirements: kn distances have to be precom-
puted and stored in order to use k pivots. Hence, in
general these methods use as many pivots as they can,
and they are normally well below their optimum.

2.2. Clustering Algorithms

Generalized Hyperplane Trees (gh-trees) [20] use
two “centers” for each tree node and divide the space
according to which of the two centers is closer to each
object. At search time the query enters into the sub-
trees whose zone of influence has a nonempty intersec-
tion with the query ball.

Bisector Trees [14, 19] are similar but the zones are
not defined according to which is the closest center but
using the concept of “covering radius”. The covering
radius of a zone is the minimum radius of a sphere
that is necessary to contain all the points in the zone,
and the elements are inserted in the subtrees trying to
minimize covering radii. This is generalized to Voronoi
Trees (v-trees) in [12] to reduce more the covering radii.

Gh-trees are generalized to an m-ary partition in
the Geometric Near-neighbor Access Tree (gna-tree)
[5], which makes a Voronoi-like partition of the space [1]
among the m pivots at each node of the tree. However,
the gna-tree uses also the covering radius criterion to
prune the search even more.

The M-tree [11] also takes m elements and divides
the space among its zones of influence, but it uses only
the covering radius information to classify and search
the elements. The M-tree is able of dynamic insertion
and deletion of points and is optimized for secondary
memory.

Spatial Approximation Trees (sa-trees) [17] are
based on approaching the query spatially: the search
starts at the root of the tree and moves to neighbors
that are closer to the query. The ideal data structure
to obtain this is a Voronoi graph, which in the paper is
proven impossible to build on a general metric space.
Therefore the sa-tree is a simplification which forces
some backtracking in the tree.

3. A New Clustering Technique

We propose now a novel technique to index a metric
space. We start by taking a “center” ¢ € U and a radius
r (whose value is discussed later). We define the center
ball of (¢, r) (or just ¢ if no ambiguity is possible) as
the subset of elements of X which are at distance at
most r from ¢. Now we define

Ijer, = {uelU—{c}, dc,u) <7}

as the bucket of “internal” elements, which lie inside
center ball of ¢, and



as the rest of the elements (the “external” ones). Now
the process is repeated recursively inside E. The con-
struction procedure returns a list of triples (c;, 74, I;)
(center,radius,bucket) and it is shown in Figure 1.

Build (U)
if U=0 then return an empty list
Select c€ U
Select a radius r
I — {u celU- {C}, d(ca u) < r}
E +— U-I
return (c,r,I):Build(FE)

Figure 1. The construction algorithm. The operator
":" is the list constructor. It is not hard to remove

the tail recursion to make it iterative.

The data structure that is built looks rather sym-
metric, but it is not. The first center chosen has pref-
erence over the subsequent centers in case of overlap-
ping balls. Figure 2 illustrates. All the elements that
are inside the ball of the first center (¢ in the figure)
are stored in its I bucket, despite that they may also
lie inside the I buckets of subsequent centers (cz and
c3 in the figure). The figure also shows how the data
structure can be seen as a list.

E E E
(c1,rl) —= (c2r2) — (c3,r3) —=

Figure 2. The influence zones of three centers taken
in this order: ¢y, ¢2, c3. We also show a list ar-

rangement for the data structure.

The search algorithm is depicted in Figure 4. The
idea is that if the first center chosen is ¢ and its radius is

7¢, then the search for a query (g, r) starts by measuring
d(c, q) and adding c to the set of results if appropriate.
Then, we search exhaustively inside the bucket I only if
the query ball has some intersection with the center ball
of ¢c. Now, given the asymmetry of the data structure,
we can also prune the search in the other direction: if
the query ball is totally contained in the center ball
of ¢, then we do not need to consider E because by
construction we know that all the elements that are
inside the query ball have been inserted in 1.

Search (L,q,r)
if L is empty then return
Let L= (c,7e,I): E
Compute d(c,q)
if d(c,¢) <7 then add ¢ to the results
if d(c,q¢) <rc+r then search I exhaustively
if d(c,¢) > r. —r then Search (E,q,r)

Figure 3. The search algorithm. It is not hard to

remove the tail recursion to make it iterative.

This is an essential feature absent in other cluster-
ing algorithms, where the search needs to enter into
all the clusters which are intersected by the query ball.
With our data structure the consideration of the rel-
evant clusters can be preempted as soon as the query
ball is totally contained in a cluster. Figure 4 illus-
trates.

Figure 4. Three cases of query ball versus center
ball. For ¢; we need to consider the current bucket
and the rest of centers. For g2 we can prune the
search inside the rest of the clusters. For g3 we can

avoid considering the current bucket.



Compared to other clustering algorithms, ours uses
only the covering radius criterion (and not Voronoi-
like areas), but it is able to prune more by using the
order of the centers, as explained. It is also possible to
see our list of clusters as a particular case of a vp-tree
or an M-tree by considering I and E as the left and
right subtrees of the root ¢, but there is a fundamental
difference that is made clear in the next section: while
those data structures try to build balanced trees, ours
is extremely unbalanced, as I is much smaller than
E. Moreover, our I bucket does not have any internal
structure.

4. Analysis

The description of the data structure does not spec-
ify how the center and the radius are selected at each
point of the construction algorithm. As this is related
to the efficiency and not the correctness of the data
structure, we have left it unspecified until now, when
the efficiency is analyzed.

Let us consider the histogram of distances between
arbitrary elements of X. As implied by the definition
of the intrinsic dimensionality, this histogram is com-
pressed and moved to the right as the dimension of the
metric space grows.

When we choose a random center ¢, the histogram
of distances to ¢ is similar to the global histogram.
Therefore, we can use the global histogram to consider
the effect of radius selection. Moreover, we assume
that the histogram remains unchanged after removing
the elements corresponding to each cluster. All these
are reasonable simplifications.

4.1. Clusters of Fixed Radius

The simplest alternative seems to be selecting a fixed
radius r; = r* for all the clusters in the list. This im-
plies that a fixed proportion p* of the remaining ele-
ments lie inside the center ball, which corresponds to
the mass of the histogram in the interval [0,r*]. Fig-
ure 5 (left) illustrates.

Let us call p, the mass of the histogram in the inter-
val (r*,7* 4+ r] and p_ that in the interval [r* — r,r*).
Then pr = p* + p4 is the probability that a given [
bucket has to be examined, while pg = 1 — (p* — p2)
is the probability of having to continue considering
the other buckets (see the right plot of Figure 5).
In a real application these probabilities can be es-
timated with a Monte Carlo method. Furthermore,
the average number of elements in the :-th cluster is
m; = np*(1—p* )1, which decreases as we advance in
the list.

The average search cost can be computed as fol-
lows. We pay one comparison against the first center
and with probability p; we have to consider the first
bucket, which has on average m; = p*n elements. With
probability pg we continue considering the rest of the
buckets, which arrange (1 — p*)n elements on average.
This yields an average search cost of C(n), where

Cn) = 1+ np’pr + peC((1—p")n)

np*(p* +p+) 1
1-(1-p)A-p+p-) p —p-
We would like to find the optimum p*. Under the
simplifying assumption that the search radius is zero

(which implies py = p_ = 0), the above cost is mini-
mized for

2 2
1++v2n  Vn

and the corresponding search cost is 1/2—1—\/2_ ~A/2n.
The expected length of the list (solving (1—p*)*n = 1)
is logy /(1 pe) 0 & \/n/2Inn buckets of size v/2n in the
first buckets and decreasing as we advance in the list.

The solution for the general case depends, unfortu-
nately, on p; and p_, which in turn depend on the
query radius r. As this cannot be determined before-
hand, one has to optimize the structure for a given r
or to use a simplification as the one we have done.

*

p =

4.2, Clusters of Fixed Size

Another choice is to try to have a fixed number m*
of elements inside each center ball, and to define r;
accordingly. This also fixes the length of the list to
[/ (" + 1)].

When we are building the :-th cluster the number
of remaining elements is n — m(¢ — 1). This means that
we have to select the radius r; so that p; = m*/(n —
m*(¢ — 1)) of the mass of the histogram lies in the
interval [0, r;]. Compared to the previous approach, we
now increase the radius instead of letting the number
of elements of the clusters reduce as we advance in the
list.

The average search cost can be computed as before.
We pay one comparison against the first center and
with probability pr,1 = p1+p4+ we have to consider the
first bucket, which has m elements. With probability
pE,1 = 1 — (p1 — p—) we continue considering the rest
of the buckets, which arrange n — m* elements. This
yields an average search cost of C(1), where

C(’L) = 1+ m*p_[yi + pE,iC(i+1)



fraction of elements
inside the cluster

p- p*
re d(c.x) reer P ke d(c.x)

Figure 5. The histogram of distances between c and a random element z. On the left, the grayed part is the fraction

of the set captured by a ball of radius r centered at c. On the right we have plotted the areas corresponding to

p+ and p_.

= Z(1+m*pI,i+1) H DE,;

i>0 1<j<i

Again we make the simplification of assuming » =0
and therefore p; = p_ = 0. This makes

—y *
HpE,j Hl—pj = %

1<5 <4 1<5 <4
and the whole cost formula becomes

2m*2 —|—’I’TL* _|_2 + m*2

n(m* + 2) -
2(m* +1) n . 2m*

2(m* + 1)2

+m’

where the first term corresponds to the expected com-
parisons against the centers and the second to those
inside the buckets. This cost is optimized for m* =
+/n/2, where the expected search cost is about V2n,
independent on the intrinsic dimension of the space.

In both cases we have obtained a list of length about
+/n with about 1/n elements in each bucket and about
+/n search cost. The main difference is in the exact
form of the list. As the analysis does not tell which is
better, we have to decide that experimentally.

Another thing that the analysis does not tell is how
the dimension affects the search times. As the dimen-
sion grows, p4 and p_ grow for a given 7, and therefore
the probability of entering into more clusters increases.
This will be measured experimentally.

4.3. Center Selection

Independently on how we select the radius of each
cluster, we can apply different heuristics to select the
i-th center. Some choices are:

(p1) At random.

(p2) The element closest to ¢;—; in the remaining set.

(p3) The element farthest from ¢;_; in the remaining
set.

(p4) The element minimizing the sum of distances to
previous centers.

(p5) The element maximizing the sum of distances to
previous centers.

The first alternative is the simplest but not neces-
sarily the best one. The second one aims at building
a bucket ordering that moves slowly across the metric
space. The third one aims at minimizing the overlap
between clusters. (p4) and (p5) are more global ver-
sions of (p2) and (p3), respectively. Moreover, (p2) and
(p4) aim at finding a next pivot close to the current one,
as in sa-trees, while (p3) and (p5) try that the volumes
of different clusters do not overlap, as gna-trees.

5. Building and Updating the Data
Structure

5.1. Construction

Our data structure can be built by brute force in
O(n?/p*) time for fixed radius clusters and O(n?/m*)
time for fixed size clusters. Using the optimal settings
this is O(n%/2) in both cases.

This cost is independent on the dimension, and can
be reduced by noting that I is defined as the result of
a range query (c;, r™) for fixed radius clusters and of a
nearest neighbor nnp,«(¢;) query for fixed size clusters.
Therefore, another (cheaper to build) data structure
built on the metric space could be used as an auxiliary
data structure to build ours. This matches especially
well with the center selection heuristics (pl) and (p2),



while the others may need extra work. It is also worth-
while to note that this auxiliary data structure should
be able of efficient deletion of the elements that are in-
serted into each new cluster, in order to answer queries
on the remaining set.

The fixed radius data structure has the disadvantage
that the bucket sizes cannot be predicted in advance,
which complicates a bit secondary memory arrange-
ments. On the other hand, updating the structure is
simpler than with fixed size buckets.

5.2. Updating

Let us consider the process of inserting a new ele-
ment in the fixed radius data structure. If p* (and r*)
have been correctly computed in the beginning, they
should not change as we insert more elements, and the
insertion should be done by traversing the list of clus-
ters until the element falls inside some center ball, or
otherwise creating a new cluster for it at the end of the
list.

Deletion can be trivially done except if a center is
deleted, in which case a first choice is to keep it anyway
as a fake element. A safer choice is to remove the whole
bucket from the list and reinsert all the elements (note
that the insertion of those elements can be done just
in the tail of the list, as we already know that they do
not lie inside any previous center ball).

However, a massive insertion of elements may affect
the optimality of the r* value chosen (e.g. /n). In
those cases a periodic rebuild of the whole data struc-
ture may be benefical for the performance.

These update operations are a bit more complex if
we have a fixed bucket size. When inserting an ele-
ment, as soon as we find its appropriate ball 2, the
bucket will overflow. Hence we take the element of the
bucket which is farthest from the center ¢;, remove it
from the bucket (modifying r; accordingly), and con-
tinue the insertion process in the tail of the list with
the new element. Hence we are guaranteed to traverse
the whole list of centers for every insertion. Deletion
presents a more difficult problem, since the bucket un-
derflows and we have to find the next nearest neighbor
of ¢; in the rest of the elements. This can be done using
the same data structure, but it is costly anyway. Two
choices are lazy deletion (i.e. leave the whole hoping
that a new insertion will fit the place) and setting a
range of values for m™ instead of a fixed value. Dele-
tion of a center can be handled as for the fixed radius
data structure.

5.3. Secondary Memory

Our data structure has the advantage of a rather
predictable access pattern. The cluster centers are
compared always in the same order. Sometimes we
need to retrieve a whole bucket, sometimes not. Fi-
nally, we can stop the search at any moment in the list
of centers.

A simple linear arrangement of the centers yields
an efficient disk layout for this search algorithm, with
minimal seek time. The buckets should be similarly
arranged in a separate list. Fixed size buckets make
this extremely simple, while fixed radius clusters need
an expansion mechanism to accommodate their varying
size. There are well known mechanisms of that type,
and the histogram can be used as a tool to upper bound
overflow probabilities.

6. Experimental Results

We present now experiments that help determining
the best choice for our data structure and comparing
it against previous work.

Our metric space is the unitary real cube in %k di-
mensions ([0, 1)*) under the Euclidean distance. We
generate a fixed number n of random points and search
random queries ¢ with a radius » such that 0.01% to
0.1% of the set of points is retrieved. We show the
results as a function of the dimension % of the space.
Despite that this is a restricted case of vector space, we
can in this case effectively control the dimension, which
is difficult to do in real-world examples. We make the
experiments with n = 100, 000 elements.

We have made all the experiments on both versions
of the algorithms: fixed bucket size and fixed radius.
As we show in the last experiments, the former turned
out to be superior, so for the rest of the experiments
we show only the results on fixed bucket size.

6.1 Tuning Our Data Structure

Our first experiment tries to determine the best
choice among (p1)—(p5). Figure 6 shows the results us-
ing two different choices for m* (12 and 100). It can be
seen that (p3) and (p5) are better choices, which favors
heuristics that try to minimize the intersection among
clusters [22, 5]. The difference among (p3) and (p5) is
not statistically significant when using a large bucket
size. With a smaller bucket size (12) the (p5) heuristics
is clearly better and therefore we use (p5) from now on,
as it is a more elaborated version of (p3) that should
work in more complex scenarios (e.g. clustered data).
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We now focus on the optimal m*. Figure 7 shows
that the optimal optimal value depends on the dimen-
sion, starting at m* = 200 for low dimension and end-
ing at m* = 6 for high dimensions. The growth of the
optimal search cost as the dimension increases is not

so sharp as in most of the previous work (we compare
later the different algorithms).
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The analysis predicts that the optimal bucket size
also depends on the database size, giving 1/n as a lower
bound for the search cost. Figure 8 shows this fact.
The first plot shows that there is a dependence (on
fixed dimension 8), while the second plot shows the



cost when the optimum bucket size is used for each
dimension and each database size.

Using least squares we find that /7 is a reasonable
lower bound (recall that it was obtained by assuming
a search with radius zero). Retrieving 0.01% of the
database, we get search complexities O(n° %) for di-
mension 4, O(n%%%) for dimension 8, O(n% ") for di-
mension 12, O(n%#!) for dimension 16 and O(n% %)
dimension 20. The relative error of these approxima-
tions is around 5%.

for

Dimension 8. P5 heuristics.

16000

T T T T T T T

T T

Bsize 200 —+—
Bsize 100 ---x---
Bsize 50 ---%---

14000 - Bsize 25 @ b
Bsize 12 —-m-—

12000

10000

8000

6000

T

Distance computations

4000

2000

T

0 10 20 30 40 50 60 70 80 el 100
Database size n (in thousands)

Optimal bucket size. P5 heuristics.
60000 T T T T T T T T T

50000 [ Dim 20 --m -
40000 |- R

30000 |- - E

Distance computations

20000 e B

10000 o 2 I 4

0 10 20 30 40 50 60 70 80 el 100
Database size n (in thousands)

Figure 8. On the top, number of distance evalua-
tions for different bucket sizes as a function of the
database size, in 8 dimensions. On the bottom,
search cost when the optimal bucket size is used
for each dimension and database size. The query

captures 0.01% of n.

Just to check the accurateness of the analysis, we
have run experiments with search radius zero. Accord-

ing to the analysis, the search cost with the optimal
bucket size is O(1/n) independently of the dimension.
Figure 9 shows the search time in 8 and 20 dimensions
using the optimal bucket size. The figure makes it clear
that there is no dependence on the dimension in this
case. Least squares yields O(n®*°) and O(n®51), ex-
actly as predicted.

Zero radius queries
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Figure 9. Number of distance evaluations as n grows
for different dimensions using optimal bucket size

and search radius zero.

6.2 Comparing Against the Rest

We compare now our data structure against some
existing techniques. We have included our fixed bucket
size and fixed radius alternatives, both using their opti-
mal setups, to show that fixed bucket size outperforms
the other. In particular, the P5 heuristics turned out
to be the best one for fixed radius as well, the opti-
mal radius size moving from 2.5 to 1.0 times the query
radius as the dimension moves from 4 to 20.

Observe in Figure 10 that two pivot-based algo-
rithms (fg-arrays and LAESA) have needed at least 32
and 64 times more memory, respectively, than the other
clustering algorithms (gna-trees and sa-trees) in order
to beat them in high dimension. This evidence favors
the use of clustering algorithms instead of pivot-based
ones in high dimensions. Beating clustering algorithms
with pivot based ones becomes be even more difficult
for higher dimensions and bigger search radius.

As the other clustering algorithms, ours does not
need more memory to cope with higher dimensions.
Moreover, the search complexity of our new schemes
grows much slower as the dimension grows. In particu-
lar, the combination we have chosen is by far the best
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in 20 dimensions, even if we allow using 32 times more
memory to competing pivot based algorithms. For ex-
ample, with » = 100,000 and 20 dimensions we inspect
only 55% of the set to retrieve 0.01% of the set, against
almost 70% for the best competitor.

The situation improves for us even more as n grows.
Figure 11 shows the behavior of all the algorithms for
increasing n. As can be seen, our algorithms present
a much slower growing search time than all previous
work, especially on high dimensions. Still the fixed
bucket variant ourperforms the fixed radius one in high
dimension.

7. Conclusions

We have presented a new clustering algorithm which
is experimentally shown to be much more efficient than
the others, especially in high dimensions. We have
found analytical recommendations to tune the data
structure, despite that the fine tuning still has to be
empirical. With respect to the database growth, our
analysis predicts a sublinear behavior, which we ex-
perimentally verified to have a form close to O(n®),
for some 0.5 < a < 1. We have also shown experimen-
tally that the search cost of our algorithms grows much
slower than the others with respect to the database
size.

Among all the strategies we have tested, the fixed
bucket size which selects the next pivot far away from
previous ones is simple to tune, behaves much better
than its competitors, and is well suited for secondary
memory implementations.

An interesting alternative view of our data structure
is that each cluster representative is in fact a pivot, and
the only information we store for each pivot and each
database element (in fact not for all pairs) is whether
the distance among them is smaller or larger than a
given threshold. Moreover, the list of clusters permits
storing this information in a compact form. The key of
its success is that this compact representation permits
having a huge number of pivots with constant space
per element. This is impossible with traditional pivot
based schemes.

Future work involves improving the construction
procedure, possibly by using auxiliary data structures
to build the I buckets. We also plan to pursue in the
problem of obtaining a dynamic data structure that
supports insertion and removal of elements. Finally,
it would be interesting to devise I/O efficient variants
that are able to compete with M-trees in secondary
memory. We have sketched possible alternatives but a
deeper study is necessary.
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