
Received: Added at production Revised: Added at production Accepted: Added at production
DOI: xxx/xxxx

ARTICLE TYPE

Space-efficient data structures for the inference of subsumption
and disjointness relations

José Fuentes-Sepúlveda1,4 | Diego Gatica1,4 | Gonzalo Navarro2,4 | M. Andrea Rodríguez1,4 | Diego
Seco3

1Department of Computer Science,
Universidad de Concepción, Chile

2Department of Computer Science,
University of Chile, Chile

3CITIC, Facultade de Informática,
Universidade da Coruña, Spain

4Millennium Institute for Foundational
Research on Data, Chile

Correspondence
Diego Gatica, IMFD and Department of
Computer Science, Universidad de
Concepción, Edmundo Larenas 219,
4070409, Concepción, Chile. Email:
dgatica@udec.cl

Funding Information
This research was supported by the ANID
Millennium Science Initiative Program -
Code ICN17_002 and PFCHA/Doctorado
Nacional/2020-21201986.

Summary

Conventional database systems function as static data repositories, storing vast
amounts of facts and offering efficient query processing capabilities. The sheer vol-
ume of data these systems store has a direct impact on their scalability, both in terms
of storage space and query processing time. Deductive database systems, on the other
hand, require far less storage space since they derive new knowledge by applying
inference rules. The challenge is how to efficiently obtain the required derivations,
compared to having them in explicit form. In this study, we concentrate on a set of
predefined inference rules for subsumption and disjointness relations, including their
negations. We use compact data structures to store the facts and provide algorithms
to support each type of relation, minimizing even further the storage space require-
ments. Our experimental findings demonstrate the feasibility of this approach, which
not only saves space but is often faster than a baseline that uses well-known graph
traversal algorithms implemented on top of a traditional adjacency list representa-
tion to derive the relations.
KEYWORDS:
deductive database system, inference rule, compact data structure, multigranular data model

1 INTRODUCTION

Database systems are traditionally seen as passive repositories that offer efficient query processing. A more advanced concept is
that of deductive database systems, where new knowledge can be derived from the set of stored facts. Deductive databases can be
seen as an extension of databases with rules1, which can express recursive queries that form a superset of the relational algebra.

Deductive databases are composed of data (or facts) and rules, which avoid to store unnecessarily large amounts of facts that
can be derived via inference rules at query time. There are several other real-world applications that use this combination of
facts and inference rules. For instance, in the Semantic Web, OWL (Web Ontology Language) is based on computational logic
with rules that represent complex knowledge. It can be used to define taxonomies, i.e., ontologies of things that are organized
by containment relations. Popular examples of taxonomies include the Getty Thesaurus of Geographic Names (TGN), with
over 1 million places organized hierarchically, and species taxonomies that categorize millions of species. In a related context,
a knowledge graph such a Wikidata represents diverse types of binary relations (e.g., instance of, containment, and inside) as
triples, where some relations are transitive and reach up millions of triples. Hence, this inference process has been incorporated
into flagship implementations of graph databases such as Neo4j and Blazegraph.

2 Fuentes-Sepúlveda ET AL

A possible drawback of deductive databases is the time needed to derive those omitted facts, as opposed to having them stored
directly. The challenge of a deductive database is then to offer competitive query times while using considerably less space than
a traditional database. As opposed to derivation strategies for general systems of rules, one may find more efficient solutions to
specific systems, which arise in relevant applications. In this work we focus on a set of predefined inference rules concerning
subsumption and disjointness relations. The hierarchical subdivision of the geographic space is a typical example to motivate
the interest in these particular relations, and it will be used as a running example. The administrative subdivisions have several
levels from a coarse level of a country to a finer level of parcels, such as the case of the TIGER dataset composed of more than
11 millions entities and used in our experimental evaluation.

As we mentioned above, subsumption and disjointness relations are important for modeling different types of data. As an
example, we use the multigranular data model2, which is general enough to deal with different domains of application and
provides a general axiomatic-based definition of multigranular data. Figure 1 illustrates a granularity structure defined by
coarser/finer than relations between granularities associated with electoral and administrative sub-divisions in Chile. A gran-
ularity, in informal terms, is the level of detail in which data is represented, which is composed of pairwise disjoint granules
that map to the domain of representation3. In the example, and for the administrative subdivision (right path of the graph in
the figure), Chile is composed of granules representing regions, which are the pairwise disjoint union of granules, which are
provinces; provinces are a pairwise disjoint union of granules, which are counties. In terms of the electoral subdivisions (left
path of the graph), Chile is composed of granules that are senatorial circumscriptions, which are a pairwise disjoint union of
electoral districts; electoral districts are composed of pairwise disjoint union of counties; counties are pairwise disjoint union
of electoral circumscriptions; and electoral circumscriptions are composed of electoral tables where people finally vote. In this
figure, the symbol ⊤ defines a global granularity, which works as an upper limit in the set of granularities. In this example, the
granules correspond to subdivisions in the spatial domain4.

Figure 1 Example of multigranular data: Electoral and administrative sub-divisions in Chile.

Granules are the basic elements of the multigranular data model. They are grouped into granularities, such that granules that
belong to a granularity must be disjoint, and every granule of a finer granularity (e.g., a county) must be subsumed by a granule
of a coarser granularity (e.g., a region). Granularities are organized into a partial order. The basic relations between granules
are then disjointness and subsumption2, where inference rules can be defined to avoid the explicit representation of relations
between every pair of granules.

If we reflect on the workload pattern of the applications mentioned above, we observe two main characteristics: large volumes
of data and a primarily static nature (or infrequent modifications). These characteristics are fundamental to justifying the use

Fuentes-Sepúlveda ET AL 3

of Compact Data Structures (CDS). Note that in applications where some modifications occur, it is feasible to maintain a small
dynamic index with those modifications and periodically rebuild the static index. This has been the usual way of working with
CDS in other domains such as information retrieval (e.g., web engines).

The work in this paper proposes an efficient implementation, both in terms of space and time, to support such a set of rules.
The idea is to explore how new data structures, specifically designed for this domain, can improve the efficiency of deductive
reasoning by taking atomic sentences or facts and applying inferences to derive new knowledge. Our strategy to solve rules fol-
lows forward chaining, backward chaining, and combinations of them5. Forward chaining refers to deriving consequences from
given antecedents that are true; backward chaining refers to starting from the relation we want to derive (i.e., the consequent)
and searching for the necessary antecedents. A combination of forward and backward strategies arises when there are multi-
ple antecedents that by themselves need to be verified by other rules. In all cases, our proposal uses compact data structures
for graphs to represent each type of relation (i.e., subsumption, disjointness, and their negations). These data structures aim to
store information in space close to the information theoretic optimum, while supporting a rich set of operations6. Our experi-
mental evaluation with large datasets shows the feasibility of this approach: we provide a solution that is not only smaller but
usually faster than a baseline that uses well-known graph traversal algorithms implemented on top of a traditional adjacency list
representation to derive relations.

The organization of the paper is as follows. Section 2 describes related work on subsumption and disjointness relations, their
uses, and inference rules. Section 3 introduces the concepts of granules, basic relations and inferences, as well as the compact
data structures that are relevant in the context of this work. Section 4 describes the proposal for an efficient structure, in space and
time, to process subsumption and disjointness relations, followed by its experimental evaluation in Section 5. Final conclusions
and further research directions are given in Section 6.

2 RELATED WORK

Subsumption and disjointness are important relations for modeling different types of data. Multigranular data is an example,
where granules represent a portion of a domain that must be disjoint and can be organized in terms of a partial order structure
by subsumption2. Granular data is of particular interest in the spatial domain due to the common organization of spatial objects
through inclusion and aggregation, as in the case of a political-administrative subdivision7. Beyond the spatial domain, disjoint-
ness and subsumption appear when dealing with semantic networks in knowledge representations and conceptual modeling in
database theory. In this context, subsumption corresponds to the is-a relation saying that an element of a given type is also an
element of another type, and disjointness establishes that two types do not share common elements.

There exist well-known inference rules to derive new knowledge associated with subsumption and disjointness8, which avoid
representing explicitly the relations between every pair of objects. For hierarchical structures, representing subsumption relations
explicitly through foreign keys in the relational database context is usual; however, combining subsumption and disjointness
requires representing a very large number of relations.

Focusing on the spatial domain, spatial reasoning aims to determine if a set of topological relations defined over a set of
spatial objects is consistent, meaning that there are no contradictions among the topological relations, or if the set of topological
relations satisfy a consistency network9,10. For example, given objects 𝑥, 𝑦 and 𝑧, and the relations “𝑥 is in 𝑦”, “𝑦 is in 𝑧”, and
“𝑥 is disjoint with 𝑧”, the dataset is topologically inconsistent because the first two relations imply that 𝑥 is in 𝑧. As this example
shows, checking topological consistency uses the notion of composition of topological relations, which is basically one type of
inference rule. Composition allows deriving a relation between 𝑥 and 𝑧 from relations between 𝑥 and 𝑦, and between 𝑦 and 𝑧11.

In addition to the use of inference rules in the spatial domain, Atzeni and Stott Parker Jr.12,13 provide a set of inference rules
for is-a and disjoint relations, and show their soundness and completeness. They use set theory and analyze negative terms as
the complement of a given set. Similarly, de Bra and Paredaens14 propose a set of inference rules for afunctional dependencies
(afds) together with functional dependencies (fds), and prove they are sound and complete. In this work we build on the research
of Hegner and Rodríguez8, which, in addition to the rules introduced by Atzeni and Stott Parker Jr.12,13, incorporates negative
relations for a non-empty subset of the domain and proves the soundness and completeness of the set of positive and negative
inferences over subsumption and disjointness.

The implementation of rule-based inference systems uses two main strategies: forward chaining and backward chaining5.
Forward chaining starts with known facts to derive conclusions, whereas backward chaining starts from the conclusions to
obtain the facts that support such conclusions. The forward chaining strategy, in particular, has the same form as a relational

4 Fuentes-Sepúlveda ET AL

database query, which is composed of a set of selection conditions and joins. More precisely, they use match algorithms that
take a network structure of selection conditions and joins, and instantiate the network with facts in the database, which can
trigger recursive processes. The efficiency of these systems motivates studies addressing their optimization and performance
evaluation15. Different algorithms create different networks based on storing intermediate results of “and” and “joins”16,17; a
more recent work18 compares rule-based systems for the semantic work based on criteria that include not only performance but
also functionality. Unlike these previous studies, our work focuses on a set of particular rules that is useful in the context of
granular structures organized by subsumption and disjointness, and it proposes forward and backward chaining strategies based
on compact data structures to optimize inference processing. We are not aware of strategies that explore the design of particular
data structures for networks to improve storage and time processing for a set of inference rules.

3 PRELIMINARY CONCEPTS

3.1 Granules and inference rules
In this work we adopt the multigranular data model2, where the notion of granularity enables the classification of the underlying
granules that form a granularity. In this model, a granular space is composed of a set of granules 𝖦𝗇𝗅𝖲𝖾𝗍, which includes the
top ⊤ and bottom ⊥ granules. A granule structure is then a pair (𝖣𝗈𝗆,GnlToDom) composed of a non-empty domain 𝖣𝗈𝗆 and
a mapping function GnlToDom ∶ 𝖦𝗇𝗅𝖲𝖾𝗍 → 2𝖣𝗈𝗆 from granules to a subset of the domain, such that GnlToDom(⊤) = 𝖣𝗈𝗆,
GnlToDom(⊥) = ∅, and for every 𝑔 ≠ ⊥, GnlToDom(𝑔) ≠ ∅. Intuitively, 𝖦𝗇𝗅𝖲𝖾𝗍 can be seen as the set of labels that map through
GnlToDom to a portion of 𝖣𝗈𝗆, like the name of a county maps to its portion of the geographic space (i.e., a subset of 𝖣𝗈𝗆).

Following the example given in Section 1, Chile has three granularities that characterize its administrative subdivision: region,
province and county. The granular space is the set of all regions, provinces and counties, comprising granules from the three
different granularities, plus ⊥ and ⊤ (which represents Chile). In this example, 𝖣𝗈𝗆 is the geographic space of Chile and
GnlToDom is the mapping from the identification of a region to its portion of the geographic space. Granules in each granularity
must not overlap, which means that they do not map to sets with common elements in 𝖣𝗈𝗆. Intuitively, regions do not overlap
because they must be disjoint (even if they are geographically adjacent).

Basic positive rules (or constraints) between granules 𝑔1, 𝑔2 ∈ 𝖦𝗇𝗅𝖲𝖾𝗍 are: (i) subsumption rule (𝑔1 ⊑ 𝑔2), meaning that
GnlToDom(𝑔1) ⊆ GnlToDom(𝑔2) and (ii) disjointness rule (⊓{𝑔1, 𝑔2} = ⊥), meaning thatGnlToDom(𝑔1)∩GnlToDom(𝑔2) = ∅.
Inversely, negative rules are 𝑔1 ⋢ 𝑔2 and ⊓{𝑔1, 𝑔2} ≠ ⊥. Note that the application of these rules works under the open world
assumption, in contrast with the closed world assumption commonly used in databases; the latter assumes that everything not
currently known to be true is false. In the open world assumption, negative rules cannot be derived from the inability to prove
their corresponding positive rules, and vice versa.

With these relations, Hegner and Rodríguez8 propose a set of inference rules. Instead of explicitly storing all possible relations
between granules, only a subset of these relations is stored, and the rest are derived through the proposed rules. Two sets of rules
are identified: positive and negative; Table 1 shows these two sets of rules.

It was shown8 that these rule sets are correct and complete. Correctness means that the inference rules cannot derive false
relations, while completeness means that (successive applications of) the inference rules derive everything that can be inferred
from the basic relations. We say that the rules without premises are “axioms”, in our case (c), (d), (e), (f), and (e’).

Table 2 shows the inference rules covered in this work and their semantics, excluding axioms because they need no implemen-
tation strategy. Those cover all the rules presented in Table 1, except for rule (𝑑′). This is because the strategies we developed
are based on the efficient derivation of the subsumption relation, and rule (𝑑′) does not have this relation between granules as a
premise. Despite this fact, a particular case of this inference rule is covered by rule (6) in Table 2. As a result, we can only en-
sure completeness and correctness for rules that infer subsumption, disjoint and not-disjoint. For the not-subsumption relation,
we offer strategies for its derivation, but we cannot guarantee completeness. The second column in Table 2 shows the mapping
between the implemented rule and the original rule it corresponds to. Note that for the case of rules 3, 4 and 5, all of them are
based on rule c’. It was implemented this way because cases 3 and 4 correspond to particular cases of the implementation of
the rule. In addition, this decomposition allows us a clearer demonstration of correctness of the proposed strategy. A similar
reasoning applies to rules 6 and 8, where both are based on rule a’, being rule 6 a particular case of this one. In Section 4.2 we
explain in more detail how these rules were implemented and their equivalence with the original ones.

As an example of how to use the rules, consider the granules and their explicitly stored relations in Figure 2. Based on these
relations, subsumption and disjoint relations can be derived using rules (1) and (2), respectively. For example, the relation𝐿 ⊑ 𝐶

Fuentes-Sepúlveda ET AL 5

Positive Rules

𝑔1 ⊑ 𝑔2 𝑔2 ⊑ 𝑔3
𝑔1 ⊑ 𝑔3

(𝑎) 𝑔1 ⊑ 𝑔2
⨅

{𝑔2, 𝑔3} = ⊥
⨅

{𝑔1, 𝑔3} = ⊥
(𝑏) 𝑔 ⊑ 𝑔

(𝑐)

⨅

{⊥, 𝑔} = ⊥
(𝑑)

⊥ ⊑ 𝑔
(𝑒)

𝑔 ⊑ ⊤
(𝑓)

Negative Rules

𝑔1 ⊑ 𝑔2 𝑔1 ̸⊑ 𝑔3
𝑔2 ̸⊑ 𝑔3

(𝑎′) 𝑔1 ̸⊑ 𝑔3 𝑔2 ⊑ 𝑔3
𝑔1 ̸⊑ 𝑔2

(𝑏′)
𝑔2 ⊑ 𝑔3

⨅

{𝑔1, 𝑔2} ≠ ⊥
⨅

{𝑔1, 𝑔3} ≠ ⊥
(𝑐′)

⨅

{𝑔1, 𝑔2} ≠ ⊥
⨅

{𝑔3, 𝑔2} = ⊥
𝑔1 ̸⊑ 𝑔3

(𝑑′) ⨅

{𝑔, 𝑔} ≠ ⊥
(𝑒′)

Table 1 Inferences rules proposed by Hegner and Rodríguez2.

is derived from the stored relations 𝐿 ⊑ 𝐺 and 𝐺 ⊑ 𝐶 , and ⨅

{𝑁, 𝐼} = ⊥ can be derived from the relations 𝑁 ⊑ 𝐻 and
⨅

{𝐻, 𝐼} = ⊥ . Not-disjoint and not-subsumption relations can be derived using additional rules. More precisely, rules (3), (4)
and (5) derive the relation of not-disjoint, and rules (6), (7) and (8) the relation of not-subsumption. For example, rule (3) derives
⨅

{𝐶,𝐺} ≠ ⊥ since 𝐺 ⊑ 𝐶 is a stored relation. Relation 𝐹 ̸⊑ 𝐽 can be derived by applying rule (7) since 𝐾 ̸⊑ 𝐽 and 𝐾 ⊑ 𝐹
are explicitly stored.

Figure 2 Example of a granule graph. The following are some examples of the stored relations represented in this graph: 𝐶 ⊑ 𝐴
(𝐴 contains 𝐶 , which can also be read as 𝐶 subsumed by 𝐴), 𝐽 ̸⊑ 𝐾 (𝐽 does not contain 𝐾), ⨅{𝐻, 𝐼} = ⊥ (𝐻 disjoint with
𝐼), and ⨅

{𝐼, 𝐽} ≠ ⊥ (𝐼 not disjoint with 𝐽).

3.2 Succinct data structures
A succinct data structure is an asymptotically space-efficient and query-time-efficient representation of a data structure19. Here,
space-efficient means that the data structure uses an amount of space that is close to the information-theoretic lower bound,
ideally 𝑧+𝑜(𝑧) bits when the information-theoretic lower bound is 𝑧. Query-time-efficient means that the data structure achieves
an asymptotic query time similar to that (ideally, the same) of structures that do not use a succinct representation.

6 Fuentes-Sepúlveda ET AL

Rule Orig. Rule Meaning Relation

1 𝑔1⊑𝑔2 𝑔2⊑𝑔3
𝑔1⊑𝑔3

a If GnlToDom(𝑔1) ⊆ GnlToDom(𝑔2) and GnlToDom(𝑔2) ⊆

GnlToDom(𝑔3), then GnlToDom(𝑔1) ⊆ GnlToDom(𝑔3)

subsumption

2 𝑔1⊑𝑔2
⨅

{𝑔2,𝑔3}=⊥
⨅

{𝑔1,𝑔3}=⊥
b If GnlToDom(𝑔1) ⊆ GnlToDom(𝑔2) and GnlToDom(𝑔2) ∩

GnlToDom(𝑔3) = ∅, then GnlToDom(𝑔1) ∩ GnlToDom(𝑔3) = ∅

disjoint

3 𝑔1⊑𝑔2
⨅

{𝑔1,𝑔2}≠⊥
c’ If GnlToDom(𝑔1) ⊆ GnlToDom(𝑔2), then GnlToDom(𝑔1) ∩

GnlToDom(𝑔2) ≠ ∅

not disjoint
4 𝑔1⊑𝑔2 𝑔1⊑𝑔3

⨅

{𝑔2,𝑔3}≠⊥
c’ If GnlToDom(𝑔1) ⊆ GnlToDom(𝑔2) and GnlToDom(𝑔1) ⊆

GnlToDom(𝑔3), then GnlToDom(𝑔2) ∩ GnlToDom(𝑔3) ≠ ∅

5 𝑔2⊑𝑔3
⨅

{𝑔1,𝑔2}≠⊥
⨅

{𝑔1,𝑔3}≠⊥
c’ If GnlToDom(𝑔2) ⊆ GnlToDom(𝑔3) and GnlToDom(𝑔1) ∩

GnlToDom(𝑔2) ≠ ∅, then GnlToDom(𝑔1) ∩ GnlToDom(𝑔3) ≠ ∅

6
⨅

{𝑔1,𝑔2}=⊥

𝑔1 ̸⊑𝑔2
a’ If GnlToDom(𝑔1) ∩ GnlToDom(𝑔2) = ∅, then GnlToDom(𝑔1) ⊈

GnlToDom(𝑔2)

not subsumption
7 𝑔1 ̸⊑𝑔2 𝑔3⊑𝑔2

𝑔1 ̸⊑𝑔3
b’ If GnlToDom(𝑔1) ⊈ GnlToDom(𝑔2) and GnlToDom(𝑔3) ⊆

GnlToDom(𝑔2), then GnlToDom(𝑔1) ⊈ GnlToDom(𝑔3)

8 𝑔1⊑𝑔2 𝑔1 ̸⊑𝑔3
𝑔2 ̸⊑𝑔3

a’ If GnlToDom(𝑔1) ⊆ GnlToDom(𝑔2) and GnlToDom(𝑔1) ⊈

GnlToDom(𝑔3), then GnlToDom(𝑔2) ⊈ GnlToDom(𝑔3)

Table 2 Inference rules supported in this work and their equivalence with the original rules proposed by Hegner and Rodríguez8
(see Table1).

Bitmaps
A Bitmap20,21,22 𝐵[1..𝑛] is a sequence of 𝑛 = |𝐵| bits that supports the following queries: i) 𝑟𝑎𝑛𝑘𝑥(𝐵, 𝑘) returns the number of
bits equal to 𝑥 (where 𝑥 ∈ {0, 1}) up to position 𝑘 in 𝐵, ii) 𝑠𝑒𝑙𝑒𝑐𝑡𝑥(𝐵, 𝑘) returns the position of the 𝑘-th occurrence of the bit
𝑥 (where 𝑥 ∈ {0, 1}) in 𝐵, and finally iii) the access query, which given a position 𝑘 returns the bit in that position, 𝐵[𝑘]. In
the case of 𝑠𝑒𝑙𝑒𝑐𝑡𝑥(𝐵, 𝑘), if 𝑘 is greater than the number of symbols 𝑥, the operation returns 𝑛 + 1. As an illustrative example,
consider the bitmap 𝐵𝑠 in Figure 3, then 𝑟𝑎𝑛𝑘1(𝐵𝑠, |𝐵𝑠|) = 3, 𝑠𝑒𝑙𝑒𝑐𝑡1(𝐵𝑠, 1) = 12, and 𝐵𝑠[1] = 0.

The operations rank, select and access can be supported in constant time21,22 using just sublinear space on top of the bitmap.
In addition, subsequent work23,24 provides compressed versions of the bitmaps by exploiting some properties, such as their
sparseness (i.e., an unbalanced number of 0s and 1s).

Wavelet trees
The wavelet tree25 is a data structure that maintains a sequence of 𝑛 symbols,𝑆[1..𝑛] = 𝑠1, 𝑠2,… , 𝑠𝑛, over an alphabetΣ = [1..𝜎],
as a balanced binary tree, efficiently supporting the following operations: 𝑎𝑐𝑐𝑒𝑠𝑠(𝑆, 𝑖) or 𝑆[𝑖], which returns the symbol at
position 𝑖 in 𝑆; 𝑟𝑎𝑛𝑘𝑐(𝑆, 𝑖), which counts the times symbol 𝑐 appears up to position 𝑖 in 𝑆; and 𝑠𝑒𝑙𝑒𝑐𝑡𝑐(𝑆, 𝑗), which returns the
position in 𝑆 of the 𝑗-th appearance of symbol 𝑐. If we consider the sequence 𝐻 in Figure 3, which can be represented with a
wavelet tree, then 𝑎𝑐𝑐𝑒𝑠𝑠(𝐻, 1) = 𝐻[1] = 10, 𝑟𝑎𝑛𝑘11(𝐻, |𝐻|) = 1, and 𝑠𝑒𝑙𝑒𝑐𝑡14(𝐻, 1) = 3. In its simplest form, this structure
requires 𝑛⌈lg 𝜎⌉ + 𝑜(𝑛 lg 𝜎) bits for the data, plus 𝑂(𝜎 lg 𝑛) bits to store the topology of the tree. The wavelet tree supports
more complex queries than the primitives described above. For example, Mäkinen and Navarro26 studied its connection with
a classical two-dimensional range-search data structure and showed how to solve range queries in a wavelet tree. Of particular
interest to this work is the operation 𝑟𝑎𝑛𝑔𝑒_𝑐ℎ𝑒𝑐𝑘𝑆(𝑎, 𝑎′, 𝑏, 𝑏′), which returns true if the subsequence 𝑆[𝑎..𝑎′] contains at least
one symbol in the range [𝑏..𝑏′], or false, otherwise.

Fuentes-Sepúlveda ET AL 7

Tree representations
Several compact representations for ordinal trees have been developed. Among the existing representations, two are of particu-
lar interest for our work: i) Level-Order Unary Degree Sequence20 (LOUDS), which represents a tree using a bitmap 𝐵. Starting
from the root, the tree is traversed level by level. For each new visited node with 𝑐 children, we append 1𝑐0 to 𝐵. This rep-
resentation supports a set of queries, which are answered using only rank and select queries over the bitmap 𝐵. ii) Balanced
parentheses27 (BP), which represents a tree as a sequence 𝐵 of balanced parentheses. We traverse the tree in DFS order. Every
time we arrive at a node for the first time we append to 𝐵 an open parenthesis, stored as a 1-bit; when we leave the subtree of
a node, we append a close parenthesis, stored as a 0-bit. An example of this structure is 𝐵𝑜 in Figure 3, which represents the
implementation of the sequence (((()) (() () ())) (((() () () ()) (())))) obtained from the DFS traversal of the tree
in the same figure. The main difference between BP and LOUDS is that in BP any subtree of the original tree is mapped to a
contiguous region in 𝐵, which facilitates a number of operations that are difficult in LOUDS. Two important primitives of the
BP representation are find_open and find_close, which are used to locate the opening and closing parenthesis that match a given
closing or opening parenthesis, respectively. The find_open operation takes as input a position in the sequence that corresponds
to a closing parenthesis and returns the position of the opening parenthesis that matches it. Similarly, the find_close operation
takes as input a position in the sequence that corresponds to an opening parenthesis and returns the position of the closing paren-
thesis that matches it. For example, considering the aforementioned sequence 𝐵𝑜, find_open of the fourth opening parenthesis
returns position 5, whereas find_close of the second closing parenthesis returns position 3. Both representations use 2𝑛 + 𝑜(𝑛)
bits to represent a tree of 𝑛 nodes.

4 PROPOSED DATA STRUCTURES

We propose a data structure to facilitate the derivation of relations using a subset of the inference rules outlined in Section 3.1,
specifically, implementing all the rules presented in Table 2. Our work achieves both correct and complete derivations for 𝑔1 ⊑ 𝑔2
(subsumption), ⨅{𝑔1, 𝑔2} = ⊥ (disjoint), and ⨅

{𝑔1, 𝑔2} ≠ ⊥ (not-disjoint). As for 𝑔1 ̸⊑ 𝑔2 (not-subsumption), our work can
only guarantee correctness but not completeness, as it was explained in Section 3.1.

The derivation of relations follows a two-step strategy: i) infer subsumption relations using rule 1, and ii) infer new relations
using at least one of the rules 2–8. This two-step strategy, which stresses the importance of subsumption relations, owes to the
fact that all the rules, except rule 6, have a subsumption relation as a premise. Hence, in Section 4.1 we propose an efficient
implementation for subsumption, and in Section 4.2 we describe how to support the other relations.

For all the algorithms that support the rules we use compact data structures to represent the different relation graphs (i.e., the
graphs that store explicit knowledge about each relation). To avoid confusion, we denote the graphs representing the relations
subsumption, disjoint, not-disjoint, and not-subsumption as 𝐺𝑠𝑢𝑏, 𝐺𝑑𝑖𝑠, 𝐺𝑛𝑜𝑡𝑑𝑖𝑠, and 𝐺𝑛𝑜𝑡𝑠𝑢𝑏, respectively. For technical reasons
that will be explained later, the identifiers of the granules in 𝐺𝑠𝑢𝑏 will be considered as the global identifiers for all the rules.
When alternative representations need to assign new identifiers to the granules, a mapping from granules in rule 1 and the new
identifiers will be explicitly stored and its space reported as part of the data structure.

4.1 Inferring subsumption relations
By representing all the granules and their subsumption relations as a directed graph 𝐺𝑠𝑢𝑏, we can infer a new subsumption
relation between granules 𝑔1 and 𝑔2 (𝑔1 ⊑ 𝑔2) by finding a path that connects them. Classical data structures, such as adjacency
lists, adjacency matrices and edge lists can be used for this purpose. As the main operation to support the inference rules involves
graph traversals, which are implemented more efficient with adjacency lists, our baseline described in Section 5 is based on
those.

In practical cases, such as the granularity structure of Figure 1, it is common to explicitly store only relations between granules
of consecutive granularities in the structure. In such cases, the graph 𝐺𝑠𝑢𝑏(𝑉 ,𝐸) corresponds to a tree-like graph, that is, a graph
in which 𝐸 is not much larger than 𝑉 . Because the nodes of the same granularity are disjoint by definition, deviations from a
tree can occur only when different overlapping hierarchies exist, with nodes contained in those overlapping areas. The fact that
this is uncommon can be exploited in order to define more space-efficient data structures to represent the graphs. We describe
next a graph representation that uses (|𝐸|− |𝑉 |) log2 |𝑉 |+𝑂(|𝐸|) bits to represent 𝐺𝑠𝑢𝑏 and, in addition, is optimized to detect
the paths that witness subsumption.

8 Fuentes-Sepúlveda ET AL

Tree-like graphs
Fischer and Peters28 introduced a succinct data structure to represent directed tree-like graphs called GLOUDS (Graph Level
Order Unary Degree Sequence). Tree-like means that only a few edges must be removed from the graph to turn it into a tree.
GLOUDS transforms the tree-like graph into a tree 𝑇 by traversing the graph in BFS order. The starting vertex of the BFS can
be any arbitrary vertex with in-degree 0. In our application, we always start with the vertex representing ⊤. When visiting the
edge (𝑢, 𝑣), if 𝑣 was already visited, a copy 𝑣′ of 𝑣, called a shadow node, is created and the edge (𝑢, 𝑣′) is added to the tree. We
will refer to 𝑣′ as a copy of 𝑣. The tree is then stored using two compact components:

1. A LOUDS-like representation 𝐵 of 𝑇 , in which the main difference with the original LOUDS is that the children of a
node that are shadow nodes are marked with a symbol 2 instead of a 1 (hence 𝐵 is no longer a binary sequence).

2. An array 𝐻 with the identifiers of the shadow nodes in the same order they were written in 𝐵, with support for operations
𝑎𝑐𝑐𝑒𝑠𝑠(𝐻, 𝑖), 𝑟𝑎𝑛𝑘𝑐(𝐻, 𝑖), and 𝑠𝑒𝑙𝑒𝑐𝑡𝑐(𝐻, 𝑗).

This representation supports simple navigational queries, such as computing in-degree and neighbors in𝑂(1) time per returned
vertex, and out-degree in 𝑂(1) time in total. We could use GLOUDS to store 𝐺𝑠𝑢𝑏, which would allow us to infer subsumption
relations between granules 𝑔1 and 𝑔2 by checking ancestorship: 𝑔2 ⊑ 𝑔1 iff 𝑔1 is an ancestor of 𝑔2, or of a copy of some 𝑔 such
that 𝑔2 ⊑ 𝑔. Note that the ancestorship can be checked in time proportional to the length of the path between 𝑔1 and 𝑔2 (or 𝑔1
and 𝑔), while the final condition involves recursively verifying subsumption from nodes 𝑔.

In order to improve the performance of checking ancestorship, we modify the representation of the GLOUDS data structure.
Specifically, we change the LOUDS representation of 𝑇 to a balanced parentheses (BP) representation𝐵𝑜, which allows checking
ancestorship in constant time. In BP, nodes are identified by their rank in the DFS traversal of 𝑇 that produced the representation.
Those ranks will be the global identifiers in the implementations of all the rules. We reach constant time because, in the BP
representation, a subtree rooted at a vertex 𝑣 is represented as a contiguous range of parentheses in 𝐵𝑜, which also produces a
contiguous range of identifiers. This is a key characteristic of this approach that will also be exploited in Section 4.2, because for
the rest of the rules it is important to be able to obtain the set of granules 𝑆𝑔 contained by a given granule 𝑔 in an efficient way.
To check if vertex 𝑢 is an ancestor of another vertex 𝑣, we only need to determine if the range representing 𝑣 is contained in the
range representing 𝑢. The range representing a vertex can be obtained in constant time by using the primitives of the balanced
parenthesis representation explained in Section 3.2. Specifically, if the node identifier is 𝑔, we find with 𝑝 = 𝑠𝑒𝑙𝑒𝑐𝑡1(𝐵𝑜, 𝑔) the
position in 𝐵𝑜 of its opening parenthesis, and then with 𝑞 = 𝑓𝑖𝑛𝑑_𝑐𝑙𝑜𝑠𝑒(𝐵𝑜, 𝑝) the position of its closing parenthesis.

Our adaptation of GLOUDS, referred to as GBP (Graph Balanced Parenthesis), encompasses the following components, as
depicted in Figure 3:

1. A bitvector 𝐵𝑜 represents 𝑇 using BP.
2. A second bitvector 𝐵𝑠 marks the opening parentheses of 𝐵𝑜 that correspond to shadow nodes.
3. The vector 𝐻 stores the identifiers of those shadow nodes, now in DFS order (i.e., their order in 𝐵𝑠). The vector must

support operations 𝑎𝑐𝑐𝑒𝑠𝑠𝐻 (𝑖), 𝑟𝑎𝑛𝑘𝐻 (𝑐, 𝑖), and 𝑠𝑒𝑙𝑒𝑐𝑡𝐻 (𝑐, 𝑗).

Implementation of inference rule 1
Algorithm 1 checks if granule 𝑔2 subsumes granule 𝑔1. First, if 𝑔2 is an ancestor of 𝑔1 in 𝑇 , then 𝑔2 subsumes 𝑔1 (line 6). If not,
we check if one of the shadow nodes that descend from 𝑔2 is an ancestor of 𝑔1 (lines 8–14)1. Otherwise, the rule returns false
(line 15). This process is a forward chaining reasoning based on the transitivity property of subsumption. All the operations used
in the algorithm take constant time. Hence, the complexity is dominated by the number of recursive calls. This depends linearly
on the number of shadow nodes, which is usually small in practice.

1By definition a node is an ancestor of itself.

Fuentes-Sepúlveda ET AL 9

(a) Original graph (b) Tree with shadow nodes

𝐆𝐋𝐎𝐔𝐃𝐒
𝐵LOUDS = 1 1 0 1 1 0 1 0 1 0 1 1 1 0 1 1 0 0 0 0 0 2 2 0 2 0 0 0 0 0 0

𝐻 = 10 11 14

𝐆𝐁𝐏
𝐵𝑜 = 1 1 1 1 0 0 1 1 0 1 0 1 0 0 0 1 1 1 1 0 1 0 1 0 1 0 0 1 1 0 0 0 0 0
𝐵𝑠 = 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1
𝐻 = 10 11 14

(c) GLOUDS and GBP representations. The equivalent parenthesis representation of 𝐵𝑜 is
(((()) (() () ())) (((() () () ()) (())))).

Figure 3 Example of a tree-like graph represented with GLOUDS and with GBP.

Algorithm 1: Infers rule 1.
1: procedure RULE1(𝑔1, 𝑔2)
2: 𝑝1 ← 𝑠𝑒𝑙𝑒𝑐𝑡1(𝐵𝑜, 𝑔1)3: 𝑞1 ← 𝑓𝑖𝑛𝑑_𝑐𝑙𝑜𝑠𝑒(𝐵𝑜, 𝑝1)4: 𝑝2 ← 𝑠𝑒𝑙𝑒𝑐𝑡1(𝐵𝑜, 𝑔2)5: if 𝑝1 ≤ 𝑝2 ≤ 𝑞1 then
6: return True ⊳ The opening parenthesis

of 𝑔2 is contained by the parentheses of 𝑔17: end if
8: 𝓁 ← 𝑟𝑎𝑛𝑘1(𝐵𝑠, 𝑔1) + 1
9: 𝑟 ← 𝑟𝑎𝑛𝑘1(𝐵𝑠, 𝑟𝑎𝑛𝑘1(𝐵𝑜, 𝑞1))10: for 𝑖 ← 𝓁 to 𝑟 do ⊳ We have

to verify the rule for all the shadow nodes in the
subtree induced by 𝑔111: if RULE1(𝐻[𝑖],𝑔2) then

12: return True
13: end if
14: end for
15: return False
16: end procedure

Algorithm 2: All granules that reach 𝑔.
1: procedure REACH(𝑔)
2: 𝑄 ← ∅ ⊳ 𝑄 is a queue
3: 𝑆 ← ∅ ⊳ 𝑆 is the result set
4: 𝑄.𝑎𝑑𝑑(𝑔)
5: while 𝑄 is not empty do ⊳ Compute and add

ancestors to 𝑄
6: 𝑔′ ← 𝑄.𝑔𝑒𝑡()
7: 𝑝′ ← 𝑝𝑎𝑟𝑒𝑛𝑡(𝑔′)
8: if 𝑝′ is valid then ⊳ The 𝑝𝑎𝑟𝑒𝑛𝑡 function

returns an invalid node when called with the root node
9: 𝑄.𝑎𝑑𝑑(𝑝′)

10: 𝑆.𝑎𝑑𝑑(𝑝′)
11: end if
12: 𝑟 ← 𝑟𝑎𝑛𝑘𝑔′ (𝐻, |𝐻|)
13: for 𝑖 ← 1 to 𝑟 do ⊳ Compute and add

ancestors of shadow nodes to 𝑄
14: 𝑠 ← 𝑠𝑒𝑙𝑒𝑐𝑡𝑔′ (𝐻, 𝑖)
15: 𝑣 ← 𝑠𝑒𝑙𝑒𝑐𝑡1(𝐵𝑠, 𝑠)16: 𝑝 ← 𝑝𝑎𝑟𝑒𝑛𝑡(𝑣)
17: if 𝑝 is valid then
18: 𝑄.𝑎𝑑𝑑(𝑝)
19: 𝑆.𝑎𝑑𝑑(𝑝)
20: end if
21: end for
22: end while
23: return 𝑆
24: end procedure

Algorithm 3: All granules reached by 𝑔.
1: procedure REACHED_BY(𝑔)
2: 𝑄 ← ∅ ⊳ 𝑄 is a queue
3: 𝑆 ← ∅ ⊳ 𝑆 is the result set
4: 𝑄.𝑎𝑑𝑑(𝑔)
5: while 𝑄 is not empty do
6: 𝑔′ ← 𝑄.𝑔𝑒𝑡()
7: 𝑝1 ← 𝑠𝑒𝑙𝑒𝑐𝑡1(𝐵, 𝑔′)8: 𝑞1 ← 𝑓𝑖𝑛𝑑_𝑐𝑙𝑜𝑠𝑒(𝐵, 𝑝1)9: 𝑆.𝑎𝑑𝑑(⟨𝑝1, 𝑞1⟩) ⊳ Insert the range

representing 𝑔′ into the result
10: 𝓁 ← 𝑟𝑎𝑛𝑘1(𝐵𝑠, 𝑟𝑎𝑛𝑘1(𝐵, 𝑝1))+111: 𝑟 ← 𝑟𝑎𝑛𝑘1(𝐵𝑠, 𝑟𝑎𝑛𝑘1(𝐵, 𝑞1))12: for 𝑖 ← 𝓁 to 𝑟 do⊳ Repeat the same process

with each subsumed shadow node
13: 𝑄.𝑎𝑑𝑑(𝑠𝑒𝑙𝑒𝑐𝑡1(𝐵𝑠,𝐻[𝑖]))
14: end for
15: end while
16: return 𝑆
17: end procedure

10 Fuentes-Sepúlveda ET AL

4.2 Inferring other relations
As we mentioned above, to support the other three relations (disjoint 𝐺𝑑𝑖𝑠, not-disjoint 𝐺𝑛𝑜𝑡𝑑𝑖𝑠, and not-subsumption 𝐺𝑛𝑜𝑡𝑠𝑢𝑏) we
will use a two-step algorithm. In the first step, we use the GBP-based data structure for 𝐺𝑠𝑢𝑏 defined above to obtain a set of
induced subsumption relations 𝑆. For the second step, we will have as input the set 𝑆 and a matrix 𝑀 𝑟, where 𝑀 𝑟[𝑖][𝑗] indicates
that the 𝑖-th granule is related with the 𝑗-th granule in relation 𝑟, where 𝑟 = {𝑑𝑖𝑠, 𝑛𝑜𝑡𝑑𝑖𝑠, 𝑛𝑜𝑡𝑠𝑢𝑏}. As an example for the disjoint
relation, Figure 4 shows a graph and its equivalent matrix. We note that only the explicit relations, not including those that
can be inferred, are stored in these matrices. The identifiers of the nodes in the matrices are those assigned in the GBP-based
representation, where the descendants of a node in the tree defined by GBP have identifiers in a consecutive range. Hence, the
ranges will be used for querying the matrices. We will represent those binary matrices in a way that (1) uses space proportional
to the number of 1s (i.e., of explicit relations to store), and (2) efficiently supports operation 𝑟𝑎𝑛𝑔𝑒_𝑐ℎ𝑒𝑐𝑘(𝑎, 𝑎′, 𝑏, 𝑏′), which
returns whether there is a marked cell in the region delimited by the rows 𝑎 and 𝑎′, and the columns 𝑏 and 𝑏′. Additionally, we
will use a simpler operation 𝑐ℎ𝑒𝑐𝑘_𝑐𝑒𝑙𝑙(𝑎, 𝑏) = 𝑟𝑎𝑛𝑔𝑒_𝑐ℎ𝑒𝑐𝑘(𝑎, 𝑎, 𝑏, 𝑏).

Each matrix 𝑀 𝑟, which presents the graph 𝐺𝑟(𝑉 ,𝐸𝑟), is of dimensions |𝑉 | × |𝑉 | and has |𝐸𝑟
| 1s. To store it, we tra-

verse it in row major order, storing the ids of the columns of each marked cell in a sequence 𝐼 . The resulting sequence
is stored in a wavelet tree. To group the values of the same row, we use a bit sequence 10𝑑 , where 𝑑 ≥ 0 is the num-
ber of cells marked in such row. The bit sequences of all rows are concatenated in top-down order and stored in a plain
bitmap 𝐶 with support for rank/select operations. This representation requires |𝐸𝑟

| log |𝑉 | bits to store the column ids plus
|𝐸𝑟

| + |𝑉 | + 𝑜(|𝐸𝑟
| + |𝑉 |) bits to store the bitmap 𝐶 . Notice that for all the matrices 𝑀 𝑟 we use the same set 𝑉 of nodes for

all the graphs. The 𝑟𝑎𝑛𝑔𝑒_𝑐ℎ𝑒𝑐𝑘(𝑎, 𝑎′, 𝑏, 𝑏′) operation in the matrix is mapped to 𝑟𝑎𝑛𝑔𝑒_𝑐ℎ𝑒𝑐𝑘𝐼 (𝑝1, 𝑝2, 𝑏, 𝑏′) in the wavelet tree
of 𝐼 , where 𝑝1 = 𝑟𝑎𝑛𝑘0(𝐶, 𝑠𝑒𝑙𝑒𝑐𝑡1(𝐶, 𝑎)) + 1 and 𝑝2 = 𝑟𝑎𝑛𝑘0(𝐶, 𝑠𝑒𝑙𝑒𝑐𝑡1(𝐶, 𝑎′ + 1)). For example, 𝑟𝑎𝑛𝑔𝑒_𝑐ℎ𝑒𝑐𝑘(2, 4, 6, 7) is
mapped to 𝑟𝑎𝑛𝑔𝑒_𝑐ℎ𝑒𝑐𝑘𝐼 (𝑝1, 𝑝2, 6, 7) = 𝑟𝑎𝑛𝑔𝑒_𝑐ℎ𝑒𝑐𝑘𝐼 (1, 11, 6, 7), as 𝑝1 = 𝑟𝑎𝑛𝑘0(𝐶, 𝑠𝑒𝑙𝑒𝑐𝑡1(𝐶, 2)) + 1 = 𝑟𝑎𝑛𝑘0(𝐶, 2) + 1 = 1
and 𝑝2 = 𝑟𝑎𝑛𝑘0(𝐶, 𝑠𝑒𝑙𝑒𝑐𝑡1(𝐶, 4 + 1)) = 𝑟𝑎𝑛𝑘0(𝐶, 16) = 11.

An alternative implementation of the matrices is to use the GBP representation for the edges present in 𝐺𝑑𝑖𝑠, 𝐺𝑛𝑜𝑡𝑑𝑖𝑠 and
𝐺𝑛𝑜𝑡𝑠𝑢𝑏. The space for 𝐺𝑟 would then be (|𝐸𝑟

| − |𝑉 |) log |𝑉 | + 𝑂(|𝐸𝑟
|) bits, as described for 𝐺𝑠𝑢𝑏, plus |𝑉 | log |𝑉 | bits to map

the identifiers from those of 𝐺𝑠𝑢𝑏 to those of 𝐺𝑟, for a total of |𝐸𝑟
| log |𝑉 |+𝑂(|𝐸𝑟

|) bits. We can then check the presence of an
edge (i.e., a matrix cell) in constant time, but matrix ranges must be checked element by element.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 1 0 0 1 1 0 0 0 0 0 0 0
3 0 1 0 1 0 0 0 0 0 0 0 0 0 0
4 0 0 1 0 1 0 1 1 0 1 1 0 0 0
5 0 0 0 1 0 0 1 1 0 0 0 0 0 0
6 0 1 0 0 0 0 0 0 0 0 0 0 0 0
7 0 1 0 1 1 0 0 1 0 0 0 0 0 0
8 0 0 0 1 1 0 1 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 1 0 0 0 0
10 0 0 0 1 0 0 0 0 1 0 0 0 0 0
11 0 0 0 1 0 0 0 0 0 0 0 1 1 0
12 0 0 0 0 0 0 0 0 0 0 1 0 0 0
13 0 0 0 0 0 0 0 0 0 0 1 0 0 1
14 0 0 0 0 0 0 0 0 0 0 0 0 1 0

𝐶 = 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0
𝐼 = 3 6 7 | 2 4 | 3 5 7 8 10 11 | 4 7 8 | 2 | 2 4 5 8 | 4 5 7 | 10 | 4 8 | 12 13 | 11 | 11 14 | 13

Figure 4 Example of a graph and its matrix representation considering the disjoint relation (top), and components of the wavelet
tree representation of such graph (bottom).

Before presenting the implementation of the other rules, we need to introduce two auxiliary algorithms. Algorithm 2 computes
all the granules that subsume a granule 𝑔, including both induced and explicitly stored relations. Starting with 𝑔, the algorithm
successively computes the parent relation in the GBP-based representation of 𝐺𝑠𝑢𝑏 (lines 6–11) including shadow nodes (lines
12–21), until no parent relation exists (lines 8 and 17). Finally, Algorithm 3 computes all the granules subsumed by a granule
𝑔. Using the property of GBP that subsumed granules tend to have consecutive identifiers, the algorithm returns a set of ranges

Fuentes-Sepúlveda ET AL 11

instead of a list with all the subsumed granules (line 6–9). The algorithm repeats the same process for each subsumed shadow
node (lines 10–14).

4.2.1 Granules 𝑔1 and 𝑔2 are disjoint
We first check if there is an edge connecting 𝑔1 and 𝑔2 in 𝐺𝑑𝑖𝑠, which is stored as 𝑀𝑑𝑖𝑠. If so, then 𝑔1 and 𝑔2 are disjoint. If not,
we try to infer the relation using Rule 2.

• Rule 2. This rule states that 𝑔1 and 𝑔2 are disjoint if there exist granules 𝑔′1 and 𝑔′2, such that 𝑔1 ⊑ 𝑔′1 and 𝑔2 ⊑ 𝑔′2,and 𝑔′1 and 𝑔′2 are disjoint. Thus, we compute in 𝐺𝑠𝑢𝑏 the sets 𝑆1 and 𝑆2 of granules that contain 𝑔1 and 𝑔2, respectively
(see Algorithm 2). Then, for every pair of granules 𝑔′1 ∈ 𝑆1 and 𝑔′2 ∈ 𝑆2, we compute 𝑐ℎ𝑒𝑐𝑘_𝑐𝑒𝑙𝑙(𝑔′1, 𝑔′2) in 𝑀𝑑𝑖𝑠. If at
least one call to 𝑐ℎ𝑒𝑐𝑘_𝑐𝑒𝑙𝑙() returns true, then 𝑔1 and 𝑔2 are disjoint. Note that this strategy directly captures repeated
applications of Rule 2, because it obtains all possible ancestors of both granules and there is no other way to derive a
possible relation between them.

4.2.2 Granules 𝑔1 and 𝑔2 are not disjoint
We first check if there is an edge connecting 𝑔1 and 𝑔2 in 𝐺𝑛𝑜𝑡𝑑𝑖𝑠. If such an edge exists, we have that 𝑔1 and 𝑔2 are not disjoint.
Otherwise, we aim to infer it using rules 3, 4 and 5.

• Rule 3. We check if 𝑔1 is contained by 𝑔2, or vice versa, in 𝐺𝑠𝑢𝑏 using Rule 1. If so, then 𝑔1 is not disjoint with 𝑔2.
• Rule 4. We compute two sets, denoted 𝑆1 and 𝑆2, comprising all the granules in 𝐺𝑠𝑢𝑏 that are subsumed by 𝑔1 and 𝑔2,

respectively. An essential property to consider here is that, given the representation of 𝐺𝑠𝑢𝑏 using GBP, the granules
returned are organized into contiguous ranges. The amount of these ranges corresponds to the number of shadow nodes
reachable during a traversal of 𝐺𝑠𝑢𝑏 initiated from either 𝑔1 or 𝑔2, plus one. Notice that this traversal is not actually
performed. Instead, we directly compute the ranges using Algorithm 3. If the intersection of the sets𝑆1 and𝑆2 is nonempty,
then 𝑔1 and 𝑔2 are not disjoint.

• Rule 5. This rule is implemented in a similar way as Rule 4, but instead of checking the intersection of 𝑆1 and 𝑆2, we apply
the operation 𝑟𝑎𝑛𝑔𝑒_𝑐ℎ𝑒𝑐𝑘() in 𝑀𝑛𝑜𝑡𝑑𝑖𝑠 for each range contained in 𝑆1 with each range contained in 𝑆2. If the operation
returns true at least once, then 𝑔1 and 𝑔2 are not disjoint. Note that this verification accommodates the potential application
of Rule 5 multiple times.
It is evident that the strategy proposed for rule 5 entails the adoption of a new representation of this rule:
⨅

{𝑔1,𝑔2}≠⊥ 𝑔2⊑𝑔3 𝑔1⊑𝑔4
⨅

{𝑔3,𝑔4}≠⊥
. This method of representing rule 5 proves advantageous in capturing the concept that both 𝑔1

and 𝑔2 can represent a range of granules. The following demonstration establishes the equivalence of this proposal to the
original rule 5.
Theorem. Given granules 𝑔1, 𝑔2, 𝑔3, 𝑔4

⨅

{𝑔1, 𝑔2} ≠ ⊥ 𝑔2 ⊑ 𝑔3
⨅

{𝑔1, 𝑔3} ≠ ⊥
≡

⨅

{𝑔1, 𝑔2} ≠ ⊥ 𝑔2 ⊑ 𝑔3 𝑔1 ⊑ 𝑔4
⨅

{𝑔3, 𝑔4} ≠ ⊥

Proof. We have to show implications in both directions.
1. Let us prove that

⨅

{𝑔1, 𝑔2} ≠ ⊥ 𝑔2 ⊑ 𝑔3
⨅

{𝑔1, 𝑔3} ≠ ⊥
⇒

⨅

{𝑔1, 𝑔2} ≠ ⊥ 𝑔2 ⊑ 𝑔3 𝑔1 ⊑ 𝑔4
⨅

{𝑔3, 𝑔4} ≠ ⊥

Assume that
⨅

{𝑔1,𝑔2}≠⊥ 𝑔2⊑𝑔3
⨅

{𝑔1,𝑔3}≠⊥
is true but

⨅

{𝑔1,𝑔2}≠⊥ 𝑔2⊑𝑔3 𝑔1⊑𝑔4
⨅

{𝑔3,𝑔4}≠⊥
is false. To have that

⨅

{𝑔1,𝑔2}≠⊥ 𝑔2⊑𝑔3 𝑔1⊑𝑔4
⨅

{𝑔3,𝑔4}≠⊥
is false,

then ⨅

{𝑔1, 𝑔2} ≠ ⊥ 𝑔2 ⊑ 𝑔3 𝑔1 ⊑ 𝑔4 should be true but ⨅{𝑔3, 𝑔4} ≠ ⊥ false. Make 𝑔1 = 𝑔4, then we have
⨅

{𝑔1, 𝑔2} ≠ ⊥ 𝑔2 ⊑ 𝑔3 𝑔1 ⊑ 𝑔1 and we should have that ⨅{𝑔3, 𝑔1} ≠ ⊥ is false. Since ⨅

{𝑔3, 𝑔1} ≠ ⊥ is true
because we start with

⨅

{𝑔1,𝑔2}≠⊥ 𝑔2⊑𝑔3
⨅

{𝑔1,𝑔3}≠⊥
being true, we reach a contradiction.

12 Fuentes-Sepúlveda ET AL

2. In the other direction
⨅

{𝑔1, 𝑔2} ≠ ⊥ 𝑔2 ⊑ 𝑔3 𝑔1 ⊑ 𝑔4
⨅

{𝑔3, 𝑔4} ≠ ⊥
⇒

⨅

{𝑔1, 𝑔2} ≠ ⊥ 𝑔2 ⊑ 𝑔3
⨅

{𝑔1, 𝑔3} ≠ ⊥

This trivially proved by making again 𝑔1 = 𝑔4 and 𝑔1 ⊑ 𝑔1.
With the above, we can conclude that both representations of the rule are equivalent. Note that the proposed strategy
presents us with an iterative way of deriving the rule, without recursing or the need to combine with other rules to derive
⨅

{𝑔1, 𝑔2} ≠ ⊥ . This can be viewed simply as follows: If ⨅{𝑔1, 𝑔2} ≠ ⊥ could be derived through another relation, the
only alternative is through rules 3 or 4, and therefore:

– If derived through rule 3: this means that 𝑔1 ⊑ 𝑔2, therefore, by using rule 3, we would also derive directly
⨅

{𝑔3, 𝑔4} ≠ ⊥ .
– If derived through rule 4: this means that there exists a granule 𝑔𝑥 such that 𝑔𝑥 ⊑ 𝑔1 and 𝑔𝑥 ⊑ 𝑔2, therefore, by using

rule 4, we would also derive directly ⨅

{𝑔3, 𝑔4} ≠ ⊥ .

4.2.3 Granule 𝑔1 does not contain granule 𝑔2
Unlike for previous relations, we cannot guarantee completeness for not-subsumption, as explained in Section 3.1. Still, we
provide here partial strategies for its derivation. We first check if there is an edge connecting 𝑔1 and 𝑔2 in 𝐺𝑛𝑜𝑡𝑠𝑢𝑏. If so, then we
conclude that 𝑔1 does not contain 𝑔2. Otherwise, we aim to infer the relation using rules 6, 7 and 8.

• Rule 6. The verification of this rule is straightforward: If there is an edge connecting 𝑔1 and 𝑔2 in 𝐺𝑑𝑖𝑠, or if by applying the
rules for deriving disjoint between 𝑔1 and 𝑔2 we conclude that ⨅{𝑔1, 𝑔2} = ⊥ , then 𝑔1 does not contain 𝑔2, and vice versa.

• Rules 7 and 8. For rule 7, we compute the set 𝑆1 of all the granules in 𝐺𝑠𝑢𝑏 that contain 𝑔1 (see Algorithm 2), and check if
there is an edge (𝑔2, 𝑔′1) in 𝐺𝑛𝑜𝑡𝑠𝑢𝑏 for every granule 𝑔′1 ∈ 𝑆1, if this is true, we derive the relation 𝑔2 ̸⊑ 𝑔1. For rule 8, we
compute the set 𝑆2 of all the granules in 𝐺𝑠𝑢𝑏 reachable from 𝑔2 (see Algorithm 3), and check if there is an edge (𝑔′2, 𝑔1)in 𝐺𝑛𝑜𝑡𝑠𝑢𝑏 for some granule 𝑔′2 ∈ 𝑆2, if this is true, we derive the relation 𝑔2 ̸⊑ 𝑔1. We implement the verification of these
two rules in the same procedure: we first compute 𝑆1 and 𝑆2 as previously described. Then, we check if there is an edge
(𝑔′2, 𝑔

′
1) in 𝐺𝑛𝑜𝑡𝑠𝑢𝑏 for some pair of granules 𝑔′1 ∈ 𝑆1 and 𝑔′2 ∈ 𝑆2. To implement this more efficiently, we use the operation

𝑟𝑎𝑛𝑔𝑒_𝑐ℎ𝑒𝑐𝑘() in 𝐺𝑛𝑜𝑡𝑠𝑢𝑏 for each granule in 𝑆1 with each range in 𝑆2.

4.2.4 Axioms
Given the characteristics of the axioms, no strategy is necessary for their implementation; their verification is straightforward.

5 EXPERIMENTAL EVALUATION

5.1 Implementation details
In this section we provide some practical details about the different implementations. All of them, except the baseline, were
implemented using the Succinct Data Structures Library (SDSL).29. The source code is available in the following repository:
https://github.com/dgaticar/gbp.
Baseline
We compared our data structures with a baseline representation consisting of four adjacency lists, storing direct and inverse
relations, one for each relation of subsumption, disjoint, and their respective negations. To compute all the granules reached by
a granule 𝑔 and all the granules that reach 𝑔, standard graph traversals algorithms are performed. An alternative baseline would
be to store explicitly all the axioms and the induced relations, but this alternative would potentially store up to 𝑛2 relations,
which is not feasible. For instance, for the dataset 7 of Section 5.3, the space of this alternative reaches about 16.8GB only for
the subsumption relation, while our solution GBP+Matrix uses 902.9MB for the four relations.

https://github.com/dgaticar/gbp

Fuentes-Sepúlveda ET AL 13

GLOUDS-based data structures
We implemented two versions of the GLOUDS-based variant. The first version, called GLOUDS, implements the original idea
of Fischer and Peters28, using wavelet trees (wt_int<> of the SDSL library) to store both the LOUDS representation of the tree-
like graph and 𝐻 , the ids of the shadow nodes. The inference rules were implemented using the ideas presented in Sections 4.1
and 4.2, adapting the Algorithms 2 and 3 to use the LOUDS representation.

For the variant that uses a balanced parenthesis representation instead of LOUDS, called GBP, we used the implementa-
tion of the compact tree of Navarro and Sadakane30 to store 𝐵𝑜 (bp_support_sada<> in SDSL), a plain bitmap to store 𝐵𝑠
(bit_vector in SDSL), and a wavelet tree to store 𝐻 (wt_int<> in SDSL). We tested three variants of GBP, varying only in
how the IDs of each granule are stored in 𝐻 : i) A first variant storing the original IDs directly in a wavelet tree; ii) a second
variant, where the identifiers stored in 𝐻 are previously mapped to a contiguous range, using an extra bitmap 𝐻𝑚 (bit_vector
in SDSL) for the mapping between the original IDs and the contiguous identifiers; and iii) a third variant, using the same strat-
egy as variant ii) but using a compressed bitmap23 to represent 𝐻𝑚 (sd_vector in SDSL). Additionally, we included an extra
plain bitmap 𝐵𝑜𝑝𝑒𝑛 (bit_vector in SDSL) to mark the non-shadow nodes of GBP. Technically, this bitmap is redundant (rank
and select on this bitmap can be simulated by using rank and select over the other components of the structure), but we decided
to include it since we obtained slightly better running times, at the cost of negligible extra space.

A granule can have different identifiers in the graphs representing the different relations and in the datasets. In particular,
structures to support the mapping from identifiers in a dataset to its corresponding 𝐺𝑠𝑢𝑏, supporting direct and inverse mapping,
and from graph 𝐺𝑠𝑢𝑏 to the others, supporting direct mapping, are needed. In our implementation, the direct and inverse mapping
were implemented using compact permutations of the SDSL library, called inv_perm_support<> in SDSL.

In addition, a change from the strategy presented in the previous section to verify inference rule 1 was introduced. The strategy
outlined above was based on obtaining a set 𝑆 of ranges of granules contained by a given granule 𝑔, and then checking if the
queried granule 𝑔′ was contained in the set 𝑆 trough the 𝑟𝑎𝑛𝑔𝑒_𝑐ℎ𝑒𝑐𝑘() operation. This strategy is not affected by the height of
potentially high hierarchies. However, in practice, it is faster to follow a strategy based on obtaining the ancestors of a granule,
since the tested datasets have relatively low height. We adapted Algorithm 2 accordingly.

Matrices
The matrices were implemented verbatim to the description in Section 4.2, using wt_int<> and bit_vector of the SDSL
library to implement wavelet trees and bitmaps, respectively. We refer to the implementation of GBP complemented with the
matrices as GBP+Matrix. Note that this representation uses a GBP for the relation subsumption and one additional matrix for
each of the other three relations. The alternative representation that uses a GBP for each relation is referred to as GBP.

Intersection of sets
For the strategy described in Section 4.2, specifically for inference rule 4, the final step consists in checking out if there is
an intersection between two sets 𝑆1 and 𝑆2, obtained in previous steps. Remember that each element of the sets represents a
range of values, stored as a pair. The intersection algorithm works in two steps: i) Sort both sets 𝑆1 and 𝑆2, based on the first
element of each pair, and then ii) traverse both sorted sets from smallest to largest values. When visiting the 𝑖-th range of 𝑆1
and 𝑗-th range of 𝑆2, we check if they intersect or not. After that, the range with the lowest closing value is replaced by the
next range in the respective set. Step ii) is repeated until the final range in one of the sets is reached. The time complexity is
𝑂(|𝑆1| log |𝑆1| + |𝑆2| log |𝑆2|) for the first step, and 𝑂(|𝑆1| + |𝑆2|) for the second, where |𝑆| represents the cardinality of the
set 𝑆. No extra space is required.

5.2 Experimental setup
We run all the experiments on a computer with an Intel Xeon Gold (5320T) processor, clocked at 2.3 GHz; 252 GB DDR4 RAM
memory, with speed 3,200 MT/s; 40 physical cores each one with L1i and L1d caches (32 KB and 48 KB, respectively), and
L2 cache (1,280 KB); and a shared L3 cache of size 30 MB. The operating system is Linux 5.10.0-13-amd64 (Debian 10.2.1-
6), in 64-bit mode. All the evaluated algorithms were implemented in C++ and compiled with GCC version 10.2.1 and -O3
optimization flag.

14 Fuentes-Sepúlveda ET AL

(a) Multigranular structure I (b) Multigranular structure II (c) Multigranular structure III

Figure 5 Granularity structures used in the generation of the synthetic datasets.

5.3 Datasets
The datasets used for the evaluation of the implemented algorithms can be classified into two categories: i) Synthetic datasets,
generated in order to evaluate the behavior of the implementations in scenarios with different characteristics, and ii) Real datasets,
used to evaluate the algorithms in a real world instance.

5.3.1 Synthetic datasets
We developed a multigranular instance generator in which we can control some characteristics of the generated datasets. This
allows us to evaluate the performance of the different approaches both under favorable and unfavorable configurations. The
generator receives as input a description of the granularity graph, the number of granules in each granularity, and the number
of subsumption relations between granularities, with the exception that this description only contains subsumption relations
between granularities, in addition to the number of not subsumption, disjoint and not disjoint relations. Based on this information,
a multigranular instance is generated, represented in the form of four graphs (one per relation). The generator does not guarantee
that the generated instances contain the minimum information, as it may produce relations that can also be derived using inference
rules.

Taking the granularity structures from Figure 5 as input, we utilized the instance generator to compute nine synthetic instances
– three for each granularity structure. We varied the number of granules per granularity and the number of not subsumption,
disjoint, and not disjoint relations. Table 3 summarizes the characteristics of each generated instance, where Granules refers to
the number of granules in the instance, Subsumption Edges to the number of relations in the subsumption graph obtained from
the dataset, and Other Relations to the amount of not subsumption, disjoint and not disjoint relations (the same amount for the
3 relations).

The Multigranular Structure I (Figure 5(a)) represents an instance where the subsumption graphs obtained from it will have
a large number of cycles, which is not favorable for the implementations based on compact data structures. The subsumption
graphs obtained from Multigranular Structure II (Figure 5(b)), instead, will have a low number of cycles, which is favorable
for the implementations based on compact data structures. Finally, the Multigranular Structure III (Figure 5(c)) represents an
instance where the generated subsumption trees will have a larger height than in previous cases, which is unfavorable for the
baseline.

Fuentes-Sepúlveda ET AL 15

Structure Dataset Granules Subsumption Edges Other Relations

Multigranular
Structure I

1 7,742,101 10,962,100 300,000
4 77,421,001 109,621,000 300,000
7 77,421,001 109,621,000 30,000,000

Multigranular
Structure II

2 5,723,001 7,723,000 30,000
5 57,230,001 77,230,000 30,000
8 57,230,001 77,230,000 3,000,000

Multigranular
Structure III

3 2,968,721 2,989,840 30,000
6 5,937,441 5,979,680 30,000
9 19,739,201 19,823,680 3,000,000

Table 3 Characteristics of the generated synthetic datasets.

5.3.2 Real-world dataset
A real-world dataset was obtained to evaluate all the structures in practical scenarios. This dataset is based on the TIGER
dataset,2 provided by the U.S. Census Bureau, which corresponds to geographic and cartographic data of the administrative
divisions in the United States. For this study, we computed relations between each possible pair of granules based on their
geometry. From these obtained relations, a subset was selected for analysis. The dataset comprises a total of 11,555,150 granules,
11,705,035 subsumption relations and 691,350 other relations. Figure 6 illustrates the granularity structure of this dataset, while
Table 4 presents the distribution of granules for each granularity.

Figure 6 Granularity structure of the real-world dataset.

5.4 Results and discussion
5.4.1 Execution time
Based on the implementations described in Section 4, and using the datasets described above, we conducted two experimen-
tal evaluations to measure the performance of the implementations on various multigranular instances: a) A first experimental

2TIGER dataset, version 2019. https://www2.census.gov/geo/tiger/TIGER2019/

https://www2.census.gov/geo/tiger/TIGER2019/

16 Fuentes-Sepúlveda ET AL

Granularity Granules Granularity Granules

Census blocks 11,166,336 County subdivisions 36,693
Block groups 220,740 Places 29,853
Census tracts 74,133 Unified school districts 10,887
Counties 3,233 Public Use microdata area 2,380
States 56 State legislative districts 4,833

lower
Congressional 444 State legislative district 1,961
districts upper
Urban areas 3,601 Country 1

Table 4 Number of granules for each granularity in the real-world dataset.

Datasets

1 2 3 4 5 6 7 8 9 Real-world

GBP no no no no compressed no no no compressed plain
mapping mapping mapping mapping bitmap mapping mapping mapping bitmap bitmap

GBP+Matrix no plain plain compressed plain plain no compressed compressed plain
mapping bitmap bitmap bitmap bitmap bitmap mapping bitmap bitmap bitmap

Table 5 Summary of the best-performing variants for GBP and GBP+Matrix. No mapping represents the variant that does not
map the identifiers of 𝐻 to a contiguous range, plain bitmap represents the variant that maps to a contiguous range using a plain
bitmap, while compressed bitmap uses a compressed bitmap for the mapping.

evaluation, in which the assessment is made at the rule level. This analysis offers a more detailed perspective and provides com-
prehensive information about the performance of different strategies across all the datasets. b) A second experimental evaluation,
where the assessment is performed at the relation level, as certain relations require checking multiple rules. This experiment,
presented only on the real dataset, provides us with an overview of the behavior of the implementations in deriving each relation.

To carry out both experimental evaluations, a total of 10,000 queries were performed. For each executed query, two granules
were randomly selected, with the only restriction that both granules could not belong to the same granularity. Each executed
operation was repeated 10 times, leaving the first repetition for cache warming and reporting the average of the last nine (a run
without cache warming was evaluated and the results were the same, with negligible differences). Regarding the GBP-based
implementations, only the variant with the best average performance for each dataset is shown. Algorithms 4, 5, 6 and 7 show
the strategy used in the second experimentation to derive the four possible relations. Table 5 shows the best performing variant
for GBP and GBP+Matrix.Algorithm 4: Infer subsumption relation

between 𝑔1 and 𝑔2.
1: procedure SUBREL(𝑔1, 𝑔2)
2: return RULE1(𝑔1,𝑔2)
3: end procedure

Algorithm 5: Infer disjoint relation be-
tween 𝑔1 and 𝑔2.

1: procedure DISREL(𝑔1, 𝑔2)
2: return RULE2(𝑔1,𝑔2)
3: end procedure

Algorithm 6: Infer not-disjoint relation
between 𝑔1 and 𝑔2.

1: procedure NOTDISREL(𝑔1, 𝑔2)
2: if RULE1(𝑔1,𝑔2) or RULE4(𝑔1,𝑔2)
3: or RULE5(𝑔1,𝑔2) then
4: return True
5: end if
6: return False
7: end procedure

Algorithm 7: Infer not-subsumption rela-
tion between 𝑔1 and 𝑔2.

1: procedure NOTSUBREL(𝑔1, 𝑔2)
2: if RULE2(𝑔1,𝑔2) or
3: RULE7_8(𝑔1,𝑔2) then
4: return True
5: end if
6: return False
7: end procedure

Fuentes-Sepúlveda ET AL 17

(a) Dataset 7 (b) Dataset 8 (c) Dataset 9 (d) Real-world dataset

Figure 7 Running time in milliseconds for the inference rule 1.

(a) Dataset 7 (b) Dataset 8 (c) Dataset 9 (d) Real-world dataset

Figure 8 Running time in milliseconds for the inference rule 2.

Table 6 shows the average query time of executing the evaluated inference rules. We omit rules 3 and 6 because, as it was
explained in Section 4, their implementation is straightforward using either rule 1 or the information explicitly stored. For each
multigranular structure, we show only the results of the largest dataset as, in general, there are no significant differences with the
other datasets. When necessary, we explicitly mention other datasets to highlight some differences. In general, the GBP+Matrix
structure is the one that provides the best query times. Although GLOUDS is highly competitive for rule 1, which forms the
foundation for the others, its use in the remaining rules is clearly surpassed by other alternatives. Next, a more detailed analysis
with graphs is presented for each of the evaluated rules. In these box and whisker plots, the solid orange lines and the dashed
green lines represent the median and the average of the 10,000 queries executed for each operation on each dataset, respectively.

Figure 7 presents the results for inference rule 1. For this rule there is no clear winner, as can be seen in Table 6, the differences
in the performance of GLOUDS versus GBP-based structures are not conclusive. This may be partially explained by the fact that,
in the datasets, the height of the granularities is negligible compared to the amount of granules per instance. Thus, GLOUDS,
whose performance is directly dependent on the height, exhibits a similar behavior to GBP-based alternatives, which do not
depend on the height of the instances. In addition, as we will see in the results for the following rules, GBP and GBP+Matrix
yield better results when the computation of ranges of consecutive identifiers is combined with the other rules. Notice also
that the poor performance of the baseline is mainly due to the large number of cache misses produced at the time of obtaining
the ancestors of a granule, by following the reverse references from children to parents (which are explicitly stored). This can
be concluded by analyzing the smaller datasets, in which, although the baseline presents worse performance than the other

18 Fuentes-Sepúlveda ET AL

Implementation Rule 1 Rule 2 Rule 4 Rule 5 Rule 7–8

1
Baseline 0.080 0.093 0.123 0.142 0.089
GLOUDS 0.004 0.418 0.502 0.688 0.352
GBP 0.010 0.843 0.020 0.122 0.019
GBP+Matrix 0.051 0.010 0.005 0.005 0.004

2
Baseline 0.033 0.060 0.091 0.092 0.075
GLOUDS 0.001 0.129 0.321 0.531 0.300
GBP 0.003 0.180 0.020 0.120 0.080
GBP+Matrix 0.002 0.005 0.003 0.003 0.002

3
Baseline 0.015 0.026 0.029 0.028 0.020
GLOUDS 0.003 0.065 0.109 0.134 0.098
GBP 0.006 0.114 0.010 0.29 0.017
GBP+Matrix 0.002 0.008 0.001 0.001 0.001

4
Baseline 1.536 1.005 0.992 0.976 0.764
GLOUDS 0.006 1.211 4.201 7.130 2.805
GBP 0.013 1.612 0.201 1.203 0.402
GBP+Matrix 0.005 0.010 0.030 0.030 0.029

5
Baseline 1.810 0.658 0.904 0.897 0.603
GLOUDS 0.001 0.317 3.092 5.304 2.504
GBP 0.002 0.371 0.341 1.403 0.251
GBP+Matrix 0.002 0.005 0.029 0.031 0.026

6
Baseline 0.035 0.055 0.070 0.069 0.045
GLOUDS 0.003 0.088 0.287 0.354 0.201
GBP 0.006 0.131 0.010 0.093 0.040
GBP+Matrix 0.002 0.008 0.001 0.002 0.001

7
Baseline 0.593 1.827 954.293 1,009.283 562.184
GLOUDS 0.012 34.241 4,503.498 8,981.864 2,879.758
GBP 0.017 125.174 185.857 2,409.587 1,049.544
GBP+Matrix 0.051 0.026 19.431 19.859 10.374

8
Baseline 2.232 3.393 712.394 734.856 419.508
GLOUDS 0.004 9.994 3,873.431 5,647.110 3,021.004
GBP 0.002 23.453 198.574 1,201.123 198.031
GBP+Matrix 0.002 0.007 23.001 405.982 13.892

9
Baseline 0.122 0.278 183.284 188.394 122.495
GLOUDS 0.008 2.228 1.287.192 1,889.270 582.039
GBP 0.008 4.265 9.487 183.284 66.398
GBP+Matrix 0.002 0.009 1.653 3.982 1.302

Real-world
Baseline 0.706 0.784 145.394 163.304 81.485
GLOUDS 0.002 1.529 793.948 1,250.290 320.102
GBP 0.003 5.083 12.998 363.291 29.091
GBP+Matrix 0.001 0.003 0.702 1.730 0.703

Table 6 Average query times, in ms. The fastest query times for each rule and input dataset are highlighted in bold.

implementations, the differences are smaller. Finally, no significant changes are perceived in the behavior of the structures when
confronted with multigranular structures with different complexities.

Fuentes-Sepúlveda ET AL 19

(a) Dataset 7 (b) Dataset 8 (c) Dataset 9 (d) Real-world dataset

Figure 9 Running time in microseconds for the inference rule 4.

(a) Dataset 7 (b) Dataset 8 (c) Dataset 9 (d) Real-world dataset

Figure 10 Running time in microseconds for the inference rule 5.

(a) Dataset 7 (b) Dataset 8 (c) Dataset 9 (d) Real-world dataset

Figure 11 Running time in microseconds for the inference rule 7-8.

20 Fuentes-Sepúlveda ET AL

(a) Subsumption relation (b) Disjoint relation (c) Not-disjoint relation (d) Not-subsumption relation

Figure 12 Running time in milliseconds for the experimental evaluation at the relation level on the Real-world dataset.

Figure 8 presents the results for inference rule 2. In general, GBP+Matrix presents better running times than the rest of the
implementations. This is because, in comparison with GLOUDS and GBP, the use of matrices accelerates the verification of the
existence of a relation other than subsumption. Remember that in GBP+Matrix, the identifiers used in the matrices are the same
used in the GBP representation of 𝐺𝑠𝑢𝑏, therefore, no mapping is needed, while for GLOUDS and GBP a mapping is mandatory.
When considering the mean of the reported query times, GLOUDS outperforms GBP for all the evaluated instances. This is
primarily due to the main difference between both implementations for this inference rule, which lies in the way of obtaining
the ancestors of a node. This operation is faster in GLOUDS. It is worth noting that, despite this, GBP has a better median than
GLOUDS in most of the datasets, except for dataset 8, which suggests that, in general, it has a higher number of favorable cases.

Figure 9 displays the results for inference rule 4. In this case, GLOUDS exhibits the highest variance, with the lowest and
highest query times observed. This variance contributes to GLOUDS having the worst average performance among the evaluated
approaches. On the other hand, GBP+Matrix achieves the best average query time, despite being slower for favorable queries
due to the overhead involved to support range operations over the matrix in the cases of nodes without descendants or with only
one descendant. However, this approach ensures a low query time for unfavorable cases. GBP performs better than GLOUDS
in terms of average query time but has a worse median for datasets 7 and 8. This highlights an advantage of the GBP variants,
which may be slightly slower for favorable cases due to the extra mappings between bitmaps but perform better overall, even in
the worst-case scenarios. All evaluated implementations exhibit consistent trends regardless of the dataset being evaluated.

Figure 10 displays the results for inference rule 5. The behavior observed for this rule is similar to that of inference rule 4. It
leads, however, to an increase in response time for GLOUDS and GBP in their unfavorable cases, with GBP becoming slower
than the baseline in its worst cases. GBP+Matrix also increments its query time in worst-case, but remains the implementation
with the best average for all datasets and better median for the dataset 9 and the real-word dataset.

Figure 11 illustrates the outcomes for inference rules 7-8. In this context, akin to the scenario concerning rule 4, it is observed
that GLOUDS exhibits the highest variance, with the lowest and highest query times observed. GBP+Matrix, on the other hand,
achieves the best average and median query times. Notably, GBP+Matrix performs significantly better on average than the other
implementations in datasets based on Multigranular Structure III, consistently delivering the best query times for all evaluated
queries (including the most favorable and the most unfavorable). This is because Multigranular Structure III is taller than the
others and produces a moderate number of shadow nodes, making it a favorable scenario for GBP+Matrix.

Finally, Figure 12 displays the result for the second experimental evaluation carried out at the relation level on the Real-world
dataset. For subsumption and disjoint relations, the same behavior as described above for their individual rules is presented. For
the not-disjoint relation it can be seen how GBP+Matrix shows the best performance both on average, median, and for the worst
cases. In the case of the not-subsumption relation, it can be seen that GBP+Matrix presents better performance for both the
worst case and on average than the rest of the implementations, even so, it presents a worse median than the rest, which shows
that, in general, for favorable queries it tends to be slower than other implementations. It is also worth noting that, although
GBP has a worse average performance than GBP+Matrix, it exhibits a better median and ranks as the second-best performing
implementation concerning unfavorable cases.

Fuentes-Sepúlveda ET AL 21

Datasets

Implementations 1 2 3 4 5 6 7 8 9 Real-world

Baseline 709.4 519.8 261.6 7,073.0 5,196.5 523.0 7,308.2 5,220.1 1,761.4 1,031.3
GLOUDS 132.0 92.2 40.5 1,504.7 986.2 83.6 1,541.7 1,048.1 304.1 176.6
GBP 152.6 108.2 49.9 1,690.3 1,148.1 102.5 1,712.9 1,194.0 363.7 215.9
GBP + Matrix 57.6 40.5 15.0 630.0 431.9 30.3 902.9 456.8 126.4 72.8

Table 7 Total space used for each data structure, in MB.

(a) Dataset 7 (b) Dataset 8 (c) Dataset 9 (d) Real-world dataset

Figure 13 Detailed analysis of the space used by each approach.

5.4.2 Space usage
Table 7 shows the total space used by each implementation for each dataset. In all of them, the baseline occupies considerable
more space than the others, while GBP+Matrix is the one that uses the least space. GBP uses, in general, more space than
GLOUDS (close to 20% extra in the worst cases), because it needs additional bitmaps to distinguish the shadow nodes.

Figure 13 provides a detailed view of the space occupied by the main components for the largest datasets. As it can be
observed, the primary distinction between GBP+Matrix and the GBP and GLOUDS implementations is that it occupies less
space to represent permutations. This is because it stores a single permutation to map identifiers from the input dataset to 𝐺𝑠𝑢𝑏,
compared to storing four permutations to map from the input to 𝐺𝑠𝑢𝑏 and from 𝐺𝑠𝑢𝑏 to the other relations.

6 CONCLUSIONS AND FUTURE WORK

We have focused on developing data structures and strategies capable of deriving information from a set of subsumption and
disjointness relations, including their respective negations. To the best of our knowledge, no other works have specifically
concentrated on the development of efficient structures for deriving subsumption and disjointness relations. In this article, we
propose several strategies for deriving information using a set of inference rules, which had been proven to be both correct
and complete2. Our implementation is correct and complete for the subsumption, disjoint, and not-disjoint relations. However,
we cannot assure completeness for the not-subsumption relation, as our strategy does not support all the rules in the original
work of Hegner and Rodríguez2. Therefore, developing an efficient implementation that also ensures completeness for the not
subsumption relation remains as an open problem.

Our experimental evaluation demonstrates that the proposed methods are not only more space-efficient but also significantly
faster when compared to a baseline approach that explicitly stores the information of each relation using graphs and solves
operations using well-known traversal algorithms.

In addition to the future research direction mentioned above, an interesting problem is to study the minimum amount of
information that must be stored for each relation so that, when applying the proposed rules, all the information can be derived.

22 Fuentes-Sepúlveda ET AL

In other words, our strategy ensures that, given a dataset, we obtain the maximum amount of information from it, regardless
of whether there is more information stored in that dataset than necessary to achieve the same result. Related to knowing the
minimum necessary information to store, it would be interesting to develop an algorithm that, given an initial set 𝑆 of relations,
could reduce it to the minimum set 𝑆′ that allows to derive the maximum number of possible relations. Finally, it could be
interesting to study a dynamic variant of the proposed solution so that new facts provided externally or induced through the
application of implemented rules can be stored.

ACKNOWLEDGMENTS

This work was funded by: ANID Millennium Science Initiative Program - Code ICN17_002; PAI grant 77190038 and FONDE-
CYT grant 11220545 (1st author); PFCHA/Doctorado Nacional/2020-21201986 (2nd author); FONDECYT Grant 1-230755
(3rd author); GRC: ED431C 2021/53, partially funded by GAIN/Xunta de Galicia; PID2022-141027NB-C21 (EarthDL),
TED2021-129245B-C21 (PLAGEMIS), PID2020-114635RB-I00 (EXTRACompact), PDC2021-121239-C31 (FLATCity-
POC), and PDC2021-120917-C21 (SIGTRANS): partially funded by MCIN/AEI/10.13039/501100011033 and “NextGener-
ationEU”/PRTR (5th author). CITIC is funded by the Xunta de Galicia through the collaboration agreement between the
Department of Culture, Education, Vocational Training and Universities and the Galician universities for the reinforcement of
the research centers of the Galician University System (CIGUS).

References

1. Ramakrishnan R, Ullman JD. A survey of deductive database systems. J. Log. Program. 1995; 23(2): 125–149.
2. Hegner SJ, Rodríguez MA. A Model for Multigranular Data and Its Integrity. Informatica 2017; 28(1): 45–78.
3. Bettini C, Dyreson CE, Evans WS, Snodgrass RT, Wang XS. A Glossary of Time Granularity Concepts. In: ; 1997: 406-413.
4. Iftikhar N, Pedersen TB. Schema Design Alternatives for Multi-granular Data Warehousing. In: . 6262 of Lecture Notes in

Computer Science. Springer; 2010: 111–125.
5. Al-Ajlan A. The comparison between forward and backward chaining. International Journal of Machine Learning and

Computing 2015; 5(2): 106.
6. Navarro G. Compact Data Structures - A Practical Approach. Cambridge University Press . 2016.
7. Camossi E, Bertolotto M, Bertino E. A multigranular object-oriented framework supporting spatio-temporal granularity

conversions. International Journal of Geographical Information Science 2006; 20(5): 511-534.
8. Hegner SJ, Rodríguez MA. Inference Rules for Binary Predicates in a Multigranular Framework. CoRR 2023;

abs/2303.15138.
9. Mackworth AK. Consistency in Networks of Relations. Artif. Intell. 1977; 8(1): 99–118.

10. Li S. On Topological Consistency and Realization. Constraints An Int. J. 2006; 11(1): 31–51.
11. Bennett B. Determining consistency of topological relations. Constraints 1998; 3(2): 213–225.
12. Atzeni P, Stott Parker Jr. D. Formal Properties of Net-Based Knowledge Representation Schemes. Data Knowl. Eng. 1988;

3: 137–147.
13. Atzeni P, Stott Parker Jr. D. Set Containment Inference and Syllogisms. Theor. Comput. Sci. 1988; 62(1-2): 39–65.
14. de Bra P, Paredaens J. Horizontal Decompositions for Handling Exceptions to Functional Dependencies. In: Advances in

Data Base Theory. Plemum Press; 1982; New York: 123–141.
15. Wang Y, Hanson EN. A Performance Comparison of the Rete and TREAT Algorithms for Testing Database Rule Conditions.

In: IEEE Computer Society; 1992: 88–97.

Fuentes-Sepúlveda ET AL 23

16. Forgy C. Rete: A Fast Algorithm for the Many Patterns/Many Objects Match Problem. Artif. Intell. 1982; 19(1): 17–37.
17. Miranker DP. TREAT: A Better Match Algorithm for AI Production System Matching. In: Morgan Kaufmann; 1987: 42–47.
18. Rattanasawad T, Buranarach M, Saikaew KR, Supnithi T. A Comparative Study of Rule-Based Inference Engines for the

Semantic Web. IEICE Trans. Inf. Syst. 2018; 101-D(1): 82–89.
19. Jacobson GJ. Succinct static data structures. Carnegie Mellon University . 1988.
20. Jacobson G. Space-efficient Static Trees and Graphs. In: IEEE Computer Society; 1989: 549–554.
21. Clark D. Compact pat trees. 1997.
22. Munro JI. Tables. In: Springer. Springer Berlin Heidelberg; 1996; Berlin, Heidelberg: 37–42.
23. Okanohara D, Sadakane K. Practical Entropy-Compressed Rank/Select Dictionary. In: SIAM; 2007.
24. Raman R, Raman V, Rao SS. Succinct indexable dictionaries with applications to encoding k-ary trees and multisets. In:

ACM/SIAM; 2002: 233–242.
25. Grossi R, Gupta A, Vitter JS. High-order entropy-compressed text indexes. In: ACM/SIAM; 2003: 841–850.
26. Mäkinen V, Navarro G. Rank and select revisited and extended. Theor. Comput. Sci. 2007; 387(3): 332–347.
27. Munro JI, Raman V. Succinct Representation of Balanced Parentheses and Static Trees. SIAM Journal on Computing 2001;

31(3): 762-776.
28. Fischer J, Peters D. GLOUDS: Representing tree-like graphs. Journal of Discrete Algorithms 2016; 36: 39-49. WALCOM

2015.
29. Gog S, Beller T, Moffat A, Petri M. From Theory to Practice: Plug and Play with Succinct Data Structures. In: ; 2014:

326-337.
30. Navarro G, Sadakane K. Fully-Functional Static and Dynamic Succinct Trees. ACM Transactions on Algorithms 2014;

10(3): article 16.

How to cite this article:

	Space-efficient data structures for the inference of subsumption and disjointness relations
	Abstract
	Introduction
	Related work
	Preliminary concepts
	Granules and inference rules
	Succinct data structures

	Proposed data structures
	Inferring subsumption relations
	Inferring other relations
	Granules g1 and g2 are disjoint
	Granules g1 and g2 are not disjoint
	Granule g1 does not contain granule g2
	Axioms

	Experimental evaluation
	Implementation details
	Experimental setup
	Datasets
	Synthetic datasets
	Real-world dataset

	Results and discussion
	Execution time
	Space usage

	Conclusions and future work
	Acknowledgments
	References

