
NR-grep: A Fast and Flexible Pattern Matching ToolGonzalo Navarro�AbstractWe present nrgrep (\nondeterministic reverse grep"), a new pattern matching tool designedfor e�cient search of complex patterns. Unlike previous tools of the grep family, such as agrepand Gnu grep, nrgrep is based on a single and uniform concept: the bit-parallel simulationof a nondeterministic su�x automaton. As a result, nrgrep can �nd from simple patterns toregular expressions, exactly or allowing errors in the matches, with an e�ciency that degradessmoothly as the complexity of the searched pattern increases. Another concept fully integratedinto nrgrep and that contributes to this smoothness is the selection of adequate subpatterns forfast scanning, which is also absent in many current tools. We show that the e�ciency of nrgrepis similar to that of the fastest existing string matching tools for the simplest patterns, and byfar unpaired for more complex patterns.Key words: Online string matching, regular expression searching, approximate string match-ing, grep, agrep, BNDM.1 IntroductionThe purpose of this paper is to present a new pattern matching tool which we have coined nrgrep,for \nondeterministic reverse grep". Nrgrep is aimed at e�cient searching for complex patternsinside natural language texts, but it can be used in many other scenarios.The pattern matching problem can be stated as follows: given a text T1::n of n characters and apattern P , �nd all the positions of T where P occurs. The problem is basic in almost every area ofcomputer science and appears in many di�erent forms. The pattern P can be just a simple string,but it can also be, for example, a regular expression. An \occurrence" can be de�ned as exactly or\approximately" matching the pattern.In this paper we concentrate on online string matching, that is, the text cannot be indexed.Online string matching is useful for casual searching (i.e. users looking for strings in their �lesand unwilling to maintain an index for that purpose), dynamic text collections (where the costof keeping an up-to-date index is prohibitive, including the searchers inside text editors and Webinterfaces1), for not very large texts (up to a few hundred megabytes) and even as internal toolsof indexed schemes (as agrep [29] is used inside glimpse [15] or cgrep [17] is used inside compressedindexes [21]).�Dept. of Computer Science, University of Chile. Blanco Encalada 2120, Santiago, Chile.gnavarro@dcc.uchile.cl. Work developed while the author was at postdoctoral stay at the Institut Gaspard Monge,Univ. de Marne-la-Vall�ee, France, partially supported by Fundaci�on Andes and ECOS/Conicyt.1We refer to the \search in page" facility, not to confuse with searching the Web.1

There is a large class of string matching algorithms in the literature (see, for example, [26, 8, 4])but not all of them are practical. There is also a wide variety of fast online string matching toolsin the public domain, most prominently the grep family. Among these, Gnu grep and Wu andManber's agrep [29] are widely known and currently considered as the fastest string matching toolsin practice. Another distinguishing feature of these software systems is their exibility: they cansearch not only for simple strings, but they also permit classes of characters (that is, a patternposition matches a set of characters), wild cards (a pattern position that matches an arbitrarystring), regular expression searching, multipattern searching, etc. Agrep also permits approximatesearching: the pattern matches the text after performing a limited number of alterations on it.The algorithmic principles behind agrep are diverse [30]. Exact string matching is done withthe Horspool algorithm [12], a variant of the Boyer-Moore family [6]. The speed of the Boyer-Moore string matching algorithms comes from their ability to \skip" (i.e. not inspect) some textcharacters. Agrep deals with more complex patterns using a variant of Shift-Or [2], an algorithmexploiting \bit-parallelism" (a concept that we explain later) to simulate nondeterministic automata(NFA) e�ciently. Shift-Or, however, cannot skip text characters. Multipattern searching is treatedwith bit-parallelism or with a di�erent algorithm depending on the case. As a result, the searchperformance of agrep varies sharply depending on the type of search pattern, and even slightmodi�cations to the pattern yield widely di�erent search times. For example, the search for thestring "algorithm" is 7 times faster than for "[Aa]lgorithm" (where "[Aa]" is a class of charactersthat matches "A" and "a", which is useful to detect the word either starting a sentence or not). Inthe �rst case agrep uses Horspool's algorithm and in the second case it uses Shift-Or. Intuitively,there should exist a more uniform approach where both strings could be e�ciently searched forwithout a signi�cant di�erence in the search time.An answer to this challenge is the BNDM algorithm [22, 23]. BNDM is based on a previousalgorithm, BDM (for \backward DAWG matching") [9, 8]. The BDM algorithm (to be explainedlater) uses a \su�x automaton" to detect substrings of the pattern inside a text window (the Boyer-Moore family detects only su�xes of the pattern). As the Boyer-Moore algorithms, BDM can alsoskip text characters. In the original BDM algorithm the su�x automaton is made deterministic.BNDM is a recent version of BDM that keeps the su�x automaton in nondeterministic form byusing bit-parallelism. As a result, BNDM can search for complex patterns and still keep a searche�ciency close to that of simple patterns. It has been shown experimentally [22, 23] that theBNDM algorithm is by far the fastest one to search for complex patterns. BNDM has been laterextended to handle regular expressions [24].Nrgrep is a pattern matching tool built over the BNDM algorithm (hence the name \nondeter-ministic reverse grep", since BNDM scans windows of the text in reverse direction). However, thereis a gap between a pattern matching algorithm and a real software. The purpose of this work is to�ll that gap. We have classi�ed the allowed search patterns in three levels:Simple patterns: a simple pattern is a sequence of m classes of characters (note that a singlecharacter is a particular case of a class). Its distinguishing feature is that an occurrence of asimple pattern has length m as well, as each pattern position matches one text position.Extended patterns: an extended pattern adds to simple patterns the ability to characterize indi-vidual classes as \optional" (i.e. they can be skipped when matching the text) or \repeatable"2

(i.e. they can appear consecutively a number of times in the text). The purpose of extendedpatterns is to capture the most commonly used extensions of the normal search patterns soas to develop specialized pattern matching algorithms for them.Regular expressions: a regular expression is formed by simple classes, the empty string, or the\concatenation", \union" or \repetition" of other regular expressions. This is the most generaltype of pattern we can search for.We develop a di�erent pattern matching algorithm (with increasing complexity) for each type ofpattern, so simpler patterns are searched for with simpler and faster algorithms. The classi�cationhas been made having in mind the typical search needs on natural language, and it would bedi�erent, say, for DNA searching. We have also this in mind when we design the error model forapproximate searching. \Approximate searching" or \searching allowing errors" means that theuser gives an error threshold k and the system is able to �nd the pattern in the text even if itis necessary to perform k or less \operations" in the pattern to match its occurrence in the text.The operations typically permitted are the insertion, deletion and substitution of single characters.However, transposition of adjacent characters is an important typing error [14] that is normallydisregarded because it is di�cult to deal with. We allow the four operations in nrgrep, althoughthe user can specify a subset of them.An important aspect that deserves attention in order to obtain the desired \smoothness" inthe search time is the selection of an optimal subpattern to scan the text. A typical case is anextended pattern with a large and repeatable class of characters close to one end. For technicalreasons that will be made clear later, it may be very expensive to search for the pattern as is, whilepruning the extreme of the pattern that contains the class (and verifying the potential occurrencesfound) leads to much faster searching. Some tools (such as Gnu grep for regular expressions) try toapply some heuristics of this type, but we provide a general and uniform subpattern optimizationmethod that works well in all cases and, under a simpli�ed probabilistic model, yields the optimalsearch performance for that pattern. Moreover, the selected subpattern may be of a simpler typethan the whole pattern and a faster search algorithm may be possible. Detecting the exact typeof pattern given by the user (despite the syntax used) is an important issue that is solved by thepattern parser.We have followed the philosophy of agrep in some aspects, such as the record-oriented wayto present the results and most of the pattern syntax features and search options. The mainadvantages of nrgrep over the grep family are uniformity in design, smoothness in search time,speed when searching for complex patterns, powerful extended patterns, improved error model forapproximate searching, and subpattern optimization.In this paper we start by explaining the concepts of bit parallelism and searching with su�xautomata. Then we explain how these are combined to search for simple patterns, extended patternsand regular expressions. We later consider the approximate search of these patterns. Finally, wepresent the nrgrep software and show some experimental results on it. Despite that the algorithmicaspects of the paper borrow from our previous work in some cases [22, 23, 24, 25], the paper hassome novel and nontrivial algorithmic contributions, such as� searching for extended patterns, which implies the bit parallel simulation of new types ofrestricted automata; 3

� approximate searching allowing transpositions for the three types of patterns, which has neverbeen considered under the bit-parallel approach; and� algorithms to select optimal search subpatterns in the three types of patterns.The nrgrep tool is freely available under a Gnu license fromhttp://www.dcc.uchile.cl/~gnavarro/pubcode/.2 Basic ConceptsWe de�ne in this section the basic concepts and notation needed throughout the paper.2.1 NotationWe consider that the text is a sequence of n characters, T = t1 : : : tn, where ti 2 �. � is thealphabet of the text and its size is denoted j�j = �. In the simplest case the pattern is denotedas P = p1 : : : pm, a sequence of m characters pi 2 �, in which case it speci�es the single stringp1 : : :pm. More general patterns specify a �nite or in�nite set of strings.We say that P matches T at position i whenever there exists a j � 0 such that ti : : : ti+j belongsto the set of strings speci�ed by the pattern. The substring ti : : : ti+j is called an \occurrence" ofP in T . Our goal is to �nd all the text positions that start a pattern occurrence.The following notation is used for strings. Si:::j denotes the string sisi+1 : : :sj . In particular,Si:::j = " (the empty string) if i > j. A string X is said to be a pre�x, su�x and factor (orsubstring), respectively, of XY , Y X and Y XZ, for any Y and Z.We use some notation to describe bit-parallel algorithms. We use exponentiation to denotebit repetition, e.g. 031 = 0001. We denote as b` : : : b1 the bits of a mask of length `, which isstored somewhere inside the computer word of �xed length w (in bits). We use C-like syntax foroperations on the bits of computer words, i.e. \j" is the bitwise-or, \&" is the bitwise-and, \ b "is the bitwise-xor, \�" complements all the bits, and \<<" moves the bits to the left and enterszeros from the right, e.g. b`b`�1 : : : b2b1 << 3 = b`�3 : : : b2b1000. We can also perform arithmeticoperations on the bits, such as addition and subtraction, which operate the bits as the binaryrepresentation of a number, for instance b` : : : bx10000� 1 = b` : : : bx01111.In the following we show that the pattern can be a more complex entity, matching in fact a setof di�erent text substrings.2.2 Simple PatternsWe call a \simple" pattern a sequence of characters or classes of characters. Let m be the numberof elements in the sequence, then a simple pattern P is written as P = p1 : : :pm, where pi � �.We say that P matches at text position i+ 1 whenever ti 2 pi for i 2 1 : : :m. The most importantfeature of simple patterns is that they match a substring of the same length m in the text.We use the following notation to describe simple patterns: we concatenate the elements of thesequence together. Simple characters (i.e. classes of size 1) are written down directly, while otherclasses of characters are written in square brackets. The �rst character inside the square brackets4

can be "^", which means that the class is exactly the complement of what is speci�ed. The restis a simple enumeration of the characters of the class, except that we allow ranges: "x-y" meansall the characters between x and y inclusive (we assume a total order in �, which is in practice theASCII code). Finally, the character "." represents a class equal to the whole alphabet and "#"represents the class of all separators (i.e. non alphanumeric characters). Most of these conventionsare the same used in Unix software. Some examples are:� "[Aa]merican", which matches "American" and "american";� "[^\n]Begin", which �nds "Begin" if it is not preceded by a line break;� "../../197[0-9]", which matches any date in the 70's;� ".e[^a-zA-Z_]t#", which permits any character in the �rst position, then "e", then anythingexcept a letter or underscore in the third position, then "t", and �nishes with a separator.Note that we have used "\n" to denote the newline. We also use "\t" for the tab, "\xHH" forthe character with hex ASCII code HH , and in general "\C" to interpret any character C literally(e.g. the backslash character itself, as well as the special characters that follow).It is possible to specify that the pattern has to appear at the beginning of a line by precedingit with "^" or at the end of the line by following it with "$". Note that this is not the same asadding the newline preceding or following the pattern because the beginning/end of the �le signalsalso the beginning/end of the line, and the same happens with records when the record delimiteris not the end of line.2.3 Extended PatternsIn general, an extended pattern adds some extra speci�cation capabilities to the simple patternmechanism. In this work we have chosen some features which we believe are the most interestingfor typical text searching. The reason to introduce this intermediate-level pattern (between simplepatterns and regular expressions) is that it is possible to devise specialized search algorithms forthem which can be faster than those for general regular expressions. The operations we permit forextended patterns are: specify optional classes (or characters), and permit the repetition of a class(or character). The notation we use is to add a symbol after the a�ected character or class: "?"means an optional class, "*" means that the class can appear zero or more times, and "+" meansthat it can appear one or more times. Some examples are:� "colou?r", which matches "color" and "colour";� "[a-zA-Z_][a-zA-Z_0-9]*", which matches valid variable names in most programminglanguages (a letter followed by letters or digits);� "Latin#+America", which matches "Latin" and "America" separated by one or more sepa-rator characters (e.g. spaces, tabs, etc.). 5

2.4 Regular ExpressionsA regular expression is the most sophisticated pattern that we allow to search for, and it is in generalconsidered powerful enough for most applications. A regular expression is de�ned as follows.� Basic elements: any character and the empty string (") are regular expressions matchingthemselves.� Parenthesis: if e is a regular expression then so is (e), which matches the same strings. Thisis used to change precedence.� Concatenation: if e1 and e2 are regular expressions, then e1 � e2 is a regular expression thatmatches a string x i� x can be written as x = yz, where e1 matches y and e2 matches z.� Union: if e1 and e2 are regular expressions, then e1je2 is a regular expression that matches astring x i� e1 or e2 match x.� Kleene closure: if e is a regular expression then e� is a regular expression that matches astring x i�, for some n, x can be written as x = x1 : : : xn and e matches each string xi.We follow the same syntax (with the precedence order � , � , j) except that we use squarebrackets to abbreviate (x1jx2j : : : jxn) = [x1x2 : : : xn] (where the xi are characters), we omit theconcatenation operator (�), we add the two operators e+ = ee� and e? = (ej") and we use theempty string to denote ", e.g. "a(b|)c" denotes a(bj")c. These arrangements make the extendedpatterns to be a particular case of regular expressions. Some examples are:� "dog|cat", which matches "dog" and "cat";� "((Dr.|Prof.|Mr.)#)*Knuth", which matches "Knuth" preceded by a sequence of titles.3 Pattern Matching AlgorithmsWe explain in this section the basic string and regular expression search algorithms our softwarebuilds on.3.1 Bit Parallelism and the Shift-Or AlgorithmIn [2], a new approach to text searching was proposed. It is based on bit-parallelism [1]. Thistechnique consists in taking advantage of the intrinsic parallelism of the bit operations inside acomputer word. By using cleverly this fact, the number of operations that an algorithm performscan be cut down by a factor of at most w, where w is the number of bits in the computer word.Since in current architectures w is 32 or 64, the speedup is very signi�cant in practice.Figure 1 shows a non-deterministic automaton that searches for a pattern in a text. Classicalpattern matching algorithms, such as KMP [13], convert this automaton to a deterministic formand achieve O(n) worst case search time. The Shift-Or algorithm [2], on the other hand, usesbit-parallelism to simulate the automaton in its non-deterministic form. It achieves O(mn=w)6

worst-case time, i.e. an optimal speedup over a classical O(mn) simulation. For m � w, Shift-Oris twice as fast as KMP because of better use of the computer registers. Moreover, it is easilyextended to handle classes of characters.
3 4

a b c d e f g

Σ

1 2 5 6 70Figure 1: A nondeterministic automaton (NFA) to search for the pattern P = "abcdefg" in a text.3.1.1 Text ScanningWe present now the Shift-And algorithm [30], which is an easier to explain (though a little lesse�cient) variant of Shift-Or. Given a pattern P = p1p2 : : : pm, pi 2 � and a text T = t1t2 : : : tn,ti 2 �, the algorithm builds �rst a table B which for each character stores a bit mask bm : : : b1. Themask in B[c] has the i-th bit set if and only if pi = c. The state of the search is kept in a machineword D = dm : : : d1, where di is set whenever p1p2 : : :pi matches the end of the text read up tonow (another way to see it is to consider that di tells whether the state numbered i in Figure 1 isactive). Therefore, we report a match whenever dm is set.We set D = 0m originally, and for each new text character tj , we update D using the formulaD0 � ((D << 1) j 0m�11) & B[tj]The formula is correct because the i-th bit is set if and only if the (i � 1)-th bit was set forthe previous text character and the new text character matches the pattern at position i. In otherwords, tj�i+1 : : : tj = p1 : : : pi if and only if tj�i+1 : : : tj�1 = p1 : : : pi�1 and tj = pi. Again, it ispossible to relate this formula to the movement that occurs in the NFA for each new text character:each state gets the value of the previous state, but this happens only if the text character matchesthe corresponding arrow. Finally, the \j 0m�11" after the shift allows a match to begin at thecurrent text position (this operation is saved in the Shift-Or, where all the bits are complemented).This corresponds to the self-loop at the initial state of the automaton.The cost of this algorithm is O(n). For patterns longer than the computer word (i.e. m > w),the algorithm uses dm=we computer words for the simulation (not all them are active all the time),with a worst-case cost of O(mn=w) and still an average case cost of O(n).3.1.2 Classes of Characters and Extended PatternsThe Shift-Or algorithm is not only very simple, but it also has some further advantages. The mostimmediate one is that it is very easy to extend to handle classes of characters, where each patternposition may not only match a single character but a set of characters. If pi is the set of charactersthat match the position i in the pattern, we set the i-th bit of B[c] for all c 2 pi. No other changeis necessary to the algorithm. In [2] they show also how to allow a limited number k of mismatchesin the occurrences, at O(nm log(k)=w) cost. 7

This paradigm was later enhanced [30] to support allow wild cards, regular expressions, ap-proximate search with nonuniform costs, and combinations of them. Further development of thebit-parallelism approach for approximate string matching yielded some of the fastest algorithms forshort patterns [3, 18]. In most cases, the key idea was to simulate an NFA.Bit-parallelism has become a general way to simulate simple NFAs instead of converting themto deterministic automata. This is how we use it in nrgrep.3.2 The BDM AlgorithmThe main disadvantage of Shift-Or is its inability to skip characters, which makes it slower thanthe algorithms of the Boyer-Moore [6] or the BDM [9, 8] families. We describe in this section theBDM pattern matching algorithm, which is able to skip some text characters.BDM is based on a su�x automaton. A su�x automaton on a pattern P = p1p2 : : : pm is anautomaton that recognizes all the su�xes of P . A nondeterministic version of this automaton hasa very regular structure and is shown in Figure 2. In the BDM algorithm [9, 8], this automaton ismade deterministic.
a b c d e f g

1 2 3 4 5 6 70

I
ε ε ε ε ε ε ε εFigure 2: A nondeterministic su�x automaton for the pattern P = "abcdefg". Dashed linesrepresent "-transitions (i.e. they occur without consuming any input).A very important fact is that this automaton can be used not only to recognize the su�xes ofP , but also factors of P . Note that there is a path labeled by x from the initial state if and only ifx is a factor of P . That is, the NFA will not run out of active states as long as it has read a factorof P .The su�x automaton is used to design a simple pattern matching algorithm. This algorithmruns in O(mn) time in the worst case, but it is optimal on average (O(n log�m=m) time). Othermore complex variations such as TurboBDM [9] and MultiBDM [8, 27] achieve linear time in theworst case.To search for a pattern P = p1p2 : : : pm in a text T = t1t2 : : : tn, the su�x automaton ofP r = pmpm�1 : : :p1 (i.e the pattern read backwards) is built. A window of length m is slid alongthe text, from left to right. The algorithm searches backward inside the window for a factor ofthe pattern P using the su�x automaton, i.e. the su�x automaton of the reverse pattern is fedwith the characters in the text window read backward. This backward search ends in two possibleforms:1. We fail to recognize a factor, i.e we reach a window character � that makes the automaton runout of active states. This means that the su�x of the window we have read is not anymorea factor of P . Figure 3 illustrates this case. We then shift the window to the right, itsstarting position corresponding to the position following the character � (we cannot miss an8

occurrence because in that case the su�x automaton would have found a factor of it in thewindow).
New searchWindow Search for a factor with the su�x automaton� uFail to recognize a factor at �.� New windowSafe shift Figure 3: Su�x automaton search.2. We reach the beginning of the window, therefore recognizing the pattern P since the length-mwindow is a factor of P (indeed, it is equal to P). We report the occurrence, and shift thewindow by one position.3.3 Combining Shift-Or and BDM: the BNDM AlgorithmWe describe in this section the BNDM pattern matching algorithm [22]. This algorithm, a com-bination of Shift-Or and BDM, has all the advantages of the bit-parallel forward scan algorithm,and in addition it is able to skip some text characters like BDM.Instead of making the automaton of Figure 2 deterministic, BNDM simulates it using bit-parallelism. The bit-parallel simulation works as follows. Just as for Shift-And, we keep the stateof the search using m bits of a computer word D = dm : : :d1. Each time we position the window inthe text we initializeD = 1m (this corresponds to the "-transitions) and scan the window backward.For each new text character read in the window we update D. If we run out of 1's in D then therecannot be a match and we suspend the scanning and shift the window. If, on the other hand, wecan perform m iterations, then we report the match.We use a table B which for each character c stores a bit mask. This mask sets the bitscorresponding to the positions where the reversed pattern has the character c (just as in the Shift-And algorithm). The formula to update D isD0 � (D & B[tj]) << 1BNDM is not only faster than Shift-Or and BDM (for about 5 � m � 100), but it can accom-modate all the extensions mentioned in Section 2. In particular, it can easily deal with classes ofcharacters by just altering the preprocessing, and it is by far the fastest algorithm to search forthis type of patterns [22, 23]. 9

Note that this type of search is called \backward" scanning because the text characters insidethe window are read backwards. However, the search progresses from left to right in the text asthe window is shifted. There have been other (few) attempts to skip characters under a Shift-Orapproach, for example [10].3.4 Regular Expression SearchingBit-parallelism has been successfully used to deal with regular expressions. Shift-Or was extendedin two ways [30, 24, 25] to deal with this case, �rst using the Thompson [28] and later Glushkov's[5] constructions of NFAs from the regular expression. Figure 4 shows both constructions for thepattern "abcd(d|")(e|f)de".
a b c d

1 2 30

e

f

ε ε

εε
d

ε

ε ε

εε

d e

13

14 15 16

10

11

127

9

86

5

4

a
4 5 9

d

b c d d e
1 2 3 870 6

d

e

f
f

eFigure 4: Thompson's (top) and Glushkov's (bottom) resulting NFAs for the regular expression"abcd(d|")(e|f)de".Given a regular expression with m positions (each character/class de�nes a new position),Thompson's construction produces an automaton of up to 2m states. Its advantage is that thestates of the resulting automaton can be arranged in a bit mask so that all the transitions moveforward except the "-transitions. This is used [30] for a bit-parallel simulation which moves the bitsforward (as for the simple Shift-Or) and then applies all the moves corresponding to "-transitions.For this sake, a table E mapping from bit masks to bit masks is precomputed, so that E[x] yieldsa bit mask where x has been expanded with all the "-moves. The code for a transition is thereforeD � ((D << 1) j 0s�11) & B[tj]D � E[D]We have used s as the number of states in the Thompson automaton, where m < s � 2m.The main problem is that the E table has 2s entries. This is handled by splitting the argumenthorizontally, so for example if s = 32 then two tables E1 and E2 can be created which receivehalf masks and deliver full masks with the "-expansion of only the bits of their half (of coursethe "-transitions can go to the other half, this is why they deliver full masks). In this way theamount of memory required is largely reduced at the cost of two operations to build the real Evalue. This takes advantage of the fact that, if a bit mask x is split in two halves x = yz, thenE[yz] = E[y0jzj] j E[0jyjz]. 10

Glushkov's construction has the advantage of producing an automatonwith exactlym+1 states,which can as low as half the states generated by Thompson's construction. On the other hand,the structure of arrows is not regular and the trick of forward shift plus "-moves cannot be used.Instead, it has another property: all the arrows leading to a given state are labeled by the samecharacter or class. This property has been used recently [25] to provide a space-economical bitparallel simulation where the code for a transition is:D � T [D] & B[tj]where T is a table that receives a bit map D of states and delivers another bit map of statesreachable from states in D, no matter by which characters. The "-transitions do not have to bedealt with because Glushkov's construction does not produce them. The T table can be horizontallypartitioned as well.It has been shown [25] that a bit-parallel implementation of Glushkov's construction is fasterthan one of Thompson's, which should be clear since in general the tables obtained are much smaller.An interesting improvement, possible thanks to bit parallelism, is that classes of characters can bedealt with the normal mechanism used for simple patterns, without generating one state for eachalternative.On the other hand, a deterministic automaton (DFA) can be built from the nondeterministicone. It is not hard to see that indeed the previous constructions simulate a DFA, since eachstate of the DFA can be seen as a set of states of the NFA, and each possible set of states of theNFA is represented by a bitmask. Normally the DFA takes less space because only the reachablecombinations are generated and stored, while for direct access to the tables we need to store inthe bit-parallel simulations all the possible combinations of active and inactive states. On theother hand, bit-parallelism permits extending regular expressions with classes of characters andother features (e.g. approximate searching), which is di�cult otherwise. Furthermore, Glushkov'sconstruction permits not storing a table of states � characters, of worst case size O(2m�) in thecase of a DFA, but just the table T of size O(2m). Finally, in case of space problems the techniqueof splitting the bitmasks can be applied.Therefore, we use the bit-parallel simulation of Glushkov's automaton for nrgrep. After theupdate operation and we check whether a �nal state of D is reached (this means just an andoperation with the mask of �nal states). Describing Glushkov's NFA construction algorithm [5] isoutside the scope of this paper, but it takes O(m2) time. The result of the construction can berepresented as a table B[c], which yields the states reached by character c (no matter from where),and a table Follow[i], which yields the bitmask of states activated from state i, no matter by whichcharacter. From Follow, the deterministic version T can be built in O(2m) worst case time withthe following procedure:T [0] � 0for i 2 0 : : :mfor j 2 0 : : :2i � 1T [2i + j] � Follow[i] j T [j]A backward search algorithm for regular expressions is also possible [24, 25] and in some casesthe search is much faster than a forward search. The idea is as follows. First, we compute the11

length of the shortest path from the initial to a �nal state (using a simple graph algorithm). Thiswill be the length of the window in order not to lose any occurrence. Second, we reverse all thearrows of the automaton, make all the states initial, and take as the only �nal state the originalinitial state. The resulting automaton will have active states as long as we have read a reversefactor of a string matching the regular expression, and will reach its �nal state when we read inparticular a reverse pre�x. Figure 5 illustrates the result.
ε

e d

f
f

edda b c d eFigure 5: An automaton recognizing reverse pre�xes of "abcd(d|")(e|f)de", based on theGlushkov construction of Figure 4.We apply the same BNDM technique of reading backwards the text window. If the automatonruns out of active states, then no factor of an occurrence of the pattern is present in the windowand we can shift the window, aligning its beginning to one position after the one that caused themismatch. If, on the other hand, we reach the beginning of the window in the backward scan, wecannot guarantee that an occurrence has been found. When searching for a simple string, the onlyway to reach the window beginning is to have read the whole pattern. Regular expressions, on theother hand, can have occurrences of di�erent length, and all we know is that we have matched afactor. There are in fact two choices.� The �nal state of the automaton is not active; which means that we have not read a pre�xof an occurrence. In this case we shift the window by one position and resume the scanning.� The �nal state of the automaton is active. Since we have found a pattern pre�x, we have toperform a forward veri�cation starting at the window initial position until either we �nd anoccurrence or the automaton runs out of active states.So we need, apart from the reversed automaton, also the normal automaton (without initialself-loop, as in Figure 4) for the veri�cation of potential occurrences.An extra complication comes from the fact that the NFA with reverse arrows does not have theproperty that all arrows leading to a state are labeled by the same character. Rather, all the arrowsleaving a state are labeled by the same character. Hence the simulation can be done as followsD � TR[D & B[tj]]where TR corresponds to the reverse arrows but B is that of the forward automaton [25].3.5 Approximate String MatchingApproximate searching means �nding the text substrings that can be converted into the patternby performing at most k \operations" on them. Permitting a limited number k of such di�erences12

(also called errors) is an essential tool to recover from typing, spelling and OCR (optical characterrecognition) errors. Despite that approximate pattern matching can be reduced to a problem ofregular expression searching, the regular expression grows exponentially with the number of allowederrors (or di�erences).A �rst design decision is what should be taken as an error. Based on existing surveys [14, 19],we have chosen the following four types of errors: insertion of characters, deletion of characters, re-placement of a character by another character, and exchange of adjacent characters (transposition).These errors are symmetric in the sense that one can consider that they occur in the pattern or inthe text and the result is the same. Traditionally, only the �rst three errors have been permittedbecause transposition, despite being recognized as a very important source of errors, is harder tohandle. However, the problem is known to grow very fast in complexity as k increases, and sincea transposition can only be simulated with two errors of the other kind (i.e. an insertion and adeletion), we would need to double k in order to obtain a similar result. One of the algorithmiccontributions of nrgrep is a bit-parallel algorithm for permitting the transpositions together withthe other types of errors. This permits us searching with smaller k values and hence obtain fastersearching with similar (or better) retrieval results.Approximate searching is characterized by the fact that no known search algorithm is the bestin all cases [19]. From the wealth of existing solutions, we have selected those that adapt best toour goal of exibility and uniformity. Three main ideas can be used.3.5.1 Forward SearchingThe most basic idea that is well suited to bit parallelism [30] is to have k + 1 similar automata,representing the state of the search when zero to k errors have occurred. Apart from the normalarrows inside each automaton, there are arrows going from automaton i to i + 1 corresponding tothe di�erent errors. The original approach [30] did not consider transpositions, which have beendealt with later [16].Figure 6 shows an example with k = 2. Let us �rst focus on the big nodes and solid/dashedlines. Apart from the normal forward arrows we have three types of arrows that lead from eachrow to the next one (i.e. increment the number of errors): vertical arrows, which represent theinsertion of characters in the pattern (since they advance in the text but not in the pattern);diagonal arrows, which represent replacement of the current text character by a pattern character(since they advance in the text and in the pattern); and dashed diagonal arrows ("-transitions),which represent deletion of characters in the pattern (since they advance in the pattern withoutconsuming any text input). The remaining arrows (the dotted ones) represent transpositions, whichpermit reading the next two pattern characters in the wrong order and move to the next row. Thisis achieved by means of \temporary" states, which we have drawn as smaller circles.If we disregard the transpositions, there are di�erent ways to simulate this automaton in O(1)time when it �ts in a computer word [3, 18], but no bit parallel solution has been presented toaccount for the transpositions. This is one of our contributions and is explained later in the paper.We extend a simpler bit parallel simulation [30], which takes O(k) time per text character as longas m = O(w). The technique stores each row in a machine word, R0 : : :Rk, just as we did forShift-And in Section 3.1. The bitmasks Ri are initialized to 0m�i1i to account for i possible initialdeletions in the pattern. The update procedure to produce R0 upon reading text character tj is as13

2 errors

0 errors

1 error

b

b

b

a

a

a

c

c

c d

d

d

b

b

a

c d

dc

a b c

cb

Figure 6: A nondeterministic automaton accepting the pattern "abcd" with at most 2 errors.Unlabeled solid arrows match any character, while the dashed (not dotted) lines are "-transitions.follows:R00 � ((R0 << 1) j 0m�11) & B[tj]for i 2 1 : : :k doR0i � ((Ri << 1) & B[tj]) j Ri�1 j (Ri�1 << 1) j (R0i�1 << 1)where of course many coding optimizations are possible (and are done in nrgrep) but make the codeless clear. In particular, using the complemented version of the representation (as in Shift-Or) is abit faster.The rationale of the procedure is as follows. R0 has the same update formula as for the Shift-And algorithm. For the others, the update formula is the or of four possible facts. The �rst onecorresponds to the normal forward arrows (note that there is no initial self-loop for them, only forR0). The second one brings 1's (state activations) from the upper row at the same position, whichcorresponds to a vertical arrow, i.e. an insertion. The third one brings 1's from the upper row atthe previous positions (this is obtained with the left shift), corresponding to a diagonal arrow, i.e.a replacement. The fourth one is similar but it works on the newer value of the previous row (R0i�1instead of Ri�1), and hence it corresponds to an "-transition, i.e. a deletion.A match is detected when Rk & 10m�1 is not zero. It is not hard to show that whenever the�nal state of Ri is active, the �nal state of Rk is active too, so it su�ces to consider Rk as the only�nal state.3.5.2 Backward SearchingBackward searching can be easily adapted from the forward searching automaton following thesame techniques used for exact searching [22, 23]. That is, we build the automaton of Figure 6 onthe reverse pattern, consider all the states as initial ones, and consider as the only �nal state the�rst node of the last row. This will recognize all the reverse pre�xes of P allowing at most k errors,and will have active states as long as some factor of P has been seen (with at most k errors).Some observations are of interest. First, note that we will never shift the window before exam-ining at least k+1 characters (since we cannot make k errors before that). Second, the length of the14

window has to be that of the shortest possible match, which, because of deletions in the pattern,is of length m � k. Third, just as it happens with regular expressions, the fact that we arrive tothe beginning of the window with some active states in the automaton does not immediately meanthat we have an occurrence, so we have to check the text for a complete occurrence starting at thewindow beginning.It has been shown [19] that this algorithm takes time O(k(k+ log�m)=(m� k)) for m � w.3.5.3 Splitting into k + 1 SubpatternsA well known property [30, 19] establishes that, under the model of insertions, deletions, andreplacements, if the pattern is cut in k+ 1 contiguous pieces, then at least one of the pieces occursunchanged inside any occurrences with k errors or less. This is easily veri�ed because each operationcan alter at most one piece. So the technique consists of performing a multipattern searching forthe pieces without errors, and checking the text surrounding the occurrences of each piece for acomplete approximate occurrence of the whole pattern. This leads to the fastest algorithms for lowerror levels [20, 19].The property is not true if we add the transposition, because this operation can alter twocontiguous pieces at the same time. Much better than splitting the pattern in 2k + 1 pieces is tosplit it in k+ 1 pieces and leave one unused character between each pair of pieces [19]. Under thispartition a transposition can alter at most one piece.We are now confronted with a multipattern search problem. This can be solved with a verysimple modi�cation of the single pattern backward search algorithm [22, 23]. Consider the pattern"abracadabra" searched with two errors. We split it in "abr", "cad" and "bra". Figure 7 depictsthe automaton used for backward searching of the three pieces. This is implemented with the samebit parallel mechanism as for a single pattern, except that (1) there are more �nal states; and(2) an extra bit mask is necessary to avoid propagating 1's by the missing arrows. This extra bitmask is implemented at no cost by removing the corresponding 1's from the B mask during thepreprocessing. Note that for this to work we need that all the pieces have the same length.
a b a c a b r adar

εFigure 7: An automaton recognizing reverse pre�xes of selected pieces of "abracadabra".4 Searching for Simple PatternsNrgrep directly uses the BNDM algorithm when it searches for simple patterns. However, somemodi�cations are necessary to convert the pattern matching algorithm into a search software.4.1 Record Oriented OutputThe �rst issue to consider is what will we report from the results of the search. Printing the textpositions i where a match occurs is normally of little help for the user. Printing the text portion15

that matched (i.e. the occurrence) does not help much either, because this is equal to the pattern(at least if no classes of characters are used). We have followed agrep's philosophy: the most usefulway to present the result is to print a context of the text portion that matched the pattern.This context is de�ned as follows. The text is considered to be a sequence of records. A user-de�ned record delimiter determines the text positions where a new record starts. The text areasuntil the �rst record separator and after the last record separators are considered records as well.When a pattern is found in the text, the whole record where the occurrence lies is printed. Ifthe occurrence overlaps with or contains a record delimiter then it is not considered a patternoccurrence.The record delimiter is by default the newline character, but the user can specify any othersimple pattern as a record delimiter. For example, the string "^From " can be used to delimite-mail messages in a mail archive, therefore being able to retrieve complete e-mails that contain agiven string. The system permits to specify whether the record delimiter should be contained inthe next or in the previous record. Moreover, nrgrep permits to specify an extra record separatorwhen the records are printed (e.g. add another newline).It should be clear by now that searching for longer strings is faster than for shorter ones. Sincerecord delimiters tend to be short strings, it is not a good idea to delimit the text records �rst andthen search for the pattern inside each record. Rather, we prefer to search for the pattern in thetext without any consideration for record separators and, when the pattern is found, search for thenext and previous record delimiters. At this time we may determine that the occurrence overlapsa record delimiter and discard it. Note that we have to be able to search for record delimitersforward and backward. We use the same BNDM algorithm to search for record delimiters.There are some nrgrep options, however, that make it necessary a record-wise traversal: printingrecord numbers or printing records that do not contain the pattern. In this case we advance in the�le by delimiting the records �rst and then searching for the pattern inside each record.4.2 Text Bu�eringText bu�ering is necessary to cope with large �les and to achieve optimum performance. Forexample, in nrgrep the bu�er size is set to 64 Kb because it �ts well the cache size of manymachines, but this default can be overriden by the user. To avoid complex interactions betweenrecord limits and bu�er limits, we discard the last incomplete record each time we read a newbu�er from disk. The \discarded" partial record is moved to the beginning of the bu�er beforereading more text at the next bu�er loading. If a record is larger than the bu�er size then anarti�cial record delimiter is inserted to correct the situation (and a warning message is printed).Note that this also requires the ability to search for the record delimiter in backward direction.This technique works well unless the record size is large compared to the bu�er size, in which casethe user should enlarge the bu�er size using the appropriate option.4.3 ContextsAnother capability of nrgrep is context speci�cation. This means that the pattern occurrence hasto be surrounded by certain characters in order to be considered as such. For example, one mayspecify that the pattern should match as a whole word (i.e. surrounded by separators), or a whole16

record (i.e. surrounded by record delimiters). However, it is not just a matter of adding thecontext strings at the ends of the pattern because, for example, a word may be in the beginning ofa record and hence the separator may be absent. We solve this by checking each occurrence foundto determine that the required string is present before/after the occurrence or that we reached thebeginning/end of the record.This seems trivial for a simple pattern because its length is �xed, but for more complex patterns(such as regular expressions) where there may be many di�erent occurrences in the same text area,we need a way to discard possible occurrences and still check for other ones that are basically inthe same place. For example, the search for "a*ba*" as a whole word should match in the text"aaa aabaa aaa". Despite that "b" alone is an occurrence of the pattern that does not �t thewhole word criterion, the occurrence can be extended to another one that does. We return to thisissue later.4.4 Subpattern FilterThe BNDM algorithm is designed for the case m � w. Otherwise, we have in principle to simulatethe algorithm using many computer words. However, as shown in [22, 23], it is much faster to prunethe pattern to its �rst w characters, search for that subpattern, and try to extend its occurrences toan occurrence of the complete pattern. This is because, for reasonably large w, the probability of�nding a pattern of length w is low enough to make the cost of unnecessary veri�cations negligible.On the other hand, the bene�t of a possible shift of length m > w would be cancelled by the needto update dm=we computer words per text character read.Hence we select a contiguous subpattern of w characters (or classes, remember that a classneeds also one bit, the same as a character) and search for it. Its occurrences are veri�ed with thecomplete pattern prior to checking records and contexts.The main point is which part of the pattern to search for. In the abstract algorithms of [22, 23],any part is equally good or bad because a uniformly distributed model is assumed. In practice,di�erent characters have di�erent probabilities, and some pattern positions may have classes ofcharacters, whose probability is the sum of those of the individual characters. This in fact isfarther reaching than the problem of the limit w in the length of the pattern: even in a shortpattern we may prefer not to include a part of the pattern in the fast scanning part. This isdiscussed in detail in the next subsection.4.5 Selecting the Optimal Scanning SubpatternLet us consider the pattern "hello...a". Pattern positions 6 to 8 match all the alphabet, whichmeans that the search with the nondeterministic automaton inside the window will examine at leastfour window positions (even in a text window like "xxxxxxxxx") and will shift at most by 6, so theaverage number of comparisons per character is at the very best 2=3. If we take the subpattern"hello" then we can have an average much closer to 1=5 operations per text character.We have designed a general algorithm that, under the assumption that the text characters areindependent, �nds the best search subpattern in O(m3) worst case time (although in practice itis closer to O(m2 logm)). This is a modest overhead in most practical text search scenarios. Thealgorithm is tailored to the BDM/BNDM search technique and works as follows.17

First, we build an array prob[1 : : :m], which stores the sum of the probabilities of the charactersparticipating in the class of each pattern position. Nrgrep stores an array of English letter prob-abilities, but this can be tailored to other purposes and the �nal scheme is robust with respect tochanges in those probabilities from one language to another. The construction of prob takes O(m�)time in the worst case.Second, we build an array pprob[1 : : :m; 1 : : :m], where pprob[i; `] stores the probability ofmatching the subpattern Pi:::i+`�1. This is computed in O(m2) time by dynamic programming, asfollows pprob[i; 0] � 1 ; pprob[i; `+ 1] � prob[i]� pprob[i+ 1; `]for increasing ` values.Third, we build an arraymprob[1 : : :m; 1 : : :m; 1 : : :m], wheremprob[i; j; `] gives the probabilityof matching any pattern substring of length ` in Pi:::j�1. This is computed in O(m3) time bydynamic programming using the formulasmprob[i; j; 0] � 1(` > 0) mprob[i; i+ `� 1; `] � 0(` > 0; j � i � `) mprob[i; j; `] � 1� (1� pprob[i; `])(1�mprob[i+ 1; j; `])for decreasing i values. Note that we have used the formula for the union of independent eventsPr(A [B) = 1� (1� Pr(A))(1� Pr(B)).Finally, the average cost per character associated to a subpattern Pi:::j is computed with thefollowing rationale. With probability 1 we inspect one window character. If any pattern positionin the range i : : : j matches the window character read, then we read a second character (recallSection 3.2). If any consecutive pair of pattern positions in i : : : j matches the two window charactersread, then we read a third character, and so on. This is what we have computed in mprob. Theexpected number of window characters to read is thereforepcost[i; j] � mprob[i; j; 0]+mprob[i; j; 1]+ : : :+mprob[i; j; j� i] (1)In the BDM/BNDM algorithm, as soon as the window su�x read ceases to be found in thepattern, we shift the window to the position following the character that caused the mismatch. Asimpli�ed computation considers that the above pcost[i; j] (which is an average) can be used as a�xed value, and therefore we approximate the real average number of operations per text characteras ops[i; j] � pcost[i; j]j � i� pcost[i; j] + 1which is the average number of characters inspected divided by the shift obtained. Once this isobtained we select the (i; j) pair that minimizes the work to do. We also avoid considering caseswhere j � i > w. The total time needed to obtain this has been O(m3).The amount of work is reduced by noting that we can check the ranges in increasing order ofi values, and therefore we do not need the �rst coordinate of mprob (which can be independentlycomputed for each i). Moreover, we start by considering maximum j, since in practice longer18

a b c d e f g h

ε εεFigure 8: A nondeterministic automaton accepting the pattern "abc?d?efg?h".subpatterns tend to be better than shorter ones. We keep the best value found up to now andavoid considering ranges (i; j) which cannot be better than the current best solution even forpcost[i; j] = 1 (note that since i is tried in ascending order and j in descending order, the wholepattern is tried �rst). This reduces the cost to O(m2 logm) in practice.As a result of this procedure we not only obtain the best subpattern to search for (under asimpli�ed cost model) but also a hint of how many operations per character will we perform. Ifthis number is larger than 1, then it is faster and safer to switch to plain Shift-Or. This is preciselywhat nrgrep does.5 Searching for Extended PatternsAs explained in Section 2, we have considered optional and repeatable (classes of) characters asthe features allowed in our extended patterns. Each of these features is treated in a di�erent wayand all are integrated in an automaton which is more general than that of Figure 1. Over thisautomaton we later apply the general forward and backward search machinery.5.1 Optional CharactersLet us consider the pattern "abc?d?efg?h". A nondeterministic automaton accepting that patternis drawn in Figure 8.The �gure is chosen so as to show that multiple consecutive optional characters could exist.This outrules the simplest solution (which works when that does not happen): one could set up abit mask O with ones in the optional positions (in our example, O = 01001100), and let the onesin previous states of D propagate to them. Hence, after the normal update to D, we could performD � D j ((D << 1) & O)For example, this works if we have read "abcdef" (D = 00100000) and the next text character is"h", since the above operation would convert D to 01100000 before operating it against B["h"] =10000000. However, it does not work if the text is "abefgh", where both consecutive optionalcharacters have been omitted.A general solution needs to propagate each active state in D so as to ood all the states aheadit that correspond to optional characters. In our example, we would like that when D is 00000010(and in general whenever its second bit is active), it becomes 00001110 after the ooding.This is achieved with three masks, A, I and F , marking di�erent aspects of the states related tooptional characters. More speci�cally, the i-th bit of A is set if this position in P is optional; thatof I is set if this is the position of the �rst optional character of a block (of consecutive optionalcharacters); and that of F is set if this is the position after the last optional character of a block.19

a b c d e f g h

c

ε

fFigure 9: A nondeterministic automaton accepting the pattern "abc+def*gh".In our example, A = 01001100, I = 01000100 and F = 10010000. After performing the normaltransition on D, we do as followsDf � D j FD � D j (A & ((� (Df � I)) bDf))whose rationale is as follows. The �rst line adds a 1 at the positions following optional blocks inD. In the second line we add some active states to D. Since the states to add are and-ed withA, let us just consider what happens inside a speci�c optional block. The e�ect that we want isthat the �rst 1 (counting from the right) oods all the block bits to the left of it. We subtract Ifrom Df , which is equivalent to subtracting 1 at each block. This subtraction cannot propagateits e�ect outside the block because there is a 1 (coming from \jF" in Df) after the highest bitof the block. The e�ect of the subtraction is that all the bits until the �rst 1 (counting fromthe right) are reversed (e.g. 1000000 � 1 = 0111111), and the rest are unchanged. In general,bxbx�1 : : : bx�y10z � 1 = bxbx�1 : : : bx�y01z. When this is reversed by the \�" operation we get� bx � bx�1 : : : � bx�y10z . Finally, when this is xor-ed with the same Df = bxbx�1 : : : bx�y10z weget 1x�y+10z+1.This is precisely the e�ect we wanted: the last 1 ooded all the bits to the left. That 1 itselfhas been converted to zero, however, but it is restored when the result is or-ed with the original D.This works even if the last active state in the optional block is the leftmost bit of the block. Notethat it is necessary to and with A at the end to �lter out the bits of F that survive the processwhenever the block is not all zeros. On the other hand, it is necessary to or Df with F because ablock of all zeros would propagate the \�" operation outside its limits.Note that we could have a border problem if there are optional characters at the beginning ofthe pattern. As seen later, however, this cannot happen when we select the best subpattern forfast scanning, but it has to be dealt with when verifying the whole pattern.5.2 Repeatable CharactersThere are two kinds of repeatable characters, marked in the syntax by "*" (zero or more repetitions)and "+" (one or more repetitions). Each of them can be simulated using the other since a+ = aa�and a� = a+?. For involved technical reasons (that are related, for example, to the ability to buildeasily the masks for the reversed patterns and border conditions for the veri�cation) we preferredthe second choice, despite that it uses one more bit than necessary for the "*" operation. Figure 9shows the automaton for "abc+def*gh".The bit-parallel simulation of this automaton is more straightforward than for the optionalcharacters. We just need to have a mask S[c] that for each character c tells which pattern positions20

can remain active when we read character c. In the above example, S["c"] = 00000100 and S["f"] =00100000. The "-transition is handled with the mechanism for optional characters. Therefore acomplete simulation step permitting optional and repeatable characters is as follows.D � ((D << 1) j 0m�11) & B[tj]) j (D & S[tj])Df � D j FD � D j (A & ((� (Df � I)) bDf))5.3 Forward and Backward SearchOur aim is to extend the approach used for simple patterns to patterns containing optional symbols.Forward scanning is immediate once we learn how to simulate the di�erent automata using bitparallelism. We just have to add an initial self-loop to enable text scanning (this is already donein the last formula). We detect the �nal positions of occurrences and then check the surroundingrecord and context conditions.Backward searching needs, in principle, just to obtain an automaton that recognizes reversefactors of the pattern. This is obtained by building exactly the same automaton of the forwardscan (without initial self-loop) on the reverse pattern, and letting all the states be initial (i.e.initializing D with all active states). However, there are some problems to deal with, all of themderiving from the fact that the occurrences have variable length now.Since the occurrences do not have a �xed length, we have to compute the minimum lengthof a possible match of the pattern (e.g. 7 in the example "abc+def*gh") and use this value asthe width of the search window in order not to lose any potential occurrence. As before, we setup an automaton that recognizes all the reverse factors of the automaton and use it to traversethe window backward. Because the occurrences are not all of the same length, the fact that wearrive to the beginning of the window does not immediately imply that the pattern is present. Forexample, a 7-length text window could be "cdefffg". Despite that this is a factor of the patternand therefore we would reach the window beginning, no pattern occurrence starts in the beginningof the window.Therefore, each time we arrive to the beginning of the window we have to check that the initialstate is active and then run a forward veri�cation from the window beginning on, until either we�nd a match (i.e. the last automaton state is activated) or we determine that no match can startat the window position under consideration (i.e. the automaton runs out of active states). Theautomaton used for this forward veri�cation is the same as for forward scanning, except that theinitial self-loop is absent. However, as we see next, veri�cation is in fact a little more complicatedand we mix it with the rest of veri�cations that are needed on every occurrence (surrounding record,context, etc.).5.4 Verifying OccurrencesIn fact, the veri�cation is a little di�erent since, as we see in the next subsection, we select a subpat-tern for the scanning (as before, this is necessary if the pattern has more than w characters/classes,but can also be convenient on shorter patterns). Say that P = P1SP2, where S is the subpatternthat has been selected for fast text scanning. Each time the backward search determines that a21

given text position is a potential start point for an occurrence of S, we obtain the surroundingrecord and check, from the candidate text position, the occurrence of SP2 in forward directionand P1 in backward direction (do not confuse forward/backward scanning with forward/backwardveri�cation!).When we had a simple pattern, this just needed to check that each text character belongedto the corresponding pattern class. Since the occurrences have variable length, we need to usepre-built automata for SP2 and for the reversed version of P1. These automata do not have theinitial self-loop. However, this time we need to use a multi-word bit-parallel simulation, since thepatterns could be longer than the computer word.Note also that, under this scenario, the forward scanning also needs veri�cation. In this casewe �nd a guaranteed end position of S in the text (not a candidate one as for backward searching).Hence we check, from that �nal position, P2 in forward direction and P1S in backward direction.Note that we need to check S again because the automaton cannot tell where is the beginning ofS, and there could be various beginning positions.A �nal complication is introduced by record limits and context conditions. Since we requirethat a valid occurrence lies totally inside a record, we should submit for veri�cation the smallestpossible occurrence. For example, the pattern "b[ab]*cde?" has many occurrences in the textrecord "bbbcdee", and we should report "bcd" in order to guarantee that no valid occurrence willbe missed. However, it is possible that the context conditions require the presence of certain stringsimmediately preceding or following the occurrence. For example, if the context condition tells thatthe occurrence should begin a record, then the minimal occurrence "bcd" would not qualify, while"bbbcde" would do.Fortunately, context conditions about the initial and �nal positions of occurrences are indepen-dent, and hence we can check them separately. So we treat the forward and backward parts of theveri�cation separately. For each one, we traverse the text and �nd all the positions that representthe beginning (or ending) of occurrences and submit them to the context checking mechanism untilone is accepted, the record ends, or the automaton runs out of active states.5.5 Selecting a Good Search SubpatternAs before, we would like to select the best subpattern for text scanning, since we have anywayto check the potential occurrences. We want to apply an algorithm similar to that for simplepatterns. However, this time the problem is more complicated because there are more arrows inthe automaton.We compute prob as before, adding another array sprob[1 : : :m], which is the probability ofstaying at state i via the S[c] array. The major complication is that a factor of length ` startingat pattern position i does not necessarily �nish at pattern position i + ` � 1. Therefore, we �llan array pprob[1 : : :m; 1 : : :m; 1 : : :L], where L is the minimum length of an occurrence of P (atmost m) and pprob[i; j; `] is the sum of the probabilities of all the factors of length ` that start atposition i and do not reach after pattern position j. In our example "abc+def*gh", pprob[3; 6; 4]should account for "ccccc", "ccccd", "cccde", "ccdef" and "cdeff".22

This is computed as pprob[i; i� 1; `] � 0(i � j) pprob[i; j; 0] � 1(i � j ^ ` > 0) pprob[i; j; `] � prob[i] � pprob[i+ 1; j; `� 1]+ sprob[i] � pprob[i; j; `� 1]+ (if i�th bit of A is set) pprob[i+ 1; j; `]which is �lled for decreasing i and increasing ` in O(m3) time. Note that we are simplifying thecomputation of probabilities, since we are computing the probability of a set of factors as the sumof the individual probabilities, which is only true if the factors are disjoint.Similarly to pprob[i; j; `] we havemprob[i; j; `] as the probability of any factor of length ` startingat position i or later and not surpassing position j. This is trivially computed from pprob as forsimple patterns.Finally, we compute the average cost per character as before. We consider subpatterns fromlength min(m;w) until a length that is so short that we will always prefer the best solution foundup to now. For each subpattern considered we compute the expected cost per window as the sumof the probabilities of the subpatterns of each length, i.e.pcost[i; j] � mprob[i; j; 0]+mprob[i; j; 1]+ : : :+mprob[i; j; j� i]and later obtain the cost per character as pcost[i; j]=(`� pcost[i; j] + 1), where ` is the minimumlength of an ocurrence of the interval (i; j).As for simple patterns, we �ll pprob and mprob in lazy form, together with the computation ofthe best factor. This makes the expected cost of the algorithm closer to O(m2 logm) than to theworst case O(m3) (really O(m2min(m;w))).Note that it is not possible (because it is not optimal) to select a subpattern that starts orends with optional characters or with "*". If it happens that the best subpattern gives one ormore operations per text character, we switch to forward searching and select the �rst min(m;w)characters of the pattern (excluding initial and �nal "?"'s or "*"'s).In particular, note that it is possible that the scanning subpattern selected has not any optionalor repeatable character. In this case we use the scanning algorithm for simple patterns, despitethat at veri�cation time we use the checking algorithm of extended patterns.6 Searching for Regular ExpressionsThe most complex patterns that nrgrep can search for are regular expressions. For this sake, we usethe technique explained in Section 3.4 [24, 25], both for forward and backward searching. However,some aspects need to be dealt with in a real software.6.1 Space ProblemsThe �rst problem is space, since the T table needs O(2m) entries and this can be unmanageable forlong patterns. Despite that we expect that the patterns are not very long in typical text searching,some reasonable solution has to be provided when this is not the case.23

We permit the user to specify the amount of memory that can be used for the table, and splitthe bitmasks in as many parts as needed to meet the space requirements. Since we do not searchfor masks longer than w bits, it is in fact unlikely that the text scanning part needs more than 3or 4 table accesses per text character. Attending to the most common alternatives, we developedseparate code for the cases of 1 and 2 tables, which permits much faster scanning since registerusage is enabled.6.2 Subpattern FilteringAs for simple and extended patterns, we select the best subpattern for the scanning phase, andcheck all the potential occurrences for complete occurrences and for record and context conditions.This means, according to Section 3.4, that we need a forward and a backward automaton for theselected subpattern, and that we also need forward and backward veri�cation automata to checkfor the complete occurrence. An exception is when, given the result of selecting the best factor,we prefer to use forward scanning, in which case only that automaton is needed (but the twoveri�cation automata are still necessary). All the complications addressed for extended patternsare present on regular expressions as well, namely, those derived from the fact that the occurrencesmay have di�erent lengths.It may also happen that, after selecting the search subpattern, it turns out to be just a simpleor an extended pattern, in which case the search is handled by the appropriate search algorithm,which should be faster. The veri�cation is handled as a general regular expression. Note thatheuristics like those of Gnu Grep, which tries to �nd a literal string inside the regular expressionin order to use it as a �lter, are no more than particular cases of our general optimization method.This makes our approach much smoother than others. For example Gnu Grep will be much fasterto search for "c+(aaaaa|bbbbb)c+" (where the strings "caaaaac" and/or "cbbbbbc" can be usedto �lter the search) than for "c+[ab][ab][ab][ab][ab]c+", while the di�erence should not be aslarge.Regarding optimal use of space (and also because accessing smaller tables is faster) we use astate remapping function. When a subset of the states of the automaton is selected for scanningwe build a new automaton with only the necessary states. This reduces the size of the tables.What is left is to explain how we select the best factor to search for. This is much more complexon regular expressions than on extended patterns.6.3 Selecting an Optimal Necessary FactorThe �rst nontrivial task on a regular expression is to determine what is a necessary factor, whichis de�ned as a subexpression that has to match inside every occurrence of the whole expression.For example, "fgh" is not a necessary factor of "ab(cde|fghi)jk", but "cd|fgh" is. Note thatany range of states is a necessary factor in a simple or extended pattern.Determining necessary subexpressions is complicated if we try to do it using just the automatongraph. We rather make use of the syntax tree of the regular expression as well. The main troubleis caused by the \j" operator, which forces us to choose one necessary factor from each branch.We simplify the problem by �xing the minimum occurrence length and searching for a necessaryfactor of that length on each side. In our previous example, we could select "cd|fg" or "de|hi",24

for example, but not "cd|fgh". However, we are able to take the whole construction, namely"cde|fghi".The procedure is recursive and aims at �nding the best necessary factor of minimum length `provided we already know (we consider later the computation of these data)� wlens[0 : : :m], where wlens[i] is the minimum length of a path from i to a �nal state;� mark;markf [0 : : :m; 0 : : :L], where mark[i; `] is the bitmask of all the states reachable in `steps from state i, and markf sets the corresponding �nal states;� cost[0 : : :m; 0 : : :L], where cost[i; `] is the average cost per character if we search for all thepaths of length ` leaving from state i.The method starts by analyzing the root operator of the syntax tree. Depending on the typeof operand, we do as follows.Concatenation: choose the best factor (minimum cost) among both sides of the expression. Notethat factors starting in the left side can continue to the right side, but we are deciding aboutwhere the initial positions are.Union: choose the best factor from each side and take the union of the states. The average cost isthe maximum over the two sides (not the sum, since the cost is related to the average numberof characters to inspect).One or more repetition (+): the minimum is one repetition, so ignore the node and treat thesubtree.Zero or more repetitions (?; �): the subtree cannot contain a necessary factor since it does notneed to appear in the occurrences. Nothing can be found starting inside it. We assign a highcost to the factors starting inside the subexpression to make sure that it is not chosen in aconcatenation, and that a union containing it will be equally undesirable.Simple character or class (tree leaf): there is only one possible initial position, so choose itunless its wlens value is smaller than `.The procedure delivers a set of selected states and the proper initial and �nal states for the se-lected subautomaton. It also delivers a reasonable approximation of the average cost per character.The rest of the work is to obtain the input for this procedure. The ideas are similar as for ex-tended patterns, but the techniques need to make heavier use of graph traversal and are more expen-sive. For example, just computing wlens and L = wlens[initial state], i.e. shortest paths from anystate to a �nal state, we need a Floyd-like algorithm that takes O(Lm3=w) = O(min(m3; m4=w))time.Arrow probabilities prob are loaded as before, but pprob[i; `] now gives the total probability ofall the paths of length ` leaving state i, and it includes the probability of reaching i from a previous25

state. In Glushkov's construction, all the arrows reaching a state have the same label, so pprob iscomputed for increasing ` using the formulaspprob[i; 0] � 1pprob[i; 1] � prob[i](` � 2) pprob[i; `] � prob[i] � Xj;(i;j)2NFApprob[j; `� 1]This takes O(Lm2) = O(min(m3; m2w)) time. At the same time we compute the mark;markfmasks, at a total cost of O(min(m3; m4=w)):mark[i; 0]; markf [i; 0] � 0m+1mark[i; 1]; markf [i; 1] � 0m�i10i�1(` � 2) mark[i; `] � mark[i; `� 1] [[j;(i;j)2NFAmark[j; `� 1](` � 2) markf [i; `] � [j;(i;j)2NFAmarkf [j; `� 1]for increasing ` values. Once pprob is computed, we build mprob[0 : : :m; 0 : : :L; 0 : : :L], so thatmprob[i; `; `0] is the probability of any path of length `0 inside the area mark[i; `]. This is computedin O(L2m2) = O(min(m4; m2w2)) time with the formulas:(`0 > `) mprob[i; `; `0] � 0mprob[i; `; 0] � 1(0 < `0 � `) mprob[i; `; `0] � 1� �1� pprob[i; `0]� Yj;(i;j)2NFA(1�mprob[j; `� 1; `0])Finally, the search cost is computed as always using mprob, in O(L2m) = O(min(m3; mw2))time.Again, it is possible that the scanning subpattern selected is in fact a simpler type of pattern,such as a simple or extended one. In this case we use the appropriate scanning procedure, whichshould be faster.Another nontrivial possibility is that even the best necessary factor is too bad (i.e. it has ahigh predicted cost per character). In this case we select from the initial state of the automaton asubset of it that �ts in the computer word (i.e. at most w states), intended for forward scanning.Since all the occurrences found with this automaton will have to be checked, we would like toselect the subautomaton that �nds the least possible spurious matches. If m � w then we usethe whole automaton, otherwise we try to minimize the probability of getting outside the set ofselected states. To compute this, we consider that the probability of reaching a state is inverselyproportional to its shortest path from the initial state. Hence we add states farther and fartherfrom the root until we have w states. All this takes O(m2) time.This probabilistic assumption is of course simplistic, but an optimal solution is quite hard andat this point we know that the search will be costly anyway.26

6.4 Veri�cationA �nal nontrivial problem is how to determine which states should be present in the forward andbackward veri�cation automata once the best scanning subautomaton is selected. Since we havechosen a necessary factor, we know for sure that the automaton is \cut" in two parts by thenecessary factor. If we have chosen a backward scanning, then the veri�cations start from theinitial states of the scanning automaton, otherwise they start from its �nal states.Figure 10 illustrates these automata for the pattern "abcd(d|")(e|f)de", where we have se-lected "d(d|")(e|f)" as our scanning subexpression. This corresponds to the states f3; 4; 5; 6; 7gof the original automaton. The selected arrows and states are in boldface in the �gure (note that ar-rows leaving from the selected subautomaton are not selected). Depending on whether the selectedsubautomaton is searched with backward or forward scanning, we know the text position whereits initial or �nal states, respectively, were reached. Hence, in backward scanning the veri�cationstarts from the initial states of the subautomaton, while it starts from the �nal states in case offorward scanning. We need two full automata: the original one and one with the arrows reversed.
a

72

f

e

d

8
e

f
f

e

d
6

b c d d e
1 83 4 5

9

0 6
d

e

f

a d
0

d

9

7
b c d e

1 2 3 4 5

Forward verification automaton

Backward scanning

Forward scanning

(reverse arrows)
Backward verification automaton

(reverse arrows)
Backward verification automaton

Forward verification automatonFigure 10: Forward and backward veri�cation automata corresponding to forward and backwardscanning of the automaton for "abcd(d|")(e|f)de". The shaded states are the initial ones forveri�cation. In practice we use the complete automaton because \cutting-o�" the exact veri�cationsubautomaton is too complicated.There is, however, a complication when verifying a regular expression in this scheme. Assumethe search pattern is AXBjCYD, for strings A, B, C, D, X and Y . The algorithm could selectX jY as the scanning subpattern. Now, in the text AXD, the backward veri�cation for AjC would�nd A and the forward veri�cation for BjD would �nd D, and therefore an occurrence would be27

incorrectly triggered. Worse than that, it could be the case that X = Y , so there is no hope indistinguishing what to check based on the initial states of the scanning automaton.The problem, which does not appear in simpler types of patterns, is that there is a set of initialstates for the veri�cation. The backward and forward veri�cations tell us that some state of theset can be extended to a complete occurrence, but there is no guarantee that there is a single statein that set that can be extended in both directions. To overcome this problem we check the initialstates one by one, instead of using a set of initial states and doing just one veri�cation.7 Approximate Pattern MatchingAll the previous algorithms permit specifying a exible search pattern, but they do not allow anydi�erence between the pattern speci�ed and its occurrence in the text. We now consider the problemof permitting at most k insertions, deletions, replacements or transpositions in the pattern.We let the user to specify that only a subset of the four allowed errors are permitted. However,designing one di�erent search algorithm for each subset was impractical and against the spirit ofa uniform software. So we have considered that our criterion of permitting these four types oferrors would be the most commonly preferred in practice and have a unique scanning phase underthis model (as all the previous algorithms, we have a scanning and a veri�cation phase). Only atthe veri�cation phase, which is hopefully executed a few times, we take care of only applying thepermitted operations. Note that we cannot miss any potential match because we scan with themost permissive error model. We also wrote in nrgrep specialized code for k = 1 and k = 2, whichare the most common cases and using a �xed k permits better register usage.7.1 Simple PatternsWe make use of the three techniques described in Section 3.5, choosing the one that promises tobe the best.7.1.1 Forward and Backward SearchingIn forward searching, k + 1 similar rows corresponding to the pattern are used. There exists abit-parallel algorithm to simulate the automaton in case of k insertions, deletions and replacements[30], but despite that the automaton that incorporates transpositions has been depicted [16] (seeFigure 6), no bit parallel formula for the complete operation has been shown. We do that now.We store each row in a machine word, R0 : : :Rk, just as for the base technique. The temporarystates are stored as T1 : : :Tk. The bitmasks Ri are initialized to 0m�i1i as before, while all the Tiare initialized to 0m. The update procedure to produce R0 and T 0 upon reading text character tjis as follows:R00 � ((R0 << 1) j 0m�11) & B[tj]for i 2 1 : : :k doR0i � ((Ri << 1) & B[tj]) j Ri�1 j (Ri�1 << 1) j (R0i�1 << 1)j (Ti & (B[tj] << 1))T 0i � (Ri�1 << 2) & B[tj] 28

The rationale of the procedure is as follows. The �rst three lines are as for the base techniquewithout transpositions. The second line of the formula for R0i corresponds to transpositions. Notethat the new T 0 value is computed accordingly to the old R value, so it is 2 text positions behind.Once we compute the new bitmasks R0 for text character tj , we take those old R masks that werenot updated with tj , shift them in two positions (aligning them for the position tj+1 and killing thestates that do not match tj). This is equivalent to processing two characters: � tj . At the nextiteration (tj+1), we shift left the mask B[tj+1] and kill the states of T that do not match. The nete�ect is that, at iteration j + 1, we are or-ing R0i withTi(j + 1) & (B[tj+1] << 1) = (Ri�1(j) << 2) & B[tj]) & (B[tj+1] << 1)= (((Ri�1(j) << 1) & B[tj+1]) << 1) & B[tj]which corresponds to two forward transitions with the characters tj+1tj . If those characters matchedthe text, then we permit the activation of R0i.A match is detected as before, when Rk & 10m�1 is not zero. Since we may cut w charactersfrom the pattern, the context conditions, and the possibility that the user really wanted to permitonly some types of errors, we have to check each match found by the automaton before reportingit. We detail later the veri�cation procedure.Backward searching is adapted from this technique exactly as it is done from the basic algorithmwithout transpositions. A subtle point is that we cannot consider the automaton dead until boththe R and the T masks run out of active states, since T can awake a dead R.As before, we select the best subpattern to search for, which is of length at most w. Thealgorithm to select the best subpattern has to account for the fact that we are allowing errors. Agood approximation is obtained by considering that any factor will be alive for k turns, and thenadding the normal expected number of window characters to read until the factor does not match.So we add k to cost[i; j] in Eq. (1). Now it is more possible than before (for large k=m) that the�nal cost per character is greater than one, in which case we prefer forward scanning.7.1.2 Splitting into k + 1 SubpatternsThis technique can be directly adapted from previous work, taking care of leaving a hole betweeneach pair of pieces. For the checking of complete occurrences in candidate text areas we use thegeneral veri�cation engine (we have a di�erent preprocessing for the case of each of the k+1 piecesmatching). Note that it makes no sense to design a forward search algorithm for this case: if theaverage cost per character is more than one, this means that the probability of �nding a subpatternis so high that we will pay too much time verifying spurious matches, in which case the wholemethod does not work.The main di�culty that remains is how to �nd the best set of k+1 equal length pieces to searchfor. We start by computing prob and pprob as in Section 4.5. The only di�erence is that now weare interested only in lengths up to L = b(m�k)=(k+1)c, which is the maximum length of a piece(the m�k comes out because there are k unused characters in the partition2). This cuts down thecost to compute these vectors to O(m2=k).2The numerator is in fact converted into m if no transpositions are permitted. Despite that the scanning phase willallow transpositions anyway, the possible matches missed by converting the numerator tom all include transpositions,which by hypothesis are not permitted. 29

Now, we compute pcost[1 : : :m; 1 : : :L], where pcost[i; `] gives the average cost per windowwhen searching for the factor Pi:::i+`�1. For this sake, we compute for each i value the matrixmprob[1 : : :L; 1 : : :L], where mprob[`; r] is the probability of any factor of length r in Pi:::i+`�1.This is computed for each i in O(m2=k2) time as(` < r) mprob[`; r] � 0mprob[`; 0] � 1(` � r > 0) mprob[`; r] � 1� (1� pprob[i+ `� r; r])(1�mprob[`� 1; r])pcost[i; `] � LXr=0mprob[`; r]All this is computed for every i, for increasing `, in O(m3=k2) total time. The justi�cationfor the previous formula is similar to that in Section 4.5. Now, the most interesting part ismbest[1 : : :m; 1 : : :k + 1], where mbest[i; s] is the expected cost per character of the best s pat-tern pieces starting at pattern position i. The strings selected have the same length. Together withmbest we have ibest[i; s], which tells where must the �rst string start in order to obtain mbest.The maximum length for the pieces is L. We try all the lengths from L to 1, until we determinethat even in the best case we cannot improve our current best cost. For each possible piece length` we compute the whole mbest and ibest, as followsmbest[i; 0] � 0(i > m� s` � (s� 1)^ s > 0) mbest[i; s] � 1(i � m� s` � (s� 1)^ s > 0) mbest[i; s] � min(mbest[i+ 1; s];1� (1� cost)(1�mbest[i+ `+ 1; s� 1]))where cost = min(1; pcost[i; `]=(`� pcost[i; `] + 1))which is computed for decreasing i. The rationale is that mbest[i; s] can choose whether to startthe �rst piece immediately or not. The second case is easy since mbest[i+1; s] is already computed,and ibest[i; s] is made equal to ibest[i + 1; s]. In the �rst case, we have that the cost of the �rstpiece is cost and the other s � 1 pieces are chosen in the best way from Pi+`+1:::m according tombest[i + ` + 1; s� 1]. In this case ibest[i; s] = i. Note that as the total cost to search for the kpieces we could take the maximum cost, but we obtained better results by using the model of theprobability of the union of independent events.All this costs in the worst case O(m2), but normally the longest pieces are the best and thecost becomes O(mk). At the end we have the best length ` for the pieces, the expected cost percharacter in mbest[1; k + 1] and the optimal initial positions for the pieces in i0 = ibest[1; k + 1],i1 = ibest[i0+`+1; k], i2 = ibest[i1+`+1; k�1], and so on. Finally, ifmbest[1; k+1] � 1 (actuallylarger than a smaller number) we know that we reach the window beginning with probability highenough and therefore the whole scheme will not work well. In this case we have to choose amongforward or backward searching.Summarizing the costs, we pay O(m3=k2+m2) in the worst case and O(m3=k2+km) in practice.Normally k is small so the cost is close to O(m3) in all cases.30

7.1.3 Veri�cationFinally, we explain the veri�cation procedure. This is necessary because of the context conditions,of the possibly restricted set of edit operations, and because in some cases we are not sure thatthere is actually a match. Veri�cation can be called from the forward scanning (in which case, ingeneral, we have partitioned the pattern in P = P1SP2 and know that at a given text positiona match of S ends); from the backward scanning (where we have partitioned the pattern in thesame way and know that at a given text position the match of a factor of S begins); or from thepartitioning into k + 1 pieces (in which case we have partitioned P = P0S1P1 : : :Sk+1Pk+1 andknow that at a given text position the exact occurrence of a given Si begins).In general, all we know about the possible match of P around text position j is that, if wepartition P = PLPR (a partition that we know), then there should be a match of PL ending at Tjand a match of PR starting at Tj+1, and that the total number of errors should not exceed k. Inall the cases, we have precomputed forward automata corresponding to PL and PR (the �rst one isreversed because the veri�cation goes backward). In forward and backward scanning there is justone choice for PL and PR, while for partitioning into k + 1 pieces there are k + 1 choices (all ofthem are precomputed).We run the forward and backward veri�cation from text character j, in both directions. Fortu-nately, the context conditions that make a match valid or invalid can be checked at each extremeseparately. So we go backward and, among all the positions where a legal match of PL can begin,we choose the one with minimum error level kL. Then we go forward looking for legal occurrencesof PR with k � kL errors. If we �nd one, then we report an occurrence (and the whole record isreported). In fact we take advantage of each match found during the traversal: if we are lookingthe pattern with k errors and �nd a legal endpoint with k0 � k, we still continue searching forbetter occurrences, but now allowing just k0 � 1 errors. This saves time because the veri�cationautomaton needs just to use (k0 � 1) + 1 rows.A complicated condition can arise because of transpositions: the optimal solution may involvetransposing Tj with Tj+1, an operation that we are not permitting because we chose to split theveri�cation there. We solve this in a rather simple but e�ective way: if we cannot �nd an occurrencein a candidate area, we give it a second chance after transposing both characters in the text.7.2 Extended PatternsThe treatment for extended patterns is quite a combination of the extension from simple to extendedpatterns without errors and the use of k + 1 rows or the partition into k + 1 pieces in order topermit k errors. However, there are a few complications that deserve mention.A �rst one is that the propagation of active states due to optional and repeatable charactersdoes not mix well with transpositions (for example, try to draw an automaton that �nds "abc?de"with one transposition in the text "...adbe..."). We solved the problem in a rather practical way.Instead of trying to simulate a complex automaton, we have two parallel automata. The R masksare used in the normal way without permitting transpositions (but permitting the other errors andthe optional and repeatable characters), and they are always one character behind the current textposition. Each T mask is obtained from the R mask of the previous row by processing the last twotext characters in reverse order, and its result is used for the R mask of the same row in the next31

iteration. The code to process text position j is follows (the initial values are as always)R00 � ((R0 << 1) j 0m�11) & B[tj�1]for i 2 1 : : :k doR0i � ((Ri << 1) & B[tj�1]) j (Ri & S[tj�1])j Ri�1 j (Ri�1 << 1) j (R0i�1 << 1) j TiDf � R0i j FR0i � R0i j (A & ((� (Df � I)) b Df))T 0i � ((Ri�1 << 1) j 0m�11) & B[tj] j (Ri�1 & S[tj])Df � T 0i j FT 0i � T 0i j (A & ((� (Df � I)) b Df))T 0i � ((T 0i << 1) j 0m�11) & B[tj�1] j (T 0i & S[tj�1])where the A, I and F masks are de�ned in Section 5.A second complication is that subpattern optimization changes. For the forward and backwardautomata we use the same technique for searching without errors but we add k to the number ofprocessed window positions for any subpattern. So it remains to be explained how is the optimiza-tion for the partitioning into k + 1 subpatterns.We have prob and sprob computed in O(m) time as for normal extended patterns. A �rstcondition is that the k + 1 pieces must be disjoint, so we compute reach[1 : : :m; 1 : : :L0], whereL0 = b(L � k)=(k + 1)c is the maximum length of a piece as before (L is the minimum length ofa pattern occurrence as in Section 5) and reach[i; `] gives the last pattern position reachable in `text characters from i. This is computed in O(m2) time as reach[i; 0] = i and, for increasing ` > 0,t � reach[i; `� 1] + 1while (t < m ^ (A & 0m�t10t�1 6= 0m)) t � t+ 1reach[i; `] � tWe then compute pprob,mprob and pcost exactly as in Section 5.5, in O(m3) time. Finally, theselection of the best set of k + 1 subpatterns is done with mbest and ibest just as in Section 7.1.2,the only di�erence being that reach is used to determine which is the �rst unused position if patternposition i is chosen and a minimum piece length ` has to be reserved for it. The total process takesO(m3) time.7.3 Regular ExpressionsFinally, nrgrep permits searching for regular expressions allowing errors. The same mechanisms usedfor simple and extended patterns are used, namely using k+1 replicas of the search automaton andsplitting the pattern into k + 1 disjoint pieces. Both adaptations present important complicationswith respect to their simpler counterparts.7.3.1 Forward and Backward SearchOne problem in regular expressions is that the concept of \forward" does not immediately meanone shift to the right. Approximate searching with k+1 copies of the NFA of the regular expressionimplies being able to move \forward" from row i to row i+ 1, as Figure 11 shows.32

f

f

e

e

e

f

f

f

d

d

d

deddcba

ededdcba

ededdcba

e

f

0 errors

2 errors

1 errorFigure 11: Glushkov's resulting NFAs for the search of the regular expression "abcd(d|")(e|f)de"with two insertions, deletions or replacements. To simplify the plot, the dashed lines representdeletions and replacements (i.e. they move by �[f"g), while the vertical lines represent insertions(i.e. they move by �).For this sake, we use our table T , which for each state D3 gives the bit mask of all the statesreachable fromD in one step. The update formula upon reading a new text character tj is thereforeR00 � T [R0] & B[tj]oldR0 � R0for i 2 1 : : :k doR0i � (T [Ri] & B[tj]) j Ri�1 j T [Ri�1 j R0i�1] j (T [T [oldRi�1] & B[tj]] & B[tj�1])oldRi�1 � Ri�1The rationale is as follows. R00 is computed according to the simple formula for regular expres-sion searching without errors. For i > 0, R0i permits arrows coming from matching the currentcharacter (T [Ri] & B[tj]), \vertical" arrows representing insertions in the pattern (Ri�1) and \di-agonal" arrows representing replacements (from Ri�1) and deletions (from R0i�1), which are joinedin T [Ri�1jR0i�1]. Finally, transpositions are arranged in a rather simple way. In oldR we store thevalue of R two positions in the past (note the way we update it to avoid having two arrays, oldRand oldoldR), and each time we permit from that state the processing of the last two text characterin reverse order.Forward scanning, backward scanning, and the veri�cation of occurrences are carried out inthe normal way using this update technique. The technique to select the best necessary factor isunaltered except that we add k to the number of characters that are scanned inside every textwindow.3Recall that in the deterministic simulation, each bit mask of active NFA states D is identi�ed as a state.33

7.3.2 Splitting into k + 1 SubexpressionsIf we can select k+1 necessary factors of the regular expression as done in Section 6.3 for selectingone necessary factor, then we can be sure that at least one of them will appear unaltered in anyoccurrence with k errors or less. As before, in order to include the transpositions we need to ensurethat one character is left between consecutive necessary factors.We �rst consider how, once the subexpressions have been selected, can we perform the multi-pattern search. Each subexpression has a set of initial and �nal states. We reverse all the arrowsand convert the formerly initial states of all the subexpressions into �nal states. Since we searchfor any reverse factor of the regular expression, all the states are made initial.We set the window length to the shortest path from an initial to a �nal state. At each windowposition, we read the text characters backward and feed the transformed automaton. Each timewe arrive to a �nal state we know that the pre�x of a necessary subexpression has appeared. If wehappen to be at the beginning of the window then we check for the whole pattern as before. Wekeep masks with the �nal states of each necessary factor in order to determine, from the currentmask of active states, which of them matched (recall that a di�erent veri�cation is triggered foreach).Figure 12 illustrates a possible selection of two necessary factors (corresponding to k = 1) forour running example "abcd(d|")(e|f)de". These are "abc" and "(d|")(e|f)de", where the �rst"d" has been left to separate both necessary factors. Their minimum length is 3, so this is thewindow length to use.
ε

e d

f
f

eda b c d eFigure 12: An automaton recognizing reverse pre�xes of two necessary factors of"abcd(d|")(e|f)de", based on the Glushkov construction of Figure 5. Note that there are notransitions among subexpressions.The di�cult part is how to select k+1 necessary and disjoint factors from a regular expression.Disjoint means that the subautomata do not share states (this ensures that there is a characterseparating them, which is necessary for transpositions). Moreover, we want the best set, and wewant that all them have the same minimum path length from an initial to a �nal state.We believe that an algorithm �nding the optimal choice has a time cost which grows expo-nentially with k. We have therefore made the following simpli�cation. Each node s is assigned anumber Is which corresponds to the length of the shortest path reaching it from the initial state.We do not permit picking arbitrary necessary factors, but only those subautomata formed by allthe states s that have numbers i � Is � i + `, for some i and `. This ` is the minimum windowlength to search using that subautomata, and should be the same for all the necessary factorschosen. Moreover, every arrow leaving out of the chosen subautomaton is dropped. Finally, note34

that if the i values corresponding to any pair of subautomata chosen di�er by more than ` then weare sure that they are disjoint.Figure 13 illustrates this numbering for our running example. The partition obtained in Fig-ure 12 corresponds to choosing the ranges [0; 3] and [4; 7] as the sets of states (this corresponds tothe sets f0; 1; 2; 3g and f4; 5; 6; 7; 8; 9g). Of course the method does not permit us to choose all thelegal sets of subautomata. In this example, the necessary subautomaton f6; 7; 8g cannot be pickedbecause it includes some, but not all, states numbered 5.
7

4

655543210

8 9

d

a b c d d e
1 2 3

e
5 70 6

d

e

f
f

I_sFigure 13: Numbering Glushkov's NFA states for the regular expression "abcd(d|")(e|f)de".Numbering the states is easily done by a closure process starting from the initial state inO(Lm2=w) time, where L is the minimum length of a string matching the whole regular expression.As before, L0 = b(L� k)=(k+1)c is the maximum possible length of a string matching a necessaryfactor.To determine the best factors, we �rst compute prob, pprob, mprob and cost exactly as inSection 6.3. The only di�erence is that now we are only interested in starting from sets of initialstates of the same Is number (there are L possible choices) and we are interested in analyzingfactors of length no more than L0 = O(L=k). This lowers the costs to compute the previous arraysto O((L0m)2) = O((Lm=k)2). We also make sure that we do not select subautomata that needmore than w bits to be represented.Once we have the expected cost of choosing any possible Is value and any possible minimumfactor length `, we can apply the optimization algorithm of Section 7.1.2, since we have in fact\linearized" the problem: thanks to our simpli�cation, the optimization problem is similar to whenwe had a single pattern and needed to extract the best set of k + 1 disjoint factors from it, of asingle length `. This takes O(L2) in the worst case but should in practice be closer to O(kL).Hence the total optimization algorithm needs O(m4) time at worst.8 A Pattern Matching SoftwareFinally, we are in position to describe the software nrgrep. Nrgrep has been developed in ANSI Cand tested on Linux and Solaris platforms. Its source code is publicly available under a Gnu license4. We discuss now its main aspects.4From http://www.dcc.uchile.cl/�gnavarro/pubcode/.35

8.1 Usage and OptionsNrgrep receives in the command line a pattern and a list of �les to search. The syntax of the patternis given in Section 2. If no options are given, nrgrep searches the �les in the order given and printsall the lines where it �nds the pattern. If more than one �le is given then the �le name is printedprior to the lines that have matched inside it, if there is one. If no �le names are given, it receivesthe text from the standard input.The default behavior of nrgrep can be modi�ed with a set of possible options, which pre�xedby the minus sign can precede the pattern speci�cation. Most of them are inspired in agrep:i: the search is case insensitive;w: only whole words matching the pattern are accepted;x: only whole records (e.g. lines) matching the pattern are accepted;c: just counts the matches, does not print them;l: outputs the names of the �les containing matches, but not the matches themselves;G: outputs the whole contents of the �les containing matches;h: does not output �le names;n: prints records preceded by their record number;v: reverse matching, reports the records that do not match.d < delim >: sets the record delimiter to < delim >, which is "\n#" by default. A "#" at theend of the delimiter makes it appear as a part of the previous record (default is next), soby default the end of line is the record delimiter and is considered as a part of the previousrecord;b < bufsize >: sets the bu�er size, default is 64 Kb. This a�ects the e�ciency and the possibilityof cutting very long records that do not �t in a bu�er;s < sep >: prints the string < sep > between each pair of records output;k < err > [idst]: allows up to < err > errors in the matches. If idst is not present the errorspermitted are (i)nsertions, (d)eletions, (s)ubstitutions and (t)ranspositions, otherwise a subsetof them can be speci�ed, e.g. "-k 3ids";L: takes the pattern literally (no special characters);H: explains the usage and exits.We now discuss briey how each of these options are implemented: -i is easily carried out byusing classes of characters; -w and -x are handled using context conditions; -c, -l, -G, -h, -b and-s are easily handled, but some changes are necessary such as stopping the search when the �rstmatch is found for -l and -G; -n and -v are more complicated because they force all the records tobe processed, so we �rst search for the record delimiters and then search for the pattern inside therecords (normally we search for the pattern and �nd record delimiters around occurrences only);-d is arranged by just changing the record delimiter (it has to be a simple pattern, but classes orcharacters are permitted); -k switches to approximate searching and the [idst] ags are consideredat veri�cation time only; and -L avoids the normal parsing process and considers the pattern as asimple string. 36

Of course it is permitted to combine the options in a single string preceded by the minus signor as a sequence of strings, each preceded by the minus sign. Some combinations, however, makeno sense and are automatically overriden (a warning message is issued): �lenames are not printedif the text comes by the standard input; -c and -G are not compatible and -c dominates; -n and-l are not compatible and -l dominates; -l and -G are not compatible and -G dominates; and -Gis ignored when working on the standard input (since -G works by printing the whole �le from theshell).8.2 Parsing the PatternOne important aspect that we have not discussed is how is the parsing done. In principle we justhave to parse a regular expression. However, our parser module carries out some other tasks, suchasParsing our extended syntax: some of our operations, such as "?" and classes of characters,are not part of the classical regular expression syntax. The result of the parsing is a syntaxtree which is not discarded, since as we have seen it is useful later for preprocessing regularexpressions.Map the pattern to bit mask positions: the parser determines the number of states requiredby the pattern and assigns the bit positions corresponding to each part of the pattern speci-�cation.Determine type of subexpression: given the whole pattern or a subset of its states, the parseris able to determine which type of expression is involved (simple, extended, or regular expres-sion).Algebraic simpli�cation: the parser performs some algebraic simpli�cation on the pattern tooptimize the search and reduce the number of bits needed for it.The parsing phase operates in a top-down way. It �rst tries to parse an or ("|") of subex-pressions. Each of them is parsed as a concatenation of subexpressions, each of which is a \singleexpression" �nished with a sequence of "*", "?" or "+" terminators, and the single expression iseither a single symbol, a class of characters or a top-level expression in parentheses. Apart fromthe syntax tree, the parser produces a mapping from positions of the pattern strings to leaves ofthe syntax tree, meaning that the character or class described at that pattern position must beloaded at that tree leaf.The second step is the algebraic simpli�cation, which proceeds bottom-up and is able to enforcethe following rules at any level1. If [C1] and [C2] are classes of characters then [C1] j [C2] �! [C1C2].2. If [C] is a class, then [C] j "; " j [C] �! [C]?.3. If E is any subexpression, then E � "; " �E �! E.37

4. If E is any subexpression, then E ��; E?�; E +�; E�?; E+?; E �+; E?+ �! E�, andE?? �! E?, E ++ �! E+.5. " j "; "�; "?; "+ �! ".6. A subexpression which can match the empty string and appears at the beginning or at theend of the pattern is replaced by ", except when we need to match whole words or records.To collapse classes of characters in a single node (�rst rule) we traverse the obtained mappingfrom pattern positions to tree leaves, �nd those mapping to the leaves that store [C1] and [C2] andmake all them point to the new leaf that represents [C1C2].More simpli�cations are possible, but they are more complicated and we chose to stop here forthe current version of nrgrep. Some interesting simpli�cations that may reduce the number of bitsrequired to represent the pattern are xwzjuwv �! (xju)w(zjv), EE� �! E+ and EjE �! Efor arbitrarily complex E (right now we do that just for leaves).After the simpli�cation is done we assign positions in the bit mask corresponding to eachcharacter/class in the pattern. This is easily done by traversing the leaves left to right and assigningone bit to each leaf of the tree except to those storing " instead of a class of characters. Note thatthis works as expected on simple and extended patterns as well. For several purposes (includingGlushkov's NFA construction algorithm) we need to store which are the bit positions used insideevery subtree, which of these correspond to initial and �nal states, and whether the empty stringmatches the subexpression. All this is easily done in the same recursive traversal over the tree.Once we have determined the bits that correspond to each tree leaf and the mapping frompattern positions to tree leaves, we build a table of bit masks B, such that B[c] tells which patternpositions are activated by the character c. This B table can be directly used for simple and extendedpatterns, and it is the basis to build the DFA transitions of regular expressions.Finally, the parser is able to tell which is the type of the pattern that it has processed. Thiscan be di�erent from what the syntax used to express the pattern may suggest, for example"a(b|c)d"*e(f|g)" is the simple pattern "a[bc]de[fg]", which is discovered by the simpli�-cation procedure. This is in our general spirit of not being mislead by simple problems presented ina complicated way, which motivated us to select optimum subpatterns to search for. As a secondarye�ect of simpli�cations, the number of bits required to represent the pattern may be reduced.A second reason to be able to determine the real type of pattern is that the scanning subpatternselected can be simpler than the whole pattern and hence it can admit a faster search algorithm.For this sake we permit determining the type not only of the whole pattern but also of a selectedset of positions.The algorithm for determining the type of pattern or subpattern starts by assuming a simplepattern until it �nds evidence of an extended pattern or a regular expression. The algorithm entersrecursively into the syntax tree of the pattern avoding entering subexpressions where no selectedstate is involved. Among those that have to be entered in order to reach the selected states, itanswers \simple" for the leaves of the tree (characters, classes and "), and in concatenations ittakes the most complex type among the two sides. When reaching an internal node "?", "*" or"+" it assumes \extended" if the subtree was just a single character, otherwise it assumes \regularexpression". The latter is always assumed when an or ("|") that could not be simpli�ed is found.38

8.3 Software StructureNrgrep is implemented as a set of modules, which permits easy enrichment with new types ofpatterns. Each type of pattern (simple, extended and regular expression) has two modules to dealwith the exact and the approximate case, which makes six modules: simple, esimple, extended,eextended, regular, eregular (the pre�x "e" stands for allowing (e)rrors). The other modulesare:basics,options,except,memio: basic de�nitions, exception handling and memory and I/O man-agement functions.bitmasks: handles operations on simple and multi-word bit masks.buffer: implements the bu�ering mechanism to read �les.record: takes care of context conditions and record management.parser: performs the parsing.search: template that exports the preprocessing and search functions which are implemented inthe six modules described (simple, etc).shell: interacts with the user and provides the main program.The template search facilitates the management of di�erent search algorithms for di�erentpattern types. Moreover, we remind that the scanning procedure for a pattern of a given type canuse a subpattern whose type is simpler, and hence a di�erent scanning function is used. This iseasily handled with the template.9 Some Experimental ResultsWe present now some experiments comparing the performance of nrgrep version 1.1 against that ofits best known competitors, Gnu grep version 2.4 and agrep version 3.0.Agrep [29] uses for simple strings a very e�cient modi�cation of the Boyer-Moore-Horspoolalgorithm [12]. For classes of characters and wild cards (denoted "#" and equivalent to ".*") ituses an extension of the Shift-Or algorithm explained in Section 3.1, in all cases based on forwardscanning. For regular expressions it uses a forward scanning with the bit parallel simulation ofThompson's automaton, as explained in Section 3.4. Finally, for approximate searching of simplestrings it tries to use partitioning into k + 1 pieces and a multipattern search algorithm based onBoyer-Moore, but if this does not promise to yield good results it prefers a bit-parallel forwardscanning with the automaton of k + 1 rows (these techniques were explained in Section 3.5). Forapproximate searching of more complex patterns agrep uses only this last technique.Gnu Grep cannot search for approximate patterns, but it permits all the extended patterns andregular expressions. Simple strings are searched for with a Boyer-Moore-Gosper search algorithm(similar to Horspool). All the other complex patterns are searched for with a lazy deterministicautomaton, i.e. a DFA whose states are built as needed (using forward scanning). To speed up the39

search for complex patterns, grep tries to extract their longest necessary string, which is used as a�lter and searched for as a simple string. In fact, grep is able to extract a necessary set of strings,i.e. such that one of the strings in the set has to appear in every match. This set is searched for as a�lter using a Commentz-Walter like algorithm [7], which is a kind of multipattern Boyer-Moore. Aswe will see, this extension makes grep very powerful and closer to our goal of a smooth degradationin e�ciency as the pattern gets more complex.The experiments were carried out over 100 Mb of English text extracted from Wall StreetJournal articles of 1987, which are part of the trec collection [11]. Two di�erent machines wereused: sun is a Sun UltraSparc-1 of 167 MHz with 64 Mb RAM running Solaris 2.6, and intel isan i686 of 550 MHz with 64 Mb RAM running Linux Red Hat 6.2 (kernel 2.2.14-5.0). Both are32-bit machines (w = 32).To illustrate the complexity of the code, we show the sizes of the sources and executables inTable 1. The source size is obtained by summing up the sizes of all the ".c" and ".h" �les. Thesize of the executables is computed after running Unix's "strip" command on them. As can beseen, nrgrep is in general a simpler software.Software Source size Executable size Executable size(sun) (intel)agrep v. 3.0 412.49 Kb 152.79 Kb 136.26 Kbgrep v. 2.4 472.65 Kb 80.91 Kb 73.83 Kbnrgrep v 1.1 281.52 Kb 92.50 Kb 89.59 KbTable 1: Sizes of the di�erent softwares under comparison.The experiments were repeated for 100 di�erent patterns of each kind. To minimize the inter-ference of i/o times in our measures, we had the text in a local disk, we considered only user timesand we asked the programs to show the count of matching records only. The records were the linesof the �le. The same patterns were searched for on the same text for grep, agrep and nrgrep.Our �rst experiment shows the search times for simple strings of lengths 5 to 30. Those stringswere randomly selected from the same text starting at word beginnings and taking care of includingonly letters, digits and spaces. We also tested how the "-i" (case insensitive search) and "-w"(match whole words) a�ected the performance, but the di�erences were negligible. We also madethis experiment allowing 10% and 20% of errors (i.e. k = b0:1mc or k = b0:2mc). In the case oferrors grep is excluded from the comparison because it does not permit approximate searching.As Figure 14 shows, nrgrep is competitive against the others, more or less depending on themachine and the pattern length. It works better on the intel architecture and on moderate lengthpatterns rather than on very short ones. It is interesting to notice that in our experiments grepperformed better than agrep.When searching allowing errors, nrgrep is slower or faster than agrep depending on the case.With low error levels (10%) they are quite close, except for m = 20, where for some reason agrepperforms consistently bad on sun. Withmoderate error levels (20%) the picture is more complicatedand each of them is better for di�erent pattern lengths. This is a point of very volatile behaviorbecause 20% happens to be very close to the limit where splitting into k + 1 pieces ceases to be a40

good choice, and a small error estimating the probability of a match produces dramatic changes inthe performance. Depending on each pattern, a di�erent search technique is used.On the other hand, the search permitting transpositions is consistently worse than the one notpermitting them. This is not only because when splitting into k + 1 pieces they may have to beshorter to allow one free space among them, but also because even when they can have the samelength the subpattern selection process has more options to �nd the best pieces if no space has tobe left among them.The behavior of nrgrep, however, is not as erratic as it seems to be. The non-monotonic behaviorcan be explained in terms of splitting into k + 1 pieces. As m grows, the length of the pieces thatcan be searched for grows, tending to the real m=(k + 1) value from below. For example, for k =20% of m, we have in the case of transpositions to search for 2 pieces of length 2 when m = 5.For m = 10 we have to search for 3 pieces of length 2, which is estimated to produce too manyveri�cations and then another method is used. For m = 15, however, we have to search for 4 piecesof length 3, which has much lower probability of occurrence and recommends again splitting intok+1 pieces. The di�erences between searching using or not transpositions is explained in the sameway. For m = 5, we have to search for 2 pieces of length 2 no matter whether transpositions arepermitted. But for m = 10 we can search for 3 pieces of length 3 if no transpositions are permitted,which yields much better search time for that case. We remark that permitting transpositions hasthe potential of yielding approximate searching of better quality, and hence obtain the same (orbetter) results using a smaller k.Our second experiment aims at evaluating the performance when searching for simple patternsthat include classes of characters. We have selected strings as before from the text and havereplaced some random positions with a class of characters. The classes have been: upper and lowercase versions of the letter replaced (called \case" in the experiments), all the letters ([a-zA-Z],called \letters" in the experiment) and all the characters (".", called \all" in the experiments). Wehave considered pattern lengths of 10 and 20 and an increasing number of positions converted intoclasses. We show also the case of length 15 and k = 2 errors (excluding grep).As Figure 15 shows, nrgrep deals much more e�ciently with classes of characters than itscompetitors, worsening slowly as there are more or bigger classes to consider. Agrep yields alwaysthe same search time (coming from a Shift-Or like algorithm). Grep, on the other hand, worsensprogressively as the number of classes grows but is independent on how big the classes are, and itworsens much faster than nrgrep. We have included the case of zero classes basically to show thee�ect of the change of agrep's search algorithm.Our third experiment deals with extended patterns. We have selected strings as before from thetext and have added an increasing number of operators "?", "*" or "+" to it, at random positions(avoiding the �rst and last ones). For this sake we had to use the "-E" option of grep, whichdeals with regular expressions, and convert E+ into EE� for agrep. Moreover, we found no way toexpress the "?" in agrep, since even allowing regular expressions, it did not permit specifying the" string or the empty set (a? = (aj") = (aj;�)). We also show how agrep and nrgrep perform tosearch for extended patterns allowing errors. Because of agrep's limitations, we chose m = 8 andk = 1 errors (no transpositions permitted) for this test.As Figure 16 shows, agrep has a constant search time coming again from Shift-Or like searching(plus some size limitations on the pattern). Both grep and nrgrep improve as the problem becomes41

0.6

0.8

1

1.2

1.4

1.6

1.8

2

5 10 15 20 25 30

m

Exact searching on SUN

Agrep
Grep

Nrgrep

18

20

22

24

26

28

30

32

34

5 10 15 20 25 30

m

Exact searching on INTEL

Agrep
Grep

Nrgrep

0

5

10

15

20

25

30

35

40

45

5 10 15 20 25 30

m

Approximate searching on SUN

Agrep 10%
Nrgrep 10%

Nrgrep 10% (transp)
Agrep 20%

Nrgrep 20%
Nrgrep 20% (transp)

30

35

40

45

50

55

60

5 10 15 20 25 30

m

Approximate searching on INTEL

Agrep 10%
Nrgrep 10%

Nrgrep 10% (transp)
Agrep 20%

Nrgrep 20%
Nrgrep 20% (transp)

Figure 14: Search times on 100 Mb for simple strings using exact and approximate searching.
42

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5

of classes

m = 10 on SUN

Agrep - case
Agrep - letters

Agrep - all
Grep - case

Grep - letters
Grep - all

Nrgrep - case
Nrgrep - letters

Nrgrep - all

24

26

28

30

32

34

36

38

40

42

0 1 2 3 4 5

of classes

m = 10 on INTEL

Agrep - case
Agrep - letters

Agrep - all
Grep - case

Grep - letters
Grep - all

Nrgrep - case
Nrgrep - letters

Nrgrep - all

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

of classes

m = 10 on SUN

Agrep - case
Agrep - letters

Agrep - all
Grep - case

Grep - letters
Grep - all

Nrgrep - case
Nrgrep - letters

Nrgrep - all

22

24

26

28

30

32

34

36

38

40

42

0 2 4 6 8 10

of classes

m = 20 on INTEL

Agrep - case
Agrep - letters

Agrep - all
Grep - case

Grep - letters
Grep - all

Nrgrep - case
Nrgrep - letters

Nrgrep - all

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7

of classes

m = 15, allowing 2 errors on SUN

Agrep - case
Agrep - letters

Agrep - all
Nrgrep - case

Nrgrep - letters
Nrgrep - all

32

34

36

38

40

42

44

46

48

1 2 3 4 5 6 7

of classes

m = 15, allowing 2 errors on INTEL

Agrep - case
Agrep - letters

Agrep - all
Nrgrep - case

Nrgrep - letters
Nrgrep - allFigure 15: Exact and approximate search times on 100 Mb for simple patterns with a varyingnumber of classes of characters. 43

simpler, but nrgrep is consistently faster. Note that the problem is necessarily easier with the "+"operator because the minimum length of the pattern is not reduced as the number of operatorsgrows. We have again included the case of zero operators to show how agrep jumps.With respect to approximate searching, nrgrep is consistently faster than agrep, whose cost is akind of worst case which is reached when the minimum pattern length becomes 4. This is indeed avery di�cult case for approximate searching and nrgrep wisely chooses to do forward scanning onthat case.Our fourth experiment considers regular expressions. It is not easy to de�ne what is a \random"regular expression, so we have tested 9 complex patterns that we considered interesting to illustratethe di�erent alternatives for the e�ciency. These have been searched for with zero, one and twoerrors (no transpositions permitted). Table 2 shows the patterns selected and some aspects thatexplain the e�ciency problems to search for them.No. Pattern Size Minimum % of lines that match(# chars) length ` exactly 1 error 2 errors1 American|Canadian 16 8 1.245 1.561 1.8722 American|Canadian|Mexican 23 7 1.288 1.604 2.1343 Amer[a-z]*can 8 7 0.990 1.309 1.6934 Amer[a-z]*can|Can[a-z]*ian 15 6 1.245 1.731 8.7335 Ame(i|(r|i)*)can 9 6 0.990 1.312 2.2626 Am[a-z]*ri[a-z]*an 8 6 0.991 1.422 3.7567 (Am|Ca)(er|na)(ic|di)an 14 8 1.245 1.561 1.9058 American#*policy 15 14 0.002 0.003 0.0089 A(mer|i)+can#*p(oli|cy) 15 8 0.007 0.013 0.164Table 2: The regular expressions searched for (written with the syntax of nrgrep). Note that someare indeed extended patterns.Table 3 shows the results. These are more complex to interpret than in the previous cases, andthere are important di�erences in the behavior of the same code depending on the machines.For example, grep performed consistently well on intel, while it showed wide di�erences onsun. We believe that this comes from the fact that in some cases grep cannot �nd a suitable set of�ltering strings (patterns 1, 2, 4 and 7). In those cases the time corresponds to that of a forwardDFA. On the intel machine, however, the search times are always good.Another example is agrep, which has basically two di�erent times on sun and always the sametime on intel. Despite that agrep uses always forward scanning with a bit-parallel automaton, ittakes on the sun half the time when the pattern is very short (up to 12 positions), while it is slowerfor longer patterns. This di�erence seems to come from the number of computer words needed forthe simulation, but this seems not to be important on the intel machine. The approximate searchusing agrep (which works only on the shorter patterns) scales in time accordingly to the number ofcomputer words used, although there is a large constant factor added in the intel machine.Nrgrep performs well on exact searching. All the patterns yield fast search times, in generalbetter than those of grep on intel and worse on sun. The exception is where grep does not use�ltering in the sun machine, and nrgrep becomes much faster. When errors are permitted thesearch times of nrgrep vary depending on its ability to �lter the search. The main aspects that44

0

2

4

6

8

10

0 1 2 3 4 5

of special symbols

m = 10 on SUN

Agrep - *’s
Agrep - +’s
Grep - ?’s
Grep - *’s
Grep - +’s

Nrgrep - ?’s
Nrgrep - *’s
Nrgrep - +’s

24

26

28

30

32

34

36

38

40

42

44

0 1 2 3 4 5

of special symbols

m = 10 on INTEL

Agrep - *’s
Agrep - +’s
Grep - ?’s
Grep - *’s
Grep - +’s

Nrgrep - ?’s
Nrgrep - *’s
Nrgrep - +’s

0.5

1

1.5

2

2.5

3

3.5

2 4 6 8 10

of special symbols

m = 20 on SUN

Agrep - *’s
Agrep - +’s
Grep - ?’s
Grep - *’s
Grep - +’s

Nrgrep - ?’s
Nrgrep - *’s
Nrgrep - +’s

22

24

26

28

30

32

34

36

38

40

42

44

0 2 4 6 8 10

of special symbols

m = 20 on INTEL

Agrep - *’s
Agrep - +’s
Grep - ?’s
Grep - *’s
Grep - +’s

Nrgrep - ?’s
Nrgrep - *’s
Nrgrep - +’s

0

5

10

15

20

25

30

1 1.5 2 2.5 3 3.5 4

of special symbols

m = 8, allowing 1 error on SUN

Agrep - *’s
Agrep - +’s

Nrgrep - ?’s
Nrgrep - *’s
Nrgrep - +’s

36

37

38

39

40

41

42

43

44

1 1.5 2 2.5 3 3.5 4

of special symbols

m = 8, allowing 1 error on INTEL

Agrep - *’s
Agrep - +’s

Nrgrep - ?’s
Nrgrep - *’s
Nrgrep - +’sFigure 16: Exact and approximate search times on 100 Mb for extended patterns with a varyingnumber of operators. Where, on sun, Agrep is out of bounds, it takes nearly 18 seconds.45

a�ect the search time are the frequency of the pattern and its size. When compared to agrep, nrgrepperforms always better on exact searching and better or similarly on approximate searching.sunNo. grep agrep nrgrep0 errors 0 errors 1 error 2 errors 0 errors 1 error 2 errors1 8.13 18.46 2.31 4.78 52.402 8.14 18.12 2.41 12.34 58.813 1.57 9.27 23.64 32.95 2.42 3.49 33.064 7.74 18.07 3.84 13.28 29.425 2.01 9.46 22.93 32.75 2.41 10.08 18.836 2.39 9.41 23.13 33.03 3.18 25.03 31.307 9.00 18.23 2.04 3.60 18.998 1.69 18.39 1.76 3.33 5.249 2.84 18.54 3.04 8.27 18.16intelNo. grep agrep nrgrep0 errors 0 errors 1 error 2 errors 0 errors 1 error 2 errors1 34.87 42.43 25.16 38.33 55.822 34.41 42.46 28.78 42.38 58.183 30.86 40.12 43.34 44.86 22.90 32.48 48.044 35.61 41.81 33.72 45.06 50.525 33.81 40.34 43.43 44.78 26.01 39.78 43.846 34.95 39.96 43.31 45.88 27.29 43.28 58.217 35.27 41.13 23.87 36.51 44.238 28.70 42.10 23.33 32.53 35.819 34.18 41.59 27.61 39.44 43.42Table 3: Search times for the selected regular expressions. There are empty cells because agrepseverely restricts the lengths of the complex patterns that can be approximately searched for.The general conclusions from the experiments are that nrgrep is, for exact searching, competitiveagainst agrep and grep, while it is in general superior (sometimes by far) when searching for classesof characters and extended patterns, exactly or allowing errors. When it comes to search for regularexpressions, nrgrep is in general, but not always, faster than grep and agrep.One �nal word about nrgrep's smoothness is worthwhile. The reader may get the impressionthat nrgrep's behavior is not as smooth as promised because it takes very di�erent times for di�erentpatterns, for example on regular expressions, while agrep's behavior is much more predictable. Thepoint is that some of these patterns are indeed much simpler than others, and nrgrep is much fasterto search for the simpler ones. Agrep, on the other hand, does not distinguish between simple andcomplicated cases. Grep does a much better job but it does not deal with the complex area ofapproximate searching. Something similar happens on other cases: nrgrep had the highest variance46

when searching for patterns where classes were inserted at random points. This is because thisrandom process does produce a high variance in the complexity of the patterns: it is much simplerto search for the pattern when all the classes are in one extreme (then cutting it out from thescanning subpattern) than when they are uniformly spread. Nrgrep's behavior simply mimics thevariance in its input, precisely because it takes time proportional to the real complexity of thesearch problem.10 ConclusionsWe have presented nrgrep, a fast online pattern matching tool especially well suited for complexpattern searching on natural language text. Nrgrep is now at version 1.1, and publicly availableunder a Gnu license. Our belief is that it can be a successful new member of the grep family. TheFree Software Foundation has shown interest in making nrgrep an important part of a new releaseof Gnu grep, and we are currently de�ning de details.The most important improvements of nrgrep over the other members of the grep family are:E�ciency: nrgrep is similar to the others when searching for simple strings (a sequence of singlecharacters) and some regular expressions, and generally much faster for all the other types ofpatterns.Uniformity: our search model is uniform, based on a single concept. This translates into smoothvariations in the search time as the pattern gets more complex, and into an absence of obscurerestrictions present in agrep.Extended patterns: we introduce a class of patterns which is intermediate between simple pat-terns and regular expressions and develop e�cient search algorithms for it.Error model: we include character transpositions in the error model.Optimization: we �nd the optimal subpattern to scan the text and check the potential occurrencesfor the complete pattern.Some possible extensions and improvements have been left for future work. The �rst one is abetter computation of the matching probability, which has a direct impact on the ability of nrgrepfor choosing the right search method (currently it normally succeeds, but not always). A secondone is a better algebraic optimization of the regular expressions, which has also an impact on theability to correctly compute the matching probabilities. Finally, we would also like to be able tocombine exact and approximate searching as agrep does, where parts of the pattern accept errorsand others do not. It is not hard to do this by using bit masks that control the propagation oferrors.AcknowledgementsMost of the algorithmic work preceding nrgrep was done in collaboration with Mathieu Ra�not,who unfortunately had no time to participate in this software.47

References[1] R. Baeza-Yates. Text retrieval: Theory and practice. In 12th IFIP World Computer Congress,volume I, pages 465{476, September 1992.[2] R. Baeza-Yates and G. Gonnet. A new approach to text searching. Communications of theACM, 35(10):74{82, 1992.[3] R. Baeza-Yates and G. Navarro. Faster approximate string matching. Algorithmica, 23(2):127{158, 1999.[4] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison-Wesley, 1999.[5] G. Berry and R. Sethi. From regular expression to deterministic automata. Theoretical Com-puter Science, 48(1):117{126, 1986.[6] R. Boyer and J. Moore. A fast string searching algorithm. Communications of the ACM,20(10):762{772, 1977.[7] B. Commentz-Walter. A string matching algorithm fast on the average. In Proc. ICALP'79,LNCS v. 6, pages 118{132, 1979.[8] M. Crochemore and W. Rytter. Text algorithms. Oxford University Press, 1994.[9] A. Czumaj, M. Crochemore, L. Gasieniec, S. Jarominek, T. Lecroq, W. Plandowski, andW. Rytter. Speeding up two string-matching algorithms. Algorithmica, 12:247{267, 1994.[10] N. El-Mabrouk and M. Crochemore. Boyer-moore strategy to e�cient approximate stringmatching. In 7th International Symposium on Combinatorial Pattern Matching (CPM'96),pages 24{38, 1996.[11] D. Harman. Overview of the Third Text REtrieval Conference. In Proc. Third Text REtrievalConference (TREC-3), pages 1{19, 1995. NIST Special Publication 500-207.[12] R. Horspool. Practical fast searching in strings. Software Practice and Experience, 10:501{506,1980.[13] D. Knuth, J. Morris, and V. Pratt. Fast pattern matching in strings. Siam Journal onComputing, 6(1):323{350, 1977.[14] K. Kukich. Techniques for automatically correcting words in text. ACM Computing Surveys,24(4):377{439, 1992.[15] U. Manber and S. Wu. Glimpse: A tool to search through entire �le systems. In Proc.USENIX Technical Conference, pages 23{32, Winter 1994.[16] B. Melichar. String matching with k di�erences by �nite automata. In Proc. InternationalCongress on Pattern Recognition (ICPR'96), pages 256{260. IEEE CS Press, 1996.48

[17] E. Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast and exible word searching oncompressed text. ACM Transactions on Information Systems (TOIS), 2000. To appear. Earlierversions in SIGIR'98 and SPIRE'98.[18] G. Myers. A fast bit-vector algorithm for approximate string matching based on dynamicprogamming. Journal of the ACM, 46(3):395{415, 1999.[19] G. Navarro. A guided tour to approximate string matching. ACM Computing Surveys, 2000.To appear.[20] G. Navarro and R. Baeza-Yates. Very fast and simple approximate string matching. Informa-tion Processing Letters, 72:65{70, 1999.[21] G. Navarro, E. Moura, M. Neubert, N. Ziviani, and R. Baeza-Yates. Adding compression toblock addressing inverted indexes. Kluwer Information Retrieval Journal, 3(1):49{77, 2000.[22] G. Navarro and M. Ra�not. A bit-parallel approach to su�x automata: Fast extended stringmatching. In 9th International Symposium on Combinatorial Pattern Matching (CPM'98),LNCS 1448, pages 14{33, 1998.[23] G. Navarro and M. Ra�not. Fast and exible string matching by combining bit-parallelismand su�x automata. Technical Report TR/DCC-98-4, Dept. of Computer Science, Univ. ofChile, 1998.[24] G. Navarro and M. Ra�not. Fast regular expression searching. In 3rd International Workshopon Algorithm Engineering (WAE'99), LNCS 1668, pages 198{212, 1999.[25] G. Navarro and M. Ra�not. Compact DFA representation for fast regular expression search.In 5th International Workshop on Algorithm Engineering (WAE'01), LNCS, 2001. To appear.[26] G. Navarro and M. Ra�not. Flexible Pattern Matching in Strings. Cambridge UniversityPress, 2001. To appear.[27] M. Ra�not. On the multi backward dawg matching algorithm (MultiBDM). In Proc. 4thSouth American Workshop on String Processing (WSP'97), pages 149{165. Carleton UniversityPress, 1997.[28] K. Thompson. Regular expression search algorithm. Communications of the ACM, 11(6):419{422, 1968.[29] S. Wu and U. Manber. Agrep { a fast approximate pattern-matching tool. In Proc. USENIXTechnical Conference, pages 153{162, 1992.[30] S. Wu and U. Manber. Fast text searching allowing errors. Communications of the ACM,35(10):83{91, 1992. 49

