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Abstract

Let D be a collection of D strings of total length n over an alphabet of size σ. We consider the so-called
top-k document retrieval problem: given a short string P and an integer k, list the identifiers of k strings
in D most relevant to P , in decreasing order of relevance. Relevance may be a fixed value associated with
the strings where P occurs, or the number of times P occurs in the strings. While RAM-optimal solutions
using O(n logn) bits and O(|P |/ logσ n + k) time exist, solving the problem optimally within space close to
O(n log σ) bits is open.

We describe a data structure for the top-k document retrieval problem that uses O(log logn) bits per
symbol on top of any compressed suffix array (CSA) of D, and supports queries in essentially optimal time, in
the following sense. Given a CSA using |CSA| bits of space, that finds the suffix array range of a query string
P in time tcnt, and accesses a suffix array entry in time tSA, listing any k pattern occurrences would take
time O(tcnt + k tSA). Our top-k data structure uses |CSA| + O(n log log n) bits and reports k most relevant
documents that contain P in time O(tcnt + k (tSA + log logn)). On every known CSA using O(n log σ) bits,
tSA is Ω(log logn) in virtually all cases, thus our time is O(tcnt + k tSA) in most situations.

When the query string P is sufficiently long, some CSAs reach time O(tcnt +k) to list any k occurrences of
P . Our structure achieves similar performance in this case, obtaining time O(tcnt+ tsort(k, n)) on every known
CSA, where tsort(k, n) is the time to sort k integers in [1, n]. This time is already O(tcnt + k) in the typical
regimes, k = O(polylogn) and k = Ω(nε) for any constant ε > 0. If we can deliver the results in unsorted
order of relevance, then the time for long patterns is always O(tcnt + k), which is optimal with respect to the
CSA, and reaches the RAM-optimal time O(|P |/ logσ n + k) on a particular CSA. No top-k solution using
o(n logD) bits of space has achieved this before.

1 Introduction

The top-k document retrieval problem consists of retrieving the k documents that are “most relevant” to a given
query. The version of the problem where both the documents and the query are strings are a natural extension of
the original natural-language-based information retrieval problem, and has received considerable attention from
the community, as it arises in various applications [29]. The fact that any substring of the string collection can
be queried makes the problem fundamentally distinct from the one addressed in natural-language information
retrieval. The problem is also related, but again fundamentally different, from the classic pattern matching where
one seeks to count or retrieve all the occurrences of the query pattern.

Let D be a text collection formed by a set of D strings—the documents—, over an alphabet of size σ, and
let n be the sum of their lengths. We want to preprocess D so that, later, given a (comparatively short) query
string P [1..p] and a threshold k, we want to obtain the identifiers of k documents in D that are most relevant to
P , among those where P appears (if P appears in fewer than k documents, we just report them all), in decreasing
order of relevance. In this paper we consider two measures of relevance:

• Document rank, where each document d has a fixed relevance docrank(d) independent of P .

• Text frequency, that is, the number freq(P, d) of times P appears in document d.

We will refer to both measures generically as rel(P, d). Those can be considered to be the most basic relevance
measures, for example the well-known PageRank measure is a form of document rank, whereas the text frequency
is the basis of the famous tf-idf relevance model in information retrieval [29]. Other more sophisticated measures
will be discussed in the conclusions.
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Both problems can be solved in optimal time, O(p + k) and even O(p/ logσ p + k), using O(n log n) bits of
space [21, 23, 31, 18, 32], for those and many other measures of relevance. Using that space is not so satisfactory,
however, if one considers that D can be represented in just n log σ bits (our logarithms are base 2) and the huge
sizes of modern string collections. Given that pattern matching was successfully solved within much less space,
that is, the entropy of D (which is at most n log σ) plus some small redundancy [30], it was natural to look for
solutions to the top-k problem that used less space by resorting to the same tools. Most compressed-space pattern
matching solutions replace suffix trees and arrays by compressed suffix arrays (CSAs), which use space close to
the text entropy (at most |CSA| ∈ O(n log σ) bits) and provide two operations [30]:

• Count, which in time tcnt = tcnt(p) retrieves the lexicographical range of all the suffixes starting with P . This
time is typically in O(p log n) or O(p log σ), but also O(p) and even O(p/ logσ n+ logεσ n) within O(n log σ)
bits of space, for any constant ε > 0 [2, 15].

• Access, which in time tSA = tSA(n) retrieves the starting text position of the ith lexicographically smallest
suffix, given i. This is typically O(log n) if O(n) extra bits of space are allowed, but can also be O(logεσ n),
and even O(log logσ n) if we exceed the O(n log σ) bits [14].

Top-k with document rank. The document rank measure is simpler to handle because it is fixed at
indexing time. Karpinski and Nekrich [23] solved it in O(p+ k) time and O(n log n) bits.

They also gave the first solution aiming at using compact space, that is, the entropy of D plus a redundancy
in O(n logD) bits. Their compact solution builds on a CSA and uses |CSA| + O(n logD) bits, reporting
the k most important documents where P appears in time O(tcnt + k). The space was slightly tightened to
|CSA|+ n logD + o(n logD) bits by Gagie et al. [13], at the price of increasing the time to O(tcnt + k log(D/k)).
We note that, unless there are just a few documents, the space n logD can be very significant, typically much
larger than n log σ and close to the n log n bits needed by a plain suffix array. This space comes from the use of
a document array, a variant of the suffix array that records only the documents where the suffixes occur.

More ambitious than compact solutions are compressed ones, which aim at using O(|CSA|+n) bits, avoiding
large terms of the form O(n logD). Belazzougui et al. [3] showed how to use |CSA|+O(n) bits of space and solve
the problem in time O(tcnt + k tSA log k logε n).

Top-k with text frequency. The top-k problem using text frequency has received much more attention.
The foundational work of Hon et al. [21, 18] showed that this problem could be solved in time O(p+ k log k) and
O(n log n) bits of space, not only for freq(P, d) but for any relevance measure that depended on the document and
the suffix tree locus of P . Navarro and Nekrich [31] recasted their framework into a geometric problem, achieving
the optimal time O(p+ k) and even the RAM-optimal time O(p/ logσ n+ k) if P is given packed in O(p/ logσ n)
computer words of Θ(log n) bits [32] (Hon et al. [18] also obtained O(p + k) time, though delivering the results
in unsorted order). They also offered compact versions achieving the same optimal times plus O(logεσ n) for any
constant ε > 0, using O(n log σ+n logD) bits for freq(P, d), and O(n log σ+n logD+n log logn) bits for the more
general measures supported by Hon et al. After some developments [19], the best compact result is by Navarro
and Thankachan [35], which uses |CSA| + n logD + o(n logD + n log σ) bits and answers in near-optimal time
O(tcnt + k log∗ k).

In their seminal paper [21, 18], Hon et al. also provided the first compressed solution for the problem using
text frequency (not a more general measure). Their techniques, based on storing the query answers for selected
suffix tree nodes, also pioneered the subsequent work on compressed solutions. Using 2|CSA|+O(n) bits of space
(note the factor 2), they solve the problem in time O(tcnt + k tSA log3+ε n) for any constant ε > 0. Their result
triggered significant activity on the compressed version of the problem [12, 3, 40, 20], culminating with Navarro
and Thankachan [35], who using |CSA|+O(n) bits of space achieved query time O(tcnt + k tSA log2 k logε n).

1.1 Our contribution Since a CSA needs in general O(tcnt + k tSA) time to report any k occurrences of P
in D, this time can be regarded as an optimality standard for any top-k solution that builds on CSAs. While
solutions using O(n logD) bits can reach lower times, compressed solutions using just O(n) additional bits have
approached this “optimal” complexity only up to polylogarithmic multiplicative gaps.

We explore a new category of space, which is between the compact one that allows O(n logD) extra bits and
the compressed one that allows only O(n). We allow O(n log log n) extra bits, which is well below what we call
compact space (unless there are just a few large documents, D = O(polylog n)), and slightly above what we call
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All measures Space Time

Linear space [32] O(n log n) O(p/ logσ n+ k)

Compact space [32] O(n log σ + n logD) O(p/ logσ n+ logεσ n+ k)

Document rank Space Time

Compact space [23] |CSA|+O(n logD) O(tcnt + k)

Compact space [13] |CSA|+ n logD + o(n logD) O(tcnt + k log(D/k))

Our space, unsorted [35] |CSA|+O(n log log n) O(tcnt + k tSA)

Compressed space [3] |CSA|+O(n) O(tcnt + k tSA log k logε n)

Text frequency Space Time

Compact space [35] |CSA|+ n logD + o(n logD) O(tcnt + k log∗ k)

Compressed space [35] |CSA|+O(n) O(tcnt + k tSA log2 k logε n)

Ours (both measures) Space Time

General |CSA|+O(n log log n) O(tcnt + k (tSA + log log n))

Unsorted 2|CSA|+O(n log log n) O(tcnt + k tSA)

Long p = Ω(log4+ε n) |CSA|+O(n log log n) O(tcnt + tSA log3+ε n+ tsort(k, n))

Long p & unsorted |CSA|+O(n log log n) O(tcnt + tSA log3+ε n+ k)

Table 1: Best space-time tradeoff for top-k document retrieval on strings and our contribution.

compressed space. This range of space was only considered before [35] to solve the problem for document rank in
the “optimal” time O(tcnt + k tSA). However, the latter solution does not deliver the results in sorted order.

We introduce a new index that uses |CSA|+O(n log log n) bits of space and solves top-k queries for our two
measures of relevance, delivering the results in decreasing order of relevance, in time O(tcnt + k (tSA + log log n)),
which is faster than all the compressed solutions. We remark that most CSAs using O(n log σ + n log log n) bits
offer tSA = Ω(log n/ log log n) [30], in which case our time is O(tcnt + k tSA).

1 We show how to obtain that time
for any CSA if we spend |CSA| further bits of space and deliver the results in unsorted order.

Further, for long patterns with p = Ω(log4+ε n), our time on all existing CSAs becomes O(tcnt + tsort(k, n)),
where tsort(k, n) is the time to sort k integers in [1, n] within O(k log n + n log log n) bits. For example, we can
obtain tsort = O(k log log k) [1, 17], tsort = O(k log logk n) [24], and tsort = O(k(1+log k/ log log n)) using dynamic
predecessor data structures [38]. This yields O(tcnt+k) for the most interesting regimes of k. If we can deliver the
results in unsorted order, the time for long patterns becomes O(tcnt+k) on all known CSAs and the RAM-optimal
O(p/ logσ n + k) on one particular CSA [15]. No top-k solution using o(n logD) bits of space has achieved this
before.

We thus show that, using this slightly higher redundancy space, we can essentially reach the optimality
standard when using CSAs. Table 1 puts our main contributions in context. As most previous results, ours hold
in the RAM model of computation with a machine word of Θ(log n) bits.

Techniques. We depart from the line of work followed so far to obtain compact or compressed space, and get
closer to the classical geometric structure of Navarro and Nekrich [31, 32]. In the case of nodes with polylogarithmic
string depth, we obtain variants of the geometric structures that use O(log log n) bits per element. To handle
longer patterns, however, we need other novel ideas.

One new idea is to exploit the recent discovery that the total string length of all the suffix tree leaves starting
equal-letter runs in the Burrows-Wheeler Transform (BWT) [4] adds up to O(n log n) [22]. We call “irreducible”
the ancestors of those leaves. The amount of nodes, over some minimum string length, that are “near” irreducible
nodes via suffix links, can be bounded, which allows us to store sufficient information to answer the top-k queries
from those nodes.

A second novel idea is that reducible nodes, which have a unique Weiner link, must be isomorphic to the

1The only exception offers tSA = O(logεσ n) [15], which is also Ω(log logn) unless σ ≥ n1/polylogn. Yet, if σ = nΘ(1), then
n log σ = Θ(n logn) and compressed solutions make no (asymptotic) sense, so the range is narrow.
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subtree they reach via that link. This allows us to sample the chains of reducible nodes and store information
only on the sampled nodes. Nodes that are “far”, via suffix links, from irreducible nodes, are then handled using
those samples. Various novel insights of independent interest on properties of suffix trees are obtained in the way.

Those ideas are combined with novel results on geometric data structures, such as finding heaviest vertical
segments that stab a horizontal segment in 2D, or finding heaviest points in 3D. Those problems are not new,
but we find new solutions using little space or particular time complexities.

2 Preliminaries

2.1 Suffix Trees A suffix tree [42, 25, 41] over a string S[1..n] is essentially a trie storing all n suffixes S[i..n],
where unary paths are compressed into edges that are labeled with substrings of S (the labels are represented in
constant space as pointers to S, or by converting the trie into a Patricia tree [26]). The suffix tree has then n leaves
and less than n internal nodes, so it can be represented in linear space, O(n log n) bits. For technical convenience
we assume that S is terminated with a special symbol, so suffixes are distinguished from other substrings. Every
suffix tree leaf then represents a suffix S[i..n] and every internal node represents a substring S[i..j] that occurs
more than once in S.

We sometimes refer to the suffix array, which is an array aligned to the leaves of the suffix tree. At position
j, the suffix array contains the position i of the suffix S[i..n] represented by the jth suffix tree leaf in left-to-right
order (we assume the children of suffix tree nodes are ordered left to right by increasing lexicographic order of
their edge labels).

Every suffix tree node v represents the string str(v) obtained by concatenating the string labels of the edges
that lead from the root to v; we say that strdepth(v) = |str(v)| is the string depth of v. The basic function
of a suffix tree is to find the occurrences of patterns P [1..p] in S. This is done by computing the locus of P ,
v = locus(P ), which is the unique highest node v such that P is a prefix of str(v). By using perfect hashing to
store the first symbol of the labels of all the edges leaving each node, the suffix tree finds locus(P ) in time O(p).
At the locus, we can for example store the number of descendant leaves to know the number of times P appears
in S, or we can traverse all those leaves in order to report the positions where P appears in T (i.e., the starting
positions i of the suffixes S[i..n] descending from the locus) in optimal time.

To solve more sophisticated problems (and to build them in linear time), suffix trees store additional
information. The suffix link of a node v representing string str(v) = a · α, for a an alphabet symbol, points
to the node w = slink(v) representing the string str(w) = α; we say that slabel(v) = a labels slink(v). Suffix
links always exist because, if v is a node, then str(v) = a ·α appears followed by at least two different symbols in
S, and so does α. The reverse links are called Weiner links: v = wlink(w, a) is the Weiner link of w by symbol
a. Not every node has a Weiner link by every possible symbol, and it does not always point to a suffix tree node:
str(w) = α may appear followed by more than one symbol in S, but still a · α may not appear (so wlink(w, a)
does not exist) or appear always followed by the same symbol (so wlink(w, a) would “point to the middle of an
edge” in the suffix tree). We will call locations those points in the middle of edges.

Given a string collection D = {S1, . . . , SD} of D distinct strings of lengths nd = |Sd|, we define their
concatenation S[1..n] = S1 · · ·SD (so n =

∑
d nd) and call T the suffix tree of S (we also say T is the suffix tree

of D). For convenience, we assume that each string Sd has its own special terminator symbol $d, and so assume
that suffixes in S reach only up to the next terminator without risk of having duplicate suffixes. We refer to each
document Sd simply by its identifier d, and call Td the suffix tree of Sd (or just of d).

We will use v ∈ Td or v′ ∈ T to indicate which tree the nodes belong. The trees Td can be embedded in T :
for each v ∈ Td there is a corresponding node v′ ∈ T such that str(v′) = str(v), but the reverse is not always true.
Further, a node in T may correspond to several nodes in distinct Tds. Since all the suffixes in D are different,
however, leaves of Td have one-to-one correspondences in T . Note that the node corresponding to slink(v) ∈ Td

is slink(v′) ∈ T , and the node corresponding to wlink(v, a) ∈ Td is wlink(v′, a) ∈ T . Ancestorship in Td is also
preserved in T , and vice versa, but parent/child relations are not.

Figure 1 illustrates some of these concepts. Identifying nodes v with str(v), we note that node a has a Weiner
link wlink(a, c) that points to the explicit node ca, a Weiner link wlink(a, b) that points to the middle of the edge
between nodes b and bar, and no Weiner link wlink(a, a).

When using relevance measure rel(P, d) = docrank(d), we assume that the strings Sd are ordered by increasing
relevance, so docrank(d) is just d and we want the k highest document identifiers d such that P appears in Sd
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Figure 1: The suffix tree T of the collection D = {abracadabra, alabarda, abarcara}. The edges to leaves show only
the first letter of their labels. Leaves indicate positions Sd[i] as d : i. Dashed arrows show the suffix links from
internal nodes; their reverse arrows are Weiner links. The grayed nodes show the embedding of the suffix tree T1

of S1 = abracadabra$ in T , which is shown on the bottom right.

(i.e., locus(Td, P ) exists).2 When using rel(P, d) = freq(P, d), the measure is the number of leaves descending
from locus(Td, P ) and we want the k documents d so that locus(Td, P ) exists and has the largest number of leaves
descending from it. Note that, if v = locus(Td, P ), then freq(P, d) = freq(str(v), d).

2.2 The Pointer Framework The pointer framework of Hon et al. [21, 18] (also followed by Navarro and
Nekrich [31, 32]) solves top-k queries by introducing upward pointers in the suffix tree T of D. We say that a
leaf v ∈ T is marked with document d if the suffix represented by v belongs to Sd. An internal suffix tree node v,
instead, is marked with d if at least two children of v are ancestors of leaves marked with d. While a leaf is marked
with only one value d, an internal node can be marked with many values d. From every node v ∈ T marked with
d, a pointer ptr(v, u, d) leads to its lowest ancestor u ∈ T that is also marked with d. If no such ancestor exists,
then a pointer ptr(v,⊤, d) leads to a dummy node ⊤ that is assumed to be the parent of the root of T . We also
assign a weight to every pointer ptr(v, u, d), which is the relevance score rel(str(v), d). We will say that a pointer
ptr(v, u, d) starts in the node v, ends in the node u, and is marked with the document d.

An important property is that the set of pointers marked with a specific document d form a tree that is
embedded in T and is isomorphic to Td.

Lemma 2.1. [21] The set of pointers ptr(v, u, d), interpreted as edges from u to a child v, is isomorphic to the

2If the documents cannot be reordered in that way, then we assume a constant-time function computes docrank(d).
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suffix tree Td of d, that is, the parent-child relations are preserved and the leaves correspond to the same suffixes.

We will call this set of edges the pointer tree of d and, per Lemma 2.1, will identify it with Td. We will say
that a pointer ptr(v, u, d) straddles a node w if v is a descendant of w (or w itself) and u is a proper ancestor of
w. The key to solving the top-k retrieval problem is the following lemma.

Lemma 2.2. [21] For every node w of T and every document d, there is at most one pointer ptr(v, u, d) that
straddles w, and it exists only if str(w) occurs in Sd. If w = locus(P ) and ptr(v, u, d) straddles w, then P appears
in Sd and rel(P, d) = rel(str(w), d), which is the weight of the pointer ptr(v, u, d).

The task of finding k most relevant documents that contain P is then reduced to finding k heaviest pointers
that straddle the locus of P .

We can illustrate some concepts using again Figure 1. Regarding document S1, each gray node v ∈ T has a
pointer ptr(v, u, 1) towards its lowest grayed ancestor. The set of those pointers is isomorphic to T1. Identifying
nodes v with their string str(v), we can see that ptr(ra, ε, 1) straddles ra and r. The documents where P = ra
appears are S1 and S3; consequently, exactly one pointer per document straddles the locus ra of P : ptr(ra, ε, 1)
for S1 and ptr(ra$3, r, 3) for S3. If we use frequencies, their weights are 2 and 1, respectively.

3 On the Structure of Suffix Trees

3.1 Reducible and Irreducible Nodes and Locations At the core of our solution is the idea that some
nodes v of suffix trees Td have only one Weiner link wlink(v, a) leaving them. We say that such nodes are
reducible and define wlabel(v) = a. Certainly all leaves v are reducible, as they represent a unique suffix Sd[i..]
and wlabel(v) = Sd[i − 1],3 but we are more interested in the internal nodes of Td. We start with the following
observation.

Lemma 3.1. If a node u ∈ Td is reducible and v descends from u, then v is also reducible and wlabel(v) =
wlabel(u).

Proof. Let str(u) = α and str(v) = αβ. Since u is reducible, all occurrences of α in Sd are preceded by the
same symbol a = wlabel(u). Then all the occurrences of αβ in Sd are preceded by a, thus v is also reducible and
wlabel(v) = a = wlabel(u).

The (w-)irreducible nodes of Td are then those (internal) nodes v having more than one Weiner link leaving
them. Per Lemma 3.1, all the ancestors of irreducible nodes are also irreducible. We define lowest irreducible
nodes as the irreducible nodes whose descendants are all reducible.

Note that every irreducible node v must have two consecutive descendant leaves v′l, vl such that wlabel(v′l) ̸=
wlabel(vl), as otherwise all the descendant leaves would have the same wlabel and v would be reducible. We call
(v′l, vl) a switching pair of leaves.

A key property of irreducible nodes is the following. To prove it, let us define lcp(v) for a leaf v ∈ Td. If v is
the leftmost leaf in Td, then lcp(v) = 0. Otherwise, let v′ ∈ Td be the leaf preceding v and u = lca(v′, v) be the
lowest common ancestor of v′ and v; then lcp(v) = strdepth(u).

Lemma 3.2. Let Id be the set of all lowest irreducible nodes in Td. Then the sum of the string depths of all the
nodes in Id is O(nd log nd).

Proof. By definition of irreducibility, a switching pair of leaves (v′l, vl) must descend from each node v in Id, and
this switching pair must be unique for each v ∈ Id because lowest irreducible nodes cannot descend from one
another. Since both v′l and vl descend from v, it follows that lcp(vl) = strdepth(lca(v′l, vl)) ≥ strdepth(v). The
sum of the lcp values for all the leaves vl belonging to switching pairs (v′l, vl) of Td is bounded by O(nd log nd)
[22, Thm. 1], therefore

∑
v∈Id

strdepth(v) ≤
∑

v∈Id
lcp(vl) = O(nd log nd).

Later in the paper, we will consider locations in a suffix tree, which correspond to (virtual) nodes in the
middle of an edge. Let str(u′) = α and str(v′) = αβ, then a location µ on (v′, u′) is defined by its represented
string, str(µ) = αβ′, where β′ is a strict nonempty prefix of β.

3The leaf representing the whole string Sd has no Weiner link; we also call it reducible and set wlabel(v) = $d.
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We note that Weiner links from nodes may lead to locations: if str(x) = α and a · α appears in D, then
wlink(x, a) might not exist as a node, but it still corresponds to a location µ with str(µ) = a · α. We can
also take suffix and Weiner links of locations. Given locations µ on edge (x, y) and ν on edge (x′, y′), we say
that ν = slink(µ) iff slink(y) (is or) descends from y′ and strdepth(ν) = strdepth(µ) − 1. We also say that
µ = wlink(ν, a), where a = slabel(y).

3.2 Near and Far Nodes and Locations We now define a notion of nodes v being near or far irreducible
nodes, via suffix or Weiner links. If a node v ∈ Td is reducible, we say that its Weiner link wlink(v, a) is lonely
(this is a property of the Weiner link pointer, not of the target node). The w-distance of a node v ∈ Td, w-dist(v),
is its distance, via lonely Weiner links, to an irreducible node. That is, w-dist(v) is the maximum s such that
there is a chain v = v0 → · · · → vs of lonely Weiner links from each vi to vi+1, and vs is irreducible. Note that v
is irreducible iff w-dist(v) = 0. The w-distance is undefined for leaves of Td.

Locations interact with irreducible nodes in the following interesting way.

Lemma 3.3. If u ∈ Td is a node and µ = wlink(u, a) is a location, then this Weiner link is not lonely and u is
irreducible, that is, w-dist(u) = 0.

Proof. Let str(u) = α, so str(µ) = a · α. Since µ is a location, every occurrence of a · α in Sd is followed by
the same symbol c. But since u is a node, there must be occurrences of α followed by a symbol d ̸= c. Those
occurrences of α · d cannot be preceded by a, so there must be some symbol b ̸= a such that b · α occurs in Sd,
and therefore wlink(u, b) exists and u is irreducible.

Analogously, we say that the suffix link v = slink(u) corresponding to a lonely Weiner link u = wlink(v, a) is
lonely, and define the s-distance of a node u ∈ Td, s-dist(u), as the length of the maximal chain of lonely suffix
links leaving u. Note that s-dist(u) = 0 iff its suffix link pointer slink(u) is not lonely, or equivalently, its suffix
link target is w-irreducible. We will say that u is s-irreducible if s-dist(u) = 0, and define lowest s-irreducible
nodes u as nodes that satisfy s-dist(u) = 0 and s-dist(w) > 0 for every descendant w of u. We prove an analogue
of Lemma 3.2 for s-distances.

Lemma 3.4. Let Vd be the set of all internal lowest s-irreducible nodes u ∈ Td. Then the total string depth of all
nodes in Vd is O(nd log nd).

Proof. Let u ∈ Vd. Since s-dist(u) = 0, its suffix link leads to an internal node v = slink(u) such that w-dist(v) = 0.
Let a = slabel(u). Then there must exist a switching pair (v′l, vl) descending from v, and a symbol b ̸= a, such
that either wlabel(v′l) = a and wlabel(vl) = b, or vice versa. We say that the switching pair (v′l, vl) justifies u.

We now show that every switching pair (v′l, vl) in Td can justify at most two nodes in Vd. Indeed, if their wlabel
values are a and b, then there can be two nodes in Vd, ua and ub, where ua = wlink(v, a) and ub = wlink(v, b),
justified by (v′l, vl). If the pair justifies another node u′

a by the symbol a (analogously, u′
b by the symbol b), then

v′ = slink(u′
a) must be an ancestor of v′l and vl, and thus descend from v or be an ancestor of v. If v′ descends

from v, then u′
a = wlink(v′, a) descends from ua = wlink(v, a), and ua cannot belong to Vd by definition since

s-dist(u′
a) = 0. Otherwise, v descends from v′, so ua descends from u′

a, and similarly u′
a cannot belong to Vd.

Now, note that strdepth(v) ≤ strdepth(lca(v′l, vl)) = lcp(vl) and then, if u is justified by (v′l, vl), then
strdepth(u) = 1 + strdepth(v) ≤ 1 + lcp(vl). Let Jd be the set of all switching pairs in Td. Every u ∈ Vd must be
justified, and every pair (v′l, vl) justifies at most two nodes u ∈ Vd, in which case strdepth(u) ≤ 1 + lcp(vl).
Therefore,

∑
u∈Vd

strdepth(u) ≤ 2nd + 2
∑

(v′
l
,vl)∈Jd

lcp(vl). The result follows again from the fact that∑
(v′

l
,vl)∈J lcp(vl) = O(nd log nd) [22].

Lemma 3.3 justifies defining the s-distance of locations, s-dist(µ), as the minimum length of a chain of suffix
links from µ reaching a node v (because v must be irreducible). We can define s-irreducible locations µ as those
with s-dist(µ) = 0, and lowest s-irreducible locations as those irreducible locations without irreducible locations
descending from them. We can also prove an analogue of Lemma 3.4 for locations.

Lemma 3.5. Let Vd be the set of all lowest s-irreducible locations µ ∈ Td. Then the total string depth of all
locations in Vd is O(nd log nd).
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Proof. Let µ ∈ Vd be such a location. By Lemma 3.3, the node v = slink(µ) has w-dist(v) = 0. Then exactly
the same argument used in Lemma 3.4 for nodes in Vd applies to locations in Vd, because we are also considering
lowest locations and thus every switching pair can justify at most two.

We now prove an extension of Lemma 3.1, yet for s-distances.

Lemma 3.6. Let u ∈ Td be an ancestor of v ∈ Td. Then s-dist(u) ≤ s-dist(v).

Proof. If s-dist(u) = 0 we are done. Otherwise, we proceed by induction on s-dist(v). If s-dist(v) = 0, then
w = slink(v) is w-irreducible, and by Lemma 3.1, so is its ancestor slink(u); thus s-dist(u) = 0. If not, both
s-distances are positive and s-dist(u) = 1+s-dist(slink(u)), s-dist(v) = 1+s-dist(slink(v)). The result then follows
by the inductive hypothesis because slink(u) is an ancestor of slink(v).

A key property we will use is that, if v is reducible, then the subtree of Td rooted at v must be isomorphic to
the one rooted at wlink(v, a); cf. [16, Thm. 7.7.1].

Lemma 3.7. Let u, v ∈ Td where s-dist(u) > 0 and v = slink(u). Then the subtrees of Td rooted at u and v are
isomorphic.

Proof. Since s-dist(u) > 0, v is reducible and so are all its descendants, by Lemma 3.1. Let a = wlabel(v), so
u = wlink(v, a). Any descendant u′ of u also satisfies s-dist(u′) > 0 by Lemma 3.6, and since v′ = slink(u′)
descends from v, it follows that u′ = wlink(v′, a). Analogously, for every descendant v′ of v, we have that
u′ = wlink(v′, a) descends from u and it holds v′ = slink(u′). It then follows that slink(·) and wlink(·, a) are
inverse functions, and hence bijections, between the subtrees of u and v. For x = u, v, let Sx = {α, str(x′) =
str(x)α and x′ descends from x}. By the bijections, it follows that Su = Sv, and since the topology and edge
labels of the subtrees of u and v are functions of Su and Sv, respectively, the subtrees of u and v are isomorphic.
We note that the suffix tree positions of the leaves are also the same, all shifted by one.

We will say that an internal node v ∈ Td is δ-near, or just near, if its s-distance does not exceed δ, for a parameter
δ that will be defined later, s-dist(v) ≤ δ. The (δ-)near subtree of a document d is the subtree T δ

d formed by the
δ-near nodes of Td. By Lemma 3.6, T δ

d consists of the top part of Td, that is, if a node v belongs to T δ
d , then its

ancestors belong as well. We note that the leaves of T δ
d are always internal nodes in Td. Note also that a node

of T might correspond to a near node in some Td and to a not-near node in another Td′ . Let us call slink j the
iterated application of slink . The following is a key result on near subtrees.

Lemma 3.8. The sum of the string depths of all the leaves in a near subtree T δ
d , and thus the total length of all

the edge labels, is O(δnd log nd).

Proof. For any 0 ≤ j ≤ δ, let V j be the set of all leaves v of T δ
d such that s-dist(v) = j. Note that V 0 is a subset

of the set Vd defined in Lemma 3.4, as nodes in Vd might not be leaves in T δ
d . By Lemma 3.4, then, the total

string depth of all nodes in V 0 is O(nd log nd).
For every 1 ≤ j ≤ δ, there is an injective mapping between V j and Vd: if we follow j suffix links from a

node vj ∈ V j , we reach a distinct s-irreducible node slink j(vj) = v ∈ Vd. Indeed: (1) The node v is unique
for vj because there is a path of lonely Weiner links from v to vj . (2) The node v belongs to Vd because, first,
s-dist(v) = 0, so v is s-irreducible. Second, it is lowest s-irreducible: by Lemma 3.7, if there were a descendant w
of v with s-dist(w) = 0, then there would be a descendant wj of vj with slink j(wj) = w, that is, it would hold
wj ∈ V j and then vj would not be a leaf of T δ

d .
Note that strdepth(vj) = strdepth(v) + j. Hence the total string depth of all nodes in V j does not exceed

O(nd log nd + j |V j |) ⊆ O(nd log nd + δ|V j |). Added over all the sets V j , since they are disjoint, yields the bound
O(δnd log nd + δnd) = O(δnd log nd) for the string depths of all the leaves in T δ

d , and hence also for the sum of all
edge labels in T δ

d .

A consequence of this result is that there cannot be too many nodes in near subtrees whose string depth is
large enough, and therefore we can spend some space on those nodes. Their total string depth is also bounded.
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Figure 2: On the left, the main concepts on the nodes of a suffix tree Td. All leftward arrows are Weiner links.
The numbers inside the reducible nodes are their s-distance. On the right, types of pointers in T and relation
with nodes in Td.

Lemma 3.9. The sum of the string depths of all the leaves of all the near subtrees T δ
d , as well as the total length

of all their edge labels, is O(δn log n). There are O(n/ log n) leaves and branching nodes with string depth at least
∆ = δ log2 n across all the near subtrees T δ

d .

Proof. Adding the O(δnd log nd) bounds of Lemma 3.8 over all documents d yields the claimed limit O(δn log n).
In particular, this is also a limit on the sum of the string depths of all the leaves with string depth at least ∆
in near subtrees. It follows that there are only O((δn log n)/∆) = O(n/ log n) such leaves, as well as branching
internal nodes, of string depth at least ∆ in all near subtrees.

Nodes v ∈ Td, both internal and leaves, with s-dist(v) > δ, are called δ-far, or just far. To handle far nodes v,
we will exploit Lemma 3.7. Since a δ-far node v induces a chain of isomorphic subtrees rooted at slink j(v), we will
sample one out of δ nodes in those chains, and infer the answer on every node of the chain from the information
stored at the next sampled node.

Analogously as for nodes, we say that a location µ on an edge (v, u) of Td is (δ-)near if either the node v is
δ-near or s-dist(µ) ≤ δ. We will also bound the string depths of all δ-near locations.

Lemma 3.10. Let V denote the set of all lowest δ-near locations in Td. Then the total string depth of all locations
in V is bounded by O(δnd log nd).

Proof. For 0 ≤ j ≤ δ, let V
j
be the set of locations ν ∈ Td such that s-dist(ν) = j and every location ν′ below

ν has s-dist(ν′) > j (thus V
0
= Vd). An argument analogous to that of Lemma 3.8, now applied on locations

instead of nodes, shows that slink j(·) is an injective mapping from V
j
to V

0
: if ν ∈ V

j
, then µ = slink j(ν) is

unique and belongs to Vd because (1) one reaches ν via j lonely Weiner links from µ; (2) µ is s-irreducible and, if
there existed an irreducible location µ′ descending from µ, then by Lemma 3.7 there would exist ν′ below ν with

s-dist(ν′) ≤ j, and thus ν would not belong to V
j
. From the injectiveness, we can use exactly the same counting

argument of Lemma 3.8 to conclude that |V | = O(δnd log nd).

Figure 2 (left) illustrates the concepts. We miss leaves v with s-dist(v) ≤ δ. Since for leaves v it holds
s-dist(v) = strdepth(v), those leaves will be handled by “shallow” pointers, see next.

4 General Structure of our Solution

We will classify the pointers ptr(v, u, d) in the global suffix tree T as follows (see Fig. 2, right):

• If v is a near node, then u is also near by Lemma 3.6 and we say that ptr(v, u, d) is near.

• If u is a far node, then v is also far by Lemma 3.6 and we say that ptr(v, u, d) is far.
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• The other possibility is that v is far and u is near; in this case we say that ptr(v, u, d) is limiting.

• Independently of the above classes, if strdepth(u) ≤ ∆, we say that ptr(v, u, d) is shallow.

Our data structure consists of

(i) Any CSA on the sequence S[1..n], using |CSA| bits. It counts in time tcnt = tcnt(p) and accesses any suffix
array position in time tSA = tSA(n).

(ii) The topologies of the global suffix tree T of S and the local suffix trees Td of Sd, using O(n) bits overall and
supporting in constant time a number of navigation operations [34].

(iii) A compressed suffix tree (CST) representation of T , which builds on top of the CSA and, adding O(n) bits,
supports most suffix tree operations in time O(tSA) [9].

(iv) A bitvector L[1..n] that stores 1s at the positions where the different documents Sd start in their
concatenation S. It supports operation rank(L, i), which counts the 1s in L[1..i], in constant time, using
n+ o(n) bits in total [7, 27].

(v) Other structures using O(n log log n) bits that are specific of each kind of pointer we handle.

We define δ = log2+ε n for any constant ε > 0, and ∆ = δ log2 n = log4+ε n. To answer a top-k query for a
pattern string P [1..p], we first find the suffix array interval [sp, ep] of P using the CSA, compute the sp-th and
ep-th leaves l and r of T using its topology, and then the locus w = locus(P ) = lca(l, r). We also compute the
parent wp = parent(w) of w in T using the tree topology, and its string depth strdepth(wp) using the CST; note
p > strdepth(wp). All this takes time O(tcnt + tSA). Now we proceed as follows.

1. If strdepth(wp) > ∆ and ep− sp < δ log n, the query is solved by brute force, in time O(δ log n+ k tSA), as
described next in Section 5. Since p > ∆, this time is in O(p/ log n+ k tSA).

2. Otherwise, if strdepth(wp) > ∆, we form our answer from the first three pointer categories:

(a) We identify k heaviest near pointers that straddle w in O(tsort(k, n)) time, as described in Section 6.
If we can deliver the results in unsorted order, the time is O(k).

(b) We identify k heaviest far pointers that straddle w, as described in Section 7, in time O(k + δ(tSA +
log n)). Again, since p > ∆, this is in O(k + p tSA/ log

2 n+ p/ log n).

(c) Limiting pointers will be assimilated to the near and far pointers, as described in Section 8, without
additional costs.

Those sets of candidates come sorted by decreasing relevance, so from the 2k candidates we obtain in O(k)
additional time the final k documents to be returned.

3. Otherwise, strdepth(wp) ≤ ∆ and all pointers straddling w are shallow. We then complete the query in time
O(k(tSA + log log n)) as described in Section 9.

The total time is then O(tcnt + p/ log n+ p tSA/ log
2 n+ k(tSA + log log n)). In the RAM model we need time

Ω(p/ logσ n) just to read the pattern even if it comes in packed form, thus the term p/ log n must be in O(tcnt).
Further, all known CSAs offer tSA = O(log n) if they are allowed to use O(n) bits of space, in which case the same
argument applies to O(p tSA/ log

2 n) as well. We can extend the bound to any CSA offering tSA = O(polylog n)
by redefining ∆ = δ log n(log n + tSA) so that δ tSA ≤ ∆/ log n < p/ log n; our results only need that ∆ is
polylogarithmic.

Theorem 4.1. Let a document collection D have total length n and a CSA built on it use |CSA| bits, finding
the suffix array range of a string of length p in time tcnt(p) and retrieving any suffix array cell in time
tSA(n) = O(polylog n). Then there exists a data structure that uses |CSA| + O(n log log n) bits of space and
supports top-k queries on D for a string of length p in time O(tcnt(p) + k · (tSA(n) + log log n)). The relevance
measures supported by the data structure are document rank and text frequency. The working space of our query
is O(k log n) bits on top of the index space bounds.
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For example, using O(n log σ + n log log n) bits of space, particular CSAs yield times O(p+ k log n/ log log n)
[2], or if, say, σ = O(polylog n), O(p/ logσ n+ k logεσ n) [15].

Note that, in case 1, k is bounded by ep− sp+1 = O(δ log n). Thus, we can return to ∆ = δ log2 n and write
the time in the following way for long patterns.

Corollary 4.1. The time of Theorem 4.1, when p = Ω(log4+ε n) for any constant ε > 0, can be reduced to
O(tcnt(p) + tSA log3+ε n+ tsort(k, n)). On all the known CSAs, the time is O(tcnt(p) + tsort(k, n)).

Results in unsorted order. If we can return unsorted results, the time in case 2 is bounded by O(tcnt+k):
to merge the unsorted results of 2(a) with those of 2(b), we use a linear-time algorithm to find the kth most
relevant element, then scan the list to collect the k′ < k elements more relevant than the kth, and finally scan
again to collect k − k′ elements as relevant as the kth.

Corollary 4.2. The time of Theorem 4.1, when p = Ω(log4+ε n) for any constant ε > 0, can be reduced to
O(tcnt(p) + tSA log3+ε n+ k) if the results can be delivered in unsorted order. On all the known CSAs, the time is
O(tcnt(p) + k).

For example, using the CSA of Grossi and Vitter [15], the time for long patterns is the RAM-optimal
O(p/ logσ n+ k). No such a result was obtained before in o(n logD) bits of space.

Another corollary is that, if we can return the results in unsorted order and store additional CSAs for all the
documents Sd, then we can reduce the time for short patterns as follows; see the end of Section 9.1.

Corollary 4.3. If we use 2|CSA|+O(n log log n) bits of space and the results can be delivered in unsorted order,
then the time of Theorem 4.1 can be reduced to O(tcnt(p) + k tSA).

5 Brute Force Solution

For the case where strdepth(wp) > ∆ and ep − sp < δ log n, we store a mapped document array M [1..n] that
assigns local document identifiers: inside each maximal node v ∈ T having at most δ log n descendant leaves,
we give new identifiers to the distinct documents that mark the leaves. These identifiers are in [1..δ log n] and
preserve the docrank of the original documents. Array M requires O(n log log n) bits of space.

At query time, since ep − sp + 1 ≤ δ log n and [sp, ep] is the leaf range of w = locus(P ), it follows that
w descends from some of the maximal nodes v defined above, and that the document identifiers are mapped
consistently within M [sp..ep]. We can then operate on this subarray, finding the k maximum values (for docrank)
or the k most frequent values (for freq). This is easily done in O(δ log n) time with basic counting techniques
because δ log n bounds both the size of the range to traverse and the size of the universe of values. For freq
we require to sort the frequencies, which is also done in linear time with radix sort because the universe size is
polylogarithmic.

Together with each distinct value mi we find in M [sp..ep] we maintain a position sp ≤ pi ≤ ep where
M [pi] = mi. Once we have the final k mapped document values mi, we must convert them to actual document
identifiers di. For this sake we use bitvector L: if j is the suffix array value in position pi, rank(B, j) is the
identifier of the document that marks the mith leaf in T . Suffix array values are computed in time tSA with the
CSA, so we compute the k identifers in time O(k tSA).

6 Near Pointers

We divide the global suffix tree T into horizontal slices Hi of height ∆, where a slice Hi corresponds to the
interval [(i− 1)∆, i∆− 1]. For each slice Hi we store a data structure Di representing all the pointers ptr(v, u, d)
that intersect the string depths of Hi: Di contains one vertical segment for each pointer ptr(v, u, d) such that
either (1) strdepth(v) is in Hi or (2) strdepth(u) is in Hi or (3) strdepth(v) is below Hi and strdepth(u) is above
Hi; in the latter case we say that ptr(v, u, d) spans Hi. Pointer ptr(v, u, d) is represented in Di by a vertical
segment (x, yl, yh) where x is unique for the pointer and will be defined later, yl = max(i∆− strdepth(v), 0) and
yh = min(i∆− strdepth(u),∆). Note that a pointer that spans Hi is represented by a segment (x, 0,∆). Further,
the segment is assigned the weight rel(str(v), d) of ptr(v, u, d).

Let w = locus(P ) and i = ⌈strdepth(w)/∆⌉. Then, every pointer ptr(v, u, d) that straddles w is represented
in Di, and moreover its corresponding segment (x, yl, yh) must satisfy yl ≤ i∆ − strdepth(w) < yh. The second
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condition needed to straddle w will be that lw ≤ x ≤ rw for some [lw, rw] that will be defined later. Therefore,
the answer to our top-k query is a set of k heaviest segments in Di that satisfy the given conditions. The data
structure Di is structured to support those queries, as described in the following lemma.

Lemma 6.1. For any ∆ = O(polylog n), we can store m weighted vertical segments on an m × ∆ grid in an
O(m log log n)-bit data structure, so that for any a, b, and h the heaviest segment (x, yl, yh) satisfying a ≤ x ≤ b
and yl ≤ h < yh can be found in O(twght) time, where twght is the time required to compute the weight of a
segment.

Proof. We maintain a variant of the segment tree with node degree logγ n for a constant γ < 1. Leaves of the tree
contain all possible y-coordinates between 0 and ∆, so the tree has constant height. The range [min(u),max(u)]
of a node u is the interval containing the smallest to the largest y-coordinates in the leaf descendants of u. The set
S(u) associated with an internal node u contains all segments (x, yl, yh) such that [min(ui),max(ui)] ⊆ [yl, yh−1]
for at least one child ui of u but [min(u),max(u)] ̸⊆ [yl, yh − 1]. Every segment (x, yl, yh) is then associated with
at most two sets S(u) in the same level: if it were associated with three nodes (covering consecutive leaf ranges),
then it would contain the middle one. Over all levels, then, each segment is stored in O(1) sets.

A segment (x, yl, yh) is stored in S(u) as (x′, y′l, y
′
h), where x′ is the rank of x in S(u), and y′l (y′h) is the

index of the smallest (largest) child node ul (ur) so that min(ul) ≥ yl (max(ur) < yh). The coordinate x′ is not
stored as it corresponds to the position of the segment in S(u); the values y′l and y′h are stored in O(log log n)
bits. Each node u also stores logγ n bitvectors Bi(u), where the x′-coordinates of segments in S(u) that also
belong to S(ui) are marked with a 1. A coordinate range [a, b] in u is then mapped to the coordinate range
[rank(Bi(u), a−1)+1, rank(Bi(u), b)] in ui, and a coordinate x′ inside ui is mapped to coordinate select1(Bi(u), x

′)
in u. In this way we map in constante time the query ranges downwards and the answer positions upwards in the
tree.

Note that every segment (x, yl, yh) where yl ≤ c < yh is stored in some ancestor u of the leaf c, and in S(u)
the segment contains the child ui of u that contains c. Then, to find the heaviest segment (x, yl, yh) such that
x ∈ [a, b] and yl ≤ c < yh, we visit all ancestors u of the leaf c. In each node we find O(1) heaviest segments such
that au ≤ x′ ≤ bu and y′l ≤ i ≤ y′h, where [au, bu] is the range [a, b] mapped to u and the leaf c descends from the
child ui of u. We then map to the root the O(1) heaviest segments found in each level and return the result, in
total time O(twght).

It remains to explain how queries on S(u) are answered. A set S(u) contains mu segments (x′, y′l, y
′
h)

on an mu × logγ n grid. We divide S(u) into mu/ log
γ n blocks of logγ n consecutive segments. For each

1 ≤ j ≤ logγ n, consider the sequence Sj(u) with the heaviest segment (x′, y′l, y
′
h) satisfying y′l ≤ j ≤ y′h

from each block. We only keep a range-maximum data structure [8] on the weights of each sequence Sj(u),
which consumes O(|Sj(u)|) = O(mu/ log

γ n) bits, adding up to O(mu) bits over all the values j. On the other
hand, each block contains logγ n segments with values in [1, logγ n]. Hence, the answers to all the possible
queries with values (au, bu, i) confined to every possible segment can be precomputed in a universal table of
2(log

γ n)·2γ log logn · log3γ n · γ log log n ∈ o(n) bits. A query range is divided into a middle part that is aligned with
block boundaries and is solved with the range maximum query data structure, and left and right extremes that
fit inside one block (if not, then the query is confined in a single block, too). We then find up to three candidates
to be the heaviest, as promised.

Since each segment belongs to O(1) sets S(u), the sum of all mu is O(m). The space is then O(m) for the
range maximum queries and O(m log log n) to store the mapped values y′. The bitvectors Bi(u) of u sum to
length mu log

γ n, adding up to O(m logγ n) across the tree. Each segment stored in some S(ui) induces a 1 in
the bitvector Bi(u) of its parent u, and so the total number of 1s of all bitvectors is O(m). It is then possible to
represent them using O(m log logγ n) + o(m) = O(m log log n) bits and support rank and select in constant time
[36].

We can solve the top-k query by applying Lemma 6.1 iteratively, as follows (cf. [18]). Frederickson [11] showed
how, given an abstract binary tree where each element is not smaller than its children, one can obtain k largest
elements with O(k) traversal operations: visit the root or, given any already visited node, visit its children. We
define our binary tree as follows: the root corresponds to the range [lw, rw], and its value to the maximum weight
Lemma 6.1 yields on this range. If this maximum is at position t in the range, then the left and right children of
the root correspond to the ranges [lw, t− 1] and [t+ 1, rw], respectively. Empty intervals correspond to leaves of
the tree.
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This algorithm delivers the k heaviest segments in unsorted order, however, so we must sort them by decreasing
weight, in the time tsort(k, n) of any algorithm sorting k integers in O(n). The algorithm must use O(k log n) bits
of working space, plus up to O(n log log n) extra bits of space that can be charged to the index. For example,
we can obtain tsort = O(k log log k) [17] and O(

√
n) extra space [1, Sec. 5], tsort(k, n) = O(k log logk n) [24] and

O(
√
n) extra space (by sorting in rounds of 1

2 log2 n bits), and tsort(k, n) = O(k(1+log k/ log log n) using dynamic
predecessor data structures [38], with just O(k) extra space. In all these cases, O(k log n) bits of working space
suffices [10]. Those choices reach sorting time O(k) for k = Ω(nε) for any constant ε > 0, or k = O(polylog n).

To analyze space usage, we first bound the number of segments represented for all the slices.

Lemma 6.2. The number of segments stored in all the structures Di, i > 1, is O(n/ log n).

Proof. Every near pointer ptr(v, u, d) may start in a slice and end in another slice, but it may span many slices.
Lemma 3.9 states that there are O(n/ log n) near nodes v with depth over ∆, and hence there are O(n/ log n)
near pointers that are not shallow. Therefore, there are O(n/ log n) segments starting or ending in some Di

for some i > 1. To account for the number of segments spanning slices, we define the length of ptr(v, u, d) as
strdepth(v)−strdepth(u). By Lemma 2.1, the set of all pointers ptr(v, u, d) is isomorphic to Td. The set of all near
pointers ptr(v, u, d) is then isomorphic to T δ

d , and the length of ptr(v, u, d) corresponds to the length of the string
labeling the corresponding edge in T δ

d . By Lemma 3.9, the sum of all edge label lengths in T δ
d is O(δn log n). The

same bound then holds for the sum of the lengths of all near pointers ptr(v, u, d) that are not shallow. Every slice
spanned by a pointer uses ∆ units of its length that are not used for other slices, so the total number of segments
spanning slices is O((δn log n)/∆) = O(n/ log n).

Therefore, the space required by the structures of Lemma 6.1 across all the slices is O(n) bits.

We list segments in Di according to the preorder ranks of the nodes v in their corresponding pointers
ptr(v, u, d). For every segment s that represents a pointer ptr(v, u, d), we explicitly store its weight and the
preorder rank of v in T . All the preorder ranks of those nodes v are also kept in a predecessor data structure [37]
that uses constant space per segment and supports queries in time O(log log n). The predecessor data structure,
as well as all the extra space, uses O(log n) bits per segment, which summed over all slices yields O(n) bits by
Lemma 6.2.

The x-coordinate of a segment (x, yl, yh) representing ptr(v, u, d) is then its position in the sequence of
segments of Di where we sort them by the preorder rank of v. Several segments can have the same preorder rank
if they have the same node v associated with various pointers with different documents; we give them consecutive
x-coordinates in arbitrary order. Thus for every node w ∈ T there is a range [lw, rw] so that the x-coordinate of
a segment representing ptr(v, u, d) is in [lw, rw] iff v is a descendant of w. We can find lw and rw in O(log log n)
time by querying our predecessor data structure. A pointer ptr(v, u, d) straddles w iff the segment (x, yl, yh)
representing this pointer satsifies lw ≤ x ≤ rw and yh ≤ i∆ − strdepth(w) < yh. Hence we can find the top-k
near pointers that straddle w using Lemma 6.1.

Lemma 6.3. If strdepth(wp) > ∆, we can find k most relevant near pointers that straddle w, in decreasing
relevance order, in time O(tsort(k, n)) and using O(n log log n) additional bits.

7 Far Pointers

We cannot bound the number or total string length of far nodes, but as Lemma 3.7 shows, they induce isomorphic
subtrees. We now show that, as a consequence, many far pointers are equivalent.

Lemma 7.1. Let ptr(v0, u0, d) be a far pointer. Then there are pointers ptr(v1, u1, d), . . . , ptr(vδ, uδ, d) such that
vi = slink(vi−1) and all the pointers have the same weight.

Proof. By definition, v0 is a (δ-)far node, thus s-dist(v′0) > δ holds for its corresponding node v′0 ∈ Td. Then
there is a chain of lonely suffix links v′0 → · · · → v′δ, all with s-dist(v′i) > 0. By Lemma 3.7, all the subtrees of
v′i ∈ Td are isomorphic. Since all belong to the same document d and the weight of ptr(vi, ui, d) is a function
of the subtree rooted at the node v′i ∈ Td, the weights are the same. In particular, freq is the same because the
subtrees rooted at v′i have the same number of leaves, and docrank is the same because d is the same.
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Since there are many similar “consecutive” far nodes, we select one out of δ from those. The pointers
corresponding to selected nodes will be called special. The selection of special pointers is done as follows. Inside
every tree Td, we select all the nodes v′ where s-dist(v′) is a nonzero multiple of δ, and declare special the
corresponding pointers ptr(v, u, d), where v ∈ T corresponds to v′. For each selected node v′, there are δ − 1
unique non-selected ones, reached via lonely suffix links from v′. Thus, we select at most nd/δ nodes in each Td,
and there are O(n/δ) special pointers.

By our construction, for every far node v′ ∈ Td, there is a selected node slink i(v′) ∈ Td, with i < δ. We then
make use of the following property.

Lemma 7.2. Let w ∈ T be such that strdepth(w) ≥ δ. Then, for every far pointer p0 = ptr(v, u, d) that straddles
w, there is some 0 ≤ i < δ and a special pointer pi = ptr(slink i(v), slink i(u), d) that straddles slink i(w) and has
the same weight of p0.

Proof. Nodes v, u ∈ T are far by definition. Since suffix links of Td are preserved in T , by our construction there
is a special pointer (vi, ui, d), where vi = slink i(v) for some 0 ≤ i < δ. By Lemma 2.1 and the existence of p0,
there is an edge in Td between the nodes u′ and v′ corresponding to u and v, precisely u′ is the parent of v′.
Then, v′i = slink i(v′) descends from u′

i = slink i(u′). By Lemma 3.7, the subtree of the node u′
i ∈ Td is isomorphic

to the subtree of node u′ ∈ Td. Therefore, u
′
i is the parent of v′i. By Lemma 2.1, then, there exists a pointer from

the node corresponding to v′i to that corresponding to u′
i, marked with document d. Those nodes are precisely

vi = slink i(v) and ui = slink i(u), because suffix links are preserved in the embedding of Td in T . Thus the special
pointer is pi. The suffix link preserves the property of being straddled, so pi straddles slink i(w). Further, by
Lemma 7.1, the weight of pi is the same as that of p0.

The idea to find k heaviest far pointers that straddle w is as follows. Although within each Td the chains of
lonely suffix links have a regular structure (one node out of δ is selected), those intermingle in arbitrary patterns
in T . Further, lonely suffix link chains refer to trees Td, but they can join others in T . As a result, we can find
special pointers straddling every node wi in the chain wi = slink i(w). Lemma 7.2 guarantees that, if we explore all
0 ≤ i < δ, we will find special pointers representing every pointer that straddles w. To determine if a special pointer
ptr(vi, ui, d) straddles wi, we simply check that vi is or descends from wi and that strdepth(ui) < strdepth(wi).
However, we must also determine if the special pointer represents some pointer ptr(v, u, d) that straddles w, that
is, if w has a corresponding node in Td. Note that this check must be done for all the possible documents d
simultaneously. We do this by associating, with each special pointer ptr(vi, ui, d), the string of δ symbols that
sprout via lonely Weiner links from the node v′i ∈ Td corresponding to vi, and then requiring that the symbols by
which we go from wi to w form a suffix of that string.

The special pointers are then stored in a data structure for three-dimensional points. For every special
pointer ptr(v, u, d), we store a point (x, y, z), where x is the preorder index of v in T , y = strdepth(u), and
z identifies the chain of (up to) δ lonely Weiner links that begins in the node v′ ∈ Td corresponding to v:
v1 = wlink(v′, a1), v2 = wlink(v1, a2), . . . , vδ = wlink(vδ−1, aδ). (The sequence may be shorter because we stop
if we hit an irreducible node vi in the way; for simplicity we assume its length is δ.) Note that aδ · · · a2a1 is a
substring of at least one string from D. Let TR be the global suffix tree of the reverse documents. We then set
z to the preorder index of the node vR ∈ TR such that vR = locus(a1 · · · aδ). We assign to the point (x, y, z) the
same weight of ptr(v, u, d).

To report k heaviest far pointers that straddle a node w, we then visit the nodes w0 = w, w1 = slink(w0), w2 =
slink(w1), . . ., wδ−1 = slink(wδ−2). In the process, we incrementally form the string si with the sequence of Weiner
links traversed, appending every new symbol. For each visited node wi, we find the range [revleft(si), revright(si)]
in TR, which contains the preorders of all the nodes in TR below the locus of srevi (i.e., si read backwards), and
find in our data structure all the points (x, y, z) such that (1) x ∈ [left(wi), right(wi)] (the range of preorders in
the subtree of wi ∈ T ), (2) y < strdepth(wi) = strdepth(w)− i, and z ∈ [revleft(si), revright(si)] (that is, s

rev
i is a

prefix of the string a1 · · · aδ associated with the pointer, or equivalently, si is a suffix of aδ · · · a1).
In the following subsections we describe how we simulate the reverse suffix tree TR (Section 7.1), how the

three-dimensional range queries are carried out (Section 7.2), and how the lists L(wi) of k heaviest pointers
straddling wi are generated and merged (Section 7.3).

The total time required to generate and merge the lists L(wi) is O(k+ δ log n). In addition, we perform O(δ)
suffix tree operations like taking suffix links, computing string depths, and preorder ranges, which adds O(δ tSA)
time.
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Lemma 7.3. If strdepth(wp) > ∆, we can find k most relevant far pointers that straddle w, in decreasing relevance
order, in time O(k + δ(tSA + log n)) and using O(n) additional bits.

7.1 Reverse Suffix Tree Preorders Instead of representing a full suffix tree TR, we use the following
data structure. For every node v ∈ T such that strdepth(v) ≥ δ, strdepth(parent(v)) < δ, and v having at
least δ log n leaf descendants, we store the string str(v)[1..δ] in an uncompressed trie. In each node of the trie
representing string α, we store the range [revleft(α), revright(α)] of all the preorders in the subtree of the node
vR = locus(αrev) ∈ TR. The trie stores O(n/(δ log n)) strings of length δ, so it has O(n/ log n) nodes and requires
O(n) bits in total.

If, in our suffix link chain w, . . . , wi, we have read the string si = c1 · · · ci, then str(w) = siα for some α, and
therefore string si is indexed in the trie. We can thus descend in the trie by each new symbol ci, in constant time
per suffix link taken, and directly access the range [revleft(si), revright(si)].

Note that w[1..δ] must be in the trie, because strdepth(v) ≥ ∆; otherwise w is shallow and not addressed
here. On the other hand, if w has fewer than δ log n leaf descendants, then the query was solved by brute force
in Section 5. Otherwise, every wi must have at least δ log n leaf descendants because it is reached by (a chain of
lonely) suffix links from w.

7.2 Three-dimensional Queries Our data structure holding the points (x, y, z) must report k heaviest points
(x, y, z), such that x ∈ [a, b], y ∈ [c, d], and z ∈ [e, f ], in decreasing weight order. We now describe such a data
structure.

Lemma 7.4. There exists a data structure that stores m ≤ n three-dimensional weighted points with coordinates
and weights in O(n), uses O(m log2+ε n) bits of space for any constant ε > 0 and can report k heaviest points in
a three-dimensional orthogonal range in time O(k + logm).

Proof. The data structure from Chan et al. [6, Thm. 7] uses O(m log n) bits of space and works in the special
case when the two-dimensional query range is bounded on two sides: for any a and b, it reports k heaviest
two-dimensional points (x, y) such that x ≤ a and y ≤ b in time O(k + log log n), for any 1 ≤ a, b, k ≤ n.
Using the non-uniform grids technique [5, Sec. 3], we can extend this result to a data structure that uses
O(m log1+ε n) bits of space and reports k heaviest points in any two-dimensional query range in O(k + log log n)
time. Then we extend this result to a data structure that supports three-dimensional queries, using range
trees with node degree logε n. The space usage increases by a factor of O(log1+2ε n) factor and the query time
increases by a factor of O(logm/ log log n). We refer to Appendix A for details. The resulting data structure
uses O(m log1+ε n log1+2ε n) = O(m log2+3ε n) bits of space and can report k heaviest points in an arbitrary
three-dimensional query range in time O(k + log n). If we replace ε with ε/3, we obtain the result.

In our case m = O(n/δ) is the number of special pointers, so the space usage is O((n/δ) log2+ε n) = O(n)
bits and the query time is O(k + log n).

7.3 Merging Lists Now we explain how the list of k heaviest points in ∪δ−1
i=0L(wi) can be generated. Let

L(wi, g) denote the list of 2
g log n heaviest points in L(wi). We start by setting li = 0 and generating L(wi, li) for

all i, 0 ≤ i < δ. We extract the heaviest point from each L(wi, li), and add these to a heap H. Then we repeat
the following steps until the list of top-k pointers is generated:

1. We extract the heaviest point p from H.

2. If the extracted point comes from the list L(wi, li), we remove the next point from L(wi, li) and add it to
H.

3. If L(wi, li) is empty, we generate L(wi, li + 1), remove the first 2li log n points from L(wi, li + 1) (i.e., we
remove the points that were already reported), and increment li.

The time of this procedure can be analyzed as follows. Every list L(wi, li) is generated in time O(2li log n+
log n) = O(2li log n) using the structure of Section 7.2. Let fi denote the final value of li, so we queried
the structure fi times, asking for increasing numbers 2j log n of results. The sum of those query times is
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O(
∑fi

j=0 2
j log n) = O(2fi log n). Let ki denote the number of points from L(wi) reported by the procedure.

Since 2fi−1 log n < ki ≤ 2fi log n, the cost incurred on L(wi) is O(ki + log n), the second term owing to the first
call with li = 0. Added over the values 0 ≤ i < δ, we get O(k+ δ log n). The operations on the heap H take O(1)
time because it contains at most δ elements, which is polylogarithmic in n [38]. Thus the heap only adds O(k)
additional time.

8 Limiting Pointers

Limiting pointers ptr(v, u, d) start in a far node v and end in a near node u. The main idea to handle them is
to “split” ptr(v, u, d) into two “consecutive” pointers, ptr(v, x, d) and ptr(x, u, d). The new pointers inherit the
weight of the original limiting pointer. We handle the pointers ptr(x, u, d) in the same way as near pointers and
the pointers ptr(v, x, d) as far pointers.

Let ptr(v, u, d) correspond to the edge (v′, u′) in Td (i.e., u′ is the parent of v′). The new node x is then
inserted in the middle of the edge (v′, u′), that is, in a location. Concretely, x will be the lowest possible near
location on the edge, if it exists, recall Section 3.2.

Consider a pointer ptr(v, u, d) from a far node v to a near node u. Since v is far, it must be strdepth(v) > δ. If
there are near locations on the corresponding edge (v′, u′) of Td, we select the lowest one µ and conceptually insert
a new dummy node x′ splitting (v′, u′), with strdepth(x′) = max(strdepth(µ), δ). The purpose of this maximization
is to ensure that x′ can also be treated as a far node, as one can follow δ suffix links from it. If no near location
µ exists on the edge, but strdepth(u) < δ, we also insert a dummy node x′ on (v′, u′) with strdepth(x′) = δ. If
strdepth(u) ≥ δ, we do not create any dummy node.

We call edge (x′, u′) a dummy edge. The extended near subtree Eδ
d is obtained from the near subtree T δ

d by
adding all dummy edges. Lemma 3.9 is also true for extended short subtrees Eδ

d.

Lemma 8.1. The sum of the string depths of all the leaves of all the near extended subtrees Eδ
d, as well as the

total length of all the edge labels, is O(δn log n). There are O(n/ log n) leaves and branching nodes with string
depth at least ∆ = δ log2 n across all the extended near subtrees Eδ

d.

Proof. Every dummy leaf corresponds to a unique location µ in V , and its string depth does not exceed
strdepth(µ) + δ. By Lemma 3.10 the total string depth of all dummy leaves in Eδ

d is O(δnd log nd + δnd) =
O(δnd log nd). By the same arguments as in Lemma 3.9, the total string length of all edges, and the total string
depth of all branching nodes with string depth at least ∆, are also bounded by O(δnd log nd). Thus there are
O(nd/ log n) such branching nodes. Summing over all documents, we obtain the claim.

By Lemma 8.1, we can store the dummy pointers ptr(x, u, d) corresponding to the dummy edges (x′, u) in the
same data structures Di described in Section 6, without exceeding our space budget. The other kind of created
pointers is ptr(v, x, d), where v is far and x is dummy. They are stored and handled as far pointers exactly as
described in Section 7. The next lemma proves the correctness of our scheme.

Lemma 8.2. Suppose that a node w ∈ T is straddled by a limiting pointer ptr(v, u, d). Then either (1) w is
straddled by a dummy pointer ptr(x, u, d) or (2) wi = slink i(w) is straddled by a special pointer ptr(vi, ui, d) with
the same weight, for some 0 ≤ i < δ.

Proof. Suppose we added a dummy node x′ on the edge (v′, u′) of Td corresponding to ptr(v, u, d). If
strdepth(w) ≤ strdepth(x′), then w is straddled by ptr(x, u, d). If strdepth(w) > strdepth(x′) ≥ δ, there
exists by Lemma 7.2 an index 0 ≤ i < δ such that ptr(vi, ui, d) is special and vi = slink i(v). Let v′i ∈ Td

correspond to vi ∈ T , and v′p ∈ Td be its parent. No location µ′ below x′ on the edge (v′, u′) can be reached by
following i Weiner links from v′p, otherwise µ′ would have been near as well. Hence strdepth(v′i)− strdepth(v′p) ≥
strdepth(v′)− strdepth(x′) > strdepth(v)− strdepth(w). Thus, the pointer ptr(vi, vp, d), corresponding to the edge
(v′i, v

′
p), straddles wi. If there is no dummy node x′ on the edge (v′, u′), then strdepth(u′) ≥ δ, so u′

i = slink i(u′)
exists and must be the parent of v′i, u

′
i = v′p, so the pointer ptr(vi, ui, d) straddles wi. The reason is that, if

v′p ̸= u′
i, then v′p is between v′i and u′

i, thus there must be a near location µ′ on (v′, u′) such that slink i(µ′) = v′p
and node x′ would have been created.
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9 Shallow Pointers

Now we consider the case when the string depth of the parent of the locus node w is at most ∆. All the pointers
that straddle w are then shallow (independently of being near, far, or limiting, which is irrelevant here). The
techniques in the other sections assume p > ∆.

Our solution is similar in spirit to the structure for near pointers in Section 6. We represent each shallow
pointer ptr(v, u, d) with a vertical segment (x, yl, yh), where x is an index related to the rightmost leaf marked with
d in the subtree of v. We set yh = ∆−strdepth(u) and yl = max(∆−strdepth(v), 0). For each pointer that straddles
w, there is a segment (x, yl, yh) where x refers to some leaf in the subtree of w and yl ≤ ∆− strdepth(w) < yh.

Note that the “rightmost leaf marked with d in the subtree of v” might be associated with several segments.
Segments are ordered by the index of their associated leaf, breaking ties arbitrarily. The x-coordinate of a
segment is its position in this ordering. To map between x-coordinates and leaves, we store a bitvector B where
we traverse the leaves of T left to right and append a 0 for every new leaf and then a 1 for every segment
associated with that leaf. Since all the segments associated with the same leaf are consecutive, the leaf rank
of the jth segment is computed in constant time as select1(B, j) − j. Further, let w be the ancestor of the
lth to the rth leaves of T . Then the range of all the x-coordinates of nodes below w and its ancestors is
[lw, rw] = [select0(B, l) − l + 1, select0(B, r + 1) − r − 1]. The segments are stored in the data structure of
Lemma 6.1, which takes O(n log log n) bits of space; B takes O(n) bits.

At query time, given strdepth(w) and the leftmost and rightmost leaves l and r descending from w, we
compute [lw, rw] and query the data structure of Lemma 6.1 O(k) times, following the same procedure described
in Section 6. The k final answers come in the form of segment positions; we convert them to leaf ranks in T as
explained, and from those ranks we use the CSA to obtain the document identifiers with bitvector L, as explained
in Section 5. The total time is dominated by k times the cost to compute a weight, the time to sort the result
(the time tsort(k, n) = O(k log logn) is convenient here), and the O(k tSA) time to obtain the actual document
identifiers. We describe next how to compute the weights in O(log log n) time and O(n log log n) bits of space.

Lemma 9.1. If strdepth(wp) ≤ ∆, we can find k most relevant shallow pointers that straddle w, in decreasing
relevance order, in time O(k(tSA + log log n)) and using O(n log log n) additional bits.

9.1 Computing Weights We have shown how to identify the document d of a segment representing ptr(v, u, d),
so computing docrank(d) is immediate. We now show how to compute freq(P, d) in O(log log n) time and using
O(n log log n) bits of space.

The first component of our solution builds on a node marking scheme that has been used several times for
compressed top-k retrieval [21, 33, 35]. We mark O(nd/ log n) nodes x

′ ∈ Td, by marking every log(n)-th leaf of
Td and all the lowest marked ancestors of consecutive marked leaves [33]. The preorders of the O(nd/ log n) nodes
x ∈ T corresponding to marked nodes x′ ∈ Td are stored in a successor data structure Fd that takes O(nd) bits
and answers in time O(log log n) [37].

Given a segment belonging to document d, we know there is exactly one node v below the locus w such that
a pointer ptr(v, u, d) straddles w. Let v′ ∈ Td be the node corresponding to v ∈ T (i.e., v′ is the locus of P in
Td). By the marking scheme, there is at most one maximal marked node x′ ∈ Td below v′, and the preorder of its
corresponding node x ∈ T will be the smallest one following the preorder of w in Fd. Therefore, the successor of
the preorder of w in Fd yields the preorder of x, with which we associate the corresponding node x′ ∈ Td (there
is space to store x′ because there are O(n/ log n) marked nodes overall).

The second component to find v′ is to associate with each segment (x, yl, yr) representing ptr(v, u, d), an
additional field storing the tree depth of the node v′ ∈ Td corresponding to node v ∈ T , depth(v′). Since
depth(u) ≤ strdepth(u) ≤ ∆, the tree depth of its corresponding node u′ ∈ Td is also depth(u′) ≤ ∆, and since
v′ is the child of u′ in Td by Lemma 2.1, it holds depth(v′) ≤ ∆+ 1. The tree depth of v′ can then be stored in
O(log log n) bits with the segments.

We then know a node x′ ∈ Td that descends from v′, and the tree depth of v′. A level ancestor query on the
topology of Td yields then v′ in constant time. From v′ we compute freq(P, d) as the number of leaves below v′,
also in constant time.

We have not yet covered the case, however, that v′ is so low in Td that it has no marked descendants. In this
case it has only O(log n) leaves descending from it. The number of those leaves is another component that can be
stored directly with the segment (x, yl, yr) associated with ptr(v, u, d), as it is a function of v and d and requires
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only O(n log log n) extra bits in total.
Computing weights with an additional CSA. Instead of the successor data structures Fd, we can use

one CSA for each document d, CSAd, which computes the lexicographic rank of any text position in its document
(i.e., the inverse of the suffix array permutation) also in time tSA. Given the leaf rank i of the leaf associated
with the segment, we use the global CSA to compute its corresponding position t in S, and then the position
t′ = t − select1(L, d) + 1 within document d. Finally, CSAd yields in tSA time the rank i′ of the corresponding
leaf in Td. We then proceed as above to find v′ from that leaf instead of from x′.

10 Conclusions

We have shown that, by adding O(n log log n) bits of space on top of a compressed suffix array (CSA), we can
solve top-k queries in essentially the time needed to output with the CSA any k positions where the pattern
occurs. This time is arguably optimal if we must build on a CSA; we actually achieve RAM-optimal time on long
enough patterns if the results can be delivered in unsorted order. In this sense, our index closes this “optimality”
gap that is present in the structures that use O(n) bits of extra space, while still using in most practical cases
much less space than that of a document array, using which faster solutions are possible. We develop several new
insights on suffix trees and geometric data structures that can be of independent interest.

We focused on two relevance measures: (pattern independent) document rank and, especially, the more
challenging text frequency. Those can be easily combined in our data structure, so that for example the text
frequency is multiplied by some measure of document relevance. Other measures that depend only on the pattern
P and can be efficiently computed from its locus are also easy to combine in our index without extra cost. An
example is document frequency (i.e., the number of documents where P appears), which can be computed in
constant time and O(n) extra bits given the locus of P [39]. On the contrary, a measure that is easy to include
in frameworks that use O(n log n) bits of space, but that has evaded the attempts to be computed on the fly
in compact space, is the minimum distance between two occurrences of the pattern in the document; the only
scheme supporting this measure in compressed space [28] is much slower than our index.
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A Geometric Data Structure for Reporting Heaviest Points

In this section we describe a data structure for reporting k heaviest points in an orthogonal range.

Lemma A.1. There exists a data structure that uses O(m log2 n) bits of space to store m points in [1..n]2,
for m ≤ n, and reports k heaviest points in a three-sided range in time O(k + log log n). There exists a data
structure that uses O(m log3 n) bits of space and reports k heaviest points in a general (four-sided) range in time
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O(k + log log n).

Proof. We construct a range tree on x-coordinates: all points are stored in leaf nodes in increasing order of their
x-coordinates (every leaf contains one point). Every internal node u is associated with a point set S(u). S(u)
consists of all points stored in leaf descendants of u. Given a query range [a, b]× (−∞, c], we find the leaves that
hold the predecessor of b and the successor of a. Then we find the lowest common ancestor u of these two leaves.
Let ul and ur denote the left and right children of u. All points with x-coordinates in [a, b] can be divided into
two groups: points in S(ul) that satisfy p.x ≥ a and points in S(ur) that satisfy p.x ≤ b. Hence we can find the
k heaviest points in [a, b] × (−∞, c] by (1) finding k heaviest points in ([a,+∞) × (−∞, c]) ∩ S(ul), (2) finding
k heaviest points in ((−∞, b] × (−∞, c]) ∩ S(ur), and (3) merging the lists of points obtained in steps (1) and
(2) and reporting the k points with the largest weights. The total query time is O(log log n+ k). Points (1) and
(2) can be done in time O(k + log log n) and linear space [6, Thm. 7]. The space usage is O(m log n logm) bits
because each point p is stored in O(logm) nodes of the range tree.

Using the same method we can transform a data structure for three-sided queries into a data structure for
four-sided queries at a cost of increasing the space usage by O(logm) factor. Since m ≤ n the lemma follows.

We now show that the space usage of the data structure for three-sided queries can be reduced to
O(m log n logε m) by using the non-uniform grid approach [5, Sec. 3].

Lemma A.2. Suppose that there exists a data structure that uses O(m log n log1+1/f n) bits to store m points in
[1..n]2, with m ≤ n, and can report k heaviest points in a three-sided range in time O(k + log log n) for some

constant f ≥ 1. Then there exists a data structure that uses O(m log n log1+1/(f+1) n) bits and can report k
heaviest points in a three-sided range in time O(k + log log n).

Proof. All points are stored in a range tree, but every internal node has t children for a a parameter t that will
be defined later. For every internal node u we store all points of S(u) in the following data structures:
(1) A data structure that can report k heaviest points in a two-sided range of the form (−∞, a] × (−∞, b] or
[a,+∞)× (−∞, b].
(2) We divide the set S(u) into O(|S(u)|/t4) horizontal slabs (rows) so that every row contains O(t4) points from
S(u). Additionally we divide the grid into O(t) vertical slabs (columns) so that the j-th column contains all
points from S(uj) where uj is the j-th child of u. Thus every vertical slab contains O(|S(u)|/t) points. Let a cell
denote an intersection of a column and a row. There are O(|S(u)|/t3) cells. A data structure Dt(u) contains t2

heaviest points from each cell. This data structure reports k heaviest points and is implemented as in Lemma A.1.
For every row R, we also keep all its points in a data structure for three-sided heaviest-points queries that uses
O(n log1+1/f t) bits and has O(log log n+ k) query time. Points in R are reduced to rank space (i.e., coordinates
of points are positive integers bounded by |R|). Existence of such a data structure is the pre-condition of this
Lemma.
(3) A data structure that supports one-dimensional range counting queries with weight restrictions: Given two
parameters a and w, find the number of points in S(u) with p.y ≤ a such that the weight of p does not
exceed w. Such queries are equivalent to two-dimensional range counting queries. Hence the data structure
uses O(|S(u)| log n) bits and supports queries in O(log n) time.

To report k heaviest points in a range, we find the node u such that u is the lowest common ancestor of
leaves la and lb that hold the successor of a and the predecessor of b respectively. We find k heaviest points in
S(ur) ∩ ((−∞, b] × (−∞, c]) where ur is the child of u that is an ancestor of lb. We find k heaviest points in
S(ul)∩ ([a,+∞)× (−∞, c]) where ul is the child of u that is an ancestor of la. Using the method described below,
we find the k heaviest points in S(ul+1), . . ., S(ur−1) such that their y-coordinates do not exceed c. Finally we
merge the three lists and find k heaviest points in O(k) time using the linear-time selection algorithm.

It remains to show how we find the k heaviest points in S(ul+1), . . ., S(ur−1) such that their y-coordinates
do not exceed c. This is equivalent to finding the k heaviest points in the range Q′ = [a′, b′] × (−∞, c] where a′

is the x-coordinate of the point in the leftmost leaf descendant of ul+1 and b′ is the x-coordinate of the point in
the rightmost leaf descendant of ur−1. If k ≤ t2, we divide Q′ into two sub-ranges, Q1 and Q2 and find the k
heaviest points in both ranges. Let R denote the horizontal slab of S(u) that contains c and let c′ denote the
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smallest y-coordinate of a point in R. Then Q1 = [a′, b′] × (−∞, c′ − 1] and Q2 = [a′, b′] × [c′, c] We can answer
a query Q1 using the data structure Dt(u). The query Q2 is entirely contained in one horizontal slab R of S(u).
Hence Q2 = [a′, b′] × [c′, c] = ([a′, b′] × (−∞, c]) ∩ R and we can answer the query Q2 on S(u) using the data
structure for three-sided queries on R. We merge the answers to queries Q1 and Q2 and find the k heaviest points
in Q′ using selection algorithm in O(k) time. Since queries on Q1 and Q2 are answered in O(log log n+ k) time,
the total query time is O(log log+k). If k > t2, we find a value wmax such that there are exactly k points with
weight at most wmax in Q′. For every value x we can find the number of points in Q′ with weight at most x in
time O(t log n): each point from Q′ is stored in a set S(ui) for l < i < r; hence we can calculate the number
of points in Q′ with weight at most x by answering O(t) range counting queries with weight restriction. Using
binary search on the weights of points in S(u), we can find the wmax in O(t log2 n) time. When wmax is found,
reporting k heaviest points in Q′ is equivalent to reporting all points in Q′ with weight at most wmax. The latter
task can be accomplished by answering a three-dimensional four-sided query (on the global set of points). Using
the data structure from [5], we can answer such queries in time O(log log n + k). Since k > t2, the total query
time is O(t log2 n+ k + log log n) = O(k) provided that t ≥ log2 n.

All data structures on the set S(u) use O(n(log n+log1+1/f t) bits of space: Every point is stored in one row.

A row data structure stores O(t) points and uses O(log1+1/f t) bits per point. Hence all row data structures for

a set S(u) use O(|S(u)|(log n+ log1+1/f t) bits. The data structure for counting queries with weight restrictions
and the data structure for reporting heaviest points in a two-sided range use O(|S(u)| log n) bits. Thus the total

space usage of all data structures associated with a node u of the range tree is O(|S(u)|(log n+ log1+1/f t)) bits.

We set t = 2α for α = logf/(f+1) n so that

log1+1/f t = (log t)
f+1
f = α

f+1
f = (log n)

f
f+1

f+1
f = log n

Hence all data structures associated with a node u use O(|S(u)| log n) bits. The height of the range tree with
node degree t is O(logt n); hence every point is stored O(logt n) times. Since

logt n =
log n

α
= log1−f/(f+1) n = log1/(f+1) n ,

the overall space usage is O(n log n log1/(f+1) n) bits.

Lemma A.3. Given m points in [1..n]2, where m ≤ n, there exists a data structure that uses O(m log1+ε n) bits
and supports three-sided heaviest points queries in time O(k + log log n).

Proof. For any integer constant g there exists a data structure that uses O(n log1+1/g n) bits and supports queries
in O(k + log log n) time. To prove this we start with the data structure from Lemma A.1 and apply Lemma A.2
(g − 1) times. The statement of this Lemma follows if we set g = ⌈1/ε⌉.

We can prove analogues of Lemma A.2 and Lemma A.4 for four-sided queries using exactly the same method.

Lemma A.4. There exists a data structure that stores m points in [1..n]2, with m ≤ n, using O(m log1+ε n) bits
and supports four-sided heaviest points queries in time O(k + log log n).

Finally, we show how this result extends to three dimensions.

Lemma A.5. There exists a data structure that stores m points in [1..n]3, with m ≤ n, using O(m log2+ε n) bits
and supports heaviest points queries in time O(k + log n).

Proof. We use range trees on the third coordinate, with node degree logε n, where for every range of children
i, . . . , j we store the data structure of Lemma A.4. Since each element is stored O(log2ε n logm) times in those
structures, the total space is O(m log2+3ε n); we replace ε by ε/3 to obtain the claimed space.

The query for a range [a, b]× [c, d]× [e, f ] proceeds as follows: we find in the range tree the first and last leaves,
l1 and l2, included in [e, f ]. We take the lowest common ancestor u of l1 and l2. For every node v on the path from
l1 to u (resp. on the path from l2 to u), we consider the set of its children vj(v), . . ., vj′(v), such that all points in
S(vj(v))∪ . . .∪S(vj′(v)) have their third coordinate in [e, f ]. Using the data structure for S(vj(v))∪ . . .∪S(vj′(v)),
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we can generate the list LH(v) of k′ heaviest points p that are stored in vj(v), . . ., vj′(v) and whose projections
on the first two coordinates are in [a, b] × [c, d]. By Lemma A.4, this can be done in time O(k′ + log log n) for
any k′ ≤ k. Moreover, if the third coordinate of some point p is in [e, f ], then p is stored in exactly one node
vr, so that j(v) ≤ r ≤ j′(v) and the parent node v of vr is on the path from l1 to v or on the path from l2 to v.
Hence, we can obtain the list of k heaviest points in [a, b]× [c, d]× [e, f ] by merging (the prefixes of) lists LH(v).
Every list LH(v) or its length-k′ prefix can be generated in time O(k′ + log log n) by Lemma A.4. As there are
O(logm/ log log n) nodes v in the paths, using the same method as in Section 7.3, we can also obtain the list of
k heaviest points from all lists LH(v) in time O(k + log n).
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