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Abstract

Indexing highly repetitive texts — such as genomic
databases, software repositories and versioned text col-
lections — has become an important problem since the
turn of the millennium. A relevant compressibility mea-
sure for repetitive texts is r, the number of runs in their
Burrows-Wheeler Transform (BWT). One of the earliest
indexes for repetitive collections, the Run-Length FM-
index, used O(r) space and was able to efficiently count
the number of occurrences of a pattern of length m in
the text (in loglogarithmic time per pattern symbol,
with current techniques). However, it was unable to lo-
cate the positions of those occurrences efficiently within
a space bounded in terms of r. Since then, a number of
other indexes with space bounded by other measures of
repetitiveness — the number of phrases in the Lempel-
Ziv parse, the size of the smallest grammar generating
the text, the size of the smallest automaton recognizing
the text factors — have been proposed for efficiently
locating, but not directly counting, the occurrences of
a pattern. In this paper we close this long-standing
problem, showing how to extend the Run-Length FM-
index so that it can locate the occ occurrences efficiently
within O(r) space (in loglogarithmic time each), and
reaching optimal time O(m+ occ) within O(r log(n/r))
space, on a RAM machine with words of w = Ω(log n)
bits. Raising the space to O(rw logσ(n/r)), we support
locate in O(m log(σ)/w+ occ) time, which is optimal in
the packed setting and had not been obtained before in
compressed space. We also describe a structure using
O(r log(n/r)) space that replaces the text and efficiently
extracts any text substring, with an O(log(n/r)) addi-
tive time penalty over the optimum. Preliminary ex-
periments show that our new structure outperforms the
alternatives by orders of magnitude in the space/time
tradeoff map.
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1 Introduction

The data deluge has become a routine problem in most
organizations that aim to collect and process data, even
in relatively modest and focused scenarios. We are con-
cerned about string (or text, or sequence) data, formed
by collections of symbol sequences. This includes nat-
ural language text collections, DNA and protein se-
quences, source code repositories, digitalized music, and
many others. The rate at which those sequence col-
lections are growing is daunting, and outpaces Moore’s
Law by a significant margin [74]. One of the key tech-
nologies to handle those growing datasets is compact
data structures, which aim to handle the data directly
in compressed form, without ever decompressing it [63].
In general, however, compact data structures do not
compress the data by orders of magnitude, but rather
offer complex functionality within the space required by
the raw data, or a moderate fraction of it. As such, they
do not seem to offer the significant space reductions that
are required to curb the sharply growing sizes of today’s
datasets.

What makes a fundamental difference, however, is
that the fastest-growing string collections are in many
cases highly repetitive, that is, most of the strings can
be obtained from others with a few modifications. For
example, most genome sequence collections store many
genomes from the same species, which in the case of,
say, humans differ by 0.1% [69] (there is some discus-
sion about the exact percentage). The 1000-genomes
project1 uses a Lempel-Ziv-like compression mechanism
that reports compression ratios around 1% [29] (i.e., the
compressed space is about two orders of magnitude less
than the uncompressed space). Versioned document col-
lections and software repositories are another natural
source of repetitiveness. For example, Wikipedia re-
ports that, by June 2015, there were over 20 revisions
(i.e., versions) per article in its 10 TB content, and that
p7zip compressed it to about 1%. They also report that
what grows the fastest today are the revisions rather
than the new articles, which increases repetitiveness.2

A study of GitHub (which surpassed 20 TB in 2016)3 re-

1www.internationalgenome.org
2en.wikipedia.org/wiki/Wikipedia:Size of Wikipedia
3blog.sourced.tech/post/tab vs spaces
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ports a ratio of commit (new versions) over create (brand
new projects) around 20.4 Repetitiveness also arises in
other less obvious scenarios: it is estimated that about
50% of (non-versioned) software sources [40], 40% of the
Web pages [37], 50% of emails [22], and 80% of tweets
[77], are near-duplicates.

When the versioning structure is explicit, version
management systems are able to factor out repetitive-
ness efficiently while providing access to any version.
The idea is simply to store the first version of a docu-
ment in plain form and then the edits of each version of
it, so as to reconstruct any version efficiently. This be-
comes much harder when there is not a clear versioning
structure (as in genomic databases) or when we want to
provide more advanced functionalities, such as counting
or locating the positions where a string pattern occurs
across the collection. In this case, the problem is how to
reduce the size of classical data structures for indexed
pattern matching, like suffix trees [80] or suffix arrays
[54], so that they become proportional to the amount of
distinct material in the collection. It should be noted
that all the work on statistical compression of suffix trees
and arrays [61] is not very useful for this purpose, as it
does not capture well this kind of repetitiveness [48,
Lem. 2.6].

Mäkinen et al. [51, 73, 52, 53] pioneered the research
on searching repetitive collections. They regard the
collection as a single concatenated text T [1..n] with
separator symbols, and note that the number r of runs
(i.e., maximal substrings formed by a single symbol)
in the Burrows-Wheeler Transform [14] of the text is
relatively very low on repetitive texts. Their index,
Run-Length FM-Index (RLFM-index), uses O(r) words
and can count the number of occurrences of a pattern
P [1..m] in time O(m log n) and even less. However,
they are unable to locate where those positions are in
T unless they add a set of samples that require O(n/s)
words in order to offer O(s log n) time to locate each
occurrence. On repetitive texts, either this sampled
structure is orders of magnitude larger than the O(r)-
size basic index, or the locating time is unacceptably
high.

Many proposals since then aimed at reducing the
locating time by building on other measures related to
repetitiveness: indexes based on the Lempel-Ziv parse
[50] of T , with size bounded in terms of the number z
of phrases [48, 31, 64, 4]; indexes based on the smallest
context-free grammar [45, 15] that generates T and only
T , with size bounded in terms of the size g of the
grammar [19, 20, 30]; and indexes based on the size e

4http://blog.coderstats.net/github/2013/event-types,
see the ratios of push per create and commit per push.

of the smallest automaton (CDAWG) [13] recognizing
the substrings of T [4, 76, 2]. The achievements
are summarized in Table 1; note that none of those
later approaches can count the occurrences without
enumerating them all. We are not considering in this
paper indexes based on other measures of repetitiveness
that only apply in restricted scenarios, such as based
on Relative Lempel-Ziv [49, 21, 6, 24] or on alignments
[59, 60].

There are a few known asymptotic bounds between
the repetitiveness measures r, z, g, and e: z ≤ g =
O(z log(n/z)) [71, 15, 39] and e = Ω(max(r, z, g)) [4, 3].
Several examples of string families are known that
show that r is not comparable with z and g [4, 68].
Experimental results [53, 48, 4, 18], on the other hand,
suggest that in typical repetitive texts it holds z < r ≈
g � e.

For highly repetitive texts, one hopes to have a com-
pressed index not only able to count and locate pattern
occurrences, but also to replace the text with a com-
pressed version that nonetheless can efficiently extract
any substring T [i..i+`]. Indexes that, implicitly or not,
contain a replacement of T , are called self-indexes. As
can be seen in Table 1, self-indexes with O(z) space re-
quire up to O(n) time per extracted character, and none
exists within O(r) space. Good extraction times are in-
stead obtained with O(g), O(z log(n/z)), or O(e) space.
A lower bound [79] shows that Ω((log n)1−ε/ log g) time,
for any constant ε > 0, is needed to access one ran-
dom position within O(poly(g)) space. This bound
shows that various current techniques using structures
bounded in terms of g or z [12, 9, 32, 5] are nearly op-
timal (note that g = Ω(log n), so the space of all these
structures is O(poly(g))). In an extended article [16],
the authors give a lower bound in terms of r, but only

for binary texts and log r = o(w): Ω
(

logn
wε/(1−ε) log r

)
for

any constant ε > 0, where w = Ω(log n) is the number
of bits in the RAM word. In fact, since there are string
families where z = Ω(r log n) [68], no extraction mech-
anism in space O(poly(r)) can escape in general from
the lower bound [79].

Summarizing Table 1 and our discussion, the situ-
ation on repetitive text indexing is as follows.

1. The RLFM-index is the only structure able to
efficiently count the occurrences of P in T without
having to enumerate them all. However, it does not
offer efficient locating within O(r) space.

2. The only structure clearly smaller than the RLFM-
index, using O(z) space [48], has unbounded locate
time. Structures using about the same space, O(g),
have a one-time overhead quadratic in m in the
locate time.
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Index Space Count time

Mäkinen et al. [53, Thm. 17] O(r) O(m( log σ
log log r + (log log n)2))

This paper (Lem. 2.1) O(r) O(m log logw(σ + n/r))

Index Space Locate time
Kreft and Navarro [48, Thm. 4.11] O(z) O(m2h+ (m+ occ) log z)
Gagie et al. [31, Thm. 4] O(z log(n/z)) O(m logm+ occ log log n)
Bille et al. [10, Thm. 1] O(z log(n/z)) O(m(1 + logε z/ log(n/z)) + occ(logε z + log log n))
Nishimoto et al. [64, Thm. 1] O(z log n log∗ n) O(m log log n log log z + log z logm log n(log∗ n)2

+occ log n)
Bille et al. [10, Thm. 1] O(z log(n/z) log log z) O(m+ occ log log n)

Claude and Navarro [19, Thm. 4] O(g) O(m(m+ log n) log n+ occ log2 n)
Claude and Navarro [20, Thm. 1] O(g) O(m2 log logg n+ (m+ occ) log g)
Gagie et al. [30, Thm. 4] O(g + z log log z) O(m2 + (m+ occ) log log n)

Mäkinen et al. [53, Thm. 20] O(r + n/s) O((m+ s · occ)( log σ
log log r + (log log n)2))

Belazzougui et al. [4, Thm. 3] O(r + z) O(m(log z + log log n) + occ(logε z + log log n))
This paper (Thm. 3.1) O(r) O(m log logw(σ + n/r) + occ log logw(n/r))
This paper (Thm. 3.1) O(r log logw(n/r)) O(m log logw(σ + n/r) + occ)
This paper (Thm. 5.1) O(r log(n/r)) O(m+ occ)
This paper (Thm. 5.2) O(rw logσ(n/r)) O(m log(σ)/w + occ)
Belazzougui et al. [4, Thm. 4] O(e) O(m log log n+ occ)
Takagi et al. [76, Thm. 9] O(e) O(m+ occ)
Belazzougui and Cunial [2, Thm. 1] O(e) O(m+ occ)

Structure Space Extract time
Kreft and Navarro [48, Thm. 4.11] O(z) O(` h)
Gagie et al. [32, Thm. 1–2] O(z log n) O(`+ log n)
Rytter [71], Charikar et al. [15] O(z log(n/z)) O(`+ log n)
Bille et al. [10, Lem. 5] O(z log(n/z)) O(`+ log(n/z))
Gagie et al. [5, Thm. 2] O(z log(n/z)) O((1 + `/ logσ n) log(n/z))
Bille et al. [12, Thm. 1.1] O(g) O(`+ log n)
Belazzougui et al. [9, Thm. 1] O(g) O(log n+ `/ logσ n)
Belazzougui et al. [9, Thm. 2] O(g logε n log(n/g)) O(log n/ log log n+ `/ logσ n)

Mäkinen et al. [53, Thm. 20] O(r + n/s) O((`+ s)( log σ
log log r + (log log n)2))

This paper (Thm. 4.1) O(r log(n/r)) O(log(n/r) + ` log(σ)/w)
Takagi et al. [76, Thm. 9] O(e) O(log n+ `)
Belazzougui and Cunial [2, Thm. 1] O(e) O(log n+ `)

Table 1: Previous and our new results on counting, locating, and extracting. We simplified some formulas with
tight upper bounds. The main variables are the text size n, pattern length m, number of occurrences occ of the
pattern, alphabet size σ, Lempel-Ziv parsing size z, smallest grammar size g, BWT runs r, CDAWG size e, and
machine word length in bits w. Variable h ≤ n is the depth of the dependency chain in the Lempel-Ziv parse,
and ε > 0 is an arbitrarily small constant. Symbols r or e mean r or e of T plus r or e of its reverse. The z in
Nishimoto et al. [64] refers to the Lempel-Ziv variant that does not allow overlaps between sources and targets
(Kreft and Navarro [48] claim the same but their index actually works in either variant). Rytter [71] and Charikar
et al. [15] enable the given extraction time because they produce balanced grammars of the given size (as several
others that came later). Takagi et al. [76] claim time O(m log σ + occ) but they can reach O(m + occ) by using
perfect hashing.
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3. Structures offering lower locate time require
O(z log(n/z)) space or more [31, 64, 10], O(r + z)
space [4] (where r is the sum of r for T and its
reverse), or O(e) space or more [4, 76, 2].

4. Self-indexes with efficient extraction require
O(z log(n/z)) space or more [32, 5], O(g) space
[12, 9], or O(e) space or more [76, 2].

1.1 Contributions Efficiently locating the occur-
rences of P in T within O(r) space has been a bottleneck
and an open problem for almost a decade. In this paper
we give the first solution to this problem. Our precise
contributions, largely detailed in Tables 1 and 2, are the
following:

1. We improve the counting time of the RLFM-index
to O(m log logw(σ + n/r)), where σ ≤ r is the
alphabet size of T .

2. We show how to locate each occurrence in time
O(log logw(n/r)), within O(r) space. We reduce
the locate time to O(1) per occurrence by using
slightly more space, O(r log logw(n/r)).

3. We give the first structure built on BWT runs that
replaces T while retaining direct access. It extracts
any substring of length ` in time O(log(n/r) +
` log(σ)/w), using O(r log(n/r)) space. As dis-
cussed, even the additive penalty is near-optimal
[79].

4. By using O(r log(n/r)) space, we obtain optimal
locate time in the general setting, O(m + occ).
This had been obtained before only with space
bounds O(e) [2] or O(e) [76]. By increasing the
space to O(rw logσ(n/r)), we obtain optimal locate
time O(m log(σ)/w + occ) in the packed setting
(i.e., the pattern symbols come packed in blocks
of w/ log σ symbols per word). This had not been
achieved so far by any compressed index, but only
by uncompressed ones [62].

Contribution 1 is a simple update of the RLFM-
index [53] with newer data structures for rank and
predecessor queries [8]. We present it in Section 2,
together with a review of the basic concepts needed to
follow the paper.

Contribution 2 is one of the central parts of the
paper, and is obtained in Section 3 in two steps. The
first uses the fact that we can carry out the classical
RLFM counting process for P in a way that we always
know the position of one occurrence in T [68, 66];
we give a simpler proof of this fact in Lemma 3.1.
The second shows that, if we know the position in

T of one occurrence of BWT , then we can quickly
obtain the preceding and following ones with an O(r)-
size sampling. This is achieved by using the BWT
runs to induce phrases in T (which are somewhat
analogous to the Lempel-Ziv phrases [50]) and showing
that the positions of occurrences within phrases can be
obtained from the positions of their preceding phrase
beginning. The time O(1) is obtained by using an
extended sampling.

In Section 4, Contribution 3 uses an analogue of the
Block Tree [5] built on the BWT -induced phrases, which
satisfies the same property that any distinct string has
an occurrence overlapping a border between phrases.

For Contribution 4, we discard in Section 5 the
RLFM-index and use a mechanism similar to the one
used in Lempel-Ziv or grammar indexes [19, 20, 48] to
find one primary occurrence, that is, one that overlaps
phrase borders; then the others are found with the
mechanism to obtain neighboring occurrences already
described. Here we use a stronger property of primary
occurrences that does not hold on those of Lempel-Ziv
or grammars, and that might have independent interest.
Further, to avoid time quadratic in m to explore all the
suffixes of P , we use a (deterministic) mechanism based
on Karp-Rabin signatures [1, 31], which we show how
to compute (Las Vegas) from a variant of the structure
we create for extracting text substrings. The optimal
packed time is obtained by enlarging samplings.

We report preliminary experimental results in Sec-
tion 6, showing that our new structure outperforms the
alternatives by orders of magnitude in the space/time
tradeoff map, and conclude in Section 7.

2 Basic Concepts

A string is a sequence S[1..`] = S[1]S[2] . . . S[`], of
length ` = |S|, of symbols (or characters, or letters)
chosen from an alphabet [1..σ] = {1, 2, . . . , σ}, that
is, S[i] ∈ [1..σ] for all 1 ≤ i ≤ `. We use S[i..j] =
S[i] . . . S[j], with 1 ≤ i, j ≤ `, to denote a substring of
S, which is the empty string ε if i > j. A prefix of S is
a substring of the form S[1..i] and a suffix is a substring
of the form S[i..`]. The juxtaposition of strings and/or
symbols represents their concatenation.

We will consider indexing a text T [1..n], which is
a string over alphabet [1..σ] terminated by the special
symbol $ = 1, that is, the lexicographically smallest
one, which appears only at T [n] = $. This makes any
lexicographic comparison between suffixes well defined.

Our computation model is the transdichotomous
RAM, with a word of w = Ω(log n) bits, where all
the standard arithmetic and logic operations can be
carried out in constant time. In this article we generally
measure space in words.
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Functionality Space (words) Time
Count (Lem. 2.1) O(r) O(m log logw(σ + n/r))
Count + Locate (Thm. 3.1) O(r) O(m log logw(σ + n/r) + occ log logw(n/r))
Count + Locate (Thm. 3.1) O(r log logw(n/r)) O(m log logw(σ + n/r) + occ)
Count + Locate (Thm. 5.1) O(r log(n/r)) O(m+ occ)
Count + Locate (Thm. 5.2) O(rw logσ(n/r)) O(m log(σ)/w + occ)
Extract (Thm. 4.1) O(r log(n/r)) O(log(n/r) + ` log(σ)/w)

Table 2: Our contributions.

2.1 Suffix Trees and Arrays The suffix tree [80]
of T [1..n] is a compacted trie where all the n suffixes
of T have been inserted. By compacted we mean that
chains of degree-1 nodes are collapsed into a single edge
that is labeled with the concatenation of the individual
symbols labeling the collapsed edges. The suffix tree has
n leaves and less than n internal nodes. By representing
edge labels with pointers to T , the suffix tree uses O(n)
space, and can be built in O(n) time [80, 56, 78, 23].

The suffix array [54] of T [1..n] is an array SA[1..n]
storing a permutation of [1..n] so that, for all 1 ≤ i < n,
the suffix T [SA[i]..] is lexicographically smaller than the
suffix T [SA[i+ 1]..]. Thus SA[i] is the starting position
in T of the ith smallest suffix of T in lexicographic order.
This can be regarded as an array collecting the leaves
of the suffix tree. The suffix array uses n words and can
be built in O(n) time [46, 47, 41].

All the occurrences of a pattern string P [1..m] in
T can be easily spotted in the suffix tree or array. In
the suffix tree, we descend from the root matching the
successive symbols of P with the strings labeling the
edges. If P is in T , the symbols of P will be exhausted at
a node v or inside an edge leading to a node v; this node
is called the locus of P , and all the occ leaves descending
from v are the suffixes starting with P , that is, the
starting positions of the occurrences of P in T . By
using perfect hashing to store the first characters of the
edge labels descending from each node of v, we reach the
locus in optimal time O(m) and the space is still O(n).
If P comes packed using w/ log σ symbols per computer
word, we can descend in time O(m log(σ)/w) [62], which
is optimal in the packed model. In the suffix array, all
the suffixes starting with P form a range SA[sp..ep],
which can be binary searched in time O(m log n), or
O(m+ log n) with additional structures [54].

The inverse permutation of SA, ISA[1..n], is called
the inverse suffix array, so that ISA[j] is the lexico-
graphical position of the suffix T [j..n] among the suffixes
of T .

Another important concept related to suffix arrays
and trees is the longest common prefix array. Let
lcp(S, S′) be the length of the longest common prefix

between strings S and S′, that is, S[1..lcp(S, S′)] =
S′[1..lcp(S, S′)] but S[lcp(S, S′) + 1] 6= S′[lcp(S, S′) +
1]. Then we define the longest common prefix array
LCP [1..n] as LCP [1] = 0 and LCP [i] = lcp(T [SA[i −
1]..], T [SA[i]..]). The LCP array uses n words and can
be built in O(n) time [44].

2.2 Self-indexes A self-index is a data structure
built on T [1..n] that provides at least the following
functionality:

Count: Given a pattern P [1..m], count the number of
occurrences of P in T .

Locate: Given a pattern P [1..m], return the positions
where P occurs in T .

Extract: Given a range [i..i+`−1], return T [i..i+`−1].

The last operation allows a self-index to act as
a replacement of T , that is, it is not necessary to
store T since any desired substring can be extracted
from the self-index. This can be trivially obtained by
including a copy of T as a part of the self-index, but it
is challenging when the self-index uses less space than a
plain representation of T .

In principle, suffix trees and arrays can be re-
garded as self-indexes that can count in time O(m) or
O(m log(σ)/w) (suffix tree, by storing occ in each node
v) and O(m log n) or O(m + log n) (suffix array, with
occ = ep − sp + 1), locate each occurrence in O(1)
time, and extract in time O(1 + ` log(σ)/w). However,
they use O(n log n) bits, much more than the n log σ
bits needed to represent T in plain form. We are in-
terested in compressed self-indexes [61, 63], which use
the space required by a compressed representation of T
(under some entropy model) plus some redundancy (at
worst o(n log σ) bits). We describe later the FM-index,
a particular self-index of interest to us.

2.3 Burrows-Wheeler Transform The Burrows-
Wheeler Transform of T [1..n], BWT [1..n] [14], is a
string defined as BWT [i] = T [SA[i] − 1] if SA[i] > 1,
and BWT [i] = T [n] = $ if SA[i] = 1. That is, BWT
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has the same symbols of T in a different order, and is a
reversible transform.

The array BWT is obtained from T by first building
SA, although it can be built directly, in O(n) time and
within O(n log σ) bits of space [57]. To obtain T from
BWT [14], one considers two arrays, L[1..n] = BWT
and F [1..n], the latter of which contains all the symbols
of L (or T ) in ascending order. Alternatively, F [i] =
T [SA[i]], so F [i] follows L[i] in T . We need a function
that maps any L[i] to the position j of that same
character in F . The formula is LF (i) = C[c] + rank[i],
where c = L[i], C[c] is the number of occurrences of
symbols less than c in L, and rank[i] is the number of
occurrences of symbol L[i] in L[1..i]. A simple O(n)-
time pass on L suffices to compute arrays C[i] and
rank[i] using O(n log σ) bits of space. Once they are
computed, we reconstruct T [n] = $ and T [n − k] ←
L[LF k−1(1)] for k = 1, . . . , n− 1, in O(n) time as well.

2.4 Compressed Suffix Arrays and FM-indexes
Compressed suffix arrays [61] are a particular case
of self-indexes that simulate SA in compressed form.
Therefore, they aim to obtain the suffix array range
[sp..ep] of P , which is sufficient to count since P then
appears occ = ep−sp+ 1 times in T . For locating, they
need to access the content of cells SA[sp], . . . ,SA[ep],
without having SA stored.

The FM-index [25, 26] is a compressed suffix array
that exploits the relation between the string L = BWT
and the suffix array SA. It stores L in compressed
form (as it can be easily compressed to the high-order
empirical entropy of T [55]) and adds sublinear-size data
structures to compute (i) any desired position L[i], (ii)
the generalized rank function rankc(L, i), which is the
number of times symbol c appears in L[1..i]. Note that
these two operations permit, in particular, computing
rank[i] = rankL[i](L, i), which is called partial rank.
Therefore, they compute

LF (i) = C[i] + rankL[i](L, i).

For counting, the FM-index resorts to backward
search. This procedure reads P backwards and at
any step knows the range [spi, epi] of P [i..m] in T .
Initially, we have the range [spm+1..epm+1] = [1..n]
for P [m + 1..m] = ε. Given the range [spi+1..epi+1],
one obtains the range [spi..epi] from c = P [i] with the
operations

spi = C[c] + rankc(L, spi+1 − 1) + 1,

epi = C[c] + rankc(L, epi+1).

Thus the range [sp..ep] = [sp1..ep1] is obtained with
O(m) computations of rank, which dominates the count-
ing complexity.

For locating, the FM-index (and most compressed
suffix arrays) stores sampled values of SA at regularly
spaced text positions, say multiples of s. Thus, to
retrieve SA, we find the smallest k for which SA[LF k(i)]
is sampled, and then the answer is SA[i] = SA[LF k(i)]+
k. This is because function LF virtually traverses the
text backwards, that is, it drives us from L[i], which
points to some SA[i], to its corresponding position F [j],
which is preceded by L[j], that is, SA[j] = SA[i]− 1:

SA[LF (i)] = SA[i]− 1.

Since it is guaranteed that k < s, each occurrence is
located with s accesses to L and computations of LF ,
and the extra space for the sampling is O((n log n)/s)
bits, or O(n/s) words.

For extracting, a similar sampling is used on ISA,
that is, we sample the positions of ISA that are multiples
of s. To extract T [i..i + ` − 1] we find the smallest
multiple of s in [i+ `..n], j = s · d(i+ `)/se, and extract
T [i..j]. Since ISA[j] = p is sampled, we know that
T [j−1] = L[p], T [j−2] = L[LF (p)], and so on. In total
we require at most `+s accesses to L and computations
of LF to extract T [i..i+ `− 1]. The extra space is also
O(n/s) words.

For example, using a representation [8] that accesses
L and computes partial ranks in constant time (so LF
is computed in O(1) time), and computes rank in the
optimal O(log logw σ) time, an FM-index can count in
time O(m log logw σ), locate each occurrence in O(s)
time, and extract ` symbols of T in time O(s + `), by
using O(n/s) space on top of the empirical entropy of
T [8]. There exist even faster variants [7], but they do
not rely on backward search.

2.5 Run-Length FM-index One of the sources of
the compressibility of BWT is that symbols are clus-
tered into r ≤ n runs, which are maximal substrings
formed by the same symbol. Mäkinen and Navarro
[51] proved a (relatively weak) bound on r in terms of
the high-order empirical entropy of T and, more im-
portantly, designed an FM-index variant that uses O(r)
words of space, called Run-Length FM-index or RLFM-
index. They later experimented with several variants
of the RLFM-index, where the variant RLFM+ [53,
Thm. 17] corresponds to the original one [51].

The structure stores the run heads, that is, the
first positions of the runs in BWT , in a data structure
E = {1} ∪ {1 < i ≤ n,BWT [i] 6= BWT [i − 1]} that
supports predecessor searches. Each element e ∈ E has
associated the value e.p = |{e′ ∈ E, e′ ≤ e}|, which is its
position in a string L′[1..r] that stores the run symbols.
Another array, D[0..r], stores the cumulative lengths of
the runs after sorting them lexicographically by their
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symbols (with D[0] = 0). Let array C ′[1..σ] count the
number of runs of symbols smaller than c in L. One can
then simulate

rankc(L, i) = D[C ′[c] + rankc(L
′, pred(i).p− 1)]

+ [if L′[pred(i).p] = c then i− pred(i) + 1 else 0]

at the cost of a predecessor search (pred) in E and a
rank on L′. By using up-to-date data structures, the
counting performance of the RLFM-index can be stated
as follows.

Lemma 2.1. The Run-Length FM-index of a text
T [1..n] whose BWT has r runs can occupy O(r)
words and count the number of occurrences of a pat-
tern P [1..m] in time O(m log logw(σ + n/r)). It also
computes LF and access to any BWT [p] in time
O(log logw(n/r)).

Proof. We use the RLFM+ [53, Thm. 17], using the
structure of Belazzougui and Navarro [8, Thm. 10] for
the sequence L′ (with constant access time) and the
predecessor data structure described by Belazzougui
and Navarro [8, Thm. 14] to implement E (instead of the
bitvector they originally used). They also implement D
with a bitvector, but we use a plain array. The sum of
both operation times is O(log logw σ + log logw(n/r)),
which can be written as O(log logw(σ+n/r)). To access
BWT [p] = L[p] we only need a predecessor search
on E, which takes time O(log logw(n/r)). Finally, we
compute LF faster than a general rank query, as we only
need the partial rank query rankL[i](L, i). This can be
supported in constant time on L′ using O(r) space, by
just recording all the answers, and therefore the time for
LF on L is also dominated by the predecessor search on
E, with O(log logw(n/r)) time. �

We will generally assume that σ is the effective
alphabet of T , that is, the σ symbols appear in T . This
implies that σ ≤ r ≤ n. If this is not the case, we can
map T to an effective alphabet [1..σ′] before indexing
it. A mapping of σ′ ≤ r words then stores the actual
symbols when extracting a substring of T is necessary.
For searches, we have to map the m positions of P to the
effective alphabet. By storing a predecessor structure
of O(σ′) = O(r) words, we map each symbol of P in
time O(log logw(σ/σ′)) [8, Thm. 14]. This is within the
bounds given in Lemma 2.1, which therefore holds for
any alphabet size.

To provide locating and extracting functionality,
Mäkinen et al. [53] use the sampling mechanism we
described for the FM-index. Therefore, although they
can efficiently count within O(r) space, they need a
much larger O(n/s) space to support these operations in

time proportional to O(s). Despite various efforts [53],
this has been a bottleneck in theory and in practice since
then.

3 Locating Occurrences

In this section we show that, if the BWT of a
text T [1..n] has r runs, we can have an index using
O(r) space that not only efficiently finds the interval
SA[sp..ep] of the occurrences of a pattern P [1..m] (as
was already known in the literature, see previous sec-
tions) but that can locate each such occurrence in time
O(log logw(n/r)) on a RAM machine of w bits. Fur-
ther, the time per occurrence may become constant if
the space is raised to O(r log logw(n/r)).

We start with Lemma 3.1, which shows that the
typical backward search process can be enhanced so
that we always know the position of one of the values
in SA[sp..ep]. We give a simplification of the previous
proof [68, 66]. Lemma 3.2 then shows how to efficiently
obtain the two neighboring cells of SA if we know the
value of one. This allows us to extend the first known
cell in both directions, until obtaining the whole interval
SA[sp..ep]. In Lemma 3.3 we show how this process can
be sped up by using more space. Theorem 3.1 then
summarizes the main result of this section.

We then extend the idea in order to obtain LCP
values analogously to how we obtain SA values. While
not of immediate use for locating, this result is useful
later in the article and also has independent interest.

Lemma 3.1. ([68, 66]) We can store O(r) words such
that, given P [1..m], in time O(m log logw(σ + n/r)) we
can compute the interval SA[sp, ep] of the occurrences
of P in T , and also return the position j and contents
SA[j] of at least one cell in the interval [sp, ep].

Proof. We store a RLFM-index and predecessor struc-
tures Rc storing the position in BWT of the right and
left endpoints of each run of copies of c. Each element in
Rc is associated to its corresponding text position, that
is, we store pairs 〈i,SA[i]− 1〉 sorted by their first com-
ponent (equivalently, we store in the predecessor struc-
tures their concatenated binary representation). These
structures take a total of O(r) words.

The interval of characters immediately preceding
occurrences of the empty string is the entire BWT [1..n],
which clearly includes P [m] as the last character in some
run (unless P does not occur in T ). It follows that
we find an occurrence of P [m] in predecessor time by
querying pred(RP [m], n).

Assume we have found the interval BWT [sp, ep]
containing the characters immediately preceding all the
occurrences of some (possibly empty) suffix P [i+ 1..m]
of P , and we know the position and contents of some
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cell SA[j] in the corresponding interval, sp ≤ j ≤ ep.
Since SA[LF (j)] = SA[j] − 1, if BWT [j] = P [i] then,
after the next application of LF -mapping, we still know
the position and value of some cell SA[j′] corresponding
to the interval BWT [sp′, ep′] for P [i..m], namely j′ =
LF (j) and SA[j′] = SA[j]− 1.

On the other hand, if BWT [j] 6= P [i] but P still
occurs somewhere in T (i.e., sp′ ≤ ep′), then there is
at least one P [i] and one non-P [i] in BWT [sp, ep], and
therefore the interval intersects an extreme of a run of
copies of P [i]. Then, a predecessor query pred(RP [i], ep)
gives us the desired pair 〈j′,SA[j′]−1〉 with sp ≤ j′ ≤ ep
and BWT [j′] = P [i].

Therefore, by induction, when we have computed
the BWT interval for P , we know the position and
contents of at least one cell in the corresponding interval
in SA.

To obtain the desired time bounds, we concatenate
all the universes of the Rc structures into a single one of
size σn, and use a single structure R on that universe:
each 〈x,SA[x−1]〉 ∈ Rc becomes 〈x+(c−1)n,SA[x]−1〉
in R, and a search pred(Rc, y) becomes pred(R, (c −
1)n + y) − (c − 1)n. Since R contains 2r elements on
a universe of size σn, we can have predecessor searches
in time O(log logw(nσ/r)) and O(r) space [8, Thm. 14].
This is the same O(log logw(σ+n/r)) time we obtained
in Lemma 2.1 to carry out the normal backward search
operations on the RLFM-index. �

Lemma 3.1 gives us a toehold in the suffix array, and
we show in this section that a toehold is all we need.
We first show that, given the position and contents
of one cell of the suffix array SA of a text T , we
can compute the contents of the neighbouring cells in
O(log logw(n/r)) time. It follows that, once we have
counted the occurrences of a pattern in T , we can locate
all the occurrences in O(log logw(n/r)) time each.

Lemma 3.2. We can store O(r) words such that, given
p and SA[p], we can compute SA[p − 1] and SA[p + 1]
in O(log logw(n/r)) time.

Proof. We parse T into phrases such that T [i] is the
first character in a phrase if and only if i = 1 or
q = SA−1[i + 1] is the first or last position of a
run in BWT (i.e., BWT [q] = T [i] starts or ends a
run). We store an O(r)-space predecessor data structure
with O(log logw(n/r)) query time [8, Thm. 14] for the
starting phrase positions in T (i.e., the values i just
mentioned). We also store, associated with such values
i in the predecessor structure, the positions in T of
the characters immediately preceding and following q
in BWT , that is, N [i] = 〈SA[q − 1],SA[q + 1]〉.

Suppose we know SA[p] = k + 1 and want to know
SA[p− 1] and SA[p+ 1]. This is equivalent to knowing

the position BWT [p] = T [k] and wanting to know the
positions in T of BWT [p − 1] and BWT [p + 1]. To
compute these positions, we find with the predecessor
data structure the position i in T of the first character of
the phrase containing T [k], take the associated positions
N [i] = 〈x, y〉, and return SA[p − 1] = x + k − i and
SA[p+ 1] = y + k − i.

To see why this works, let SA[p − 1] = j + 1 and
SA[p+1] = `+1, that is, j and ` are the positions in T of
BWT [p− 1] = T [j] and BWT [p+ 1] = T [`]. Note that,
for all 0 ≤ t < k− i, T [k− t] is not the first nor the last
character of a run in BWT . Thus, by definition of LF ,
LF t(p− 1), LF t(p), and LF t(p+ 1), that is, the BWT
positions of T [j−t], T [k−t], and T [`−t], are contiguous
and within a single run, thus T [j−t] = T [k−t] = T [`−t].
Therefore, for t = k − i − 1, T [j − (k − i − 1)] =
T [i + 1] = T [` − (k − i + 1)] are contiguous in BWT ,
and thus a further LF step yields that BWT [q] = T [i]
is immediately preceded and followed by BWT [q− 1] =
T [j− (k− i)] and BWT [q+ 1] = T [`− (k− i)]. That is,
N [i] = 〈SA[q−1],SA[q+1]〉 = 〈j−(k−i)+1, `−(k−i)+1〉
and our answer is correct. �

The following lemma shows that the above tech-
nique can be generalized. The result is a space-time
trade-off allowing us to list each occurrence in constant
time at the expense of a slight increase in space usage.

Lemma 3.3. Let s > 0. We can store a data structure
of O(rs) words such that, given SA[p], we can compute
SA[p− i] and SA[p+ i] for i = 1, . . . , s′ and any s′ ≤ s,
in O(log logw(n/r) + s′) time.

Proof. Consider all BWT positions j1 < · · · < jt that
are at distance at most s from a run border (we say that
characters on run borders are at distance 1), and let
W [1..t] be an array such that W [k] is the text position
corresponding to jk, for k = 1, . . . , t. Let now j+1 <
· · · < j+t+ be the BWT positions having a run border at

most s positions after them, and j−1 < · · · < j−t− be the
BWT positions having a run border at most s positions
before them. We store the text positions corresponding
to j+1 < · · · < j+t+ and j−1 < · · · < j−t− in two predecessor
structures P+ and P−, respectively, of size O(rs). We
store, for each i ∈ P+ ∪ P−, its position in W , that is,
W [f(i)] = i.

To answer queries given SA[p], we first compute
its P+-predecessor i < SA[p] in O(log logw(n/r)) time,
and retrieve f(i). Then, it holds that SA[p + j] =
W [f(i) + j] + (SA[p] − i), for j = 0, . . . , s. Computing
SA[p− j] is symmetric (just use P− instead of P+).

To see why this procedure is correct, consider the
range SA[p..p+ s]. We distinguish two cases.

(i) BWT [p..p + s] contains at least two distinct
characters. Then, SA[p] − 1 is inside P+ (because p is
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followed by a run break at most s positions away), and is
therefore the immediate predecessor of SA[p]. Moreover,
all BWT positions [p, p+ s] are in j1, . . . , jt (since they
are at distance at most s from a run break), and their
corresponding text positions are therefore contained in
a contiguous range of W (i.e., W [f(SA[p]−1)..f(SA[p]−
1) + s]). The claim follows.

(ii) BWT [p..p + s] contains a single character;
we say it is unary. Then SA[p] − 1 /∈ P+, since
there are no run breaks in BWT [p..p + s]. Moreover,
by the LF formula, the LF mapping applied on the
unary range BWT [p..p + s] gives a contiguous range
BWT [LF (p)..LF (p + s)] = BWT [LF (p)..LF (p) + s].
Note that this corresponds to a parallel backward step
on text positions SA[p] → SA[p] − 1, . . . ,SA[p + s] →
SA[p + s] − 1. We iterate the application of LF until
we end up in a range BWT [LF δ(p)..LF δ(p + s)] that
is not unary. Then, SA[LF δ(p)] − 1 is the immediate
predecessor of SA[p] in P+, and δ is their distance
(minus one). This means that with a single predecessor
query on P+ we “skip” all the unary BWT ranges
BWT [LF i(p)..LF i(p+ s)] for i = 1, . . . , δ− 1 and, as in
case (i), retrieve the contiguous range in W containing
the values SA[p]−δ, . . . ,SA[p+s]−δ and add δ to obtain
the desired SA values. �

Combining Lemmas 3.1 and 3.3, we obtain the main
result of this section. The O(log logw(n/σ)) additional
time spent at locating is absorbed by the counting time.

Theorem 3.1. Let s > 0. We can store a text T [1..n],
over alphabet [1..σ], in O(rs) words, where r is the
number of runs in the BWT of T , such that later,
given a pattern P [1..m], we can count the occurrences
of P in T in O(m log logw(σ + n/r)) time and (af-
ter counting) report their occ locations in overall time
O((1 + log logw(n/r)/s) · occ).

In particular, we can locate in O(m log logw(σ +
n/r) + occ log logw(n/r)) time and O(r) space or, al-
ternatively, in O(m log logw(σ + n/r) + occ) time and
O(r log logw(n/r)) space.

Lemma 3.3 can be further extended to entries of
the LCP array, which we will use later in the article.
That is, given SA[p], we compute LCP [p] and its
adjacent entries (note that we do not need to know p,
but just SA[p]). The result is also an extension of a
representation by Fischer et al. [28].

Lemma 3.4. Let s > 0. We can store a data structure
of O(rs) words such that, given SA[p], we can compute
LCP [p− i+ 1] and LCP [p+ i], for i = 1, . . . , s′ and any
s′ ≤ s, in O(log logw(n/r) + s′) time.

Proof. The proof follows closely that of Lemma 3.3,
except that now we sample LCP entries corresponding
to suffixes following sampled BWT positions. Let us
define j1 < · · · < jt, j

+
1 < · · · < j+t+ , and j−1 <

· · · < j−t− , as well as the predecessor structures P+ and
P−, exactly as in the proof of Lemma 3.3. We store
LCP ′[1..t] = LCP [j1], . . . ,LCP [jt]. We also store, for
each i ∈ P+ ∪ P−, its corresponding position f(i) in
LCP ′, that is, LCP ′[f(i)] = LCP [ISA[i+ 1]].

To answer queries given SA[p], we first compute
its P+-predecessor i < SA[p] in O(log logw(n/r)) time,
and retrieve f(i). Then, it holds that LCP [p + j] =
LCP ′[f(i) + j] − (SA[p] − i − 1), for j = 1, . . . , s.
Computing LCP [p− j] for j = 0, . . . , s− 1 is symmetric
(just use P− instead of P+).

To see why this procedure is correct, consider the
range SA[p..p+ s]. We distinguish two cases.

(i) BWT [p..p + s] contains at least two distinct
characters. Then, as in case (i) of Lemma 3.3, SA[p]−1
is inside P+ and is therefore the immediate predecessor
i = SA[p] − 1 of SA[p]. Moreover, all BWT positions
[p, p+s] are in j1, . . . , jt, and therefore values LCP [p..p+
s] are explicitly stored in a contiguous range in LCP ′

(i.e., LCP ′[f(i)..f(i) + s]). Note that (SA[p] − i) = 1,
so LCP ′[f(i) + j]− (SA[p]− i− 1) = LCP ′[f(i) + j] for
j = 0, . . . , s. The claim follows.

(ii) BWT [p..p + s] contains a single character;
we say it is unary. Then we reason exactly as in
case (ii) of Lemma 3.3 to define δ so that i′ =
SA[LF δ(p)] − 1 is the immediate predecessor of SA[p]
in P+ and, as in case (i) of this proof, retrieve the
contiguous range LCP ′[f(i′)..f(i′) + s] containing the
values LCP [LF δ(p)..LF δ(p + s)]. Since the skipped
BWT ranges are unary, it is then not hard to see that
LCP [LF δ(p + j)] = LCP [p + j] + δ for j = 1, . . . , s
(note that we do not include s = 0 since we cannot ex-
clude that, for some i < δ, LF i(p) is the first position
in its run). From the equality δ = SA[p] − i′ − 1 =
SA[p] − SA[LF δ(p)] (that is, δ is the distance between
SA[p] and its predecessor minus one or, equivalently, the
number of LF steps virtually performed), we then com-
pute LCP [p+ j] = LCP ′[f(i′) + j]− δ for j = 1, . . . , s.
�

4 Extracting Substrings and Computing
Fingerprints

In this section we consider the problem of extracting
arbitrary substrings of T [1..n]. Though an obvious
solution is to store a grammar-compressed version of
T [12], little is known about the relation between the
size g of the smallest grammar that generates T (which
nevertheless is NP-hard to find [15]) and the number of
runs r in its BWT . Another choice is to use block trees
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[5], which require O(z log(n/z)) space, where z is the
size of the Lempel-Ziv parse [50] of T . Again, z can be
larger or smaller than r [68].

Instead, we introduce a novel representation that
uses O(r log(n/r)) space and can retrieve any sub-
string of length ` from T in time O(log(n/r) +
` log(σ)/w). This is similar (though incomparable)
with the O(log(n/g) + `/ logσ n) time that could be
obtained with grammar compression [12, 9], and with
the O(log(n/z) + `/ logσ n) that could be obtained with
block trees. Also, as explained in the Introduction, the
O(log(n/r)) additive penalty is near-optimal in general.

We first give an important result in Lemma 4.1:
any desired substring of T has a primary occurrence,
that is, one overlapping a border between phrases.
The property is indeed stronger than in alternative
formulations that hold for Lempel-Ziv parses [42] or
grammars [19]: If we choose a primary occurrence
overlapping at its leftmost position, then all the other
occurrences of the string suffix must be preceded by
the same prefix. This stronger property is crucial
to design an optimal locating procedure in Section 5.
The weaker property, instead, is sufficient to design
in Theorem 4.1 a data structure reminiscent of block
trees [5] for extracting substrings of T , which needs to
store only some text around phrase borders. Finally,
in Lemma 4.2, we show that a Karp-Rabin fingerprint
[43, 31] of any substring of T can be obtained in time
O(log(n/r)), which will also be used in Section 5.

Definition 1. We say that a text character T [i] is
sampled if and only if T [i] is the first or last character
in its BWT run.

Definition 2. We say that a text substring T [i..j] is
primary if and only if it contains at least one sampled
character.

Lemma 4.1. Every text substring T [i..j] has a primary
occurrence T [i′..j′] = T [i..j] such that the following hold
for some i′ ≤ p ≤ j′:

1. T [p] is sampled

2. T [i′], . . . , T [p− 1] are not sampled

3. every text occurrence of T [p..j′] is always preceded
by the string T [i′..p− 1]

Proof. We prove the lemma by induction on j − i. If
j − i = 0, then T [i..j] is a single character. Every
character has a sampled occurrence i′ in the text,
therefore the three properties trivially hold for p = i′.

Let j − i > 0. By the inductive hypothesis,
T [i + 1..j] has an occurrence T [i′ + 1..j′] satisfying the

three properties for some i′ + 1 ≤ p ≤ j′. Let [sp, ep]
be the BWT range of T [i+ 1..j]. We distinguish three
cases.

(i) All characters in BWT [sp, ep] are equal to
T [i] = T [i′] and are not the first or last in their run.
Then, we leave p unchanged. T [p] is sampled by the
inductive hypothesis, so Property 1 still holds. Also,
T [i′ + 1], . . . , T [p− 1] are not sampled by the inductive
hypothesis, and T [i′] is not sampled by assumption, so
Property 2 still holds. By the inductive hypothesis,
every text occurrence of T [p..j′] is always preceded
by the string T [i′ + 1..p − 1]. Since all characters in
BWT [sp, ep] are equal to T [i] = T [i′], Property 3 also
holds for T [i..j] and p.

(ii) All characters in BWT [sp, ep] are equal to T [i]
and either BWT [sp] is the first character in its run,
or BWT [ep] is the last character in its run (or both).
Then, we set p to the text position corresponding to sp
or ep, depending on which one is sampled (if both are
sampled, choose sp). The three properties then hold
trivially for T [i..j] and p.

(iii) BWT [sp, ep] contains at least one character
c 6= T [i]. Then, there must be a run of T [i]’s ending
or beginning in BWT [sp, ep], meaning that there is a
sp ≤ q ≤ ep such that BWT [q] = T [i] and the text
position i′ corresponding to q is sampled. We then set
p = i′. Again, the three properties hold trivially for
T [i..j] and p. �

Lemma 4.1 has several important implications. We
start by using it to build a data structure supporting
efficient text extraction queries. In Section 5 we will
use it to locate pattern occurrences in optimal time.

Theorem 4.1. Let T [1..n] be a text over alphabet [1..σ].
We can store a data structure of O(r log(n/r)) words
supporting the extraction of any length-` substring of T
in O(log(n/r) + ` log(σ)/w) time.

Proof. We describe a data structure supporting the

extraction of α = w log(n/r)
log σ packed characters in

O(log(n/r)) time. To extract a text substring of length
` we divide it into d`/αe blocks and extract each block
with the proposed data structure. Overall, this will take
O((`/α+ 1) log(n/r)) = O(log(n/r) + ` log(σ)/w) time.

Our data structure is stored in O(log(n/r)) levels.
For simplicity, we assume that r divides n and that n/r
is a power of two. The top level (level 0) is special:
we divide the text into r blocks T [1..n/r]T [n/r +
1..2n/r] . . . T [n − n/r + 1..n] of size n/r. For levels
i > 0, we let si = n/(r · 2i−1) and, for every sampled
position j (Definition 1), we consider the two non-
overlapping blocks of length si: X

1
i,j = T [j − si..j − 1]

and X2
i,j = T [j..j + si − 1]. Each such block Xk

i,j ,
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for k = 1, 2, is composed of two half-blocks, Xk
i,j =

Xk
i,j [1..si/2]Xk

i,j [si/2 + 1..si]. We moreover consider
three additional consecutive and non-overlapping half-
blocks, starting in the middle of the first, X1

i,j [1..si/2],

and ending in the middle of the last, X2
i,j [si/2+1..si], of

the 4 half-blocks just described: T [j−si+si/4..j−si/4−
1], T [j−si/4..j+si/4−1], and T [j+si/4..j+si−si/4−1].

From Lemma 4.1, blocks at level 0 and each half-
block at level i > 0 have a primary occurrence at level
i + 1. Such an occurrence can be fully identified by
the coordinate 〈off , j′〉, for 0 < off ≤ si+1 and j′

sampled position, indicating that the occurrence starts
at position j′ − si+1 + off .

Let i∗ be the smallest number such that si∗ <
4α = 4w log(n/r)

log σ . Then i∗ is the last level of our
structure. At this level, we explicitly store a packed
string with the characters of the blocks. This uses
in total O(r · si∗ log(σ)/w) = O(r log(n/r)) words of
space. All the blocks at level 0 and half-block at levels
0 < i < i∗ store instead the coordinates 〈off , j′〉 of their
primary occurrence in the next level. At level i∗ − 1,
these coordinates point inside the strings of explicitly
stored characters.

Let S = T [i..i + α − 1] be the text substring to be
extracted. Note that we can assume n/r ≥ α; otherwise
all the text can be stored in plain packed form using
n log(σ)/w < αr log(σ)/w ∈ O(r log(n/r)) words and
we do not need any data structure. It follows that S
either spans two blocks at level 0, or it is contained
in a single block. The former case can be solved with
two queries of the latter, so we assume, without losing
generality, that S is fully contained inside a block at
level 0. To retrieve S, we map it down to the next levels
(using the stored coordinates of primary occurrences of
half-blocks) as a contiguous text substring as long as
this is possible, that is, as long as it fits inside a single
half-block. Note that, thanks to the way half-blocks
overlap, this is always possible as long as α ≤ si/4. By
definition, then, we arrive in this way precisely to level
i∗, where characters are stored explicitly and we can
return the packed text substring. �

Using a similar idea, we can compute the Karp-
Rabin fingerprint of any text substring in just
O(log(n/r)) time. This will be used in Section 5 to
obtain our optimal-time locate solution.

Lemma 4.2. We can store a data structure of
O(r log(n/r)) words supporting computation of the
Karp-Rabin fingerprint of any text substring in
O(log(n/r)) time.

Proof. We store a data structure with O(log(n/r))
levels, similar to the one of Theorem 4.1 but with two

non-overlapping children blocks. Assume again that r
divides n and that n/r is a power of two. The top
level 0 divides the text into r blocks T [1..n/r]T [n/r +
1..2n/r] . . . T [n − n/r + 1..n] of size n/r. For levels
i > 0, we let si = n/(r · 2i−1) and, for every sampled
position j, we consider the two non-overlapping blocks
of length si: X1

i,j = T [j − si..j − 1] and X2
i,j =

T [j..j + si − 1]. Each such block Xk
i,j is composed of

two half-blocks, Xk
i,j = Xk

i,j [1..si/2]Xk
i,j [si/2 + 1..si].

As in Theorem 4.1, blocks at level 0 and each half-
block at level i > 0 have a primary occurrence at level
i+1, meaning that such an occurrence can be written as
X1
i+1,j′ [L..si+1]X2

i+1,j′ [1..R] for some 1 ≤ L,R ≤ si+1,
and some sampled position j′ (the special case where the
half-block is equal to X2

i+1,j′ is expressed as L = si+1+1
and R = si+1).

We associate with every block at level 0 and ev-
ery half-block at level i > 0 the following informa-
tion: its Karp-Rabin fingerprint κ, the coordinates
〈j′, L〉 of its primary occurrence in the next level,
and the Karp-Rabin fingerprints κ(X1

i+1,j′ [L..si+1]) and

κ(X2
i+1,j′ [1..R]) of (the two pieces of) its occurrence. At

level 0, we also store the Karp-Rabin fingerprint of ev-
ery text prefix ending at block boundaries, κ(T [1..jr])
for j = 1, . . . , n/r. At the last level, where blocks are
of length 1, we only store their Karp-Rabin fingerprint
(or we may compute them on the fly).

To answer queries κ(T [i..j]) quickly, the key point
is to show that computing the Karp-Rabin fingerprint
of a prefix or a suffix of a block translates into the
same problem (prefix/suffix of a block) in the next level,
and therefore leads to a single-path descent in the block
structure. To prove this, consider computing the finger-
print of the prefix κ(Xk

i,j [1..R
′]) of some block (comput-

ing suffixes is symmetric). Note that we explicitly store
κ(Xk

i,j [1..si/2]), so we can consider only the problem of
computing the fingerprint of a prefix of a half-block, that
is, we assumeR′ ≤ si/2 = si+1 (the proof is the same for
the right half of Xk

i,j). Let X1
i+1,j′ [L..si+1]X2

i+1,j′ [1..R]
be the occurrence of the half-block in the next level. We
have two cases. (i) R′ ≥ si+1−L+1. Then, Xk

i,j [1..R
′] =

X1
i+1,j′ [L..si+1]X2

i+1,j′ [1..R
′− (si+1−L+ 1)]. Since we

explicitly store the fingerprint κ(X1
i+1,j′ [L..si+1]), the

problem reduces to computing the fingerprint of the
block prefix X2

i+1,j′ [1..R
′ − (si+1 − L + 1)]. (ii) R′ <

si+1−L+ 1. Then, Xk
i,j [1..R

′] = X1
i+1,j′ [L..L+R′− 1].

Even though this is not a prefix nor a suffix of a
block, note that X1

i+1,j′ [L..si+1] = X1
i+1,j′ [L..L + R′ −

1]X1
i+1,j′ [L + R′..si+1]. We explicitly store the finger-

print of the left-hand side of this equation, so the prob-
lem reduces to finding the fingerprint of Xk

i+1,j′ [L +
R′..si+1], which is a suffix of a block. From both finger-
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prints we can compute κ(X1
i+1,j′ [L..L+R′ − 1]).

Note that, in order to combine fingerprints, we also
need the corresponding exponents and their inverses
(i.e., σ±` mod q, where ` is the string length and q is
the prime used in κ). We store the exponents associated
with the lengths of the explicitly stored fingerprints at
all levels. The remaining exponents needed for the cal-
culations can be retrieved by combining exponents from
the next level (with a plain modular multiplication) in
the same way we retrieve fingerprints by combining par-
tial results from next levels.

To find the fingerprint of any text substring T [i..j],
we proceed as follows. If T [i..j] spans at least two blocks
at level 0, then T [i..j] can be factored into (a) a suffix
of a block, (b) a central part (possibly empty) of full
blocks, and (c) a prefix of a block. Since at level 0
we store the Karp-Rabin fingerprint of every text prefix
ending at block boundaries, the fingerprint of (b) can be
found in constant time. Computing the fingerprints of
(a) and (c), as proved above, requires only a single-path
descent in the block structure, taking O(log(n/r)) time
each. If T [i..j] is fully contained in a block at level 0,
then we map it down to the next levels until it spans
two blocks. From this point, the problem translates
into a prefix/suffix problem, which can be solved in
O(log(n/r)) time. �

5 Locating in Optimal Time

In this section we show how to obtain optimal lo-
cating time in the unpacked — O(m + occ) — and
packed — O(m log(σ)/w + occ) — scenarios, by using
O(r log(n/r)) and O(rw logσ(n/r)) space, respectively.
To improve upon the times of Theorem 3.1 we must
abandon the idea of using the RLFM-index to find the
toehold suffix array entry, as counting on the RLFM-
index takes ω(m) time. We will use a different machin-
ery that, albeit conceptually based on the BWT proper-
ties, does not use it at all. We exploit the idea that some
pattern occurrence must cross a run boundary to build
a structure that only finds pattern suffixes starting at a
run boundary. By sampling more text suffixes around
those run boundaries, we manage to find one pattern
occurrence in time O(m + log(n/r)), Lemma 5.3. We
then show how the LCP information we obtained in
Section 3 can be used to extract all the occurrences in
time O(m+ occ+ log(n/r)), in Lemma 5.5. Finally, by
adding a structure that finds faster the patterns shorter
than log(n/r), we obtain the unpacked result in Theo-
rem 5.1. We use the same techniques, but with larger
structures, in the packed setting, Theorem 5.2.

We make use of Lemma 4.1: if the pattern P [1..m]
occurs in the text then there must exist an integer
1 ≤ p ≤ m such that (1) P [p..m] prefixes a text suffix

T [i+ p− 1..], where T [i+ p− 1] is sampled, (2) none of
the characters T [i], . . . , T [i+p−2] are sampled, and (3)
P [p..m] is always preceded by P [1..p− 1] in the text. It
follows that T [i..i + m − 1] = P . This implies that we
can locate a pattern occurrence by finding the longest
pattern suffix prefixing some text suffix that starts
with a sampled character. Indeed, those properties are
preserved if we enlarge the sampling, as proved next.

Lemma 5.1. Lemma 4.1 still holds if we add arbitrary
sampled positions to the original sampling.

Proof. If the leftmost sampled position T [i + p − 1] in
the pattern occurrence belongs to the original sampling,
then the properties hold by Lemma 4.1. If, on the other
hand, T [i+ p− 1] is one of the extra samples we added,
then let i′+p′−1 be the position of the original sampling
satisfying the three properties, with p′ > p. Properties
(1) and (2) hold for the sampled position i + p − 1 by
definition. By property (3) applied to i′+p′−1, we have
that P [p′..m] is always preceded by P [1..p′ − 1] in the
text. Since p′ > p, it follows that also P [p..m] is always
preceded by P [1..p−1] in the text, that is, property (3)
holds for position i+ p− 1 as well. �

We therefore add to the sampling the r equally-
spaced extra text positions i·(n/r)+1, for i = 0, . . . , r−
1; we now have at most 3r sampled positions. This
will be used later to efficiently locate patterns longer
than n/r. The task of finding a pattern occurrence
satisfying properties (1)–(3) on the extended sampling
can be efficiently solved by inserting all the text suffixes
starting with a sampled character in a data structure
supporting fast prefix search operations and taking O(r)
words (e.g., a z-fast trie [1]). We make use of the
following lemma.

Lemma 5.2. ([31, 1]) Let S be a set of strings and as-
sume we have some data structure supporting extraction
of any length-` substring of strings in S in time fe(`)
and computation of the Karp-Rabin fingerprint of any
substring of strings in S in time fh. We can build a data
structure of O(|S|) words such that, later, we can solve
the following problem in O(m log(σ)/w+t(fh+logm)+
fe(m)) time: given a pattern P [1..m] and t > 0 suffixes
Q1, . . . , Qt of P , discover the ranges of strings in (the
lexicographically-sorted) S prefixed by Q1, . . . , Qt.

Proof. Z-fast tries [1, App. H.3] already solve the weak
part of the lemma in O(m log(σ)/w+ t logm) time. By
weak we mean that the returned answer for suffix Qi
is not guaranteed to be correct if Qi does not prefix
any string in S: we could therefore have false positives
among the answers, but false negatives cannot occur. A
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procedure for deterministically discarding false positives
has already been proposed [31] and requires extracting
substrings and their fingerprints from S. We describe
this strategy in detail in order to analyze its time
complexity in our scenario.

First, we require the Karp-Rabin function κ to
be collision-free between equal-length text substrings
whose length is a power of two. We can find such
a function at index-construction time in O(n log n)
expected time and O(n) space [11]. We extend the
collision-free property to pairs of equal-letter strings
of general length switching to the hash function κ′

defined as κ′(T [i..i + ` − 1]) = 〈κ(T [i..i + 2blog2 `c −
1]), κ(T [i + ` − 2blog2 `c..i + ` − 1])〉. Let Q1, . . . , Qj be
the pattern suffixes for which the prefix search found
a candidate node. Order the pattern suffixes so that
|Q1| < · · · < |Qj |, that is, Qi is a suffix of Qi′ whenever
i < i′. Let moreover v1, . . . , vj be the candidate nodes
(explicit or implicit) of the z-fast trie such all substrings
below them are prefixed by Q1, . . . , Qj (modulo false
positives), respectively, and let ti = string(vi) be the
substring read from the root of the trie to vi. Our goal
is to discard all nodes vk such that tk 6= Qk.

We compute the κ′-signatures of all candidate pat-
tern suffixes Q1, . . . , Qt in O(m log(σ)/w+ t) time. We
proceed in rounds. At the beginning, let a = 1 and
b = 2. At each round, we perform the following checks:

1. If κ′(Qa) 6= κ′(ta): discard va and set a ← a + 1
and b← b+ 1.

2. If κ′(Qa) = κ′(ta): let R be the length-|ta| suffix
of tb, i.e. R = tb[|tb| − |ta| + 1..|tb|]. We have two
sub-cases:

(a) κ′(Qa) = κ′(R). Then, we set b ← b + 1 and
a to the next integer a′ such that va′ has not
been discarded.

(b) κ′(Qa) 6= κ′(R). Then, discard vb and set
b← b+ 1.

3. If b = j + 1: let vf be the last node that was
not discarded. Note that Qf is the longest pattern
suffix that was not discarded; other non-discarded
pattern suffixes are suffixes of Qf . We extract tf .
Let s be the length of the longest common suffix
between Qf and tf . We report as a true match
all nodes vi that were not discarded in the above
procedure and such that |Qi| ≤ s.

Intuitively, the above procedure is correct because
we deterministically check that text substrings read
from the root to the candidate nodes form a monoton-
ically increasing sequence according to the suffix rela-
tion: ti ⊆suf ti′ for i < i′ (if the relation fails at some

step, we discard the failing node). Comparisons to the
pattern are delegated to the last step, where we explic-
itly compare the longest matching pattern suffix with
tf . For a full formal proof, see Gagie et al. [31].

For every candidate node we compute a κ′-signature
from the set of strings (O(fh) time). For the last
candidate, we extract a substring of length at most
m (O(fe(m)) time) and compare it with the longest
candidate pattern suffix (O(m log(σ)/w) time). There
are at most t candidates, so the verification process
takes O(m log(σ)/w + t · fh + fe(m)). Added to the
time spent to find the candidates in the z-fast trie, we
obtain the claimed bounds. �

In our case, we use the results stated in Theorem 4.1
and Lemma 4.2 to extract text substrings and their fin-
gerprints, so we get fe(m) = O(log(n/r) +m log(σ)/w)
and fh = O(log(n/r)). Moreover note that, by the
way we added the r equally-spaced extra text sam-
ples, if m ≥ n/r then the position p satisfying Lemma
5.1 must occur in the prefix of length n/r of the pat-
tern. It follows that, for long patterns, it is sufficient to
search the prefix data structure for only the t = n/r
longest pattern suffixes. We can therefore solve the
problem stated in Lemma 5.2 in time O(m log(σ)/w +
min(m,n/r)(log(n/r) + logm)). Note that, while the
fingerprints are obtained with a randomized method,
the resulting data structure offers deterministic worst-
case query times and cannot fail.

To further speed up operations, for every sampled
character T [i] we insert in S the text suffixes T [i−j..] for
j = 0, . . . , τ−1, for some parameter τ that we determine
later. This increases the size of the prefix-search struc-
ture to O(r τ) (excluding the components for extracting
substrings and fingerprints), but in exchange it is suf-
ficient to search only for aligned pattern suffixes of the
form P [` · τ + 1..m], for ` = 0, . . . , dmin(m,n/r)/τe− 1,
to find any primary occurrence: to find the longest suf-
fix of P that prefixes a string in S, we keep an array
B[1..|S|] storing the shift relative to each element in S;
for every sampled T [i] and j = 0, . . . , τ − 1, if k is the
rank of T [i− j..] among all suffixes in S, then B[k] = j.
We build a constant-time range minimum data structure
on B, which requires only O(|S|) = O(r τ) bits [27]. Let
[L,R] be the lexicographical range of suffixes in S pre-
fixed by the longest aligned suffix of P that has occur-
rences in S. With a range minimum query on B in the
interval [L,R] we find a text suffix with minimum shift,
thereby matching the longest suffix of P . By Lemma
5.1, if P occurs in T then the remaining prefix of P ap-
pears to the left of the longest suffix found. However, if
P does not occur in T this is not the case. We therefore
verify the candidate occurrence of P using Theorem 4.1
in time fe(m) = O(log(n/r) +m log(σ)/w).
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Overall, we find one pattern occurrence in
O(m log(σ)/w+(min(m,n/r)/τ +1)(logm+log(n/r)))
time. By setting τ = log(n/r), we obtain the following
result.

Lemma 5.3. We can find one pattern occurrence
in time O(m + log(n/r)) with a structure using
O(r log(n/r)) space.

Proof. If m < n/r, then it is easy to verify
that O(m log(σ)/w + (min(m,n/r)/τ + 1)(logm +
log(n/r))) = O(m + log(n/r)). If m ≥ n/r, the run-
ning time is O(m log(σ)/w+((n/r)/ log(n/r)+1) logm).
The claim follows by noticing that (n/r)/ log(n/r) =
O(m/ logm), as x/ log x = ω(1). �

If we choose, instead, τ = w logσ(n/r), we can
approach optimal-time locate in the packed setting.

Lemma 5.4. We can find one pattern occurrence in
time O(m log(σ)/w + log(n/r)) with a structure using
O(rw logσ(n/r)) space.

Proof. We follow the proof of Lemma 5.3. The main
difference is that, when m ≥ n/r, we end up with time
O(m log(σ)/w+logm), which is O(m) but not necessar-
ily O(m log(σ)/w). However, if m log(σ)/w = o(logm),
then m/ logm = o(w/ log σ) and thus (n/r)/ log(n/r) =
o(w/ log σ). The space we use, O(rw logσ(n/r)), is
therefore ω(n), within which we can include a classical
structure that finds one occurrence in O(m log(σ)/w)
time (see, e.g., Belazzougui et al. [1, Sec. 7.1]). �

Let us now consider how to find the other occur-
rences. Note that, differently from Section 3, at this
point we know the position of one pattern occurrence
but we do not know its relative position in the suf-
fix array nor the BWT range of the pattern. In other
words, we can extract adjacent suffix array entries us-
ing Lemma 3.3, but we do not know where we are in
the suffix array. More critically, we do not know when
to stop extracting adjacent suffix array entries. We
can solve this problem using LCP information extracted
with Lemma 3.4: it is sufficient to continue extraction
of candidate occurrences and corresponding LCP values
(in both directions) as long as the LCP is greater than
or equal to m. It follows that, after finding the first
occurrence of P , we can locate the remaining ones in
O(occ + log logw(n/r)) time using Lemmas 3.3 and 3.4
(with s = log logw(n/r)). This yields two first results
with a logarithmic additive term over the optimal time.

Lemma 5.5. We can find all the occ pattern occurrences
in time O(m + occ + log(n/r)) with a structure using
O(r log(n/r)) space.

Lemma 5.6. We can find all the occ pattern occurrences
in time O(m log(σ)/w+occ+log(n/r)) with a structure
using O(rw logσ(n/r)) space.

To achieve the optimal running time, we must speed
up the search for patterns that are shorter than log(n/r)
(Lemma 5.5) and w logσ n (Lemma 5.6). We index all
the possible short patterns by exploiting the following
property.

Lemma 5.7. There are at most 2rk distinct k-mers in
the text, for any 1 ≤ k ≤ n.

Proof. From Lemma 4.1, every distinct k-mer appearing
in the text has a primary occurrence. It follows
that, in order to count the number of distinct k-mers,
we can restrict our attention to the regions of size
2k − 1 overlapping the at most 2r sampled positions
(Definition 1). The claim easily follows. �

Note that, without Lemma 5.7, we would only be
able to bound the number of distinct k-mers by σk.
We first consider achieving optimal locate time in the
unpacked setting.

Theorem 5.1. We can store a text T [1..n] in
O(r log(n/r)) words, where r is the number of runs
in the BWT of T , such that later, given a pattern
P [1..m], we can report the occ occurrences of P in op-
timal O(m+ occ) time.

Proof. We store in a path-compressed trie T all the
strings of length log(n/r) occurring in the text. By
Lemma 5.7, T has O(r log(n/r)) leaves, and since it is
path-compressed, it has O(r log(n/r)) nodes. The texts
labeling the edges are represented with offsets pointing
inside r strings of length 2 log(n/r) extracted around
each run boundary and stored in plain form (taking care
of possible overlaps). Child operations on the trie are
implemented with perfect hashing to support constant-
time traversal.

In addition, we use the sampling structure of
Lemma 3.3 with s = log logw(n/r). Recall from
Lemma 3.3 that we store an array W such that, given
any range SA[sp..sp+s−1], there exists a range W [i..i+
s−1] and an integer δ such that SA[sp+j] = W [i+j]+δ,
for j = 0, . . . , s − 1. We store this information on
T nodes: for each node v ∈ T , whose string prefixes
the range of suffixes SA[sp..ep], we store in v the triple
〈ep − sp + 1, i, δ〉 such that SA[sp + j] = W [i + j] + δ,
for j = 0, . . . , s− 1.

Our complete locate strategy is as follows. If m >
log(n/r), then we use the structures of Lemma 5.5,
which already gives us O(m + occ) time. Otherwise,
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we search for the pattern in T . If P does not oc-
cur in T , then its number of occurrences must be
zero, and we stop. If it occurs and the locus node
of P is v, let 〈occ, i, δ〉 be the triple associated with
v. If occ ≤ s = log logw(n/r), then we obtain the
whole interval SA[sp..ep] in time O(occ) by accessing
W [i, i + occ − 1] and adding δ to the results. Oth-
erwise, if occ > s, a plain application of Lemma 3.3
starting from the pattern occurrence W [i] + δ yields
time O(log logw(n/r) + occ) = O(occ). Thus we obtain
O(m+ occ) time and the trie uses O(r log(n/r)) space.
Considering all the structures, we obtain the main re-
sult. �

With more space, we can achieve optimal locate
time in the packed setting.

Theorem 5.2. We can store a text T [1..n] over alpha-
bet [1..σ] in O(rw logσ(n/r)) words, where r is the num-
ber of runs in the BWT of T , such that later, given
a packed pattern P [1..m], we can report the occ occur-
rences of P in optimal O(m log(σ)/w + occ) time.

Proof. As in the proof of Theorem 5.1 we need to index
all the short patterns, in this case of length at most
` = w logσ(n/r). We insert all the short text substrings
in a z-fast trie to achieve optimal-time navigation. As
opposed to the z-fast trie used in Lemma 5.2, now we
need to perform the trie navigation (i.e., a prefix search)
in only O(m log(σ)/w) time, that is, we need to avoid
the additive term O(logm) that was instead allowed in
Lemma 5.2, as it could be larger than m log(σ)/w for
very short patterns. We exploit a result by Belazzougui
et al. [1, Sec. H.2]: letting n′ be the number of indexed
strings of average length `, we can support weak prefix
search in optimal O(m log(σ)/w) time with a data
structure of size O(n′`1/c(log `+ log log n)) bits, for any
constant c. Note that, since ` = O(w2), this is O(n′)
space for any c > 2. We insert in this structure all n′

text `-mers. For Lemma 5.7, n′ = O(r`). It follows that
the prefix-search data structure takes space O(r`) =
O(rw logσ(n/r)). This space is asymptotically the same
of Lemma 5.6, which we use to find long patterns. We
store in a packed string V the contexts of length `
surrounding sampled text positions (O(rw logσ(n/r))
space); z-fast trie nodes point to their corresponding
substrings in V . After finding the candidate node on
the z-fast trie, we verify it in O(m log(σ)/w) time by
extracting a substring from V . We augment each trie
node as done in Theorem 5.1 with triples 〈occ, i, δ〉. The
locate procedure works as for Theorem 5.1, except that
now we use the z-fast trie mechanism to navigate the
trie of all short patterns. �

6 Experimental Results

We implemented our simplest scheme and compared it
with the state of the art.

6.1 Implementation We implemented the structure
of Theorem 3.1 with s = 1 using the sdsl library [35].
For the run-length FM-index, we used the implemen-
tation described by Prezza [68, Thm. 28] (suffix array
sampling excluded), taking (1+ε)r log(n/r)+r(log σ+2)
bits of space for any constant ε > 0 (in our implemen-
tation, ε = 0.5) and supporting O(log(n/r) + log σ)-
time LF mapping. This structure employs Huffman-
compressed wavelet trees (sdsl’s wt huff) to repre-
sent run heads, as in our experiments they turned out
to be comparable in size and faster than Golynski et
al.’s structure [36], which is implemented in sdsl’s
wt gmr. Our locate machinery is implemented as fol-
lows. We store two gap-encoded bitvectors U (“Up”)
and D (“Down”) marking with a bit set text positions
that are the last and first in their BWT run, respectively
(we use these names because, in the BWT, each last run
position is above—i.e. “Up”—the first run position in
the following run). These bitvectors are implemented
using sdsl’s sd vector, take overall 2r(log(n/r) + 2)
bits of space, and answer queries in O(log(n/r)) time.
We moreover store two permutations, DU and RD. DU con-
nects bits set in D and U: DU[i] = j iff T [D.select1(i)] and
T [U.select1(j)] are adjacent in the BWT and belong to
two different runs (with T [U.select1(j)] being the last
position of a run and T [D.select1(i)] the first position
of the following run). Intuitively, DU permits moving
bottom-up (from “Down” to “Up”) in the BWT during
the locate process. RD connects (ranks of) BWT runs
and bits set in D: RD[i] = j iff T [D.select1(j)] is the first
character in the i-th BWT run. DU and RD are imple-
mented using Munro et al.’s representation [58], take
(1 + ε′)r log r bits each for any constant ε′ > 0, and
support map and inverse in O(1) time. It can easily be
shown that U, D, UD, and RD are sufficient to locate each
pattern occurrence in O(log(n/r)) time with the strat-
egy of Theorem 3.1. We choose ε′ = ε/2. Overall, our
index takes at most r log(n/r)+r log σ+6r+(2+ε)r log n
bits of space for any constant ε > 0 and, after count-
ing, locates each pattern occurrence in O(log(n/r))
time. Note that this space is (2 + ε)r log n + O(r)
bits larger than an optimal run-length BWT represen-
tation. Since we store 2r suffix array samples, this is
just εr log n + O(r) bits larger than the optimum (i.e.,
RLBWT + samples). In the following, we refer to our
index as r-index. The code is publicly available [67].

6.2 Experimental setup We compared r-index

with the state-of-the-art index for each compressibility
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measure: lzi [17] (z), slp [17] (g), rlcsa [72] (r), and
cdawg [70] (e). We tested rlcsa using three suffix ar-
ray sample rates per dataset: the rate X resulting in the
same size for rlcsa and r-index, plus rates X/2 and
X/4. We measured memory usage and locate times
per occurrence of all indexes on 1000 patterns of length
8 extracted from four repetitive datasets, which are also
published with our implementation:

DNA, an artificial dataset of 629145 copies of a DNA
sequence of length 1000 (Human genome) where
each character was mutated with probability 10−3;

boost, a dataset consisting of concatenated versions of
the GitHub’s boost library;

einstein, a dataset consisting of concatenated ver-
sions of Wikipedia’s English Einstein page;

world leaders, a collection of all pdf files of CIA
World Leaders from January 2003 to December
2009 downloaded from the Pizza&Chili corpus.

Memory usage (Resident Set Size, RSS) was mea-
sured using /usr/bin/time between index loading time
and query time. This choice was motivated by the fact
that, due to the datasets’ high repetitiveness, the num-
ber occ of pattern occurrences was very large. This im-
pacts sharply on the working space of indexes such as
lzi and slp, which report the occurrences in a recur-
sive fashion. When considering this extra space, these
indexes always use more space than the r-index, but
we prefer to emphasize the relation between the index
sizes and their associated compressibility measure. The
only existing implementation of cdawg works only on
DNA files, so we tested it only on the DNA dataset.

6.3 Results The results of our experiments are sum-
marized in Figure 1. On all datasets, the r-index sig-
nificantly deviates from the space-time curve on which
all other indexes are aligned. We locate occurrences
one to three orders of magnitude faster than all other
indexes except cdawg, which is however 35 times larger
(and only twice as fast). It is also clear that r-index

dominates all practical space-time tradeoffs of rlcsa:
when the latter uses 30% more space than r-index, it
is 7–150 times slower. The smallest indexes use 40%–
80% (lzi) or 50%–100% (slp) of the space of r-index,
at the expense of being orders of magnitude slower: 20–
125 (lzi) or 8–40 (slp) times.

7 Conclusion

We have closed the long-standing problem of efficiently
locating the occurrences of a pattern in a text using an

index whose space is bounded by the number of equal-
letter runs of the Burrows-Wheeler transform (BWT) of
the text. The occ occurrences of a pattern P [1..m] in a
text T [1..n] over alphabet [1..σ] whose BWT has r runs
are located in O(m log logw(σ+n/r)+occ log logw(n/r))
time, on a w-bit RAM machine, using an O(r)-space
index. This near-optimal time was then reduced to
the optimal O(m + occ) using slightly more space,
O(r log(n/r)), and to the optimal in the packed setting,
O(m log(σ)/w + occ) using O(rw logσ(n/r)) space.

The number of runs in the BWT is an important
measure of the compressibility of highly repetitive text
collections, which can be compressed by orders of mag-
nitude by exploiting the repetitiveness. While the first
index of this type [52, 53] managed to exploit the BWT
runs, it was not able to locate occurrences efficiently.
This gave rise to many other indexes based on other
measures, like the size of a Lempel-Ziv parse [50], the
size of a context-free grammar [45], the size of the small-
est compact automaton recognizing the text substrings
[13], etc. While the complexities are not always compa-
rable, our experimental results show that our new index
is either smaller or faster (or both) than all those (im-
plemented) alternatives, by orders of magnitude.

Our index can be easily built in O(r) space. We
can start from any O(r)-space construction of the run-
length BWT [53, 68, 65]. Once built, we scan it left-to-
right collecting the O(r) starts and ends of runs, and
then scan it again in text order (using LF-steps from
the position of the $ symbol) so as to find the text
positions of the run starts and ends. Finally, we build
the predecessor data structures on the O(r) samples.

Our results also yield a much deeper understanding
of the properties of r as a measure of repetitiveness. In
an extended version of this paper [33], we obtain several
additional results:

1. Using a variant of locally consistent parsing [38],
we build a run-length context free grammar of size
O(r log(n/r)) over the arrays SA, its inverse ISA,
and LCP . This yields a data structure of that size
giving access to any range of length ` in those arrays
in time O(`+ log(n/r)).

2. We extend those representations to provide the
richer functionality of a full-fledged compressed suf-
fix tree, using O(r log(n/r)) space and implement-
ing most of the query and navigational operations
in time O(log(n/r)). We know of only one compa-
rable alternative [3].

3. Building on the suffix tree functionality, we manage
to count in O(m) time with O(r log(n/r)) space, or
O(m log(σ)/w) time with O(rw logσ(n/r)) space,
which is also unprecedented.
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Figure 1: Locate time per occurrence and working space (in bits per symbol) of the indexes. The y-scale measures
nanoseconds per occurrence reported and is logarithmic. rlcsa is tested on three different space-time tradeoffs.

4. We prove that the phrases in T we have defined in
this paper are a particular case of a bidirectional
macro scheme [75], which is arguably the most
general technique to exploit repetitiveness. Using
the results developed here, we are able to close
a long-standing conjecture on the size z of the
Lempel-Ziv parsing with respect to the size b of the
smallest bidirectional scheme (which is NP-hard to
find [34]): we show that z = O(b log(n/b)) and that
this is tight in terms of n.
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