Optimal Dynamic Sequence Representations *

Gonzalo Navarrof

Abstract

We describe a data structure that supports access, rank and
select queries, as well as symbol insertions and deletions, on
a string S[1,n] over alphabet [1..0] in time O(lgn/lglgn),
which is optimal. The time is worst-case for the queries
and amortized for the updates. This complexity is better
than the best previous ones by a O(1 +1lgo/lglgn) factor.
Our structure uses nHo(S) + O(n + o(lgo +1g' ™= n)) bits,
where Ho(S) is the zero-order entropy of S and 0 < e < 1
is any constant. This space redundancy over nHo(S) is
also better, almost always, than that of the best previous
dynamic structures, o(nlgo)+O(o(lgo+1gn)). We can also
handle general alphabets in optimal time, which has been an

open problem in dynamic sequence representations.

1 Introduction

String representations supporting rank and select
queries are fundamental in many data structures, in-
cluding full-text indexes [20, 15, 18], permutations
[18, 3], inverted indexes [10, 3], graphs [13], document
retrieval indexes [36], labeled trees [18, 5], XML indexes
[21, 14], binary relations [5], and many more. The prob-
lem is to encode a string S[1, n] over alphabet ¥ = [1..0]
so as to support the following queries:

rank,(S,i) =

number of occurrences of a € X
in S[1,4], for 1 <4 <n.

selecty(S,7) = position in S of the i-th occurrence

of a € 3, for 1 < ¢ <rankq(S,n).
access(S,1) = S[i].

There exist various representations of S that sup-
port these operations [20, 18, 15, 3, 7]. However, these
representations are static, that is, S cannot change. In
various applications one needs dynamism, that is, to
insert and delete symbols in S. There are not many dy-
namic solutions, however. All are based on the wavelet
tree representation [20]. The wavelet tree decomposes

" *Partially funded by Fondecyt grant 1-110066, Chile.
TDepartment of Computer Science, University of Chile. Email:
gnavarro@dcc.uchile.cl.
fLaboratoire d’Informatique Gaspard Monge, Université Paris-
Est & CNRS. This work was done while this author was at the
University of Chile. Email: yakov.nekrich@googlemail.com.

Yakov Nekrich?

S hierarchically. In a first level, it separates larger from
smaller symbols, by marking in a bitmap which sym-
bols of S were larger and which were smaller. The two
subsequences of S are recursively separated. The lgo
levels of bitmaps describe S, and access, rank and select
operations on S are carried out via lgo rank and select
operations on the bitmaps. Insertions and deletions in
S can also be carried out by inserting and deleting bits
from lg o bitmaps (see Section 2 for more details).

In the static case, rank and select operations on
bitmaps take constant time, and therefore access, rank
and select on S takes O(lgo) time [20]. This can
be reduced to O(1 + lgo/lglgn) by using multiary
wavelet trees [15]. These separate the symbols into
p = o(lgn) ranges, and instead of a bitmap store a
sequence over an alphabet of size p. In the dynamic
case, however, the operations on those bitmaps or se-
quences are slowed down. Makinen and Navarro [27]
obtained O(lg o lgn) time for all the operations, includ-
ing updates, by using dynamic bitmaps that handled
all the operations in time O(lgn). They simultaneously
compress the sequence to nHy(S) + o(nlg o) bits. Here
Ho(S) = Yuen..o)(na/n)1g(n/na) < lgo is the zero-
order entropy of S, where n, is the number of occur-
rences of a in S. Gonzdlez and Navarro [19] improved
the times to O((1 4 lgo/lglgn)lgn) by extending the
results to multiary wavelet trees. In this case, instead of
dynamic bitmaps, they handled dynamic sequences over
a small alphabet (of size p). Finally, He and Munro [22]
and Navarro and Sadakane [30] obtained the currently
best result, O((1 + 1go/lglgn)lgn/lglgn) time, still
within the same space. They did so by improving the
times of the dynamic sequences on small alphabets to
O(lgn/lglgn), which is optimal even on bitmaps [17].
The Q((Ign/lglgn)?) lower bound for dynamic range
counting in two dimensions [33], and the O(lgn/lglgn)
static upper bound using wavelet trees [9], suggest that
no more improvements are possible in this line.

In this paper we show that this dead-end can be
broken by abandoning the implicit assumption that, to
provide access, rank and select on S, we must provide
rank and select on the bitmaps (or sequences over [1..p]).
We show that all what is needed is to track positions of
S downwards and upwards along the wavelet tree. It
turns out that this tracking can be done in constant

time per level, breaking the ©(lgn/lglgn) per-level
barrier. A second tool to achieve full independence of o,
and to compress the redundancy space, is the alphabet
partitioning technique [3], which we exploit in a novel
way under a dynamic scenario.

As a result, we obtain the optimal time complexity
O(lgn/lglgn) for all the queries (worst-case) and up-
date operations (amortized). This is O(1 +1go/lglgn)
times faster than what was believed to be the “ultimate”
solution. We also improve upon the space by compress-
ing the redundancy of o(nlgo) + O(c(lgo + lgn)) of
previous dynamic structures. Our space is nHp(S) +
O(n+o(lgo+1g' ¢ n)) bits, for any constant 0 < e < 1.

Finally, we also handle general alphabets, such as
¥ =R, or ¥ =TI'* for a symbol alphabet I', in optimal
time. For example, in the comparison model for ¥ = R,
the time is O(lg o +1gn/lglgn), where o is the number
of distinct symbols that appear in S; in the case ¥ =T'*
for general T, the time is O(|p| + lg~v + lgn/lglgn),
where |p| is the query length and ~ the number of
distinct symbols of I' that appear in the elements of S.
Handling varying alphabets has been a long-standing
problem on dynamic sequences, since wavelet trees do
not deal well with them. We work around this problem
by means of our dynamic alphabet partitioning scheme.

At the end we describe several applications where
our result offers improved time/space tradeoffs. These
include compressed indexes for dynamic text collections,
construction of the Burrows-Wheeler transform [11] and
static compressed text indexes within compressed space,
and compressed representations of dynamic binary re-
lations, directed graphs, and inverted indexes.

2 The Wavelet Tree

Let S be a string over alphabet ¥ = [1..0]. We associate
each a € ¥ to a leaf v, of a full balanced binary tree
T. The essential idea of the wavelet tree structure is
the representation of elements from a string S by bit
sequences stored in the nodes of tree T. We associate
a subsequence S(v) of S with every node v of T. For
the root v, S(v,) = S. In general, S(v) consists of all
occurrences of symbols a € ¥, in S, where ¥, is the
set of symbols assigned to leaf descendants of v. The
wavelet tree does not store S(v) explicitly, but just a
bit vector B(v). We set B(v)[i] = ¢ if the i-th element
of S(v) also belongs to S(v:), where v; is the t-th child
of v (the left child corresponds to ¢ = 0 and the right
to t = 1). This data structure (i.e., T and bit vectors
B(v)) is called a wavelet tree.

For any symbol S[i] = a and every node v such that
a € ¥, there is exactly one bit b, in B(v) that indicates
in which child of v the leaf vgy; is stored. We will say
that such b, encodes S[i] in B(v); we will also say that

bit b, from B(v) corresponds to a bit b, from B(u) if
both b, and b,, encode the same symbol S[i] in two nodes
v and u. Identifying the positions of bits that encode
the same symbol plays a crucial role in wavelet trees.
Other, more complex, operations rely on our ability to
navigate in the tree and keep track of bits that encode
the same symbol.

To implement access(S,i) we traverse a path from
the root to the leaf vgp;). In each visited node we read
the bit b, that encodes S[i] and proceed to the b,-th
child of v. To compute rank, (S,), we identify the last
bit b’ that precedes B(v)[i] and corresponds to some
symbol in S(v,). To answer select, (.S, %), we identify the
index of the bit b, in B(v) that corresponds to S(v,)[i].

The standard method used in wavelet trees for iden-
tifying the corresponding bits is to maintain rank/select
data structures on the bit vectors B(v). Let B(v)[e] = ¢;
we can find the offset of the corresponding bit in the
child of v by answering a query rank;(B(v),e). If v
is the r-th child of a node u, we can find the offset
of the corresponding bit in u by answering a query
select,.(B(u),e). This approach leads to O(lgo) query
times in the static case because rank/select queries on a
bit vector can be answered in constant time. However,
we need Q(lgn/lglgn) time to support rank/select and
updates on a bit vector [17], which multiplies the oper-
ation times. A slight improvement can be achieved by
increasing the fan-out of the wavelet tree to O(lg®n):
as before, B(v)[e] = t if the e-th element of S(v) also
belongs to S(v;) for the t-th child v; of v. This en-
ables us to reduce the height of the wavelet trees and
the query time by a ©(lglgn) factor. However, it seems
that further improvements that are based on dynamic
rank/select queries in every node are not possible.

In this paper we use a different approach to iden-
tifying the corresponding elements. We partition se-
quences B(v) into blocks, which are stored in compact
list structures L(v). Pointers from selected positions
in L(v) to the structure L(u) in a parent node u (and
vice versa) enable us to navigate between nodes of the
wavelet tree in constant time. We extend the idea to
multiary wavelet trees. While similar techniques have
been used in some geometric data structures [31, 8], ap-
plying them on compressed data structures where the
bit budget is severely limited is much more challenging.

3 Basic Structure

We start by describing the main components of our
modified wavelet tree. Then, we show how our structure
supports access(S, 1) and select, (S, 4). In the third part
of this section we describe additional structures that
enable us to answer rank,(S,4). Finally, we show how
to support updates.

3.1 Structure We assume that the wavelet tree 7
has node degree p = O(Ig°n). We divide sets B(v)
into blocks and store those blocks in a doubly-linked list
L(v). Each block G;(v), except the last one, contains
O(lg® n) consecutive elements from B(v); the last block
contains O(lg® n) consecutive elements. For each G;(v)
we maintain a data structure R,;(v) that supports rank
and select queries on elements of G, (v). Since a block
contains a poly-logarithmic number of elements over an
alphabet of size p, we can answer rank and select queries
in O(1) time using O(|G;(v)|/1g' "¢ n) additional bits,
for any constant 0 < e < 1 (see Appendix A for details).

A pointer to an element B(v)[e] consists of two
parts: a unique id of the block G;(v) that contains offset
e and the index of e in G;(v). Such a pair (block id,
local index) will be called the position of e in v.

We maintain pointers between selected correspond-
ing elements in L(v) and its children. If an element
B(v)le] =t is stored in a block G;(v) and B(v)[e'] # ¢
for all ¢’ < e in G;(v), then we store a pointer from e
to the offset e; of the corresponding element B(v;)[e:]
in L(vt), where v; is the ¢-th child of v. If B(v)[e] = ¢
and the corresponding e; in L(wv;) is the first offset in its
block, then we also store a pointer from e to e;. If there
is a pointer from e in L(v) to e; in L(v;), then we also
store a pointer from e; to e. All these pointers will be
called inter-node pointers. We describe how inter-node
pointers are implemented later in this section.

It is easy to see that the number of inter-node
pointers from e in L(v) to e; in L(v;), for any fixed
t, is ©(g(v)), where g(v) is the number of blocks in
L(v). Hence, the total number of pointers that point
down from a node v is bounded by O(g(v)p). Since this
also equals the number of pointers that point up to v,
the total number of pointers in the wavelet tree equals
O(Ser 9(0)p) = Olnlg /16" n + o lg" n).

The pointers from a block G;(v) are stored in a
data structure Fj(v). Using F}j(v), we can find, for any
offset e in G;(v) and any 1 < ¢ < p, the last ¢/ < e in
Gj(v) such that there is a pointer from €’ to an offset
e; in L(vy). We describe in Appendix A how Fj(v)
implements the queries in constant time.

For the root node v,, we store a dynamic partial-
sum data structure K (v,) that contains the number of
positions in each block of L(v,). Using K(v,), we can
find the block G;(v,) that contains the i-th element of
S(v,) = S, as well as the number of elements in all
the blocks that precede a given block G;(v,). Both
operations can be supported in O(lgn/lglgn) time
[23, 30]. The same data structures K (v,) are also stored
in the leaves v, of 7. We observe that we do not store
a sequence B(v,) in a leaf node v,. Nevertheless, we
divide the (implicit) sequence B(v,) into blocks and

L(v) | List of blocks storing B(v)
G,(v) | j-th block of list L(v)
R;(v) | Supports rank/select/access inside G;(v)
F;(v) | Pointers leaving from G;(v)
H;(v) | Pointers arriving at G;(v)
P,(v) | Predecessor in L(v) containing symbol ¢
K(v) | Partial sums on block lengths for v, and v,
D;(v) | Deleted elements in G;(v), for v, and v,
DEL | Global list of deleted elements in S.

Table 1: Structures inside any node v of the wavelet

tree T, or only in the root node v, and the leaves v,.

store the number of positions in each block in K (v,);
we maintain K(v,) only if L(v,) consists of more than
one block. Moreover we store inter-node pointers from
the parent of v, to v, and vice versa. Pointers in a leaf
are maintained using the same rules of any other node.

For future reference, we provide the list of secondary
data structures in Table 1.

3.2 Access and Select Queries Assume the posi-
tion of an element B(v)[e] = ¢ in L(v) is known, and
let i, be the index of offset e in its block G,;(v). Then
the position of the corresponding offset e; in L(v) is
computed as follows. Using Fj;(v), we find the index
i’ of the largest ¢/ < e in G;(v) such that there is a
pointer from €’ to some e} in L(v;). Due to our con-
struction, such e’ must exist. Let i/ and i, denote the
indexes of €’ and e} respectively, and let G¢(v;) denote
the block that contains e}. Let r, = rank,(G;(v), i)
and r, = rank,(G,;(v),i,). Due to our rules to de-
fine pointers, e; also belongs to Gy(v:) and its index
is i} 4+ (ry, — 7). Thus we can find the position of e; in
O(1) time if the position of B(v)[e] = ¢ is known.

Analogously, assume we know a position B(v;)[e]
at G;(v;) and want to find the position of the corre-
sponding offset e in its parent node v. Using Fj(v;) we
find the last e} < e; in G,(v;) that has a pointer to
its parent, which exists by construction. Let e} point
to ¢/, with index ¢’ in a block G¢(v). Let 4, and i; be
the indexes of e; and e; in G;(v;), respectively. Then,
by our construction, e is also in G¢(v) and its index is
selects(Gy(v), rank: (Gy(v),) + (ir — 4})).

To solve access(S,i), we visit the nodes vy =
Up,V1 ...V = Vg, Where h = lIg, o is the height of T,
vg is the tp-th child of vp_y and B(vg_1)[ex—1] = t&
encodes S[i]. We do not find out the offsets eq,...,ep,
but just their positions. The position of ey = i is found
in O(lgn/lglgn) time using the partial-sums structure
K (v,.). If the position of ey_; is known, we can find
that of e; in O(1) time, as explained above. When a
leaf node v, = v, is reached, we know that S[i] = a.

To solve select,(S,14), we set e, =i and identify its
position in the list L(v,) of the leaf v,, using structure
K (v,). Then we traverse the path vy, vp_1,...,v0 = v,
where vg_1 is the parent of vy, until the root node
is reached. In every node v, we find the position of
ex—1 in L(vk—1) that corresponds to e; as explained
above. Finally, we compute the number of elements
that precede eg in L(v,.) using structure K (v,.).

Clearly, access and select require O(lg,o +
lgn/lglgn) = O((lgo +1gn)/lglgn) worst-case time.

3.3 Rank Queries We need some additional data
structures for the efficient support of rank queries. In
every node v such that L(v) consists of more than one
block, we store a data structure P(v). Using P(v) we
can find, for any 1 < ¢t < p and for any block G;(v),
the last block G¢(v) that precedes G,(v) and contains
an element B(v)[e] = t. P(v) consists of p predecessor
data structures Pi(v) for 1 < ¢t < p. We describe in
Section 4 a way to support these predecessor queries in
constant time in our scenario.

Let the position of offset e be the i-th element in a
block G,(v). P(v) enables us to find the position of the
last €’ < e such that B(v)[e/] = t. First, we use R;(v) to
compute r = rank,(G,(v),i). If r > 0, then €’ belongs
to the same block as e and its index in the block G;(v)
is select;(G;(v),r). Otherwise, we use P;(v) to find the
last block G(v) that precedes G;(v) and contains an
element B(v)[e'] =t. We then find the last such element
in G¢(v) using Ry(v).

Now we are ready to describe the procedure to
answer rank,(S,7). The symbol a is represented as a
concatenation of symbols tg ot o... o t}, where each
tx is between 1 and p. We traverse the path from the
root v, = vg to the leaf v, = v;,. We find the position
of ey =i in v, using the data structure K(v,). In each
node vg, 0 < k < h, we identify the position of the last
element B(vy)[e)] = ti that precedes ey, using Py, (v).
Then we find the offset exy; in the list L(vgs1) that
corresponds to ef,.

When our procedure reaches the leaf node wvyp,
the element B(vy)[en] encodes the last symbol a that
precedes S[i]. We know the position of offset e, say
index iy, in its block G¢(vy). Then we find the number
r of elements in all the blocks that precede Gy (vy) using
K (vy). Finally, rank,(S,) = r + ip.

Since structures P; answer queries in constant time,
the overall time for rank is O(lg, o + lgn/lglgn) =
O((lgo +1gn)/lglgn).

3.4 Updates Now we describe how inter-node point-
ers are implemented. We say that an element of L(u) is
pointed if there is a pointer to its offset. Unfortunately,

we cannot store the local index of a pointed element in
the pointer: when a new element is inserted into a block,
the indexes of all the elements that follow it are incre-
mented by 1. Since a block can contain ©(lg® n) pointed
elements, we would have to update up to ©(lg® n) point-
ers after each insertion and deletion.

Therefore we resort to the following two-level
scheme. FEach pointed element in a block is assigned
a unique id. When a new element is inserted, we assign
it the id max_id 4+ 1, where max_id is the maximum
id value used so far. We also maintain a data struc-
ture H;(v) for each block G;(v) that enables us to find
the position of a pointed element if its id in G;(v) is
known. Implementation of H;(v) is based on standard
word RAM techniques and a table that contains ids of
the pointed elements; details are given in Appendix A.

We describe now how to insert a new symbol a
into S at position i. Let eg,eq,...,e, be the offsets
of the elements that will encode a = tgo... oty in
Vp = Vg, V1,...,Vp = Uq. We can find the position of
eo =1 1in L(v,) in O(lgn/lglgn) time using K (v,), and
insert ¢(at that position, B(v,)[eg] = to. Now, given the
position of ey, in L(vy), where B(uvg)[ex] = tx, we find
the position of the last e}, < e, such that B(vg)[e}] = tx,
in the same way as for rank queries. Once we know the
position of €} in L(vy), we find the position of e}, in
L(vg+1) that corresponds to e}.. The element ¢541 must
be inserted into L(vg41) immediately after e;/ , at the
position of €} | +1 = epy1.

The insertion of a new element B(vg)lex] = ¢
into a block G;(vg) is supported by structure R;(vg).
We must also update structures Fj(vy), Hj(vg) and
P;(vy). These updates take O(1) time, see Section 4 for
structure P;(vg) and Appendix A for the others. Since
pointers are bidirectional, changes to Fj(vg) trigger
changes in the F' and H structures of vy_1 and vpy1.
If v, is the root node or a leaf, we also update K (vg).

If the number of elements in G, (vy) exceeds 21g° n,
we split G;(vk) evenly into two blocks, G, (vx) and
Gj,(vg). Then, we rebuild the data structures R, F
and H for the two new blocks. Note that there are
inter-node pointers to G;(vg) that now could become
dangling pointers, but all those can be known from
F(vy), since pointers are bidirectional, and updated to
point to the right places in G, (vg) or G, (vg). Finally,
if vy, is the root or a leaf, then K (vy) is updated.

The total cost of splitting a block is dominated by
that of building the new data structures R, F and H.
These are easily built in O(lg®n) time. Since we split
a block G;(v) at most once per sequence of ©(lg”n)
insertions in G,(v), the amortized cost incurred by
splitting a block is O(1). Therefore the total cost of an
insertion in L(v) is O(1). The insertion of a new symbol

leads to O(lg, o) insertions into lists L(v). Updates of
data structures K(v,) and K(v,) take O(lgn/lglgn)
time. Hence, the total cost of an insertion is O(lg, o +
lgn/lglgn) = O((lgo +1gn)/lglgn).

We describe how deletions are handled in Section 4,
where we also describe the data structure P(v).

3.5 Space We show in Appendix A how to man-
age the data in blocks G;(v) so that all the elements
stored in lists L(v) use nlgo bits. Since there are
O(nlgo/lg®n + o) blocks overall, all the pointers be-
tween blocks of the same lists add up to O(nlg o/ 1g? n+
olgn) bits. All the data structures K(v) add up to
O(n/1g*n) bits. We showed before that the number of
inter-node pointers is O(nlgo/lg* n+ o lg° n), hence
all inter-node pointers (i.e., F; and H; structures) use
O(nlgo/1g? ¢ ntolg' e n) bits. Structures P, (v) (Sec-
tion 4) use O(nlgo/1g* °n) bits as they have p in-
tegers per block. Finally, in Appendix A we show
that each structure R;(v) uses O(|G;(v)|/1g' ™ n) ex-
tra bits. Hence, all R;(v)s for all blocks and nodes
use O(nlgo/1g'™¢n) bits. Thus the overall space is
nlgo 4+ O(nlgo/1g' °n+ olg' e n) bits.

Finally, note that our structures depend on the
value of lgn, so they should be rebuilt when [lgn]
changes. Mikinen and Navarro [27] describe a way to
handle this problem without affecting the space nor the
time complexities, even in the worst-case scenario. The
result is completed in the next section, where we de-
scribe the changes needed to implement the predecessor
structures P;.

4 Lazy Deletions and Data Structure P(u)

The main idea of our solution is based on lazy deletions:
we do not maintain exactly S but a supersequence S
of it. When a symbol S[i] = a is deleted from S, we
retain it in S but take a notice that S[i] = a is deleted.
When the number of deleted symbols exceeds a certain
threshold, we expunge from the data structure all the
elements marked as deleted. We define B(v) and the
list L(v) for the sequence S in the same way as B(v)
and L(v) are defined for S.

Since elements of L(v) are never removed, we can
implement P(v) as an insertion-only data structure.
For any t, 1 < t < p, we store information about
all the blocks of a node v in a data structure P;(v).
P,(v) contains one element for each block G,;(v) and is
implemented as an incremental split-find data structure
that supports insertions and splitting in O(1) amortized
time and queries in O(1) worst-case time [25]. The
splitting positions in P;(v) are the blocks G;(v) that
contain an occurrence of t, so the operation “find” in
P,(v) allows us to locate, for any G;(v), the last block

preceding G;(v) that contains an occurrence of .

The insertion of a symbol ¢ in L(v) may induce a
new split in P;(v). Furthermore, overflows in a block
Gj(v), which convert it into two blocks Gj, (v) and
G, (v), induce insertions in P, (v). Note that an overflow
in Gj(v) triggers p insertions in the P;(v) structures,
but this O(p) time amortizes to o(1) because insertions
occur every O(lg® n) operations.

Structures P;(v) do not support “unsplitting” nor
removals. The replacement of G;(v) by G}, (v) and
Gj,(v) is implemented as leaving in P;(v) the element
corresponding to G,;(v) and inserting one corresponding
to either Gy, (v) or G, (v). If G;(v) contained ¢, then at
least one of Gy, (v) and Gj,(v) contain ¢, and the other
can be inserted as a new element (plus possibly a split,
if it also contains t).

We need some additional data structures to support
lazy deletions. A data structure K (v) stores the number
of non-deleted elements in each block of L(v) and
supports partial-sum queries. We will maintain K (v)
in the root of the wavelet tree and in all leaf nodes.
Moreover, we maintain a data structure D;(v) for every
block G,(v), where v is either the root or a leaf node.
D;(v) can be used to count the number of deleted and
non-deleted elements before the i-th element in a block
Gj(v) for any query index 4, as well as to find the
index in G;(v) of the i-th non-deleted element. The
implementation of D;(v) is described in Appendix A.
We can use K(v) and D;(v) to find the index i in L(v)
where the i-th non-deleted element occurs, and to count
the number of non-deleted elements that occur before
the index 7 in L(v).

We also store a global list DEL that contains, in
any order, all the deleted symbols that have not yet
been expunged from the wavelet tree. For any symbol
Sli] in the list DEL we store a pointer to the offset e
in L(v,) that encodes S[i]. Pointers in list DEL are
implemented in the same way as inter-node pointers.

4.1 Queries Queries are answered very similarly to
Section 3. The main idea is that we can essentially
ignore deleted elements except at the root and at the
leaves.

access(S,4): Exactly as in Section 3, except that eg
encodes the i-th non-deleted element in L(v,.), and
is found using K (v,) and D;(v,).

select, (S, 7): We find the position of the offset e, of the
i-th non-deleted element in L(vy,), where vj, = v,,
using K (v,). Then we move up in the tree exactly
as in Section 3. When the root node vy = v,
is reached, we count the number of non-deleted
elements that precede offset ey using K (v,.).

rank,(S,4): We find the position of the offset eq of the
i-th non-deleted element in L(v,). Let vy, tp be
defined as in Section 3. In every node vy, we find
the last offset e} < ej such that B(vg)[e}] = t.
Note that this element may be a deleted one, but
it still drives us to the correct position in L(vj41)-
We proceed exactly as in Section 3 until we arrive
at a leaf v, = v,. At this point, we count the
number of non-deleted elements that precede offset
ep, using K (vq) and Dj(v,).

4.2 Updates Insertions are carried out just as in
Section 3. The only difference is that we also update
the data structure D;(vy) when an element B(vy)[ex]
that encodes the inserted symbol a is added to a block
Gj(vi). When a symbol S[i] = a is deleted, we append
it to the list DEL of deleted symbols. Then we visit
each block G (vy) containing the element B(vy)[ex] that
encodes S[i] and update the data structures D;(vg).
Finally, K (v,) and K (v,) are also updated.

When the number of symbols in the list DEL
reaches n/ 1g2 n, we perform a cleaning procedure and
get rid of all the deleted elements. Therefore DEL never
requires more than O(n/lgn) bits.

Let B(vk)[er], 0 < k < h, be the sequence of ele-
ments that encode a symbol S[i] € DEL. The method
for tracking the elements B(vy)[ex], removing them from
their blocks G (vy), and updating the block structures is
symmetric to the insertion procedure described in Sec-
tion 3. In this case we do not need the predecessor
queries to track the symbol to delete, as the procedure
is similar to that for accessing S[¢]. When the size of a
block G;(vy,) falls below (Ig®n)/2 and it is not the last
block of L(vy), we merge it with G;j41(vx), and then
split the result if its size exceeds 21g®n. This retains
O(1) amortized time per deletion in any node vy, and
O((lgo+lgn)/lglgn) amortized time to delete any S[i].

Once all the pointers in DEL are processed, we re-
build from scratch the structures P(v) for all nodes
v. The total size of all the P(v) structures is
O(pnlgo/1g® n) elements. Since a data structure for in-
cremental split-find is constructed in linear time, all the
P(v)s are rebuilt in O(nlgo/lg* ¢ n) time. Hence the
amortized time to rebuild the P(v)s is O(lgo/lg' ~° n),
which does not affect the amortized time O((lgo +
lgn)/lglgn) to carry out the effective deletions.

We are ready to state a first version of our result,
not yet compressing and with times depending on ¢. In
Appendix A it is seen that the time for the operations
is the constant O(1/¢). Since the height of the wavelet
tree is Ig, 0 = O((1/¢)1go/1glgn), the time for all the
operations on the string S is precisely O(((1/¢%)lgo +

lgn)/lglgn). On the other hand, we have used blocks
of size ©(Ig” n) as this is the minimum that guarantees
sublinear redundancy, but any larger exponent works as
well. With size ©(1g°" n) we get the following result.

THEOREM 4.1. A dynamic string S[1,n] over alpha-
bet [1..0] can be stored in a structure using nlgo +
O(nlgo/lg°n + alg'tn) bits, for any constants ¢ >
0 and 0 < € < 1, and supporting queries access,
rank and select in time O(((c/e?)lgo + 1gn)/lglgn).
Insertions and deletions of symbols are supported in
O(((¢/e*)1go +1gn)/lglgn) amortized time.

5 Compressed Space and Optimal Time

We now compress the space of the data struc-
ture to zero-order entropy (nHy(S) plus redundancy),
while improving the time performance to the optimal
O(lgn/lglgn). We first show how a different encod-
ing of the bits within the blocks reduces the nlgo to
nHo(S) in the space without affecting the time com-
plexities. Then we use this result in combination with
alphabet partitioning [3] to obtain the final result, where
the redundancy is also compressed and the time depen-
dence on o is eliminated. Finally, we consider general
alphabets, which is possible thanks to the fact that al-
phabet partitioning frees us from alphabet dependencies
via a simple mapping.

5.1 Compressing the B(v) Sequences Raman et
al. [34] describe an encoding for a bitmap B[1,n] that
obtains nHy(B) + O(nlglgn/lgn) bits of space. It
consists of cutting the bitmap into chunks of length
b = lg(n)/2 and encoding each chunk i as a pair
(¢iy0:): c¢; is the class, which indicates how many 1s
are there in the chunk, and o; is the offset, which is
the index of this particular chunk within its class. The
¢; components add up to O(nlglgn/lgn) bits, whereas
the o; components add up to nHy(B). Navarro and
Sadakane [30, Sec. 8] describe a technique to maintain
a dynamic bitmap in this format. They allow the
chunk length b to vary, so they encode triples (b;, ¢;, 0;)
maintaining the invariant that b; + b;11 > b for any 1.
They show that this retains the same space, and that
each update affects O(1) chunks.

We extend this encoding to handle an alphabet
[1..p] [15], so that b = lg,(n)/2 symbols, and each
chunk is encoded as a tuple (b;,c},...,c! 0;) where c!
counts the occurrences of ¢t in the block. The classes
(biycp,...) use O(pnlglgn/lgn) bits, and the offsets
still add up to nHy(B). Blocks are encoded/decoded in
O(1) time, as the class takes O(plglgn) = o(lgn) bits
and the block encoding requires at most O(lgn) bits.

In Appendix A we describe how a block is stored as

a sequence of miniblocks of ©(lgn) bits, whose length
may vary within a constant factor. Those miniblocks,
while retaining their logical size of ©(lg, n) symbols, will
be physically represented using the new encoding, local
to each miniblock. The physical size of a miniblock
may now range from o(lgn) to ©(lgn). This is handled
with the storage mechanism we use [29] without trouble.
Thus, as each miniblock will contain a constant number
of chunks and a physical size of O(lgn) bits, it will be
processed or updated in constant time.

The sum of the local entropies of the chunks,
across the whole L(v), adds up to nHy(B,), and these
add up to nHp(S) [20]. The redundancy over the
entropy is O(plglgn) bits per miniblock, adding up
to O(nlgolglgn/lg'~cn) bits. By using blocks of
O(1g“" n) symbols, we get the following result.

THEOREM 5.1. A dynamic string S[1,n] over alphabet
[1..0] can be stored in a structure using nHy(S) +
O(nlgo/lg°n + olg' ™ n) bits, for any constants ¢ >
0 and 0 < € < 1, and supporting queries access,
rank and select in time O(((c/e?)lgo + 1gn)/lglgn).
Insertions and deletions of symbols are supported in
O(((c/e?)1go +1gn)/lglgn) amortized time.

5.2 Alphabet Partitioning The redundancy in
Theorem 5.1 is still a (sublinear) function of nlgo. Now
we show how to compress that redundancy as well, while
also reducing the time complexities to optimal.

We use a technique inspired by an alphabet par-
titioning idea [3]. To each symbol a we will assign a
level £ = [lg(n/ng)], where a occurs n, times in S, so
that there are at most Ign levels. Additionally, we as-
sign level [lgn] 4 1 to the symbols of ¥ not present in
S. For each level £ we will create a sequence S[1,n]
containing the subsequence of S formed by the symbols
of level £, with their alphabet remapped to [1..04], where
oy is the number of distinct symbols of level £. We will
also maintain a sequence of levels S'®V, so that S'°*[i] is
the level of S[i]. We represent S'® using Theorem 5.1
and the strings S* using Theorem 4.1. A few arrays
handle the mapping between global symbols of ¥ and
local symbols in strings S*: M][1, 0] gives the level of
each symbol, N1, 0] gives the position of that symbol
inside the local alphabet of its level, and local arrays
M?*[1,04] map local to global symbols. All these are
represented as plain arrays. Thus a symbol a € ¥ is
represented in string S*, at level £ = M][a], where it is
written as symbol o' = NJa]. Conversely, a symbol a’
in S corresponds to symbol a = M*[a’] € X.

Barbay et al. [3] show how operations access, rank,
and select on S are carried out via a constant number
of operations in S'*” and in some S¢. We now extend
them to insertions and deletions. To insert symbol a

at position ¢ in S, we find its level £ = MJa] and its
translation @’ = NJa| inside S*. Now we insert ¢ at
position i in S'®, and o’ at position rank,(S'?,4) in
S¢. Deletion is similar: after mapping, we delete the
position S*[rank,(S'®¥,i)] and then the position S'?[i].

If the symbol a we are inserting did not exist in .S, it
will be assigned the last level £ = [lgn] +1 and will not
appear in M. In this case we add a at the end of M?,
M'[o¢+1] = a, increase oy, set N[a] = o, and Ma] = £.
Then we proceed as in a normal insertion. Instead, if a
deletion removes the last occurrence of a, we use a more
global update mechanism we explain next.

Actually, we maintain levels ¢ = [lg(n/n,)] only
approximately. First, since [lgn]| is fixed in our data
structure (see the end of Section 3.5), if we call n' =
2Menl it holds |n'/2] < n < n/, and use level £ =
[lg(n'/ng)] for a. We also keep track of the current
frequency in S of each symbol a € 3, n,, and the
frequency a had when it was assigned its current level,
n!. We retain the level ¢ assigned to a as long as
n,/2 < mng < 2n,. When n, = 2n, or n, = [n, /2], we
move a to a new level ¢/ = [lg(n'/n,)] = £+1, as follows.
We compute the mapping a’ = N|a] of a in S*, change
MTa) to ¢, and compute the new mapping a” = oy + 1
of ain S, Now, for each of the n, occurrences of a’ in
St say S*[i] = a’ (found using i = select,s (S%, 1)), we
compute its position j = select,(S'*?,) in S'*¥, change
Stev[j] to ¢/, remove symbol S¢[i], and insert symbol
o’ in S at position rank, (S, ;). We also update
the mappings: we set M%[a"] = a and N[a] = a”,
and move the last element of M* to occupy the empty
slot left by a: M*[a’] = M*[o¢] and N[b] = a’, where
b = M'o,]. We find all the occurrences of o, in S*
and replace them by a’. Finally, we increase oy and
decrease oy. When n, = 0, we delete it from S* instead
of moving it. Finally, we also rebuild each sequence S*
periodically: we remember the number of symbols n}
in S¢ at the last time we built it, and rebuild S¢ when
ne = |nj/2] or ngy = 2nj.

The number of insertions or deletions that must
occur until we change the level of a is n/ /2 = O(n,).
Therefore, the process of changing a symbol from one
level to another, which costs O(n,) update operations
on Slv. S M’ M and N, is amortized over ©(n,)
updates. The same occurs with the symbol b mapped to
oy in S*, whose occurrences have to be re-encoded as a':
Since [lg(n’/ny)] = [lg(n’/n,)], it holds ny = O(n,).
The rebuilds of S¢ and S amortize in the same way.

Note that we are letting the alphabet of the se-
quences S* grow and shrink, which our wavelet trees do
not support. Rather, we create them with the maximum
possible alphabet size o, > oy. Since £ = [lg(n’/nl)] =
[lg(n’/ny)] for any pair of symbols a,b mapped to S¢,

it follows that n; > n/ /2. Since we retain that level
¢ for them as long as ny/2 < n, < 2ny, it follows
that ny > n/ /4, and thus there cannot be more than
4ng/n!, distinct symbols in S¢. Since, on the other hand,
ne < 2nj, we can safely set the maximum alphabet size
for S* to 7, = 8n),/n/, for any a. A bound in terms of ¢
is nl, > n’/2%, thus we set o, = 2¢73n/,/n’. Note it holds
G¢ = O(ng/ng,) for any a mapped to S’. Note also that
the effective alphabet (i.e., symbols actually occurring)
of S is of size oy > ny/(4nl,) > n}/(8n)) = 7,/64.

5.3 Time and Space The queries on S’ take
O(lgn/lglgn) time, because its alphabet is of size
O(Ign). Queries on S* take O((Ig7, + 1gn)/lglgn) =
O(lgn/lglgn) time, since o, = O(n). The accesses to
M, N, and M* are constant-time. Therefore, we reach
the optimal worst-case time O(lgn/lglgn) for the three
queries. Likewise, updates cost O(lgn/lglgn) amor-
tized time.

Let us now consider the space. Each symbol a with
frequency n, will be stored at a level £ = [lg(n/ng)] £2,
in a sequence over an alphabet of size G,. Therefore,
we will spend n,lga, + O(n, 1gﬁg/lg2 n) bits for it,
according to Theorem 4.1 (we use lgn instead of lgn,
to define superblock sizes; we consider soon the rest of
the space overhead). This is n4 1g(ne/ne) + O(n,) bits,
which added over the whole S* yields Y n, lg(ne/nq) +
O(ng) bits. Now consider the occurrences of symbol ¢
in S, which we will also charge to S¢. These cost
nelg(n/ne) + O(nglglgn/lg* n) = nylg(n/ne) + o(ng).
Added to the space spent at S itself, and since the sum
of the ny’s is ng, we obtain Y n, lg(n/ng) + O(n) bits.
Now, adding over the symbols a of all the levels, we
obtain the total space nHy(S) + O(n).

Theorem 4.1 also involves a cost of O(a,lg'™ n)
bits per level ¢, which add up to O(clg'™ n) since
oy = @(O’g), and Zé oy =o0.

In addition we spend O(o(lglgn+1g o)) bits for the
arrays M, N and M*. Finally, recall that we also spend
space in storing deleted symbols, but these are at most
O(n/1g®n), and thus they cannot increase the entropy
by more than O(n/lgn). This gives the final result.

THEOREM 5.2. A dynamic string S[1,n] over alphabet
[1..0] can be stored in a structure using nHy(S)+O(n+
o(lgo + 1g'™ n)) bits, for any constant 0 < ¢ < 1,
and supporting queries access, rank and select in op-
timal time O((1/e%)1gn/1glgn). Insertions and dele-
tions of symbols are supported in O((1/?)1gn/1glgn)
amortized time.

5.4 Handling General Alphabets Our time re-
sults do not depend on the alphabet size o, yet our space
does, in a way that ensures that ¢ gives no problems as

long as o = O(n/1g' ™ n) for some constant & > 0.

Let us now consider the case where the alphabet 3
is much larger than the effective alphabet of the string,
that is, the set of symbols that actually appear in S at
a given point in time. Let us now use ¢ < n to denote
the effective alphabet size. Our aim is to maintain the
space within n.Hy(S) 4+ O(n+ o 1g' ™ n) bits, even when
the symbols come from a large universe ¥ = [1..|X|], or
even from a general ordered universe such as ¥ = R or
¥ =T" (i.e., ¥ are words over another alphabet IT').

Our arrangement into strings S gives a simple
way to handle a sequence over an unbounded ordered
alphabet. By changing tables M and N to custom
structures to search ¥, and storing elements of ¥ in
arrays M*, we obtain the following result.

THEOREM 5.3. A dynamic string S[1,n] over a general
alphabet & can be stored in a structure using nHy(S) +
O(n+S8(0)+olg ™ n) bits, for any constant 0 < e < 1,
and supporting queries access, rank and select in time
O(T (o) + (1/e*)1gn/1glgn). Insertions and deletions
of symbols are supported in OU(a)+(1/e2)lgn/lglgn)
amortized time. Here o is the number of distinct
symbols of ¥ occurring in S, S(o) is the number of
bits used by a dynamic data structure to search over
o elements in 3 plus to refer to o elements in X, T (o)
18 the worst-case time to search for an element among
o of them in X, and U(c) is the amortized time to
insert/delete symbols of ¥ in the structure.

For example, if ¥ = R we have O(lgo+1gn/lglgn)
times, which is optimal in the comparison model.

An interesting particular case is ¥ = I™ on a
general alphabet I, where we can store the effective
set of strings in a data structure by Franceschini and
Grossi [16], so that operations involving a string p take
O(|p| + lgv + lgn/lglgn), where ~ is the number of
symbols of I" actually in use.

Another particular case is that X is an integer
range [1..|X]], then time can be reduced to O(lglg |Z| +
lgn/lglgn) and the space increases by O(olg|3|) bits,
by using y-fast tries [37].

Yet another important particular case is when we
maintain a contiguous effective alphabet [1..0], and only
insert new symbols o+ 1. In this case there is no penalty
for letting the alphabet grow dynamically.

6 Applications

Our new results impact in a number of applications that
build on dynamic sequences. We describe several here.

6.1 Dynamic Sequence Collections The standard
application of dynamic sequences, stressed out in several
previous papers [12, 27, 19, 30], is to maintain a

collection C of texts, where one can carry out indexed
pattern matching, as well as inserting and deleting texts
from the collection. Plugging in our new representation
we can improve the time and space of previous work
(yet our update time is amortized).

THEOREM 6.1. There exists a data structure for han-
dling a collection C of texts over an alphabet [1, o] within
size nHy(C) + O(n + a"Tlign +mlgn) bits, simulta-
neously for all h. Here n is the length of the concate-
nation of m texts, C = Tyo Ty--- o Ty, and we as-
sume that the alphabet size is 0 = o(n). The structure
supports counting of the occurrences of a pattern P in
O(|P|1gn/lglgn) time. After counting, any occurrence
can be located in time O(1g>n/lglgn). Any substring
of length € from any T in the collection can be displayed
in time O((£ +1gn)lgn/lglgn)). Inserting or deleting
a text T takes O(lgn + |T'|1gn/lglgn) amortized time.
For 0 < h < (alg,n)—1, for any constant 0 < a < 1,
the space simplifies to nHp(C) + O(n + mlgn) bits.

The theorem refers to Hp,(C), the h-th order empir-
ical entropy of sequence C [28]. This is a lower bound to
any semistatic statistical compressor that encodes each
symbol as a function of the h preceding symbols in the
sequence, and it holds Hy(C) < Hp-1(C) < Hp(C) <
lgo for any h > 0. To offer search capabilities, the
Burrows-Wheeler Transform (BWT) [11] of C, C**, is
represented, not C. Kérkkéinen and Puglisi [26] showed
that, if C"™* is split into superblocks of size ©(o 1g®n),
and a zero-order compressed representation is used for
each superblock, the total bits are nHp(C) 4 o(n).

We use their partitioning, and Theorem 5.2 to rep-
resent each superblock. The superblock sizes are easily
maintained upon insertions and deletions of symbols,
by splitting and merging superblocks and rebuilding
the structures involved, without affecting the amortized
time per operation. They also need to manage a ta-
ble storing the rank of each symbol up to the beginning
of each superblock. This is arranged, in the dynamic
scenario, with ¢ partial sum data structures containing
O(n/(c1g*n)) elements each, plus another one storing
the superblock lengths. This adds O(n/lgn) bits and
O(lgn/lglgn) time per operation.

Finally, the locating and displaying overheads are
obtained by marking one element out of lgn, so that
the space overhead of O(n) is maintained.

6.2 Burrows-Wheeler Transform Another appli-
cation of dynamic sequences is to build the BWT of
a text T, T®"!, within compressed space, by starting
from an empty sequence and inserting each new char-
acter, T'[n], T[n — 1], ..., T[1], at the proper positions.
The result is stated as the compressed construction of a

static FM-index [15], a compressed index that consists
essentially of a (static) wavelet tree of T°**. Our new
representation improves upon the best previous result
on compressed space [30].

THEOREM 6.2. The Alphabet-Friendly FM-index [15],
as well as the BWT [11], of a text T[l,n] over an
alphabet of size o, can be built using nHy(T) + O(n)
bits, simultaneously for all 1 < h < (alg,n) —1 and
any constant 0 < «a < 1, in time O(nlgn/lglgn). It
can also be built within the same time and nHy(T) +
O(n+o(lgo+1g' e n)) bits, for any constant ¢ > 0 and
any alphabet size o.

We are using Theorem 6.1 for the case h > 0, and
Theorem 5.2 to obtain a less alphabet-restrictive result
for h = 0. This is the first time o(n g n) time is obtained
within compressed space. Other space-conscious results
that achieve better time complexity (but more space)
are Okanohara and Sadakane [32], who achieved optimal
O(n) time within O(nlgolglg, n) bits, and Hon et al.
[24], who achieved O(nlglgo) time and O(nlgo) bits.

6.3 Binary Relations Barbay et al. [4] show how to
represent a binary relation of ¢ pairs relating n “objects”
with o “labels” by means of a string of ¢ symbols over
alphabet [1..0] plus a bitmap of length t+mn. The idea is
to traverse the matrix, say, object-wise, and write down
in a string the labels of the pairs found. Meanwhile
we append a 1 to the bitmap each time we find a pair
and a 0 each time we move to the next object. Then
queries like: find the objects related to a label, find the
labels related to an object, and tell whether an object
and a label are related, are answered via access, rank
and select operations on the string and the bitmap.

A limitation in the past to make this representation
dynamic was that creating or removing labels implied
changing the alphabet of the string. Now we can use
Theorem 5.2 and the results of Section 5.4 to obtain
a fully dynamic representation. We illustrate the case
where labels and objects come from finite universes.

THEOREM 6.3. A dynamic binary relation consisting
of t pairs relating n objects from [1..N] with o labels
from [1..L] can support the operations of counting and
listing the objects related to a given label, counting and
listing the labels related to a given object, and telling
whether an object and a label are related, all in time
O(Iglg(NL)+1g(n+t)/1glg(n+t)) per delivered datum.
Pairs, objects and labels can also be added and deleted
in amortized time O(lglg(NL) +1g(n +t)/1glg(n+1)).
The space required is tH + nlgN +olgL + Ot +n +
o(lgo + 1g*™et)) bits, where ¢ > 0 is any constant
and H = Y, o, (t:/t)1g(t/t;) < lgo, where t; is the

number of objects related to label i. Only labels and
objects with no related pairs can be deleted.

6.4 Directed Graphs A particularly interesting and
general binary relation is a directed graph with n nodes
and e edges. Our binary relation representation allows
one to navigate it in forward and backward direction,
and modify it, within little space.

THEOREM 6.4. A dynamic directed graph consisting of
n nodes in [1..N] and e edges can support the operations
of counting and listing the neighbors pointed from a
node, counting and listing the reverse neighbors pointing
to a node, and telling whether there is a link from
one node to another, all in time O(lglg N + lg(n +
e)/lglg(n + ¢e)) per delivered datum. Nodes and edges
can be added and deleted in amortized time O(lglg N +
lg(n + e)/lglg(n + €)). The space required is eH +
nlg N + O(e + n(lgn + lg' "< e)) bits, where ¢ is any
constant and H = Y, ., ., (e;/e)lg(e/e;) < lgn, where
e; is the outdegree of node i.

If we only modify edges and the nodes are fixed, the
overheades related to N disappear. Note also that we
can change “outdegree” by “indegree” in the theorem
by representing the transposed graph, as operations are
symmetric. We can similarly transpose general binary
relations.

6.5 Inverted Indexes Finally, we consider an appli-
cation where the symbols are words. Take a text T as
a sequence of n words, which are strings over a set of
letters I'. The alphabet of T" is ¥ = I'*, and its effec-
tive alphabet is called the vocabulary V of T, of size
|V| =0o. A positional inverted indez is a data structure
that, given a word w € V| tells the positions in 7" where
w appears [1].

A well known way to simulate a positional inverted
index within no extra space on top of the compressed
text is to use a compressed sequence representation for
T (over alphabet X), so that operation select,, (T, 7) sim-
ulates access to the ith position of the list of word
w, whereas access to the original T is provided via
access(T, 7). Operation rank can be used to emulate var-
ious inverted index algorithms, particularly for intersec-
tions [6]. The space is the zero-order entropy of the text
seen as a sequence of words, which is very competitive
in practice. Our new technique permits modifying the
underlying text, that is, it simulates a dynamic inverted
index. For this sake we use the technique of Section 5.4
and tries to handle a vocabulary over a fixed alphabet.

THEOREM 6.5. A text of n words with a vocabulary of
o words and total length v over a fized alphabet can be

represented within nHo(T)+O0(n+vlgn+olg ™ n) bits
of space, where e > 0 is an arbitrary constant and Ho(T')
is the word-wise entropy of T. The representation
outputs any word T[i] = w given i, finds the position
of the ith occurrence of any word w, and tells the
number of occurrences of any word w up to position
i, all in time O(|w| +1gn/lglgn). A word w can be
inserted or deleted at any position in T in amortized
time O(Jw| +1gn/lglgn).

Another kind of inverted index, a mnon-positional
one, relates each word with the documents where it
appears (not to the exact positions). This can be seen as
a direct application of our binary relation representation
[2], and our dynamization theorems apply to it as well.

7 Conclusions and Further Challenges

We have obtained O(lgn/lglgn) time for all the op-
erations that handle a dynamic sequence on an arbi-
trary (known) alphabet [1..0], matching lower bounds
that apply to binary alphabets [17]. Our structure
is faster than previous work [22, 30] by a factor of
O(1 + 1lgo/lglgn). Tt also reduces the redundancy
space, using nHy(S) + O(n + o(lgo 4 1g* ™= n)) bits, in-
stead of nHy(S)+o0(nlgo)+0(o(lgo+lgn)) of previous
work. We also show how to handle general alphabets.
Our result can be applied to a number of problems; we
have described several ones.

The only remaining advantage of previous work
[22, 30] is that their update times are worst-case,
whereas in our structure they are amortized. Obtaining
optimal worst-case time complexity for updates is an
interesting future challenge.

Another challenge is to simulate other operations
than access, rank and select. Obtaining the full func-
tionality of wavelet trees with better time than the cur-
rent dynamic ones [22; 30] is unlikely, as discussed in
the Introduction. Yet, there may be some intermediate
functionality of interest.

References

[1] R. Baeza-Yates and B. Ribeiro. Modern Information
Retrieval. Addison-Wesley, 2nd edition, 2011.

[2] J. Barbay, F. Claude, and G. Navarro. Compact rich-
functional binary relation representations. In Proc. 9th
LATIN, LNCS 6034, pages 170-183, 2010.

[3] J. Barbay, T. Gagie, G. Navarro, and Y. Nekrich.
Alphabet partitioning for compressed rank/select and
applications. In Proc. 21st ISAAC, pages 315-326
(part 11), 2010.

[4] J. Barbay, A. Golynski, I. Munro, and S. S. Rao. Adap-
tive searching in succinctly encoded binary relations

(5]

(7l

(8]

(10]

(1]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

20]

21]

22]

23]

and tree-structured documents. Theor. Comp. Sci.,
387(3):284-297, 2007.

J. Barbay, M. He, I. Munro, and S. S. Rao. Succinct
indexes for strings, binary relations and multi-labeled
trees. ACM Trans. Alg., 7(4):article 52, 2011.

J. Barbay and G. Navarro. Compressed representa-
tions of permutations, and applications. In Proc. 26th
STACS, pages 111-122, 2009.

D. Belazzougui and G. Navarro. New lower and upper
bounds for representing sequences. In Proc. 20th ESA,
LNCS 7501, pages 181-192, 2012.

G. E. Blelloch. Space-efficient dynamic orthogonal
point location, segment intersection, and range report-
ing. In Proc. 19th SODA, pages 894-903, 2008.

P. Bose, M. He, A. Maheshwari, and P. Morin. Succinct
orthogonal range search structures on a grid with
applications to text indexing. In Proc. 11th WADS,
pages 98-109, 2009.

N. Brisaboa, A. Farina, S. Ladra, and G. Navarro.
Reorganizing compressed text. In Proc. 31st SIGIR,
pages 139-146, 2008.

M. Burrows and D. Wheeler. A block sorting lossless
data compression algorithm. Technical Report 124,
Digital Equipment Corporation, 1994.

H. Chan, W. Hon, T. Lam, and K. Sadakane. Com-
pressed indexes for dynamic text collections. ACM
Trans. Alg., 3(2):21, 2007.

F. Claude and G. Navarro. Extended compact Web
graph representations. In Algorithms and Applications
(Ukkonen Festschrift), pages 77-91. Springer, 2010.

P. Ferragina, F. Luccio, G. Manzini, and S. Muthukr-
ishnan. Compressing and indexing labeled trees, with
applications. J. ACM, 57(1), 2009.

P. Ferragina, G. Manzini, V. Méakinen, and G. Navarro.
Compressed representations of sequences and full-text
indexes. ACM Trans. Alg., 3(2):article 20, 2007.

G. Franceschini and R. Grossi. A general technique for
managing strings in comparison-driven data structures.
In Proc. 31st ICALP, LNCS 3142, pages 606617, 2004.
M. Fredman and M. Saks. The cell probe complexity
of dynamic data structures. In Proc. 21st STOC, pages
345-354, 1989.

A. Golynski, J. I. Munro, and S. S. Rao. Rank/select
operations on large alphabets: a tool for text indexing.
In Proc. 17th SODA, pages 368-373, 2006.

R. Gonzélez and G. Navarro. Rank/select on dynamic
compressed sequences and applications. Theor. Comp.
Seci., 410:4414-4422, 2009.

R. Grossi, A. Gupta, and J. Vitter. High-order
entropy-compressed text indexes. In Proc. 14th SODA,
pages 841-850, 2003.

A. Gupta, W.-K. Hon, R. Shah, and J. Vitter. A
framework for dynamizing succinct data structures. In
Proc. 84th ICALP, pages 521-532, 2007.

M. He and I. Munro. Succinct representations of
dynamic strings. In Proc. 17th SPIRE, pages 334-346,
2010.

W.-K. Hon, K. Sadakane, and W.-K. Sung. Succinct

24]

(25]

[26]

27]

(28]

29]

(30]

(31]

32]

33]

34]

[35]

(36]

37]

A

data structures for searchable partial sums. In Proc.
14th ISAAC, pages 505-516, 2003.

W. K. Hon, K. Sadakane, and W. K. Sung. Breaking
a Time-and-Space Barrier in Constructing Full-Text
Indices. SIAM J. Comp., 38(6):2162-2178, 2009.

H. Imai and T. Asano. Dynamic segment intersection
search with applications. In Proc. 25th FOCS, pages
393-402, 1984.

J. Kérkkéinen and S. J. Puglisi. Fixed block compres-
sion boosting in FM-indexes. In Proc. 18th SPIRE,
LNCS 7024, pages 174-184, 2011.

V. Maékinen and G. Navarro. Dynamic entropy-
compressed sequences and full-text indexes. ACM
Tran. Alg., 4(3):article 32, 2008.

G. Manzini. An analysis of the Burrows-Wheeler
transform. J. ACM, 48(3):407-430, 2001.

J. I. Munro. An implicit data structure supporting
insertion, deletion, and search in O(logn) time. J.
Comp. Sys. Sci., 33(1):66-74, 1986.

G. Navarro and K. Sadakane. Fully-functional static
and dynamic succinct trees. CoRR, abs/0905.0768v5,
2010. To appear in ACM Trans. Alg.

Y. Nekrich. A dynamic stabbing-max data struc-
ture with sub-logarithmic query time. In Proc. 22nd
ISAAC, pages 170-179, 2011.

D. Okanohara and K. Sadakane. A linear-time
Burrows-Wheeler transform using induced sorting. In
Proc. 16th SPIRE, LNCS 5721, pages 90-101, 2009.
M. Patrascu. Lower bounds for 2-dimensional range
counting. In Proc. 89th STOC, pages 4046, 2007.

R. Raman, V. Raman, and S. Rao. Succinct indexable
dictionaries with applications to encoding k-ary trees
and multisets. ACM Trans. Alg., 3(4), 2007.

R. Raman and S. S. Rao. Succinct dynamic dictionar-
ies and trees. In Proc. 30th ICALP, pages 357-368,
2003.

N. Vialiméki and V. Maékinen.
rithms for document retrieval.
pages 205215, 2007.

D. Willard. Log-logarithmic worst-case range queries
are possible in space 0(n). Inf. Proc. Lett., 17(2):81-84,
1983.

Space-efficient algo-
In Proc. 18th CPM,

Data Structures for Handling Blocks

We describe the way the data is stored in blocks G;(v),
as well as the way the various data structures inside
blocks operate. All the data structures are based on the
same idea: We maintain a tree with node degree lg‘S n
and leaves that contain o(lgn) elements. Since elements
within a block can be addressed with O(lglgn) bits,
each internal node and each leaf fits into one machine
word. Moreover, we can support searching and basic
operations in each node in constant time.

A.1 Data Organization The block data is phys-
ically stored as a sequence of miniblocks of ©(lg,n)

symbols. Thus there are O(Ig% nlgp) = O(lg> nlglgn)
miniblocks in a block. These miniblocks will be the
leaves of a T-ary tree T, for 7 = @(lg5 n) and some
constant 0 < § < 1. The height of this tree is con-
stant, O(1/§). Each node of T stores T counters telling
the number of symbols stored at the leaves that descend
from each child. This requires just O(7lglgn) = o(lgn)
bits. To access any position of G;(v), we descend in T,
using the counters to determine the correct child. When
we arrive at a leaf, we know the local offset of the de-
sired symbol within the leaf, and can access it directly.
Since the counters fit in less than a machine word, a
small universal table gives the correct child in constant
time, therefore we have O(1) time access to any symbol
(actually to any ©(lg,n) consecutive symbols).

Upon insertions or deletions, we arrive at the cor-
rect leaf, insert or delete the symbol (in constant time
because the leaf contains ©(lgn) bits overall), and up-
date the counters in the path from the root (in constant
time as they have o(Ig n) bits). The leaves may have lgn
to 21lgn bits. Splits/merges upon overflows/underflows
are handled as usual, and can be solved in a constant
number of O(1)-time operations (T operates as a B-tree;
internal nodes may have 7 to 27 children).

The space overhead due to the nodes of T is
O(|G,(v)] 1g° nlglgn/lgn) bits, where we also measure
|G (v)] in bits, not symbols. We consider now the space
used by the data itself.

In order not to waste space, the miniblock leaves
are stored using a memory management technique by
Munro [29]. For our case, it allows us to allocate, free,
and access miniblocks of length lgn to 21gn in constant
time. Its space waste, given that our pointers are of
O(lglgn) bits, is O(lglgn) per allocated miniblock,
which adds up to O(|G;(v)|1glgn/lgn), plus a global
redundancy of O(lg2 n) bits. 1 We use one structure per
block, handling its miniblocks, so the global redundancy
adds just O(nlg, o /lgn) bits overall.

Each structure uses a memory area of fixed-size
cells (inside which the variable-length miniblocks are
stored) that grows or shrinks at the end as miniblocks
are created or destroyed. A structure giving that
functionality is called an extendible array (EA) [35]. We
need to handle a set of O(nlg, o/ 1g3 n) EAs, what is
called a collection of extendible arrays. Its functionality
includes accessing any cell of any EA, letting it grow
or shrink by one cell, and create and destroy EAs.
The following lemma, simplified from the original [35,
Lemma 1], and using words of 1gn bits, is useful.

TWhen we store the miniblocks in compressed form, in Sec-

tion 5.1, their physical size could be as small as O(lg® nlglgn).
Such small sizes can also be handled, and the overhead with re-
spect to the amount of logical data represented is maintained.

LEMMA A.1. A collection of a EAs of total size s bits
can be represented using s + O(algn + +/salgn) bits of
space, so that the operations of creation of an empty
EA and access take constant worst-case time, whereas
grow/shrink take constant amortized time. An EA of s’
bits can be destroyed in time O(s'/lgn).

In our case a = O(nlgpa/lg3n) and s =
O(nlgo), so the space overhead posed by the EAs is
O(nlg,o/ g’ n+nlgo/(lgnyIglgn)) = o(nlga/lgn).

A.2 Structure R;(v) To support rank and select we
enrich 7" with further information per node. We store p
counters with the number of occurrences of each symbol
in the subtree of each child. The node size becomes
O(tplglgn) = O(lg€+5nlglg n) = o(lgn) as long as
e+ < 1. This dominates the total space overhead,
which becomes O(|G;(v)|1g°° nlglgn/lgn).

With this information on the nodes we can easily
solve rank and select in constant time, by descending on
T and determining the correct child (and accumulating
data on the leftward children) in O(1) time using
universal tables. Nodes can also be updated in constant
time even upon splits and merges, since all the counters
can be recomputed in O(1) time.

A.3 Structure Fj(v) This structure stores all the
inter-node pointers leaving from block Gj(v), to its
parent and to any of the p children of node v.

The structure is a tree Ty very similar in spirit
to T. The pointers stored are inter-node, and thus
require O(lgn) bits. Thus we store a constant number
of pointers per leaf. For each pointer we store the
position in G;(v) holding the pointer (relative to the
starting position of the leaf node inside G;(v)) and the
target position. The internal nodes, of arity 7, maintain
information on the number of positions of G (v) covered
by each child, and the number of pointers of each kind
(1 4+ p counters) stored in the subtree of each child.
This requires O(7plglgn) = o(lgn) bits, as before. To
find the last position before ¢ holding a pointer of a
certain kind (parent or ¢-th wavelet tree child, for any
1 <t < p), we traverse Ty from the root looking for
position i. At each node wu, it might be that the child
u’ where we have to enter holds pointers of that kind,
or not. If it does, then we first enter into child «’. If we
return with an answer, we recursively return it. If we
return with no answer, or there are no pointers of the
desired kind below u’, we enter into the last sibling to
the left of v’ that holds a pointer of the desired kind, and
switch to a different mode where we simply go down the
tree looking for the rightmost child with a pointer of the
desired kind. It is not hard to see that this procedure
visits O(1/8) nodes, and thus it is constant-time because

all the computations inside nodes can be done in O(1)
time with universal tables. When we arrive at the leaf,
there may be at most two pointers associated to the
desired position (one to the parent and another to a
wavelet tree child), so we can scan for the desired pointer
in constant time.

The tree Ty must be updated when a symbol ¢ is
inserted before any other occurrence of ¢ in G;(v), when
a symbol is inserted at the first position of G;(v) and,
due to the bidirectionality, when pointers to G;(v) are
created from the parent or a child of v. It must be
updated analogously when deletion of pointers occur.
Those updates work just like on the tree T'. T is also
updated upon insertions and deletions of symbols, even
if they do not have pointers, to maintain the positions
up to date. In this case we traverse T looking for the
position of the update, change the offsets stored at the
leaf, and update the subtree sizes stored at the nodes.

A.4 Structure H;(v) This structure manages the
inter-node pointers that point inside G;(v). As ex-
plained in Section 3.4, we give a handle to the outside
nodes, that does not change over time, and H;(v) trans-
lates handles to positions in G, (v).

We store a tree T}, that is just like Ty, where the
incoming pointers are stored. T} is simpler, however,
because at each node we only need to store the number
of positions covered by the subtree of each child. Also,
it is possible to traverse T} from a leaf to the root. We
also manage a table Tbl so that TbI[h] points to the leaf
where the pointer corresponding to handle A is stored.
At the leaves we store, for each pointer, a backpointer to
Tl and the position in G, (v) (in relative form). Given a
handle h, we go to the leaf, find in constant time the one
pointing back to h, and move upwards up to the root,
adding to the position the number of positions covered
by leftward children of each node. At the end we have
obtained the position in constant time.

When pointers to G;(v) are created or destroyed,
we insert or remove pointers in 7. We maintain a
list of empty cells in Tbl for future handles. We must
also update T} upon symbol insertions and deletions in
G (v), to maintain the positions up to date. When a leaf
splits or merges, we update the pointers from a constant
number of positions in T'bl, found with the backpointers.

Tbl may contain up to ©(lg* n) pointers of O(Iglg n)
bits, but there can be only O(nlgo/lg®n) pointers in
the structure, adding up to s = O(nlgolglgn/lg® n)
bits, spread across a = O(nlg, o/ lgn) tables Tl
Using again Lemma A.1, a collection of EAs poses an
overhead of o(nlgo/1g” n).

A.5 Structure D;(v) This is a simple tree T, similar
to T, storing at each node the number of positions and
the number of non-deleted positions below each child.
It should be obvious how it operates.

A.6 The Final Result While the raw data adds
up to mlgo bits, the space overhead adds up to
O(nlgolg*™ nlglgn/lgn). By rewriting § = ¢ as the
original value of £/2 and adjusting it infinitesimally, we
have that the overhead is O(nlgo/1g' ™ n) bits, for any
0 < € < 1. The time for the operations is, in all cases,

0(1/58) = O(1/e).

