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Abstract

Computing the product of the (binary) adjacency matrix of a large
graph with a real-valued vector is an important operation that
lies at the heart of various graph analysis tasks, such as comput-
ing PageRank. In this paper we show that some well-known web-
graph and social graph compression formats are computation-friendly,
in the sense that they allow boosting the computation. We focus
on the compressed representations of (a) Boldi and Vigna and (b)
Hernandez and Navarro, and show that the product computation can
be conducted in time proportional to the compressed graph size.
Our experimental results show speedups of at least 2 on graphs
that were compressed at least 5 times with respect to the original.
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1 Introduction

Let A € {0,1}"*" be an n x n binary matrix and & = (z1,...,2,) € R”
be a vector. Matrix-vector multiplication, either Z- A or A - Z', is not only
a fundamental operation in mathematics, but also a key operation in various
graph-analysis tasks, when A is their adjacency matrix. A well-known exam-
ple, which we use as a motivation, is the computation of PageRank on large
Web graphs. PageRank is a particular case of many network centrality mea-
sures that can be approximated through the power method [1, Chapter 11.1].
Most real networks, and in particular webgraphs and social graphs, have very
sparse adjacency matrices [2]. While it is straightforward to compute a matrix-
vector product in time proportional to the nonzero entries of A, the most
successful Web and social graph compression methods exploit other proper-
ties that allow them to compress the graphs well beyond what is possible by
their mere sparsity. It is therefore natural to ask whether those more power-
ful compression formats allow us, as sparsity does, to compute the product
in time proportional to the size of the compressed representation. This is an
instance of computation-friendly compression, which applies compression for-
mats that not only reduce the size of the representation of objects, but also
speed up computations on them by directly operating on the compressed rep-
resentations. Elgohary et al. [3] addressed this problem for structured matrices
commonly found in machine learning for matrix-vector multiplication. How-
ever, Abboud et et. [4] have proven that with sophisticated compression
techniques it is difficult or even impossible to compute basic linear-algebra
operations like matrix-vector multiplication in subquadratic time. Addition-
ally, Chakraborty et al. [5] showed that any data structure storing r bits
with n < r < n? must have a query time t satisfying tr € Q(n3polylog(n)).
Other examples of computation-friendly compression are pattern matching
in compressed strings [6], computation of edit distance between compressible
strings [7], speedups for multiplying sequences of matrices and the Viterbi
algorithm [8], representing bipartite graphs [9], building small and shallow
circuits [10], among other tasks [11].

1.1 Our Contribution

In this article we exploit compressed representations of webgraphs and social
networks and show that matrix-vector products can be carried out much faster
than just operating on all the nonzero entries of the matrix. Although our
approach can be extended to other compressed representations of graphs and
binary matrices, we mostly consider two representations: one proposed by Boldi
and Vigna [12], and the other proposed by Herndndez and Navarro [13]. For
the former, the key observation for us is that adjacency lists, i.e., rows in A, are
compressed differentially with respect to other similar lists, and thus one can
reuse and “correct” the result of the multiplication of a previous similar row
with #'. The latter representation works by extracting regular substructures
in the matrix, on which the matrix multiplication becomes particularly simple.
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A preliminary version of this article appeared at the Data Compression
Conference 2018 [14]. The conference version did not consider Herndndez and
Navarro’s representations, and we also experiment with slicing the matrix
vertically into sub-matrices.

1.2 Structure of this Article

We describe previous work in the next section (Sect. 1.3). The following
sections describe PageRank and the compression format of Boldi and Vigna
(Sect. 2). We then describe how we exploit that compression format to speed
up matrix multiplication (Sect. 3), and a vertical split of the matrix used for
PageRank to boost up the compression in Sect. 4. Section 5 contains experi-
mental results for this compression format. Subsequently, in Sect. 6, we show
how to use the compression format of Herndndez and Navarro [13]. We con-
clude this article with directions for future work. Compared to the conference
version of this paper [14], we added Sect. 4, a more thorough evaluation includ-
ing variable window sizes, and the second compression format of Hernandez
and Navarro in Sect. 6.

1.3 Previous Work

Matrix multiplication is a fundamental problem in computer science; see,
e.g., a recent survey of results [15]. Computation-friendly matrix compres-
sion has been already considered by others, even if indirectly. Karande et
al. [16] addressed it by exploiting a structural compression scheme, namely
by introducing virtual nodes. Although their results were similar to the ones
presented in this paper, their approach was more complex and it could not
be used directly, requiring the correction of computation results. On the other
hand, contrary to their belief, we show in this paper that representational
compression schemes do not always require the same amount of computation,
providing a much simpler approach that can be used directly without requiring
corrections.

Another interesting approach was proposed by Nishino et al. [17]. Although
they did not exploit compression in the same way we do, they observed that
intermediate computational results for the matrix multiplication of equivalent
partial rows of a matrix are the same. Their approach is to use an adjacency
forest representing the rows of the matrix; this forest achieves compression
by compacting common suffixes of the rows. We should note that the authors
consider general real matrices, and not only Boolean matrices as we do. Nev-
ertheless they presented results for computing the PageRank over adjacency
matrices as we do, achieving similar results. Their approach implied prepro-
cessing the graph, however, while we start from an already compressed graph.
An interesting question is how their approach could be exploited on top of
k?-trees [18].
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The question addressed here can also be of interest for the problem of
Online Matrix-Vector (OMV) multiplication. Given a stream of binary vec-
tors, &y, Ts,Ts,..., the results of matrix-vector multiplications Z; - A can be
computed faster than computing them independently, with most approaches
making use of previous computations ;- A, for j < 7, to speed up the computa-
tion of each new product ;- A [19, 20]. Nevertheless, none of those approaches
preprocess matrix A to exploit its redundancies. Hence, by exploiting a suit-
able compressed representation of A as we do here, an improvement for OMV
can be easily obtained, with computational time depending on the length of
the compressed representation of A instead.

2 PageRank

Given G = (V,E), a directed graph with n = |V| vertices and m = |E|
edges, let A be its adjacency matrix; A,, = 1 if (u,v) € E, and Ay, = 0
otherwise. We assume that for each vertex u, there is at least one vertex v with
Ay, = 1. The normalized adjacency matrix of G is the matrix M = D~! . A,
where D is an n x n diagonal matrix with D,, the degree d, of u € V, i.e.,
Dy, =dy, = ZU A,y > 1. Note that M is the standard random-walk matrix,
where a random walker at vertex u jumps to a neighbor v of u with probability
1/d,. Moreover the k-power of M, MF, is the random-walk matrix after k
steps, i.e., MPF, is the probability of the random walker being at vertex v after
k jumps, having started at vertex u. PageRank is a typical random walk on
G with transition matrix M. Given a constant 0 < o < 1 and a probability
vector pg, the PageRank vector p,, is given by the following recurrence [21]:

ﬁa:aﬁO"_(l_a)ﬁa'M-

The parameter « is called the teleport probability or jumping factor, and py is
the starting vector. In the original PageRank [22], the starting vector py is the
uniform distribution over the vertices of G, i.e., pg = T/ n. When pg is not the
stationary distribution, p, is called a personalized PageRank. Intuitively, p, is
the probability of a lazy Web visitor to be at each page assuming that he/she
surfs the Web by either randomly starting at a new page or jumping through
a link from the current page. The parameter « ensures that such a surfer
does not get stuck at a dead end. PageRank can be approximated iteratively
through the power iteration method by iterating, for ¢ > 1:

Py = apo + (1 — a)pi—1 - M. (1)

We show how to speed up these matrix-vector multiplications when the
adjacency matrix A is compressible.
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3 Computation on the WebGraph Format

Our main idea is to exploit the copy-property of adjacency lists observed in
some graphs, such as Web graphs [12]. The adjacency lists of neighbor vertices
tend to be very similar and, hence, the rows in the adjacency matrix are also
very similar. Moreover these networks reveal also strong clustering effects, with
local groups of vertices being strongly connected and/or sharing many neigh-
bors. The copy-property effect can then be further amplified through clustering
and suitable vertex reordering, an important step for achieving better graph
compression ratios [23]. Most compressed representations for sparse graphs
rely on these properties [18, 24, 25]. In this paper, we consider the WebGraph
framework, a suite of codes, algorithms and tools that aims at making it easy
to manipulate large Web graphs [12]. Among several compression techniques
used in WebGraph, our approach makes use of list referencing.
Let A be an n x n binary sparse matrix,

where ¢; € {0,1}" is the i-th row, for ¢ = 1,...,n. Let ¥ € {0,1,...,n}"
be a referencing vector such that, for ¢ € {1,...,n}, r; < ¢ and ¥,, is some
previous row used for representing @;. Let also @y = 0 and r; = 0. The reference
r; is found in the WebGraph framework within a given window size W, i.e.,
r; € {max(1,i — W),...,i}, and it is optimized to reduce the length of the
representation of #;. The line ¥; is then represented by adding missing entries
and marking spurious ones, with respect to #,,, and encoded using several
techniques, such as differential compression and codes for natural numbers [12,
26).

Proposition 1 Given an n X n matrix A, £ € R"™, and a referencing vector 7 for
A, let
U1 — Uy
!/
A =

~
Up, — Ur

n

Further let W be the vector with w; := Uy, .21, Then we have that:
A=Az +u"

Proof By definition,

e ST - ST O
U1 - —Urq "X Ury X U1 -

1 ST ST T

A +uw = + = =A-7
Tp & — T, - T Try T Tn - T
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Let us compute §' = A - &' by iterating over ¢ = 1,...,n. Then & can
be incrementally computed because r; < % and w; = y,,, ensuring that w; is
already computed when required to compute y;. Given inputs A’, ¥ and Z, the
algorithm to compute % is as follows:

1. Set ¥ =0 and yo = 0.
2. Fori=1,...,n, set y; = yr, +Zj Agjxj.
3. Return ¢.

Note that the number of operations to obtain §T = A - ' is proportional to
the number of nonzeros in A’, that is, to the compressed representation size.
Depending on the properties of A discussed before, this number may be much
smaller than the number of nonzeros in A. We present in the next section
experimental results for Web graphs, where we indeed obtain considerable
speedups in the computation of PageRank.

4 Vertically Slicing into Sub-Matrices

The quality of our approach hinges on the quality of 7. The wider the matrix A
is, the more difficult it can become to find a previous row adequately matching
the entries. It therefore could make sense to vertically split A into submatrices
Ay,..., A, each with n rows and ©(n/7) columns, in the hope that applying
the techniques of Section 3 to every submatrix gives a better chances of finding
good references, and therefore eases the chances of obtaining a representation
that is more compact than using the technique on the entire matrix A. This
somewhat reflects real-world examples where a matrix does not usually contain
complete row repetitions, but rather clustered repetitions of a certain length,
which are hopefully of length Q(n/7). To see that we still can compute the
matrix-vector multiplication with the submatrices efficiently, take a vector
# € R®. We can compute the product ¥ = A - F' with ¢, = A, - 7] for
i € [1..7] and then ¥ = Y [_, y; summing up all computed products. Setting
7 = 1 disables this technique, i.e., just using the technique of Section 3. Setting
T = n gives us the school-book matrix-vector multiplication algorithm.

5 Experimental Evaluation

We computed the number of nonzero entries m’ in A’ for the adjacency matrix
A of several graphs available at http://law.di.unimi.it/datasets.php [12,
23, 27]. We show in Table 1 some characteristics of the used graphs, including
the number of vertices n and the number of edges m, for each graph. We
categorize our studied graphs into the following three classes:

page graph : each node represents a single web page, and each arc is a link
between two pages;

host graph : each node is a (sub)domain, i.e., a host, and an arc between two
hosts exists if one host has a page having a link to the page of the other host;
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Table 1 Datasets used in the experimental evaluation, where n is the number of vertices
and m is the number of edges (i.e., nonzeros in A). All datasets are available at
http://law.di.unimi.it/datasets.php.

Graph type n [M] m [M]

amazon-2008-hc social network 0.74 5.16
enwiki-2021-hc social network 6.26 150.12
eu-2015-hc page graph 1070.56  91792.26
eu-2015-host-hc  host graph 11.26 386.92
gsh-2015-hc page graph 988.49  33877.40
it-2004-hc page graph 41.29 1150.73
twitter-2010-hc  social network 41.65 1468.37
uk-2014-hc page graph 787.80  47614.53

soctal network : each node represents an entity such as a person or user, and
an arc represents a social relation.

We call page graphs and host graphs together web graphs (not to be
confused with the WebGraph framework storing graphs in its WebGraph
representation).

As a preprocessing step for our experiments, we extracted A’ and 7 from
the WebGraph representation of A, and compressed A’ as a WebGraph, before
actually starting the computation of the PageRank algorithm. For each window
size W, we first recompressed a graph with the selected W and compressed
the references with Elias-y via the parameter —c REFERENCES_GAMMA. We did
so because the WebGraph representation achieves high compression, but is
limited to storing adjacency matrices, which we needed for PageRank. Hence,
this approach allowed us to do all of the computation in compressed space,
which would not be possible for commodity computers to run in RAM if we had
extracted A in its plain form. As an optimization, whenever |0; — ¥,,| > |7,
we kept ¥; as the row in A’. By doing so, we obtained fewer nonzero entries.

We implemented PageRank using the algorithm described in Sect. 2 com-
puting matrix-vector products. Since Eq. (1) uses left products and our
representation is row-oriented, we use the transposed adjacency matrix and
right products. The implementation is in Java and based on the WebGraph
representation, where A’ is represented as two graphs: a positive one for edges
with weight 1, and a negative one for edges with weight —1. All tests were con-
ducted on a machine running Linux, with an Intel CPU i3-9100 (4 cores, cache
256 KB/6144 KB) and with 128 GB of RAM. Java code was compiled and
executed with OpenJDK 11.0.9.1 and the parameters ~-Xmx100G -Xss100M to
access 100 GB of RAM and keeping an execution stack of size at most 100
MB. We ran each PageRank computation for ten iterations, starting with the
initial vector py representing the uniform distribution.

We have the benchmark results of the PageRank evaluation in the last
columns of Table 2 for different window sizes. As expected, our approach works
well for web graphs, with the number of nonzeros in A’ being less than 20%
for page graphs and less than 30% for host graphs. Note that web graphs
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Table 2 Evaluation of different window sizes W on the datasets of Table 1, where m’ is
the number of nonzero entries in A’, t is the average time in seconds to compute a
matrix-vector product with A, ¢’ is the average time in seconds to compute a matrix-vector
product with A’ and ¢/t is the speedup observed in the computation of PageRank.

Graph w m/ [M] m/m’ ¢ [s] t[s] t/t
16 4.60 1.12 0.21 0.22 1.03
32 4.60 1.12 0.22 0.22 1.03
amazon-2008-hc 64 4.60 1.12 0.22 0.22 1.04
128 4.60 1.12 0.21 0.22 1.02
256 4.60 1.12 0.21 0.23 1.09

16 146.23 1.03 5.00 5.17  1.03

32 146.33 1.03 4.96 5.09 1.03

enwiki-2021-hc 64 146.22 1.03 5.01 5.15 1.03
128 146.20 1.03 5.06 526 1.04

256 145.98 1.03 4.93 5.26 1.07

16 126.51 3.06 4.43 6.18 1.40

32 120.78 3.20 4.30 6.10 1.42

eu-2015-host-hc 64 117.16 3.30 4.39 6.20 1.41
128 115.89 3.34 4.32 6.30 1.46

256 115.76 3.34 4.19 6.10 1.46

16 16485.44 5.57 353.13 874.14 248

32 15488.57 5.93 338.03 849.88 2.51

eu-2015-hc 64  15657.24 5.86 336.23 875.60 2.60
128  16674.24 5.51 355.38 903.18 2.54

256  18299.52 5.02 360.11 935.32 2.60

gsh-2015-hc 16 8912.54 3.80 249.04 419.86 1.69

16 283.83 4.05 7.04 12.89 1.83

32 276.65 4.16 6.74 12,92 1.92

it-2004-hc 64 281.34 4.09 6.73 12.90 1.92
128 291.50 3.95 6.82 13.06 1.91

256 306.03 3.76 6.86 13.12  1.91

16 1435.10 1.02 56.80 58.43 1.03

32 1434.16 1.02 56.49 53.00 0.94

twitter-2010-hc 64 1432.90 1.02 57.83 57.01  0.99
128 1431.42 1.03 56.80 58.38 1.03

256 1431.36 1.03 57.11 57.06 1.00

16 8791.33 5.42 203.39 462.63 2.27
32 8193.65 5.81 196.07 463.49 2.36
64 8106.13 5.87 196.71 473.10 2.41
128 8467.23 5.62 198.09 469.76  2.37

uk-2014-hc

are known to verify the copy-property among adjacencies. Other networks
we tested, instead, seem not to verify this property in the same degree, and
therefore our approach is not beneficial. This was expected, as social networks
are not as compressible as Web graphs [28]. There may exist, however, other
representations for these networks that may benefit from other compression
approaches (see the next section). In general, large reductions in the numbers of
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Table 3 Impact of vertically slicing AT into ¢ submatrices AI, .
Section 4. We parameterize each instance additionally with a window size W € {16, 128}.

-, A as described in

For ¢ € [1..c|], m; is the number of non-zero entries in AZT7 and m/ is the number of

non-zero entries in A’;r. @m; and Qim; denote the average over all m; and mi values,
respectively. The last column denotes the fraction > ;_; m}/m/’.

Graph w c om; [M]  @m) [M] c_ym} [M] Frac
16 32 0.16 0.14 438 0.95

16 128 0.04 0.03 437 0.95

amazon-2008-hc  1oq 39 0.16 0.14 437 095
128 128 0.04 0.03 436 0.95

16 32 4.69 4.49 143.75  0.98

. 16 128 117 1.12 143.01  0.98
enwiki-2021-he 150 39 4.69 4.48 143.28  0.98
128 128 117 111 142.43 097

16 32 12.09 3.81 122.04  0.96

16 128 3.02 0.94 120.70  0.95

eu-2015-host-hc 1o 39 12.09 3.43 109.80  0.95
128 128 3.02 0.85 108.34  0.93

otsn 16 32 286851  503.17 16101.48  0.98
eu ¢ 16 128 717.13 125.53 16067.36  0.97
16 32 1058.67  265.42 849331  0.95

gsh-2015-he 16 128  264.67 66.15 8466.91  0.95
16 32 35.96 8.75 280.12  0.99

. 16 128 8.99 2.18 279.59  0.99
it-2004-he 128 32 35.96 8.87 283.87  0.97
128 128 8.99 2.21 283.18  0.97

16 32 45.89 44.21 1414.84  0.98

. 16 128 11.47 11.00 1408.06  0.99
twitter-2010-hc 1o 39 45.89 43.96 1406.74  0.98
128 128 11.47 10.93 1399.00  0.98

16 32 148795  272.21 8710.79 0.9

uk-2014-he 16 128  371.99 67.99 8702.81  0.99
128 32 1487.95  255.97 8191.02  0.97

9

nonzero entries tend to give bigger speed-ups, although the relationship may be
complicated by algorithmic details, system characteristics and the interaction

between the two.

Let us now consider the graphs eu-2015-host-hc and it-2004-hc.
Observed speedups are lower than we would expect given that A’ has roughly
3 times fewer nonzeros than A for eu-2015-host-hc, and roughly 4 times
fewer for it-2004-hc. After profiling we could observe that, although A’ had
much fewer nonzero entries than A, the nonzero entries in A’ are more dis-
persed than those in A, with A benefiting from contiguous memory accesses.
The speedups are nevertheless significant, especially when we are dealing with
larger graphs like uk-2014-hc.



Springer Nature 2021 BTEX template

10 Graph Compression for Adjacency-Matrixz Multiplication

In a subsequent experiment, we vertically split the matrix AT into ¢ subma-
trices as described in Section 4, and evaluated the compression gain in light of
the compression technique of the WebGraph framework, which can find more
suitable references as the matrices become slimmer. We present our evaluation
in Table 3, where we can observe a slight reduction in the number of nonzero
entries when comparing the sums of the submatrices with the original matrix
AT. We can observe that scaling up ¢ reduces the sum of all nonzero entries
in the submatrices, while scaling up W can have a beneficial effect on large
graphs. This effect is minor compared to some of the reductions in Table 2,
however, so we did not evaluate whether it further sped up matrix-vector mul-
tiplications. Moreover, the WebGraph framework seems not to take particular
advantage of this special structured set of submatrices, since the sum of the file
sizes of the submatrices grows considerably with the number of submatrices c.

The main bottleneck of the whole computation was the recompression of
the graphs or the compression of the submatrices. A larger graph instance can
take several hours of pre-computation, or even longer on large graphs such
as eu-2015-hc or gsh-2015-hc, where we omitted some parameter choices in
Tables 3 and 2 because they would take too long to compute.

6 Computation with Bicliques

Another suitable format is the biclique extraction method of Hernédndez and
Navarro [13]. They decompose the edges of G into a list of bicliques and a
residual set of edges. A biclique is a pair of sets of nodes of the form (S,,T;),
where every node of S, has an edge to every node of T,.. We represent the
|Sr| - |T:| edges of each biclique (S,,T,) by listing both sets, which gives us
|Sr| + |T7| integers, i.e., the identifiers of the nodes. These can be compressed
by differential encoding with a universal coder. It has been shown that this
format is competitive in compressing both webgraphs and social graphs.

Let A’ denote the adjacency matrix representing the residual set of edges.
To compute A - #', we compute for each biclique (S,,T}) the value ¢, =
> jer, Tj- We then allocate the vector ¢ whose entries are initially set to zero.
Subsequently, for each biclique (S,, T,) and each node identifier ¢ € S,., we add
¢ to y;. Finally, for each residual edge Agj =1, we add z; to y;. By doing so,
the resulting vector 7' is equal to the product A - ", and we obtained 7 in
time proportional to the size of the compressed matrix.

We carry out a proof-of-concept implementation of this idea by building
on top of the current biclique extraction software [13]. This software has some
limitations that carry over our implementation. The most crucial one is that
the number of total edges is expected to fit into 32 bits, which limits complete
graphs to small sizes of n < 216, This was also the knock-out criteria for several
aforementioned graph instances. We present the evaluation on the graphs that
could be successfully processed by the software in Table 4. There, instances
with names having a -t suffix represent the adjugate matrix A'.
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Table 4 Evaluation of PageRank with either the plain matrix or with the adjacency
matrix of the remaining nodes after biclique extraction. m’ is the number of nonzero
entries in A’. bg and bt denote the total sizes of the left hands and the right hands of all
bicliques. Ay and A_ denote the number of spurious self-loops that have been added by
bicliques or have been erroneously omitted in the set of remaining edges, respectively. ¢
and t’ denote the time for computing PageRank on the original adjacency matrix and on
the adjacency matrix of the remaining nodes with the bicliques, respectively. Finally, t/t’ is
the speedup (or slowdown if < 1) observed in the computation of PageRank.

Graph m' [M]  m/m’ bs [K] br [K] Ay M A_[M] ¢ [ms] t [ms] t/t
amazon-2008-hc 5.14 1.00 1.56 1.41 0.00 0.00 16.89 16.82  1.00
amazon-2008-hc-t 5.15 1.00 0.68 0.88 0.00 0.00 17.59 17.44  0.99
enwiki-2021-hc 119.13 1.26 8919.64 5241.63 0.05 0.05 532.39 517.51  0.97
eu-2015-host-hc-t 79.53 4.86 5539.82  10852.81 0.01 6.89  532.71 1022.59 1.92
it-2004-hc 154.28 7.46  30875.40 28862.12 0.65 11.66  996.45 2354.58 2.36

Another limitation we managed to overcome is that the biclique extraction
software implicitly assumes that all nodes have self-loops. To compute the later
PageRank evaluation based on the compressed representation with bicliques
correctly, we perform two post-processing steps: First, we filter out those nodes
that are simultaneously in both S, and T, for some r, but originally did not
have a self-loop. Secondly, we add self-loops to each node that originally had
a self-loop, but not in both S, and T, simultaneously for any r. We denote
these erroneously added edges or erroneously removed edges by A, and A_,
respectively.

In the table, we additionally measure the sizes of the extracted bicliques
with bs = > [S;|, and by = > |T,|. We can see that the biclique sizes
have a super-linear impact on the number of remaining edges m'. This is
good for the PageRank computation, since the relatively small overhead of
the additional computation for the bicliques dwarfs the computation with the
adjacency matrix A’, which has much fewer entries than the original matrix A.
Especially for large graphs with many bicliques such as it-2004-hc, we have
a speed-up of 2.36. However, if the ratio m/m’ between original edges and
remaining edges is roughly at 1, our proposed technique is slightly slower.
For these experiments we used the same machine as in Sect. 5, but devised
an implementation in Rust, which is available at https://github.com/koeppl/
matrixbiclique.

7 Conclusion

We have shown that the adjacency matrix compression scheme of Boldi and
Vigna [12] as well as the biclique extraction of Herndndez and Navarro [13] are
suitable representations for computing matrix-vector products in time propor-
tional to the compressed matrix sizes. We therefore can conclude that these
compression formats not only save space but also speed up an operation that
is crucial for graph analysis tasks. We plan to consider other formats where it
is less clear how to translate the reduction in space into a reduction in com-
putation time [18, 24, 25], and study which other relevant matrix operations
can be boosted by which compression formats.
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We also plan to investigate whether there is a better way to speed
up matrix-matrix multiplications via compression, than by treating them
as repeated matrix-vector multiplications. For example, suppose we have
compressed two matrices

according to the Webgraph framework, with referencing vectors  and ¢, and
now we want to compute C = AB. Calculation shows

Ci,j = 171 . 'U_jj
= Cig +Crj — Crg + (Ui — U, ) (0 — 0g)) .

In standard matrix-matrix multiplication, when we want to compute C, ;, we
have already computed C;z;, Cy, ; and Cy, z,, so we need only compute the
product (U; — Uy, ) (@; — wg,) of two vectors each of which — as the differences
between a vector and its reference — is likely to be sparse.

If we compute that product by always scanning the nonzero entries of
U; — U, and checking the corresponding entries of w; — g, (or vice versa)
and performing a multiplication whenever one of those corresponding entries is
also nonzero, then we are essentially computing C by repeated matrix-vector
multiplications. If we always choose whichever of ¥; — @, and w; — g, has the
smaller support, then we may obtain an additional speedup. Finally, it may
be even faster to compute adaptively the intersection of the sets of positions
of nonzero entries (see, e.g., [29]).
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