
An Empirical Evaluation of Intrinsic Dimension
Estimators

Cristian Bustos1, Gonzalo Navarro2, Nora Reyes1, and Rodrigo Paredes3

1 Dpto. de Informática, Universidad Nacional de San Luis
2 Computer Science Department, University of Chile

3 Departamento de Ciencias de la Computación, Universidad de Talca, Chile
{cjbustos,nreyes}@unsl.edu.ar, gnavarro@dcc.uchile.cl, raparede@utalca.cl

Abstract. In this work, we study the behavior of different algorithms
that attempt to estimate the intrinsic dimension (ID) in metric spaces.
Some of these algorithms were developed specifically for evaluating the
complexity of the search on metric spaces, based on different theories
related to the distribution of distances between objects on such spaces.
Others were designed originally only for vector spaces and they have
been adapted so that they can be applied to metric spaces.
To determine the goodness of the ID estimation obtained with each al-
gorithm —or at least determine which one fits the best to the actual
difficulty of the search process on the tested metric spaces— we make
comparisons using two indices, one based on pivots and the other on com-
pact partitions. This allows us to verify if the considered ID estimators
reflect the actual hardness of searching over the considered spaces.

1 Introduction

Nowadays, similarity search in metric spaces has received much attention in
the algorithmic community due to the numerous applications it has. It is an
important problem in many fields, ranging from multimedia information retrieval
to machine learning, classification, and searching the Web. Therefore, it has
been proposed a wealth of practical algorithms to solve it. These algorithms are
effective on certain metric spaces, but their performance is poor in others.

The similarity between a set of objects U is modeled using a distance function
(or metric) d : U×U "→ R+∪{0} that satisfies the properties: triangle inequality,
strict positivity, reflexivity, and symmetry. In this case, the pair (U, d) is called
a metric space [7, 23, 21].

In some applications, the metric spaces are of a particular kind called “vector
spaces”, where the elements consist of D coordinates of real numbers. There are
many works that benefit of geometric properties of vector spaces, but normally
they cannot be extended to general metric spaces, where the only available in-
formation is distance between objects. In the general case, the distance is very
expensive to compute, then the main objective is to reduce the number of dis-
tance evaluations. In contrast, vector space operations tend to be simpler and
thus, the primary objective is reduce the number of I/O operations carried out.

Similarity queries are usually of two types. For a given database S ⊆ U with
size |S| = n, q ∈ U and r ∈ R+, (q, r)d = {x ∈ S | d(q, x) ≤ r} denotes a
range query. The other type of query is the k nearest neighbor one, denoted by
kNNd(q), which retrieves the k closest elements to q in S. Formally, it retrieves
a set R ⊆ S such that |R| = k and ∀ u ∈ R, v ∈ S \ R, d(q, u) ≤ d(q, v).

A näıve way to answer both query types is by performing an exhaustive search
in the database. That is, all the database elements are compared with the query
q, and then those elements that are “close enough” to it are returned (brute force
algorithm). Obviously, this approach is too expensive for real applications. Thus,
researchers have achieved different ways to efficiently search in general metric
spaces. There has been some significant progress in this area, mostly around the
idea of building an index; i.e. a data structure that allows to reduce the number
of evaluations of the distance function during the resolution of a query.

In vector spaces, the curse of dimensionality describes a phenomenon where
performance of all existing algorithms decays exponentially as dimension grows.
In general, the complexity of solutions in metric space are measured as the
number of distance evaluations, because the absence of coordinates prevents a
complexity analysis in terms of the representation size.

In this work, we study the behavior of some algorithms trying to estimate
the intrinsic dimension (ID) in metric spaces. Some of them were developed
specifically for evaluating the complexity of the search on metric spaces, based
on different theories related to the distribution of distances between objects on
such spaces. Others were designed originally for vector spaces and they have
been adapted so that they can be applied to metric spaces.

To determine the goodness of the estimation of ID obtained with each al-
gorithm —or at least determine which one fits the best to the actual difficulty
of the search process on the tested metric spaces— we have made comparisons
using two indices, one based on pivots and the other on compact partitions. This
allows us to verify whether the considered algorithms to estimate the ID reflect
the actual hardness of searching over the considered metric spaces, and also,
which one offers the best estimation.

2 Intrinsic Dimension Estimators for Vectorial Spaces

There are several interesting applications where the data is represented as D-
dimensional vectors in RD. For instance, in pattern recognition applications,
objects are usually represented as vectors [15]. So, data is embedded in RD,
even though this does not imply that its real dimension is D.

There are many definitions of ID. For instance, the ID of a given dataset is
the minimum number of free variables needed to represent the data without lost
of information [2]. In general terms, a dataset X ⊆ RD has ID M ≤ D, if its
elements fall completely within a M -dimensional subspace of RD [13]. Another
intuitive notion is the lesser effort in the searching, the lower space ID.

Even in vector spaces, there are many reasons to estimate the ID of a dataset.
Using more dimensions (more coordinates in the vectors) than necessary can

bring several problems. Firstly, the space needed to store the data is an issue.
For instance, if the ID of a dataset X ⊆ RD is M ≤ D and |X| = n, so n × D
real coordinates are needed to store the original data. Instead, if we know that
the ID is M , we will just store n×M real coordinates (n×M ≤ n×D), and the
space savings is greater depending on how lower is M with respect to D. Also,
as the amount of available information increases, compressing the data storage
becomes even more important. Secondly, as the asymptotic complexity of the al-
gorithms is monotonically increasing with respect to the dataset dimensionality,
a dimensionality reduction can produce and important CPU time reduction.

There are two approximations to estimate the ID of a vector space [15, 2],
namely, the local and global methods. The local ones make the estimation by
using the information contained in sample neighborhoods, avoiding the data
projection over spaces of lower dimensionality. The global ones deploy the dataset
over a M -dimensional space using all the dataset information.

In particular, this work is focused on global ID estimators. That is, in every
case we consider all the dataset information in order to obtain a estimation as
accurate as possible. Global methods can be split in three families, namely, pro-
jection techniques, multidimensional scaling methods and fractal based methods.
Among them, the last two are more suitable to metric spaces, so we have selected
and adapted some representatives of these groups.

3 Intrinsic Dimension Estimators for Metric Spaces

In general metric spaces, due to the curse of dimensionality severely affect the
performance of the search process, knowing the intrinsic dimension can help to
chose a metric index appropriate to the space dimension. For instance, in low
ID spaces, where the searching is easier, pivot based indices usually are more
suitable. However, they can perform very bad in high ID spaces, or hard spaces,
where compact partition based indices, such as the LC are more efficient.

Hence, a proper estimation of the operating dataset ID is very important, as
can help to improve the time and memory costs of the selected solution.

Nevertheless, there are very few dimension estimators we can apply directly
in general metric spaces; and the ID estimators that are proper to metric spaces
can only consider the dataset objects and its distance. Thus, in the following we
analyze some methods to estimate the ID of vector spaces and others to general
metric spaces, and later we show how all of them have been adapted in this work.
Furthermore, as multidimensional spaces are a particular case of metric spaces,
these estimators can also be applied to obtain the ID of D-dimensional spaces.

3.1 Fractal Based Methods

Unlike other families, fractal based methods can estimate non-integer ID values.
The most popular techniques of this family are Box Counting [17], which is a
simplified version of the Haussdorff dimension [10, 18], and Correlation [3].

The dimension estimation by Box Counting DB of a set Ω ⊆ RD is defined
as follow: if v(r) is the number of boxes of size r needed to cover Ω, then DB is

DB = lim
r→0

ln(v(r))
ln

(
1
r

) (1)

In this method, the boxes are multidimensional regions of side r on each dimen-
sion (that is, they are hipercubes of side r). Regrettably, even though efficient
algorithms have been proposed, the Box Counting dimension can be computed
only for low dimension datasets. This is because its algorithmic complexity grows
exponentially with the dimension.

Estimating the dimension by Correlation is an alternative to Box Counting. It
is defined as follow. Let Ω = {x1, x2, . . . , xn} ⊂ RD and the correlation integral
Cm(r) = limn→∞

2
n(n−1)

∑
1≤i<j≤n I(||xj − xi|| < r), where I(·) is an indicator

function. Intuitively, Cm(r) is the fraction of object pairs whose distance is lower
than r. So, the dimension estimation by Correlation DC is

DC = lim
r→0

ln(Cm(r))
ln r

(2)

The most popular method to estimate the dimension by Correlation and
Box Counting is the log-log plots. It consists in plotting ln(Cm(r)) versus ln(r).
The dimension by Correlation is the slope of the lineal section of the curve. To
estimate the dimension by Box Counting we replace ln(Cm(r)) by ln(v(r)).

However, as we are interested in the general case of metric spaces, and here
we not always have coordinates, we consider balls of radius r. That is, the set of
objects within a distance r from a reference object o. In this case, we randomly
pick the reference objects from the database elements, and we count the number
B(r) of balls of radius r we need to cover the dataset. To do so, we use the List
of Clusters (LC) [6], whose code is available from SISAP [12], with the variant of
fixed radius and centers chosen at random, and obtain as result the LC length.

Thus, to estimate the dimension by Box Counting, which in this case is Ball
Counting, we replace ln(v(r)) by ln(B(r)), plot ln(B(r)) versus ln

(
1
r

)
in log-log

and obtain the slope of the linear section of the curve by using linear regression
with least squares over the experimental data

(
ln(B(r)), ln

(
1
r

))
.

3.2 Distance Exponent

In [22], the authors discuss the problem of the selectivity estimation for range
queries in real world metric spaces, including spatial or multidimensional datasets
as special cases. The main contribution is, surprisingly, several datasets follow
the so-called Power Law. They call Distance Exponent the exponent of the power
law. It plays an important role when analyzing real metric spaces. In [22], they
show how to use it to derivate formulae for estimating the selectivity of range
query; for instance, the number of objects relevant to the query, the number of
I/O access to answer the query when the data is stored in secondary memory,
the amount of time needed to answer the query, and so on.

For the sake of finding a formula that estimates the number of neighbors of
objects within a distance r in a n-objects dataset, they introduce the following
notions: (i) the Distance Graphic of a metric set is the number of object pairs at
distance at most r versus the distance r, and both axis are drawn in logarithmic
scale; and (ii) the Distance Exponent is the slope of the line that better fits the
distance graphic in case it is linear for a range of scales. Using these two notions,
they define the Distance Law.

Distance Law - Given a dataset of n objects from a metric space with
distance function d(x, y), the average number of distances lower than a radius
r follows a power law; that is, the average number of neighbors nb(r) within a
distance r is proportional to rD:

N · Φ(r) = nb(r) ∝ rD (3)

If a dataset has a metric to evaluate the distance between every object pair,
then this graphic can always be drawn, even if it has not an spatial property.
Moreover, they show that the distance graphic shows an almost linear behavior
for many databases, both real and synthetic. Clearly, the distance graphic re-
quires O(n2) distance computations. To avoid this cost, nb(r) is estimated using
an index [22]. That is, a way to estimate the distance exponent D of a dataset
stored in a metric index is by means of the very same index.

The index used in [22] to estimate nb(r) is the M-tree [8]. But, as in this work
we are only interested in comparing the different ID measures and indexing the
space is not strictly necessary (as we do not pretend to solve queries) we compute
directly nb(r), considering a reference object chosen at random from the dataset.
Next, we only determine the number of elements at distance r from that object.

3.3 Fastmap

This method arises from the proposal in [14] of a fast algorithm to map objects
as points in a k-dimensional space (k being defined by the user), so that the
dissimilarities are preserved. So, this algorithm could allow to map any metric
(or vector) space into a k dimensional vector space. The objective is speeding
up the searching process in traditional or multimedia databases.

To do so, objects are mapped into a k-dimensional space using k feature
extraction functions, provided by domain experts [14]. The main drawback is
defining such feature extraction functions. For example, in the metric case of
strings with the edit distance [16], it is not clear which features can be considered.

As it is relatively easier for the domain expert to provide a distance function
to compare objects (than provide several feature extraction functions), Faloutsos
and Lin proposed [11] a generalization of the method of [14], trying to map the
objects in k dimensional points using only the domain experts’ distance function.

Therefore, Fastmap considers the problem of, given a n object dataset from
a metric space (U, d), find n image points in a k-dimensional target space, such
that the distances between the objects in the original space are preserved as
much as possible, between the image points in the target k-dimensional space.

For the sake of evaluating the dissimilarity preservation in the target space,
an stress function is defined as follows:

stress2 =

(∑
i,j(d̂ij − dij)2

)

(∑
i,j d2

ij

) (4)

where, dij is the dissimilarity measure (the distance of the original space) be-
tween object objects oi and oj , and d̂ij is the Euclidean distance between their
respective images pi and pj . The stress function gives the relative error that the
distances in the target space suffer in average after the transformation. To reach
the objective, Fastmap begins with an estimation which is iteratively improved,
until no additional improvement is possible.

In the metric case, we can consider that we have a distance function between
the objects or a matrix of n × n distances between all the object pairs. So, the
objective of Fastmap [11] is to find n points in the k-dimensional space, whose
Euclidean distances correspond to the given matrix of n × n distances in the
original space. The crux is assuming that objects are points in an unknown m-
dimensional space (with unknown m), and trying to project these points over k
mutually orthogonal directions. The challenge is computing all these projections
using only the distance matrix. Fastmap projects the objects over lines carefully
selected. To do so, two objects oa and ob are chosen, and it considers the “line”
passing through them in the original space. The projections of the objects over
this line are obtained using the cosine law :

Theorem 1 (Cosine Law) Any triangle
%

oaoiob satisfies that:

d(ob, oi)2 = d(oa, oi)2 + d(oa, ob)2 − 2x′
id(oa, ob) (5)

Eq. 5 can be solved for x′
i to compute the projection of object oi:

x′
i =

d(oa, oi)2 + d(oa, ob)2 − d(ob, oi)2

2d(oa, ob)
(6)

Thus, the input of Fastmap is a set S of size n and and, in each iteration,
computes the coordinates of all the n objects over the new axis. So, after k
iterations, it produces a k-dimensional target space S′ where each object oi ∈ S
is mapped to a k-coordinates vector pi = (x′

i,1, x
′
i,2, . . . , x

′
i,k) ∈ S′, where x′

i,j is
the j-th projection of the image pi of the object oi.

In our case, we want to estimate the number of projections needed so that
the target space reaches a mapping with a small enough stress. This is, to de-
termine the minimum number of projected dimensions so that the metric space
objects mapped onto the vector space preserve their distances. Thus, we modify
the Fastmap algorithm. Instead of considering a prefixed value k of projected
dimensions, each time it projects a new dimension, we compute the stress of the
candidate target space. So, if the difference between the current stress and the
previous one is significative, we compute another projection. This increases the
number of coordinates of the target space. Otherwise, the target space current
dimension is reported as the estimation of the ID of the original metric space.

3.4 Intrinsic Search Difficulty

In [5], a measure of the intrinsic complexity of searching a general metric space is
introduced. It reflects the expected behavior of the searching algorithms on the
metric space, is easy to estimate and is independent of the searching algorithm.

Several authors [1, 4, 9] have proposed to use the distance histogram to char-
acterize the hardness of searching an arbitrary metric space. In this trend, the
main objective of [5] was to define a quantitative measure of the intrinsic search
hardness based on the histogram, which is not necessary related to the concept
of dimension. But, it allows to lower bound it.

The intuition of [5] is that as the metric space is harder to search, the mean
µ of its distance histogram grows and/or its variance σ2 reduces. Obviously, we
do not have the histogram of the whole space, but we can approximate it using
the histogram of the dataset S ⊂ U.

Definition: Let µ be the mean and σ2 be the variance of the histogram of
distances of a metric space. Then, its intrinsic search difficulty is:

ρ =
µ2

2σ2
(7)

As it can be seen, the intrinsic search difficulty grows with the histogram
mean and with the inverse of its variance. Also, given an arbitrary and unknown
metric space, the intrinsic difficulty can be measured by means of simple statis-
tics, with a reasonable number of distance evaluations between objects obtained
at random from the dataset. It is easier and cheaper than other techniques, in
particular with respect to those based over a definition of dimension.

In [19], it is presented an axiomatic system, consisting of three axioms, that
an intrinsic dimension function must satisfy. The author demonstrates by a the-
orem that the intrinsic dimension measure ρ satisfies these axioms, although two
of them in a weaker version. Besides, in [20], some goals that should have an
intrinsic dimension function are posed and ρ achieves nearly four of them.

As the measure ρ has been specifically designed for metric spaces, we do not
adapt it. In this case, we consider the dataset S and we compute all the distances
d(x, y), ∀ x, y ∈ S and then we compute the average µ = 1

n2

∑
x,y∈S

d(x, y) and the

variance σ2 = 1
n2

∑
x,y∈S

(d(x, y)−µ)2. Finally, we obtain the value of ρ = µ2

2σ2 and

report it as the value that estimates the ID of the metric space.

4 Experimental Results

In the following, we show the experimental evaluation of the four different ID
estimators for general metric spaces. We want to explore their behavior and
determine whether any of them represents appropriately the relation between
the dimension and the hardness of the similarity searching in the particular
metric space, also known as the curse of dimensionality.

We consider two kinds of metric spaces, depending on the data source:

Real world: these are metric spaces obtained from real world applications. For
instance, a feature vectors space of images obtained from a NASA image set.

Synthetic: these are spaces generated artificially so that they present some
interesting characteristic to be evaluated. For instance, uniformly distributed
vectors in RD with known dimension.

4.1 Synthetic Metric Spaces

This class of metric space contains the vector spaces. They are treated as metric
spaces as we do not consider the coordinates information. We want to test two
conditions. In the first, we generate the vectors with uniform distribution, so
that the representational dimension matches the ID. In the second, we generate
vectors with Gaussian distribution, so that the representational dimension is
greater than the ID.

Uniformly Distributed Vectors with Euclidean Distance We generate
four datasets of 100,000 vectors uniformly distributed in the unitary cube [0, 1)D,
with D = 5, 10, 15 and 20. As the coordinates of the vectors have uniform
distribution in [0, 1), we can control exactly the ID of the each vector space. For
shortness, the four spaces are called C5, C10, C15 y C20, that stand for vectors
of 5, 10, 15 o 20 coordinates.

Fig. 1(a) depicts the estimations for these four metric spaces. As it can be
seen, Fractal estimator is not be able to reflect correctly the dimension increas-
ing. On the other hand, the other three estimators increase the values of their
measures as the dimension grows.

Gaussian Distributed Vectors with Euclidean Distance We generate
100,000 vectors in RD with mean µ = 1 and variance σ2 = 0.1, with D =
5, 10, 15 y 20. In these spaces, there is no, a priori, clusters of elements. For
shortness, these spaces are called G5, G10, G15 y G20.

We also generate 100,000 vectors in R101 with mean µ = 1 and variance
σ2 = 0.1 with 200 clusters (the cluster centers are uniformly distributed in the
space). For shortness, this space is called G101.

Figure 1(b) shows the estimations obtained with Fractal, Distance Exponent,
Fastmap, and Intrinsic Search Difficulty, for these metric spaces. As it can be
noticed, again Fractal estimation fails in these spaces because it is not capable
of showing the increase of the dimension. As occurred before, the other three
estimators reflect seamlessly the grow of the dimension, although Fastmap and
Intrinsic Search Difficulty seem to highlight them more.

4.2 Real Metric Spaces

We pick four spaces from [12] (available at http://www.sisap.org/library/dbs/)
in order to estimate their IDs with the four dimension estimators. The selected
spaces are a representative sample for this kind of spaces. They are the following:

C20C15C10C5

Es
tim

at
io

n
of

 d
im

en
si

on
al

ity

Metric space

Estimations of dimensionality for uniform spaces

Fractal
Exponent
Fastmap
Intrinsic

(a) Uniform spaces.

G20G15G10G5G101

Es
tim

at
io

n
of

 d
im

en
si

on
al

ity

Metric space

Estimations of dimensionality for uniform spaces

Fractal
Exponent
Fastmap
Intrinsic

(b) Gaussian spaces.

Fig. 1. Comparison of dimensionality estimations for synthetic metric spaces.

Dictionary: it is a dictionary of 69,069 English words. In this space, we use a
discrete function, the Edit Distance or Levenshtein Distance [16]. Fig. 4(a)
(in the Appendix A) shows the distance histogram of Dictionary, which is
very concentrated.

NASA: this is a set of 40,700 images from NASA, represented as feature vectors
of 20 real coordinates per vector, under the Euclidian distance. They were
generated from images downloaded from the NASA site 4. Fig. 4(b) (in the
Appendix A) shows the distance histogram of NASA.

Histograms: this is a dataset of 112,682 histograms of medical images, each
one composed by 8-D color histograms of 112 real components 5. As any
quadratic form function can be used as distance in this case, we also have
chosen the Euclidean distance, due to it is the simplest alternative. Fig. 4(c)
(in the Appendix A) illustrates the distance histogram of this space.

Documents: this space has 1,265 documents, represented as vectors according
to the vectorial model of documents used in the Information Retrieval field.
To compare documents we use the cosine distance. Each vector has a coordi-
nate for each vocabulary term in the colection. So, documents can be seen as
points in a vector space of high representational dimension. The documents
are files obtaines form the trec-3 colection 6. Fig. 4(d) (in the Appendix
A) shows that the distance histogram of this space is very irregular.

To measure the intrinsic hardness of the searching, we consider two search algo-
rithms, one belonging to compact partition based indices and the other to pivot
based indices.

For these experiments we perform 10 executions of the algorithms, building
the index with the 90% of the database elements, and reserving the resting 10%
(chosen at random) to make the queries. So, objects considered as queries do
not belong to the index. Thus, we show results averaged over the 10 executions.
In each execution, the objects in the metric space are permutated. Therefore,
4 Available at http://www.dimacs.rutgers.edu/Challenges/Sixth/software.html.
5 Available at http://www.dbs.informatik.uni-muenchen.de/∼seidl/DATA/histo112.112682.gz.
6 Available at http://trec.nist.gov.

each of the 10 indices considers a different dataset S, and, of course, the query
objects are also differents. Finally, we only analyze the cost of range queries.

For these metric spaces, the query radii used in the experiments are:

Dictionary: As the metric is discrete, we use radii 1, 2, 3, y 4, retrieving in aver-
age approximately the 0.003%, 0.037%, 0.326% and 1.757% of the database.

NASA: This is a continuous metric, so we use radii 0.012, 0.285 and 0.53,
retrieving in average approximately the 0.01%, 0.1% and 1% of the dataset.

Histograms: This metric is also continuous. Then, to retrieve in average ap-
proximately the 0.01%, 0.1% and 1% of the dataset, we use query radii
0.051768, 0.082514 and 0.131163.

Documents: Again, as the distance is continuous, we use query radii 0.14, 0.15
y 0.195, that retrieve in average the 0.01%, 0.1% and 1% of the database.

From the pivot based algorithm family, we use the generic pivot algorithm. To
do so, we chose at random a set of pivots P = {P1, P2, . . . , Pk} ⊂ S of size
|P| = k. So, in this case, we store kn distances to the pivots. For each space, we
experimentally determine the number of pivots that obtains the best searching
performance. Therefore, the results shown for each case correspond to the best
possible ones for this method, in the corresponding metric space.

For the case of compact partition based algorithms, we use the List of Clusters
(LC) [6], which is very representative of this family of algorithms. We use the
LC variant that has a maximum size for each cluster. For each real-world metric
space considered, we experimentally determine the cluster size whose perfomance
is the best, and this is the result shown in the plots.

Figures 2 and 3 illustrate the correlation between the intrinsic difficulty of
searching with the Pivots index and the List of Clusters, respectively; and the
estimation reported for each considered ID estimator. For lack of space, we only
show the results of the search that retrieve the 0.01% and 0.1% of the database
approximately. As it is aforementioned, Fastmap and the Intrinsic Search Diffi-
culty appear as the better ones because the ratio between the logarithm of search
costs and their estimations are low. That is, the estimations obtained with these
estimators are proportional to search costs for all real metric spaces considered
and also for both types of indices.

5 Conclusions

One of the main obstacles to the design of efficient search techniques in metric
spaces is the existence of high-dimensional spaces in real applications. Therefore,
it is necessary to have estimations of the intrinsic dimension of a metric space to
determine the most appropriate and efficient method according to the particular
dimension of the given metric space.

Therefore the aim of this study is to recognize the state of the art in this
area and compare experimentally some of the important measures found, in
order to provide empirical evidence to decide which measure better reflects the
real difficulty of the similarity searches in metric spaces.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

DOCSHISNASAENG

Lo
g(

Se
ar

ch
 D

iff
ic

ul
ty

)/E
st

im
at

io
ns

Metric space

Evaluations of estimators with Pivots for real metric spaces, 0.01% retr.

Fractal
Exponent
Fastmap
Intrinsic

(a) Retrieving 0.01%.

 0

 1

 2

 3

 4

 5

 6

 7

DOCSHISNASAENG

Lo
g(

Se
ar

ch
 D

iff
ic

ul
ty

)/E
st

im
at

io
ns

Metric space

Evaluations of estimators with Pivots for real metric spaces, 0.1% retr.

Fractal
Exponent
Fastmap
Intrinsic

(b) Retrieving 0.1%.

Fig. 2. Comparison of estimators for each real metric space considered, using Pivots.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

DOCSHISNASAENG

Lo
g(

Se
ar

ch
 D

iff
ic

ul
ty

)/E
st

im
at

io
ns

Metric space

Evaluations of estimators with LC for real metric spaces, 0.01% retr.

Fractal
Exponent
Fastmap
Intrinsic

(a) Retrieving 0.01%.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

DOCSHISNASAENG

Lo
g(

Se
ar

ch
 D

iff
ic

ul
ty

)/E
st

im
at

io
ns

Metric space

Evaluations of estimators with LC for real metric spaces, 0.1% retr.

Fractal
Exponent
Fastmap
Intrinsic

(b) Retrieving 0.1%.

Fig. 3. Comparison of estimators for each real metric space considered, using List of
Clusters.

Although our results are inconclusive, we have shown, for example, that the
Fractal dimension estimator has not been useful, while the other three measures
appear to be suitable. Hence, this work appears as a contribution to the devel-
opment and understanding of the search problem and its intrinsic difficulty of
metric spaces, and to validate proper intrinsic dimension estimators of metric
spaces with other adapted from vector spaces, allowing to achieve knowledge
still unevaluated in this area.

As future work we plan to analyze other estimators, as the concentration
dimension [19], and evaluate them exhaustively on even more metric spaces.

References

1. S. Brin. Near neighbor search in large metric spaces. In Proc. 21st Conf. on Very
Large Databases (VLDB’95), pages 574–584, 1995.

2. F. Camastra. Data dimensionality estimation methods: a survey. Pattern Recog-
nition, 36(12):2945–2954, 2003.

3. F. Camastra and A. Vinciarelli. Estimating the intrinsic dimension of data with a
fractal-based method. IEEE TPAMI, 24(10):1404–1407, 2002.

4. E. Chávez and J. Marroqúın. Proximity queries in metric spaces. In Proc. 4th
South American Workshop on String Processing (WSP’97), pages 21–36. Carleton
University Press, 1997.

5. E. Chávez and G. Navarro. Towards measuring the searching complexity of metric
spaces. In Proc. Intl. Mexican Conf. in Computer Science (ENC’01), volume II,
pages 969–978. Sociedad Mexicana de Ciencias de la Computación, 2001.

6. E. Chávez and G. Navarro. A compact space decomposition for effective metric
indexing. Pattern Recognition Letters, 26(9):1363–1376, 2005.

7. E. Chávez, G. Navarro, R. Baeza-Yates, and J. Marroqúın. Searching in metric
spaces. ACM Computing Surveys, 33(3):273–321, September 2001.

8. P. Ciaccia, M. Patella, and P. Zezula. M-tree: an efficient access method for simi-
larity search in metric spaces. In Proc. 23rd VLDB, pages 426–435, 1997.

9. Paolo Ciaccia, Marco Patella, and Pavel Zezula. A cost model for similarity queries
in metric spaces. In PODS, pages 59–68, 1998.

10. J. P. Eckmann and D. Ruelle. Ergodic theory of chaos and strange attractors. Rev.
Mod. Phys., 57:617, 1985.

11. C. Faloutsos and K.-I. Lin. Fastmap: A fast algorithm for indexing, data-mining
and visualization of traditional and multimedia datasets. In Proc. 1995 ACM
SIGMOD Intl. Conf. on Management of Data, pages 163–174. ACM Press, 1995.

12. K. Figueroa, G. Navarro, and E. Chávez. Metric spaces library, 2007. Available at
http://www.sisap.org/Metric Space Library.html.

13. K. Fukunaga. Introduction to statistical pattern recognition (2nd ed.). Academic
Press Professional, Inc., San Diego, CA, USA, 1990.

14. H. V. Jagadish. A retrieval technique for similar shapes. In SIGMOD Conference,
pages 208–217. ACM Press, 1991.

15. A. K. Jain and R. C. Dubes. Algorithms for clustering data. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1988.

16. V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady, 10(8):707–710, 1966.

17. B. Mandelbrot. Fractals: Form, Chance and Dimension. W. H. Freeman, San
Francisco, 1977.

18. E. Ott. Chaos in dynamical systems. Cambridge University Press, Cambridge,
New York, 1993.

19. V. Pestov. Intrinsic dimension of a dataset: what properties does one expect? In
2007 Intl. Joint Conf. on Neural Networks (IJCNN), pages 2959–2964, Aug 2007.

20. V. Pestov. An axiomatic approach to intrinsic dimension of a dataset. Neural
Networks, 21(23):204 – 213, 2008. Advances in Neural Networks Research: 2007
International Joint Conference on Neural Networks (IJCNN).

21. H. Samet. Foundations of Multidimensional and Metric Data Structures (The Mor-
gan Kaufmann Series in Computer Graphics and Geometric Modeling). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.

22. C. Traina Jr., A. J. M. Traina, and C. Faloutsos. Distance exponent: a new con-
cept for selectivity estimation in metric trees. Research Paper 99-110, School of
Computer Science, Carnegie Mellon University, 03/1999 1999.

23. P. Zezula, G. Amato, V. Dohnal, and M. Batko. Similarity Search: The Metric
Space Approach, volume 32 of Advances in Database Systems. Springer, 2006.

A Histograms of the real word metric spaces

 0 2 4 6 8 10 12 14 16 18 20

N
um

be
r o

f e
le

m
en

ts

Distance

Distance histogram for n = 69,069 words

(a) Diccionary.

 0 0.5 1 1.5 2 2.5 3

N
um

be
r o

f e
le

m
en

ts

Distance

Distance histogram for n = 40,700 feature vectors

(b) NASA.

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

N
um

be
r o

f e
le

m
en

ts

Distance

Distance histogram for n = 112,682 color histograms

(c) Histograms.

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

N
um

be
r o

f e
le

m
en

ts

Distance

Distance histogram for n = 1,265 documents

(d) Documents.

Fig. 4. Distance histograms for each real metric space considered.

