
Succinct Nearest Neighbor Search

Eric Sadit Tellez
∗

Universidad Michoacana de
San Nicolás de Hidalgo

México
sadit@lsc.fie.umich.mx

Edgar Chávez
Universidad Michoacana de

San Nicolás de Hidalgo
México

elchavez@umich.mx

Gonzalo Navarro
†

Dept. of Computer Science
University of Chile

Chile
gnavarro@dcc.uchile.cl

ABSTRACT

In this paper we present a novel technique for nearest neighbor
searching dubbed neighborhood approximation. The central idea
is to divide the database into compact regions represented by a sin-
gle object, called the reference. To search for nearest neighbors a
set of candidate references is first obtained and later enriched with
the database objects associated to those references.

This approach can be implemented with an inverted index, which
in turn can be represented in a succinct way, spending just a few
bits per object. As a consequence it is possible to store the index in
main memory, even for relatively large databases.

The speed/compression/recall tradeoff achieved is excellent. To
obtain 92% recall in 30-nearest neighbors searches the index re-
views less than 0.6% of the database, in time ranging from 0.35 to
2.67 seconds using from 93 to 24 Mbytes for a ten million objects
database. The tradeoff comes from using different compression
techniques. The uncompressed index requires 0.17 seconds and
267 Mbytes of space.

A quality measure complementary to the recall is the ratio be-
tween the covering radius of the actual nearest neighbors and the
near neighbors reported by the algorithm. Using this measure our
results are within a small constant compared to the exact results.

1. INTRODUCTION
A metric space is a pair (U, d) with U a universe of objects and

d(·, ·) a distance function d : U × U → ℜ obeying the metric ax-
ioms: For all x, y, z ∈ U d(x, y) > 0 or d(x, y) = 0 ⇐⇒ x = y,
d(x, y) = d(y, x), and d(x, z) + d(z, y) ≥ d(x, y). These prop-
erties are known as strict positiveness, symmetry, and the triangle
inequality, respectively. A finite subset of the metric space S is
the database S ⊆ U . Problems of diverse domains, from pattern
recognition, classification, statistics, to multimedia indexing can be

∗Partially funded by CONACYT grant 161913. Also, part of this
work was developed during his stay at the DCC of the University
of Chile.
†Partially funded by Millennium Institute for Cell Dynamics and
Biotechnology (ICDB), Grant ICM P05-001-F, Mideplan, Chile;
and by Fondecyt Grant 1-090037, Chile.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SISAP 11, June 30–July 1, 2011, Lipari, Italy. Copyright c© 2011 ACM
978-1-4503-0795-6/11/06... $10.00.

formulated with the abstract framework described above. Two que-
ries of most interest are range queries (q, r)S , defined as the objects
of S at distance at most r from q, and ℓ-Nearest-Neighbor queries
ℓNNS , defined as the ℓ elements of S closest to q. We will focus
our attention on the second type of queries.

ℓNN searching has a well known linear worst case [7, 21, 12,
4], when the database has high intrinsic dimensionality. Under this
circumstance, traditional techniques using the triangle inequality
or families of indexes such as compact partition indexes and pivot

based indexes suffer from a condition known as the curse of dimen-

sionality (CoD) [7, 21, 12, 4]. The problem can be studied from the
theoretical point of view using the concentration of measure [17,
18]. To overcome this limitation one alternative is to move from
exact indexes to approximate indexes, as described in Section 2.

Our contribution is twofold. First we describe the neighborhood

approximation (NAPP), a simple mapping from general metric spa-
ces to a set of integers (with a proximity semantic). NAPP is an ap-
proximate technique with high recall and high quality. The second
contribution is to represent the NAPP in a succinct way, giving rise
to the compressed NAPP inverted index. The combination of these
two novelties produces a data structure allowing very fast proxim-
ity searches, using little storage space, with high recall and high
quality in the answer.

The rest of the paper is organized as follows. Section 2 is a brief
review of related work. Section 3 shows the mapping transforma-
tion and Section 4 the underlying data structure for our index. The
compression of the index is explained in Section 5.2. Experimental
results showing search time, memory usage and recall of our index
in real databases are shown in Section 5 and conclusions and future
work are discussed in Section 6.

2. RELATED WORK
Exact searching methods are divided into two broad categories

as follows:
Compact partition indexes define a partition of the space with

purported high locality. One can, for example, use a set of ob-
jects (called centers) with a covering radius rc. Any item u where
d(u, p) ≤ rc is represented by the center p. The scheme can be re-
peated recursively inside each ball using smaller radii at each level.

Pivot based indexes use a set of distinguished objects, called
pivots, to compute an implicit contractive mapping with a distance
easier to compute than the original d(·, ·). If we count the num-
ber of distances computed to answer a query, a pivot based index
using many pivots surpasses the performance of a compact parti-
tion index, but the optimal number of pivots is too large for high
dimensional databases.

Bottom line, both schemes are not effective in high dimensional
spaces, due to the CoD. Several books and surveys cover this and

other topics for exact proximity searching [7, 21, 12, 4]. They
provide excellent introductory and reference material in the area.

To speed up searches, we can drop the condition of retrieving all
the objects relevant to the query. A recent survey covers many of
the techniques to trade speed for accuracy in approximate searches
[16]. Below we review some papers related to our approach.

2.1 Permutation Index
An index called the Permutation Index (PI) [6] has high preci-

sion and recall even for high intrinsic dimensional datasets and can
even be used in similarity spaces (when the distance does not obey
the triangle inequality). The PI dramatically reduces the external
distance computations, i.e., the number of candidate objects to be
compared directly to the query.

The idea behind PI is to represent each database object with the
permutation of a set of references, the permutants, sorted by dis-
tance to the object. The distance between objects is hinted by the
distance between their respective permutations. More formally, let
R ⊆ U , for each u ∈ S; we sort R by distance to u, obtaining
a permutation πu of size σ = |R|. The distance between permu-
tations πu, πq is computed using π−1

u and π−1

q treated as vectors
with Minkowski’s L1 or L2 distances.

Since σ is small, PI is especially useful for expensive distances,
such as the Hausdorff distance over the minutia of fingerprints. All
the permutations of S can be represented with nσ log σ bits. The
search is completed by computing n permutation distances, plus
γ metric space distances, where γ is a parameter controlling the
number of candidates to be verified with the distance function. This
parameter is used in our index too.

The good precision and recall of PI is paid with a large number of
L1 or L2 distances in the representation. This internal complexity
eats up the advantage of saving distance computations unless the
cost of the distance function is very expensive compared with L1

or L2. Some authors have tried to reindex this phase hoping that the
resulting space has lower intrinsic dimensionality [10]. In general
the scalability is limited because the resulting vector space has a
medium to high intrinsic dimension, which forbids the use of exact
searching methods.

2.2 The Metric Inverted Index
Amato et al [1] gave a nice algorithmic way to simplify the dis-

tance computation between permutations with the Metric Inverted

Index. For each object K ≪ σ closest references are stored and
indexed with an inverted index. The vocabulary is the set of permu-
tants R and each posting list consists of sorted pairs (objId , pos).

The permutation πq is known at query time and the permuta-
tion πu for u ∈ S is partially known because in the inverted file
at most K references are stored in the posting. For the missing
references a constant penalty ω is added to compute the Spearman
Footrule; one possible choice is ω = σ

2
. There are two choices for

the permutation reconstruction: to take the union or the intersec-
tion of the posting lists. The union produces better quality results,
while intersection produces faster responses. This index uses at
least nK log(nK) bits for the posting lists.

2.3 The Brief Permutation Index
Another algorithmic solution to compute an approximate dis-

tance between permutations is the Brief Permutation Index [23].
The main idea is to encode the permutation vectors using fixed-size
bit-strings and compare them using the binary Hamming distance.
This produces a smaller representation which can be filtered out
faster than the original permutations space. Nevertheless the set of
candidate objects after filtering with the brief version of the permu-

tations is quite large and this is relevant for high-complexity dis-
tances. The advantage against the original algorithm is the reduc-
tion of some extra CPU cost and smaller requirements of memory,
yielding faster searches for large databases.

The resulting Hamming space encodes each permutant with a
single bit using the information about how much it deviates from
the original position in the identity permutation. If the permutant
is displaced by more than m positions (which is a parameter) the
corresponding bit is set to 1, else it is set to 0. The number of
bits then matches the number of permutants. A fair choice for m is
σ

2
. One observation is that the central positions are assigned mostly

0’s because the central permutants have less room for displacement.
This is solved using an inline central permutation [23].

Even if computing the Hamming distance is cheaper than com-
puting L2, a sequential scan can be time-consuming for large data-
bases. The same authors presented later a version indexed with
Locality Sensitive Hashing [22]. Unfortunately, the recall dropped
as the speed increased.

2.4 The Prefix Permutation Index
The last approach using the permutations idea is the PP-Index

[9]. It stores only the prefixes of the permutations and hints the
proximity between two objects with the length of its shared pre-
fix (if any). Longer shared prefixes hint high proximity and short
length prefixes reflect low proximity. This strict notion of proxim-
ity yields to very low recalls, allowing only small γ values. This
condition is somewhat alleviated by using several permutations sets,
several indexes, and tricks like randomly perturbing the query, which
end up increasing the number of queries to the index and affecting
the main advantage of search speed. The index consists in a com-
pact trie [2] representing the space of permutation prefixes. A plain
representation needs Kn log σ bits. The compact trie is usually
smaller, and the storage usage depends on the amount of shared
prefixes. The first levels in the trie are stored in main memory and
the lower levels in secondary memory.

In a concrete example the PP-Index needs up to eight indexes
to achieve perfect recall on the 106 million MPEG7 vectors of the
CoPhIR data set [5].

3. NEIGHBORHOOD APPROXIMATION
All the approaches described in the previous section are variants

of the idea of using permutations as object proxies. We will reuse
some notation and introduce a new formulation of the technique
which is more powerful and simple.

We call our approach Neighborhood approximation (NAPP). In
a way NAPP is a generalization of the permutation idea and we
believe it captures the features responsible of the effectivity (high
recall) of the permutations, while simultaneously allowing a com-
pact representation and fast searching. We will reuse the notation
of R, γ, and σ.

3.1 The Core Idea
We partition the space into a set of regions. Each region is repre-

sented by an object of the database. An object representing a region
will be called a reference, and set R, with |R| = σ ≪ n, is the set
of all references, representing all regions.

Each object u ∈ U is represented by a set of objects, called
the neighborhood of u, defined as Pu = KNNR(u) (that is, the K
closest neighbors of u in R) for a fixed parameter K to be discussed
later. We assume Pu to be an ordered set. The default order will be
the proximity to u. We also assume σ ≪ n.

Now that the set of regions will act as database object proxies,
just as permutations did in permutation based indexes. We follow

u
uq

q

Figure 1: An example showing shared references as proximity

predictor. Gray balls are references, dark balls are objects in

S.

the same path: every object in the database is transformed into its
neighborhood representation (a set of references) and to satisfy a
query q we compute its representation Pq . As in any index, we will
obtain a set of candidate objects in S which need to be checked
against the query. The list of candidates in NAPP will be objects u
such that Pu ∩ Pq 6= ∅.

We believe the above framework captures the essence of the
permutations approach, yet it is simpler and provides an excellent
tradeoff between space usage, speed, recall and retrieval quality.

3.2 Retrieval Quality Considerations
Consider two objects u ∈ S, q ∈ U and their respective neigh-

borhoods Pq, Pu ⊆ R (see Figure 1). The next two observations
follow immediately.

OBSERVATION 1. Let M = Pq ∩ Pu. If M 6= ∅ then the

distance d(q, u) is lower and upper bounded as follows:

max
v∈M

|d(q, v)− d(u, v)| ≤ d(q, u) ≤ min
v∈M

d(q, v) + d(v, u)

OBSERVATION 2. If R ⊆ S and q∗ denotes the nearest neigh-

bor of q in Pq , then d(q, 1NNS(q)) ≤ d(q, q∗) = d(q, 1NNR(q)).

The upper and lower bounds depend on the selection of R. If
R is dense enough then Observation 2 becomes tighter. A final
remark is that R should have the same distribution of S. A rule of
thumb will be to have as many references as one can handle without
slowing down the process of comparing q with the set of references,
and select them uniformly at random from the database.

Figure 1 shows a bad case on the left, and a more realistic case
on the right. This is a core heuristic in our approximate index.

4. THE NAPP INVERTED INDEX
Proximity in the NAPP framework is hinted by the number of

shared references, i.e., the size of the intersection of two sets, hence
the natural choice for an index is an inverted index. Each region in
R will be represented by an integer identifier, and hence the repre-
sentation of each object will be a list of integers.

The size of R, the set of references, should be way smaller than
the database S, yet it should reflect the distribution of objects in S.
Hence we select σ ≪ n objects for R uniformly at random. Each
element of S and each element of R will be denoted by an integer.
Actual objects may reside somewhere else, for example on disk.
We have R = {1, · · · , σ} and S = {1, · · · , n}; it should be clear
from context which collection an index i refers to.

For our computations we define a list for each reference r, L[r] =
{s1, s2, · · · , sk} ⊆ S such that r ∈ Psi . In other words, L[r] is

Algorithm 1 Construction of the NAPP inverted index

1: R is the set of references of size |R| = σ.
2: Let L[1, σ] be an array of sorted lists of integers.
3: Let S = {1, · · · , n}
4: for i from 1 to n do

5: Compute Pi[1,K], the K nearest neighbors of i in R
6: for j from 1 to K do

7: L[Pi[j]]← L[Pi[j]] ∪ {i}
8: end for

9: end for

the list of all elements having reference r among their K nearest
neighbors. Algorithm 1 gives the construction.

Experimentally, we have observed that most objects with a small
intersection cardinality (1 or 2) appear very frequently in the can-
didate list even though they are not always close to the query. It is
then natural to impose an additional condition about the minimum
size of the intersection. This strategy is implemented using the t-

threshold algorithm, a generalization of the set union/intersection
problem of K sets, where the solution is a collection of objects ap-
pearing in at least t sets. Setting t = 1 is equivalent to the set union
and t = K is equivalent to the set intersection. We adapted the
Barbay-Kenyon algorithm [3] to obtain the candidate list. This is
described in Algorithm 2.

Algorithm 2 Solve an ℓNN query in the inverted index

1: Let t be the minimum allowed cardinality of the intersection, and Γ the
number of desired candidates to be checked with the distance.

2: Let L[1, σ] be an array of sorted lists of integers, i.e. the inverted index.
3: Compute Pq [1,K]
4: Let Q be the corresponding lists of the regions in Pq , computed as

Q[1,K] = L[Pq [1]], . . . , L[Pq [K]]
5: Let POS[1,K] be an array of pointers to the current position of the

i-th list on Q, starting in 1.
6: Let CND be a priority queue to store the set of candidates
7: while Q.Length ≥ t do

8: Ascending sort Q using Q[i][POS[i]] as key for 1 ≤ i ≤
Q.Length; identifiers are permuted to follow the order of Q

9: if Q[1][POS[1]] 6= Q[t][POS[t]] then

10: Advance all POS[i] for 1 ≤ t − 1 such that POS[i] is the
smallest item such that Q[i][POS[i]] ≥ Q[t][POS[t]]

11: Restart the loop
12: end if

13: Find the greatest k ≥ t such that Q[k][POS[k]] = Q[t][POS[t]],
then k is the cardinality of the intersection

14: if k = Q.Length then

15: Increment all POS[i]← POS[i] + 1 for 1 ≤ i ≤ Q.Length
16: else

17: Advance all POS[i] for 1 ≤ k such that POS[i] is the smallest
item such that Q[i][POS[i]] ≥ Q[k + 1][POS[k + 1]]

18: end if
19: Append Q[t][POS[t]] to CND
20: Evaluate the distance between the query and Γ candidates (with the

highest priority from CND)
21: Return the ℓ closest objects to the query
22: end while

Note 1: Increasing and advancing in POS and Q requires to checked for
overflows, in such case the entry must be removed from both POS and Q.
This is why we use Q.Length instead K.
Note 2: Advance means searching for the desired key in the list, in particular
we use doubling search [13] since it makes the algorithm of Barbay-Kenyon
instance-optimal in the comparison model [3].

To represent R we need σ log n bits, using pointers to S, or σ
objects if they are represented explicitly. The storage requirements
of the plain mapping is Kn log σ bits. Using the inverted index the
space cost increases to Kn log n bits, i.e., a total of Kn integers of
log n bits, distributed among the σ sorted lists.

4.1 Compressing the inverted index
The space of our index is Kn integers. For a typical value like

K = 7, this is larger than the typical overhead introduced by tree
data structures. Nevertheless there is room for improvement by
compressing the index using indexed bitmaps, with a very small
speed penalty for set union and intersection computations [15, 11,
20].

We must handle σ lists. The s items of a list are distributed in the
range [1 · · ·n]; then ideally we can represent that list using log

(

n

s

)

bits. Using the sarray of Okanohara and Sadakane [15] we can
represent such an inverted list using s log n

s
+ 2s + o(s) bits. As

all the s items add up to Kn items overall, the worst case arises
when s = Kn/σ for each list, where the complete index takes
Kn log σ

K
+ 2Kn + o(Kn) bits. The sarray supports constant

access to every position of every list.

4.2 Inducing Runs in the Index
The plain representation and the sarray encoding are enough to

host medium to large databases in main memory in a standard desk-
top computer. In particular, when using the sarray the index is com-
pressed to its zero-order entropy and the extension to secondary
memory is straightforward.

On the other hand, to handle very large databases or when us-
ing devices with scarce memory (such as a mobile phone), better
compression is needed. The additional compression is obtained by
renumbering objects (represented by integers) so as to obtain prox-
imal integers in the inverted lists L[r]. This is done by observing
that objects in any given inverted list L[r] share at least the ref-
erence r, and hence cannot be much far apart from each other, as
described in Observation 1. The procedure starts computing the
mapped space, where each object u ∈ S is represented by Pu, i.e.,
implemented as an array of integer identifiers of KNNR(u). Also,
Pu is sorted according to the region identifiers, not by proximity
to u. Secondly, the database is lexicographically sorted, using a
linear sort for the first levels and a threeway quick sort for deeper
levels, similarly to practical suffix array sorting algorithms [19].
Thirdly, the permutation of S induced by the sort is used to renum-
ber the database S. Finally, the inverted index is created using the
permuted mapping.

The first step creates ranges inside inverted lists of consecutive
integers such that the i-th integer plus 1 is equal to the (i + 1)-
th integer. These regions are named runs, and are suitable to be
encoded with a Run-Length scheme. For ranges not in a run we
aim at having small differences between consecutive elements. Al-
though sarray does not profit from runs and small differences, we
can reduce space significantly by using an alternative encoding.

Differential encoding.
An inverted list encoded with differences is just the list of dif-

ferences between consecutive entries, as shown in the example of
Figure 2. Each difference is encoded using Elias-γ [8] which is a
variable-length integer encoding using 2 log x + 1 bits to encode
an integer x. It uses less space than fixed-length binary encoding
(which uses log n bits) if x ≤

√

n/2. We have s integers in the
range 1 to n. In the worst case each difference is n/s and we need
twice the optimal number of bits, 2s log n/s+2s. This worst case
is unlikely, however, as we have induced runs.

Our search algorithm (2) uses doubling search to advance, so we
need access to the i-th element. In order to parameterize time and
storage requirements we add absolute samplings each B entries.
Now access to the i-th item in the list needs at most B integer
decodings. There are at most Kn

B
samples overall and, as usual, the

worst case in space will arise when each list contains Kn

Bσ
of them.

Id Pu

Orig. Num.
Sort

1 312 123
2 321 123
3 123 123
4 421 124
5 521 125
6 431 134
7 513 135
8 531 135
9 154 145

10 541 145
11 514 145
12 145 145
13 235 235
14 532 235
15 423 245
16 245 245
17 254 245
18 542 245
19 345 345
20 354 345
21 543 345

Inverted index

1 -> 1,2,3,4,5,6,7,8,9,10,11,12

2 -> 1,2,3,4,5,13,14,15,16,17,18

3 -> 1,2,3,6,7,8,13,14

4 -> 4,6,9,10,11,12,15,16,17,18,

19,20,21

5 -> 7,8,9,10,11,12,13,14,15,16,

17,18,19,20,21

Inverted index with differences

1 -> 1,1,1,1,1,1,1,1,1,1,1,1

2 -> 1,1,1,1,1,8,1,1,1,1,1

3 -> 1,1,1,3,1,1,5,1

4 -> 4,2,3,1,1,1,3,1,1,1,1,1,1

5 -> 7,1,1,1,1,1,1,1,1,1,1,1,1,1,1

Inverted index with differences + Run-Length

1 -> (1,12)

2 -> (1,5),8,(1,5)

3 -> (1,3),3,(1,2),(1,1)

4 -> 4,2,3,(1,3),3,(1,6)

5 -> 7,(1,14)

Figure 2: Example of the induction of runs for plain, differ-

ences and run-length encoding of lists. Here σ = 5, n = 21.

The inverted list is represented by the differences. If s is the size
of a list then we need

∑s

i=1
2 log(docIdi − docIdi−1 + 1) bits1

to represent the list using Elias-γ without samples. These variable-
length representations are concatenated in a memory area L′, and a
pointer to L′ is set every B positions of the original list L. We need
(s/B) log(|L′|/(s/B))+2s/B+o(s/B) bits for this representa-
tion. In the worst case s = Kn

σ
and |L′| = 2s log(n/s) + 2s, and

the space for the samples adds up to (Kn/B)(log(B(log(σ/K)+
1)) +O(1). This is usually small as |L′| ≪ n due to the runs.

Let B = Θ(log Kn

σ
). Accessing the i-th integer then costs

O(log Kn

σ
) decodings. Each inverted list needs α = Kn

σ
/Θ(log Kn

σ
)

absolute samples, i.e. α = o(Kn

σ
). Each sample needs log n bits if

it is explicitly represented, then representing samples using sarray

requires α log n

α
+ 2α+ o(α) bits (for each list).

Differential + Run-Length encoding.
Differential encoding of the inverted index represents runs with

unary coding, thus for long runs this method is suboptimal. A better
option is to encode the length of the run using Elias-γ code. As
in the differential encoding, we use regular samplings to get fast
access to the i-th integer. Figure 2 shows an example of run-length
encoding of the inverted index, where only differences of 1’s are
run-length encoded as a tuple (1, length). Since we always decode
from left to right it is simple to mix differences with run-length
encodings. If an absolute sample falls inside a sample, the run is
cut. This is suboptimal in space, but allows decompression without
binary searching to locate the actual position.

A natural optimization is introduced as follows: if the j-th and
the (j+1)-th absolute samples are separated by exactly B positions
we say that the range is filled, and no representation of the data
inside the range is necessary; just the sampling data is stored. If the
i-th integer lies in a filled range, it is decoded in constant time.

5. EXPERIMENTAL RESULTS

1We define docId0 = 0.

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

F
re

q
u

e
n

c
y

(a) Documents are a high dimensional database.
The query set is the first 200 documents

 0 5000

 10000

 15000

 20000

 25000

 30000

 35000

F
re

q
u

e
n

c
y

(b) 216 randomly selected subspace of CoPhIR
10M. The query set is the first 200 objects

Figure 3: Histograms of our test databases using the selected

query sets.

We show experimental results for two representative spaces.
Documents. A collection of 25157 short news articles in the

TFIDF format from Wall Street Journal 1987 − 1989 files from
TREC-3 collection. We use the angle of vectors as distance mea-
sure. It is available from the SISAP library (http://www.sisap.
org). We extracted 100 random documents from the collection as
queries; these documents were not indexed. Each query searches
for 30NN. TFIDF documents are vectors of thousands of coordi-
nates. We choose this space because of its high intrinsic dimen-
sionality; the histogram of distances is shown in Figure 3(a). As a
reference, a sequential scan needs 0.23 seconds.

CoPhIR MPEG7 Vectors. A subset of 10 million 208-dimensional
vectors from the CoPhIR database [5]. We use the L1 distance.
Vectors are a linear combination of five different MPEG7 features
[5]. The first 200 vectors from the database are queries; each query
consist in searching 30NN. A sequential scan takes 47.3 seconds.
Figure 3(b) shows the histogram of distances, as seen from our
query set.

We use 30 nearest neighbors because it is a common value as an
output in a multimedia information retrieval system.

Implementation notes and test conditions.
All the algorithms were written in C# , with the Mono framework

(http://www.mono-project.org). Algorithms and indexes are
available as open source software in the natix project (http://
www.natix.org). The experimentation was executed in a 16 core
Intel Xeon 2.40 GHz workstation with 32GiB of RAM, running
CentOS Linux. The entire databases and indexes in main memory
and without exploiting any parallel capabilities of the workstation.

All our experiments were performed fixing K = 7 and with sev-
eral σ values. The selection of K affects the required space, the
search time, and the quality of the answer. We observed experi-

mentally that K = 7 is a good tradeoff between space, time and
recall. The experimental support for this choice is not shown be-
cause of space restrictions, but is quite similar to those presented
by [9, 1], and recently by [24].

5.1 General performance
In this section we analyze the recall, total time, and the percent-

age of the reviewed database in the CoPhIR 10M database. Due to
space constraints this section do not show all the experiments we
have performed. Experimental results are shown for two type of
queries: t-threshold queries, and 1-threshold with fixed number of
verified objects.

Our primary quality measure is the recall: the ratio between rel-
evant results in S and the relevant objects obtained. Since our que-
ries are 30NN, the recall is just the number of true 30NN elements
returned, divided by 30. This measure ignores how close the non-
relevant objects are from the true 30NN. In the next section we
discuss this point.

Figure 4(a) shows how the recall evolves with the number of ref-
erences. Methods based on t-threshold show a decreasing recall
as function of t; smaller t gives better recall. Smaller σ values
(number of references) give better recall, but at the cost of distance
computations and time, see Figures 4(b) and 4(c) respectively. No-
tice that in both figures, the points in each curve are produced by
indexes with different σ values. Then, when t > 1 the order of σ is
descending as the recall increases and for t = 1 σ is in ascending
order. We put labels in selected curves of the figures to increase
readeability.

Larger σ values imply faster indexes. The speedup is produced
because the Kn objects are split into more inverted lists. We note
that the distribution of lengths (of inverted lists) is not Zipfian as in
text inverted indexes for natural languages.

All these parameters induce tradeoffs that can be used to effec-
tively tune real applications. For example, for t = 2 and σ = 2048
the index achieves 0.92 of recall, reviewing 0.6% of the database
in about 0.4 seconds.

Large t values produce faster searches, since the algorithm skips
parts of the input lists, due to advance commands in Algorithm
2. Fixing γ, the number of elements to be verified, restricts the
percentage of verified elements of the database and hence bounds
the total time. See lines “15000”, “30000” and “60000” of Figure
4. In this case t = 1 and the t-threshold algorithm is equivalent
to set union (being linear in the number of items in the input lists).
Notice that under this configuration, the performance is driven by
CND, i.e. the priority queue of Algorithm 2. Based on Figure
4(c), this strategy (lines named “15000”, “30000” and “60000”) is
useful to control the search time, yet it needs to compute the entire
set union.

Naturally, a hybrid configuration achieves better control of the
performance and quality, i.e. the combination of t-threshold and
fixed γ. For example, for σ ≥ 1024 pure t-threshold configurations
yields to better times than just fixing the cardinality, see Figure 4(c).
The inverse is true for σ < 1024.

Comparison with previous work.
We compared our work with four indexes using the permutations

approach [6, 9, 1, 23], as described in Section 1. Since we do not
have the actual implementations of all the indexes being compared,
and because of space limitations, we carry out a single comparison
fixing our attention on the recall, disregarding the time, and also
fixing the number of references. A thorough comparison is still
needed to have a fair overview of the tradeoff between speed, recall
and space usage for all this indexes. The PP-index [9] was run as a

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

64 128 256 512 1024 2048

re
c
a
ll

number of references

Recall
 cophir, 10^7 objects, K=7

60000
30000
15000

t=7
t=6
t=5
t=4
t=3
t=2

(a) Recall.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

%
 o

f
re

v
ie

w
e
d
 o

b
je

c
ts

recall

Db review vs recall
 cophir, 10^7 objects, K=7

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

64

128

256

512

1024

2048

60000
30000

15000
t=7

t=6
t=5

t=4
t=3

t=2

(b) Percentage of database reviewed.

 0.01

 0.1

 1

 10

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

ti
m

e
 (

s
e
c
)

recall

Search time vs recall
 cophir, 10^7 objects, K=7

64

128

256

512

1024

2048

64

128

256

512
1024

2048

60000
30000

15000
t=7

t=6
t=5

t=4
t=3

t=2

(c) Search times.

Figure 4: CoPhIR 10M recall and performance

single instance, and without query expansion.
For all indexes we fix γ ≤ 1000. Figure 5 shows the results

of our experiments, showing that the NAPP inverted index is better
when the number of references is large. The comparison is with the
database of documents because of its high intrinsic dimensionality.

Proximity Ratio as a Measure of Retrieval Quality.
In multimedia information retrieval applications, especially when

some relevance feedback is expected from the user, we want to
measure how close the reported non-relevant objects (the false pos-

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

64 128 256 512 1024 2048

re
c
a
ll

number of references

Recall comparison with previous work
 Db documents, 25057 objects, K=7

NAPP inv. index (t=1)
PP-index (Plain)

Perms
Brief index

Metric inv. file

Figure 5: Recall behavior of previous work. We fix all the meth-

ods to review at most 1000 candidates.

σ γ max-ratio
mean stdev min max

64 15000 1.06 0.04 1.00 1.25
128 15000 1.05 0.03 1.00 1.25
256 15000 1.03 0.03 1.00 1.27
512 15000 1.02 0.02 1.00 1.12
1024 15000 1.02 0.01 1.00 1.06
2048 15000 1.01 0.01 1.00 1.10

64 30000 1.04 0.03 1.00 1.19
128 30000 1.03 0.02 1.00 1.16
256 30000 1.02 0.02 1.00 1.26
512 30000 1.01 0.01 1.00 1.11
1024 30000 1.01 0.01 1.00 1.04
2048 30000 1.01 0.01 1.00 1.07

64 60000 1.02 0.02 1.00 1.12
128 60000 1.02 0.02 1.00 1.09
256 60000 1.01 0.02 1.00 1.25
512 60000 1.01 0.01 1.00 1.07
1024 60000 1.01 0.01 1.00 1.04
2048 60000 1.00 0.01 1.00 1.06

Table 1: Statistics of the covering radius (30-th nearest neigh-

bor) of the database of CoPhIR.

itives) are from the relevant ones. To this end we show some statis-
tics of the ratio between the covering radius of the 30-th nearest
neighbor and the distance given by NAPP in Table 1. Note that
large σ values produce results that are very close to the real an-
swers, supporting Observation 1, which bounds the distance to the
query, not the recall. Actual distances for the 30-th nearest neigh-
bor in our query set have the following statistics: mean=3958.16,
standard deviation=930.24, minimum=1418, and maximum=6531.
The complete histogram of distances is shown in Figure 3(b).

The same statistics are given for the database of documents in
Table 2. Notice that this database has worse performance, proba-
bly because of the high intrinsic dimensionality. The statistics for
the actual distances of the 30-th nearest neighbor are: mean=1.22,
standard deviation=0.19, minimum=0.61, and maximum=1.50.

In both experiments, our results are very close to the query, based
on the two histograms of distances of Figures 3(a) and 3(b).

5.2 The Compressed NAPP Inverted Index
Our plain inverted index uses a fixed number of bits. For ex-

ample, the index for CoPhIR 10M uses 267MB, i.e., each ob-
ject is represented with 224 bits, using integers of 32 bits. The
compressed representation uses from 10 to 80 bits per object for
CoPhIR, and 20 to 80 bits in documents. Our experiments confirm

σ γ max-ratio
mean stddev min max

64 100 1.14 0.17 1.00 2.01
128 100 1.11 0.14 1.00 1.87
256 100 1.10 0.17 1.00 2.27
512 100 1.05 0.07 1.00 1.58
1024 100 1.03 0.06 1.00 1.51
2048 100 1.02 0.02 1.00 1.10

64 500 1.08 0.14 1.00 1.86
128 500 1.05 0.10 1.00 1.80
256 500 1.03 0.09 1.00 1.77
512 500 1.01 0.02 1.00 1.12
1024 500 1.01 0.03 1.00 1.22
2048 500 1.00 0.01 1.00 1.07

64 1000 1.05 0.08 1.00 1.62
128 1000 1.02 0.03 1.00 1.14
256 1000 1.01 0.03 1.00 1.14
512 1000 1.01 0.02 1.00 1.12
1024 1000 1.00 0.01 1.00 1.06
2048 1000 1.00 0.01 1.00 1.07

Table 2: Radius statistics for the database of the documents.

 0

 5

 10

 15

 20

 25

 30

 35

64 128 256 512 1024 2048

c
o
m

p
re

s
s
io

n
 r

a
ti
o

number of references

CoPhIR, 10M objects, plain index size: 267.03 MB

Diff B=7
Diff B=15
Diff B=31
Diff B=63

Diff B=127
RunLen B=7

RunLen B=15
RunLen B=31
RunLen B=63

RunLen B=127
SArray

(a) CoPhIR 10M

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

64 128 256 512 1024 2048

c
o
m

p
re

s
s
io

n
 r

a
ti
o

number of references

Wall Street Journal Documents, 25057 objects, plain index size: 0.67 MB

Diff B=7
Diff B=15
Diff B=31
Diff B=63

Diff B=127
RunLen B=7

RunLen B=15
RunLen B=31
RunLen B=63

RunLen B=127
SArray

(b) Documents

Figure 6: Compressing inverted indexes for our experimental

data sets.

that the number of runs is large: the smallest index is the run-length
based one and the largest compressed index is the sarray , as shown
in Figure 6. Note that even the space gain of sarray is considerable.
σ is also a crucial parameter for compression. Small σ values pro-
duce a small index, yet it needs to review larger portions of the

type of search time (sec)
encoding B CoPhIR documents

Differences 7 2.57 0.020
Differences 15 3.34 0.020
Differences 31 4.81 0.022
Differences 63 7.69 0.025
Differences 127 13.50 0.028
Run-Length 7 2.57 0.019
Run-Length 15 2.73 0.019
Run-Length 31 2.75 0.019
Run-Length 63 2.71 0.019
Run-Length 127 2.64 0.020
sarray - 0.34 0.031
plain (w/runs) - 0.17 0.024
plain (original) - 0.42 0.029

Table 3: The average time necessary to search a query in the

compressed NAPP inverted index and the plain version. In-

dexes were configured using σ = 2048, (t = 2)-threshold

search. Indexes for CoPhIR γ = 15000, and γ = 1000 for

indexes of documents database.

database.

5.2.1 Time performance of the compressed index

In the experiment, all compressed indexes were produced with
induced runs. For the plain index we show the two encodings, with
and without induced runs because it affects the retrieval speed. For
example, for the CoPhIR index the plain index working with the
induced runs is about 2.5 times faster than the original one. This
is not surprising since the t-threshold algorithm is instance opti-
mal. For differences and run-length encodings, the parameter B
(Section 5.2) manages the tradeoff between time and compression.
Run-length and differences are still interesting methods since they
achieve low compression ratios, as shown in Figure 6. Moreover,
the run-length based indexes are just four times slower than the
NAPP inverted index (without runs).

This tradeoff is significant for the CoPhIR database, where the
search time increases several times, as compared with the plain rep-
resentation. The sarray coding is quite fast (faster than plain origi-

nal) and still compress significantly. This can be explained because
the sarray gives constant time access to the i-th element [15]. Con-
trasting with the CoPhIR results, compressed indexes for the doc-

uments database are as fast as the plain representation, and even
faster for some configurations (i.e., for sarray). Note that small
compressed inverted indexes can fit in the CPU caches. This applies
to inverted lists involved in the solution of a particular query. Also
notice that the distribution of runs produces easier instances for the
t-threshold algorithm, taking advantage of the Barbay-Kenyon t-
threshold algorithm.

6. CONCLUSIONS AND FUTURE WORK
We introduced a novel approximate index for general metric spa-

ces called NAPP inverted index. Our index is capable of achieving
high recall in sub-second queries, even for large metric databases.
The plain index uses a few integers per object and the compressed
versions use a few bits per object, with a small penalty in search
speed. The compression allows one to efficiently use higher hier-
archies of memory (RAM, L2 and L1 cache). From another per-
spective, medium-sized indexes (a few millions of objects) can fit
in small and mobile devices, bringing proximity search to these
popular supports.

The quality achieved for our index was measured in two senses:
recall and proximity ratio. In both senses NAPP inverted index is a
very competitive option when compared with traditional solutions.

We introduced a novel technique able to induce runs in the in-
verted index, usable in at least two scenarios: for speeding up a
plain index, and for inducing compression in compressed indexes.
The sarray index produces a fast compressed version and can be
used with or without induced runs.

We are working on the creation of faster ad-hoc algorithms for
the t-threshold problem for the compressed inverted lists, and in
the optimization and scalability of the technique using parallel and
distributed techniques.

Another challenge is to efficiently support dynamic operations in
the NAPP inverted index for both S and R. Probably this can be
addressed with a variation of dynamic compressed bitmaps [14].
Dynamic R sets requires new efficient algorithms to locate objects
affected by the inserted reference.

The build time is dominated by the σn distances computed, hence
the preprocessing step is linear on σ for a fixed n and can be large.
For example, for CoPhIR 10M, it ranges from 49 minutes to 32
hours, for σ = 64 and 2048 respectively. For the documents
database, it requires 14.45 seconds using 64 references, and up to 9
minutes for σ = 2048. A simple scheme to speed up the construc-
tion is to index the references and then solve KNN searches over
R, speeding both search and building times. In particular, we may
use a NAPP inverted index to index R. Notice that using a larger
R set produces a faster index; the sketched boosting technique may
allow a significant increase in the number of references.

7. REFERENCES

[1] G. Amato and P. Savino. Approximate similarity search in
metric spaces using inverted files. In InfoScale ’08:

Proceedings of the 3rd international conference on Scalable

information systems, pages 1–10, ICST, Brussels, Belgium,
Belgium, 2008. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering).

[2] R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern

Information Retrieval. ACM Press / Addison-Wesley, 1999.

[3] J. Barbay and C. Kenyon. Adaptive intersection and
t-threshold problems. In Proceedings of the 13th ACM-SIAM

Symposium on Discrete Algorithms (SODA), pages 390–399.
ACM-SIAM, ACM, January 2002.

[4] C. Böhm, S. Berchtold, and D. A. Keim. Searching in
high-dimensional spaces: Index structures for improving the
performance of multimedia databases. ACM Computing

Surveys, 33(3):322–373, 2001.

[5] P. Bolettieri, A. Esuli, F. Falchi, C. Lucchese, R. Perego,
T. Piccioli, and F. Rabitti. Cophir: a test collection for
content-based image retrieval. CoRR, abs/0905.4627v2,
2009.

[6] E. Chavez, K. Figueroa, and G. Navarro. Effective proximity
retrieval by ordering permutations. IEEE Transactions on

Pattern Analysis and Machine Intelligence,
30(9):1647–1658, Sept. 2008.

[7] E. Chávez, G. Navarro, R. Baeza-Yates, and J. L. Marroquín.
Searching in metric spaces. ACM Comput. Surv.,
33(3):273–321, 2001.

[8] P. Elias. Universal codeword sets and representations of the
integers. Information Theory, IEEE Transactions on,
21(2):194 – 203, mar 1975.

[9] A. Esuli. Pp-index: Using permutation prefixes for efficient
and scalable approximate similarity search. In Proceedings

of the 7th Workshop on Large-Scale Distributed Systems for

Information Retrieval (LSDS-IR’09), pages 17–24, Boston,
USA, 2009.

[10] K. Figueroa and K. Frediksson. Speeding up permutation
based indexing with indexing. In Proceedings of the 2009

Second International Workshop on Similarity Search and

Applications, pages 107–114. IEEE Computer Society, 2009.

[11] R. González, S. Grabowski, V. Mäkinen, and G. Navarro.
Practical implementation of rank and select queries. In
Poster Proc. Volume of 4th Workshop on Efficient and

Experimental Algorithms (WEA), pages 27–38, Greece,
2005. CTI Press and Ellinika Grammata.

[12] G. R. Hjaltason and H. Samet. Index-driven similarity search
in metric spaces (survey article). ACM Trans. Database Syst.,
28(4):517–580, 2003.

[13] D. E. Knuth. The Art of Computer Programming, Volume III:

Sorting and Searching. Addison Wesley Longman Publishing
Co., Inc., Redwood City, CA, USA, 2nd ed edition, 1998.

[14] V. Mäkinen and G. Navarro. Dynamic entropy-compressed
sequences and full-text indexes. ACM Transactions on

Algorithms (TALG), 4(3):article 32, 2008. 38 pages.

[15] D. Okanohara and K. Sadakane. Practical
entropy-compressed rank/select dictionary. In Proceedings of

the Workshop on Algorithm Engineering and Experiments,

ALENEX 2007, New Orleans, Louisiana, USA, January
2007. SIAM.

[16] M. Patella and P. Ciaccia. Approximate similarity search: A
multi-faceted problem. Journal of Discrete Algorithms,
7(1):36–48, 2009.

[17] V. Pestov. Intrinsic dimension of a dataset: what properties
does one expect? In Proc. 20th Int. Joint Conf. on Neural

Networks, Orlando, FL, 2007, pages 1775–1780, 2007.

[18] V. Pestov. An axiomatic approach to intrinsic dimension of a
dataset. Neural Networks, 21(2-3):204–213, 2008.

[19] S. J. Puglisi, W. F. Smyth, and A. H. Turpin. A taxonomy of
suffix array construction algorithms. ACM Comput. Surv., 39,
July 2007.

[20] R. Raman, V. Raman, and S. S. Rao. Succinct indexable
dictionaries with applications to encoding k-ary trees and
multisets. In Proceedings of the Thirteenth Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 233–242, San Francisco, CA, USA, January 2002.
ACM/SIAM.

[21] H. Samet. Foundations of Multidimensional and Metric Data

Structures. The morgan Kaufman Series in Computer
Graphics and Geometic Modeling. Morgan Kaufmann
Publishers, University of Maryland at College Park, 1
edition, 2006.

[22] E. S. Tellez and E. Chavez. On locality sensitive hashing in
metric spaces. In Proceedings of the Third International

Conference on SImilarity Search and APplications, SISAP
2010, pages 67–74, New York, NY, USA, 2010. ACM.

[23] E. S. Tellez, E. Chavez, and A. Camarena-Ibarrola. A brief
index for proximity searching. In Proceedings of 14th

Iberoamerican Congress on Pattern Recognition CIARP

2009, Lecture Notes in Computer Science, pages 529–536,
Berlin, Heidelberg, November 2009. Springer Verlag.

[24] E. S. Tellez, E. Chavez, and M. Graff. Scalable pattern
search analysis. In To appear in the Third mexican congress

on Pattern Recognition, MCPR 2011. Springer Verlag,
Lecture Notes in Computer Science, 2011.

