Dynamic Spatial Approximation Trees for Massive Data

Gonzalo Navarro
Dept. of Computer Science
University of Chile
Santiago, Chile
gnavarro@dcc.uchile.cl

Abstract—Metric space searching is an emerging technique
to address the problem of efficient similarity searching in
many applications, including multimedia databases and otar
repositories handling complex objects. Although promisig, the
metric space approach is still immature in several aspectshat
are well established in traditional databases. In particuar, most
indexing schemes are not dynamic, that is, few of them toleta
insertion of elements at reasonable cost over an existing diex
and only a few work efficiently in secondary memory.

In this paper we introduce a secondary-memory variant of
the Dynamic Spatial Approximation Tree, which has shown to
be competitive in main memory. The resulting index handles
well the secondary memory scenario and is competitive withhie
state of the art, becoming a useful alternative in a wide rang
of database applications. Moreover, our ideas are applicdb
to other secondary-memory trees where there is little conwl
over the tree shape.

I. INTRODUCTION

Nora Reyes
Depto. de Inforratica
Universidad Nacional de San Luis
San Luis, Argentina
nreyes@unsl.edu.ar

the similarity computation can be expensive (e.g., taking
milliseconds of CPU time) we cannot disregard disk costs.

From the few dynamic indexes, even fewer work well
in secondary memory. That is, most of them need the data
structure in main memory in order to operate efficiently.

Although for some applications a static scheme may be
acceptable, many relevant ones do require dynamic capa-
bilities. Actually, in many cases it is sufficient to support
insertions, such as in digital libraries and archival syste
versioned and historical databases, and several othearscen
ios where objects are never updated or deleted.

In this paper we introduce a dynamic index aimed at
secondary memory. We base our work on the Dynamic
Spatial Approximation Tree déa-tre@ [5]. It has been
shown that thalsa-treegives an attractive tradeoff between
memory usage, construction time, and search performance.
Our secondary memory versiongs@*-treeand dsa+-treg

Similarity searching [1], [2] has applications in many retain these good features, and in addition perform well
fields, such as multimedia databases, text retrieval, fomct in secondary memory. We focus on handling insertions

prediction, and many others. All those applications shargand thus incremental construction) and searches in this

some common characteristics. There is a fimiggasetof
elements belonging to anetric space where adistance
functionis used to assess similaritgimilarity queriesare

paper, leaving deletions for future work. Our experimental
comparisons show that our structures achieve very good disk
page utilization and are competitive with thetree (the best

posed to this dataset. These consist basically in, givenwa neknown dynamic secondary-memory metric index), being

element of the space called theery looking for elements

more efficient for insertions and comparable for searches.

of the dataset that are similar enough to the query. The The dsa*-treeensures a minimum fill ratio of 50% and

dataset is preprocessed so as to buildralexthat reduces

achieves 75%—85% in practice. Instead, tisa+-treeis a

query time. This metric space approach is becoming widelheuristic that does not ensure a minimum fill ratio, achigvin
popular [1], [2] and a large number of indexing methods65%—70% in experiments. In terms of 1/Os, thsa+-tree
have flourished [1], [3], [4], but mature solutions from the is costlier to build but faster to search than thea*-tree

database viewpoint are a long way off.

Although we will focus on range searches in this work,

Most of the existing indexes astatic Once they are built the structures are capable of nearest neighbor searchimg in
for a given dataset, adding more elements to the dataset, eainge optimal-way, by simply inheriting the corresponding
removing an element from it, requires an expensive updatingnain-memory algorithms [5], [6].
of the index. Some indexes tolerate insertions in pringiple
but their quality degrades and require periodic rebuilding Il. BASIC CONCEPTS
Others tolerate deletions with the same quality degradatio LetU be a universe obbjects with a nonnegativdistance
problem. Thus there are very fedynamicindexes. functiond : U x U — RT defined among them. This

There are also many interesting databases for similaritglistance satisfies the three axioms that m@kel) a metric
searching where the objects are so large that they musipace strict positiveness, symmetry, and triangle inequality.
stay on disk; or the objects are so many that the indexhe smaller the distance between two objects, the more
itself cannot fit in main memory. In this case, although“similar” they are. We handle a finitdatasetS C U, which

is a subset of the universe of objects and can be preprocesstgorithm 1 Insertion of a new element into a dsa-tree
(to build an index). Later, given a new object from the With roota using timestamping plus bounded arity.
universe (aquery ¢ € U), we must retrieve all similar Insert(Node a, Elenent z)

elements found in the dataset. We focus onrtogge query

in this work: Giveng € U andr > 0, retrieve all elements

of S within distancer to q. Thatis,{z € S, d(z,q) <7}.

The distance is assumed to be expensive to compute.
However, when we work in secondary memory, the complex-
ity of the search must consider both the number of distance
evaluations performed and the 1/O time; other components
such as CPU time for side computations can usually be
disregarded. Given a dataset|6f = n objects of total size
N and disk page siz#, queries can be trivially answered o]]]
by performingn distance evaluations anf/B 1/Os. The In principle, at search time fcqwnh radiusr, one should
goal of an index is to preprocess the dataset so as to answigPort the rootu if d(a, ¢) < r, then find the closest element

queries with as few distance evaluations and 1/Os as pessibl® € {a} U N(a), i.e., b = argmin . yd(¢,b), and
enter every childe such thatd(q,c) < d(q,b) + 2r and

[1l. DYNAMIC SPATIAL APPROXIMATION TREES d(q,c) <r+R(c). Yet, because of the timestamped insertion

In this section we recall the Dynamic Spatial Approx- Process, we have to consider the neighljors. . ., bx) of a
imation Tree @sa-tre@ [5], which inherits from its static rom oldest to newest, and perform the minimization (to
variant [7]. Unlike most other structures, based on diwdin find b) Wh”e_ we traverse the nelghbors, SO as to d_eC|de
the search space, thésa-treeis based on the idea of at each point whether to enter ing or not. This is
approaching the query spatially, that is, starting at tee tr Pecause, between the insertiorbpandb; ;, there may have
root and getting closer and closer to the query, with a.appeared new elements that prefgrred to be msertedur!to
tolerance given by the query radius. just becaus@iﬂ was not yet a neighbor, so we may miss

A number of alternatives for insertion of new elements@n element if we do not entér; because of the existence

into a dsa-treehave been discussed and evaluated [5]. IOf bi+;. Moreover, we use the timestamps to reduce the
this section we describe only the best one, which we hav#/0rk done inside older neighbors at search time: Say that
used in ourdsa*-treeand dsa+-tree This is a combination @(¢, i) > d(q,bi+;) +2r. We have to entef; because it is

of timestampingand bounded arity A maximum tree arity older. However, only the elem_ents with timestamp sr_na!ler
MazArity (maximum number of children per node) is than that ob;,; should be considered when searching inside
fixed, and also a timestamp of the insertion time of eact:; younger elements have seépn.; and they cannot be
element is kept. Each tree nodemaintains its neighbor Interesting for the search if they choée As parent nodes
setN(a), its timestampl'(a), and its covering radiug(a) &€ older than their desqeno!ants, as soon as we find a node
(maximum distance to a subtree element, used to prune tf{Bside the subtree of; with timestamp larger than that of
searches). Whenever a new inserted elememtrrives at bi+; W€ can stop the search in that branch, because its
node a, we check whether it is closer to than to any Subtree is even younger.

element inN(a). If so, we letz become a new element Finally, as we bound the maximum arity, the rootis
of N(a) only if |[N(a)| < MazArity, in which case it Not included in the minimization, as an element may have

is inserted at the end af(a) and its insertion timel(z) be_en inserted i_nto a child_even if it should have become a
is recorded. In any other case, is recursively inserted n€ighbor. Algorithm 2 depicts the search process. Note that
into the subtree of its closest element¥(a). Note each d(a,¢) is always known except in the first invocation, and
element is older than its children and than its next siblingthe initial ¢ is +oc.

See Algorithm 1.

In general, the idea of the tree is that elements should be
inserted into the subtree of their closest elemeniVifu), Our secondary-memory implementation maintains exactly
or as a new element iV (a) if they are closest ta. This the same structure and carries out the same distance eval-
permits that the search looks for the closest element to theations of the main-memory version. The challenge is how
query ¢ in N(a), yet with tolerance given by the search to maintain a disk layout in order to minimize 1/Os. We
radius r. However, when a new element is inserted intodescribe thedsa*-treein this section, and will spot the
N(a), other elements that were inserted into other neighbordifferences with thelsa+-treein the next.
in N (a) might now prefer the new neighbor. The timestamp We will force that, for anys, the setN(a) will be packed
mechanism is used to avoid any rebuilding, for which thetogether in a disk page, which ensures that the traversal of
search mechanism is modified as detailed next. N(a) requires just one disk read. Moreover, for technical

R(a) < max(R(a),d(a,x))
¢+ argming¢ y(4)d(b, x)
If d(a,z) <d(c,z) A|N(a)] < MazArity Then
N(a) < N(a) : x
N() — (), R(z) <0
T(z) < CurrentTime
CurrentTime «— CurrentTime + 1
El se Insert(c,)

XNoAWNE

IV. SECONDARY MEMORY

Algorithm 2 Searching forg with radiusr in a dsa-tree PAGE i

rooted ata, built with timestamping plus bounded arity. ol 7] PAGE |
1
RangeSearciiNode a, Query ¢, Radius r, =
Ti mest anmp t)
0. 0. o, (o]
1. If T(a)<t A d(a,q) < R(a)+r Then Pl g [l g [efelodg [l [y
2. If d(a,q) <r Then Report a
S el ’ ool A=l Aol sy
4. For bie N(a) Do // ascend. timestanps PACE | \7
5. If d(bi,q) < dmin +2r Then
6. t' — min{t} U{T(b;),5 > A
d(bi, q) > d(bs, q) + 2r} 3 [
¢ RangeSearchbi, g, 7, t') oy [+ el [+ Rl T3] ol 7]
8- d'min — min{d7rzi7L7 d(bu q)} & = == j = 0y, 053
011 013

reasons that become clear latdf,axArity must be such
that a disk page can store at least tiV) lists of maximum
length. Yet, we are free to use a considerably lower value
for Max Arity, which is usually beneficial for performance.

To avoid disk underutilization, we will allow several nodes B. Insertions

to share a single disk page. We define insertion policies To insert a new element into the dsa*-tree we first

that maintain a partitioning of the tree into disk pages thaproceed exactly as in Algorithm 1: We find the insertion

is efficient for searching and does not waste much spaceoint in the tree, following a unique path, so that when we

Indeed, we will guarantee a minimum average disk pageletermine that should be added t&/ (a), we have both the

utilization of 50%, and will achieve much more in practice. pages ofa and N(a) loaded in main memory (these pages
can be the same or different). Now we have to adat the
end of list N (a) inside a disk page. IN(a) was empty, then

A. Data Structure Layout x will become the first child of, thus we modifyF'(a) and
insertz into the page of.. Else,x must be added at the end

We represent the children of a node as a linked listof N(a), in the page ofN(a).

Therefore, each tree node has a first chilth) and a next In either case, we must addto an existing page, and it

sibling S(a) pointers, where the latter is always local to is possible that there is not enough space in the page. When

the disk page. This allows making most changes\M@:) this is the case, the page must be split into two, or some

without accessing:, which might be in another disk page. parts of the page must be inserted into an existing page. We

Each node also stores its timestaffifu) and its covering describe next our overflow management policy.

radiusR(a). Each disk page maintains the number of nodes Because everyV(a) fits in a single disk page, the /0O

actually used. Far pointers lik€'(a) (i.e., that potentially cost of an insertion is at most page reads plus 1-3 page

point to another page) have two parts: the page and the nodgrites, whereh is the final depth of: in the tree. The reads

offset inside that page. Fig. 1 illustrates théa) and S(a) can be much fewer thah sincea and N (a) can be in the

pointers (whileT'(a) and R(a) are omitted). same disk page for many nodes along the path.

Nc_)des have f_ixed _size i_n our impIementation_, thuscl Page Overflow Management
varying-length objects like strings are padded to their max) i _
When the insertion of in N(a) produces a page over-

imum length. It is possible, with more programming effort, | he followi o q |
to allocate varying sizes for each node within a disk page. Ir‘ ow, we ”,Y out t_e ollowing strategies, in or er, until one
succeeds in solving the overflow. In the following, assume

this case the guarantee of holding at least WQ lists per i i
page translates into a variable bound on the arity of eacfi Nas @lready been inserted in¥(a), and nowN (a) does

node, so that a node is not permitted to acquire a new not fit in its disk page.

neighbor if the total size of itsV() list would surpass half 1st (move to parent)lf « andN(a) are located in different
the disk page. In the case, however, of large objects thatages, and there is enough free space in the pagetof
would force very low arities (or simply not fit in half a disk hold the wholeN (a), then we moveN (a) to the page of
page), one can use pointers to another disk area, as it i and finish. This actually improves 1/O access times for
customary in other metric structures, and treat the panter!V(a). We carry out 2 page writes in this case. See Fig. 2.
as the objects. In this case every distance calculationésipl 2nd (vertical split) If the page ofN(a) contains subtrees
also at least one disk access. with different parents from another page, we make room by

Figure 1. Example of'(a) and .S(a) pointer layout.

(otherwise we would be moving the whole subtree, which
is equivalent to a vertical split), hence only 2 page writes
o) © suffice; (i4) no N(b) is split in this process because they
/< have all the samd; (iii) the new page contains children
: / of different nodes, and potentially of different pages afte
future splits of the current node.
l\ We have to refine the rule when even the largkktaves
the current page less than half-full. In this case we can move
only some of theN(b) lists of depthd. This could still
leave the current page underfull if there is only a¥ié&) of
maximum depthd, but this cannot happen because the disk
t';'guarreeﬁt- Example before (left) and after (right) applyihg policymove page capacity is at least twice the maximum length of a
parent N() list. Another potential problem is that, if the maximum
depth isd = 0, then we will move anV (b) list whose parent

moving the whole subtree where the insertion occurred to & in another page. Yet, this is also impossible because the

new page (that is, we move all the subtree nodes residingUrrent subtree should be formed by only the top-leve)

in this page, to a new one). This maintains the number ofist, and since it cannot account for more than half of the

disk reads needed to traverse the subtree. This needs up td89€, & vertical split should have applied in case of overflow

page writes, as th&'() pointer of the subtree parent resides 9. 4 illustrates a horizontal split.

in another page, and it must be updated. Note that we know /
¢

e

where is the parent of the subtree to move, as we have just
descended tdV(a). Fig. 3 illustrates this case.

1] -

o

e

Figure 4. Example before (left) and after (right) applyirtge tpolicy
horizontal split.

Note thatmove to parentay apply because\ertical or
: horizontal splitfreed some space in since its children had
\. : to move to a new page. Rertical split may apply after a

horizontal splithas put several nodes of different parents
together. Ahorizontal splitis always applicable because
any individual N (a) fits in a page. Finally, we try in the
Figure 3. Example before (top) and after (bottom) applyihg policy beginning to putV(a) in the same page af (when N(a)
vertical split. is created) and later move it away viaharizontal split

o . {f necessary. Note that, in general termsnave to parent

To maintain a property whose purpose will be apparen .
. . . : ; . improves 1/0O performance (as it puts subtrees together), a
in Section IV-D, we avoid using the vertical split whenever . . S
vertical split maintains it (as keeps subtrees together), and

the current page, after moving the chosen subtree to a neévhorizontal splitdegrades it. Hence the order in which we
page, is less than half-full.

]) try the policies.
3rd (horizontal split) We move to a new page all the nodes)])
of the subtree arrived at, with local depth larger thiadfor ~ D- Ensuring 50% Fill Ratio
the smallest! that leaves the current page at least half-full. The previous operations do not yet ensure that disk pages
The local depth is the depth within the subtree stored aére at least half-full. Thenove to parentase does: As in the
the page, and can be computed on the fly at the momermthild pageN(a) plus the rest overflowed, removiny(a)
of splitting. Note that(:) the nodes whose parent is in cannot leave the child page less than half-full, as the page
another page have the smalléstnd thus they are not moved size is at least twice the size d¥(a). Yet, vertical and

horizontalpartitionings can create new underfull pages many VI. EXPERIMENTAL RESULTS
times, although they do guarantee that the existing pages ar |, grger to give a broad picture of the performance of our

always at least half-full. _ . index, we have selected four widely different metric spaces
To enforce the desired fill ratio, we will not allow indis- all from the SISAP Metric Libraryyw. si sap. or g).

criminate creation of new pages. We will point all the time . . :
to onedisk page, which will behe onlyone allowed to be Words.a dlct|oqary 0f 69,069 E_nghsh quQS. The distance
is the edit distance that is, the minimum number

less than half-full (this is initially the root page, of cce). f ch ter i i’ deleti d substituti
This will be called thepointed page, and we will always of characler Insertions, geletions and substitutions
needed to make two strings equal.

keep a copy in main memory to avoid rereading it, apart . VI
P Py y 9 P Documentsl,265 documents under the Cosine similarity,

from maintaining it up to date on disk. ¢ 3 collecti In thi del th
Whenever a new disk page is to be created, we try first to rom TREC-S coliection. In this model the space
has one coordinate per term and documents are

fit the data within the pointed page. If it fits, no page will i thi The di
be created. If it does not, we will create a new page for the seen as vectors in this space. The distance we use
is the angle among the vectors.

new data, and it will become the pointed page if and only . .
if it contains less data than the pointed page (thus only the Images 40,700 20-_d|men5|ona_1l feature_' vectors, generated
from NASA images, using Euclidean distance.

inted be | than half-full). . .
pointed page can be less than half-ful) Histograms 112,682 8-D color histograms (112-

E. Searches dimensional vectors) from an image database.
Searches proceed exactly as in tea-tree for example Euclidean distance is used.
the range search is depicted in Algorithm 2. letoe the For the search experiments, we built the indexes with 90%

rooted connected subgraph of the structure that is traderseyf the points and used the other 10% (randomly chosen)
during a search, and let be the leaves of" (which are a5 queries. All our results are averaged over 10 index
not necessarily leaves in the structure). Because of the digonstructions using different permutations of the dasaset
layout of our structure, where sibling nodes are always in \we have considered range queries retrieving on average
the same page, the number of page reads in the search is@b19%, 0.1% and 1% of the dataset. This corresponds to
most1 + |T'| — |L|, and usually much less. radii 0.140000, 0.150000 and 0.195000 for the documents,

We assume we have sufficient space to store in maif 05740, 0.780000 and 1.009000 for the images, and
memory the disk pages containing the nodes from the currenf 51768, 0.082514 and0.131163 for the histograms. Words
one towards the root, so that old disk pages must not bgaye a discrete distance, so we used radii 1 to 4, which
reread across the backtracking. This is not a problem, as thtrieved on average 0.00003%, 0.00037%, 0.00326% and
tree height is on average logarithmic at most [7]. 0.01757% of the dataset, respectively. The same queries

V. A HEURISTIC VARIANT were used for all the experiments on the same datasets.

The dsa*-treewe have described ensures 50% fill ratio, Given the existence of range-optimal algorithms for

but this has a price in terms of compactness. SpecificallyNN Seéarching [6], we have not considered these search

although our policies try to avoid it as much as possime,experiments separately, as their search cost is exactiptha

the tree may become fragmented especially due to the u@nge searching with a radius that capturesktieeighbors.
of the pointed page mechanism. In this section we propose 1heM-tree[8] is the best-known dynamic and secondary-

a heuristic variantdsa+-tree which tries to achieve better Memory data structure, and its code is freely avaifatie

locality at the price of not ensuring 50% fill ratio (and have used the parameter setting suggested by the atithors

indeed, as seen later, achieving lower fill ratios). Another relevant aI'Fer.natlve is tHe-index which has been
The differences with respect to tiisa*-treeare as fol- Shown to perform similarly to th&l-tree [9], [10]. Thus we

lows. In thedsa+-treeeach subtree root at a page maintains®nly compare to thé/-tree in this conference version.

a far pointer to its parent, and knows its global tree level. The disk page size is 4KB. Both data structures cache the

The vertical split applies every time “move to parent” fails [F€€ root in main memory.

and there is more than one subtree root in the page. It divide&_ Construction

the subtrees into two groups so that the partition is as even) o

as possible in number of nodes, and creates a new page with Ve build thedsa*-treeanddsa+-treeby successive inser-

one of the two groups. This page is a fresh one (no pointeHc’nS’ using thd\/[axAm-ty.that performed best for the main-

page concept is used). In order to move arbitrary subtrees {§€Mory setup [5]. This is 4 for all the spaces but words,

another page we use their far parent pointers to update tpihere it is 32._We tried other _arltles fo_r the secondary-

child pointers of their parents. If there is only one subfree Memory scenario, but these arities are still the best.

the page, the horizontal split uses the global level to move LAt http: // wa db. dei s. uni bo. i t/resear ch/ M r ee/

all the nodes over some threshold to a new fresh page, againzg,, ; cnen o - 6 veereL, PrRoVOTE Pagr FuNCT O = 1 N RAD.

trying to make the sizes as even as possible. SECONDARY_PART_FUNCTI ON = M N_RAD, RADI US_FUNCTI ON = LB, MN.UTIL = 0.2.

Table | shows the average disk page occupancy achieveddcus is on disk page layout policies that achieve competiti

for the different spaces. As explained, this is guaranteed tperformance in terms of 1/0s. We have shown that the
be at leastl /2 for the dsa*-tree but in practice it is3/4 to resulting structure achieves good space utilizati®f8 (to
5/6. That of thedsa+-treeis around2/3, which coincides 5/6) and is competitive in distance computations and 1/Os:
with typical B-tree disk page occupancidy (n2 ~ 69%). It is consistently better than thd-tree for insertions, and
We also show the total number of disk pages used, compardaktter or worse for searches, depending on the metric space.
to theM-tree The dsa*-treeuses (usually much) less space Our techniques are general, and could be useful in other
than thedsa+-tree and this in turn uses significantly less scenarios where there is little control over the shape of the
than theM-tree tree when insertions are carried out.

The most important remaining work is to handle deletions.

Dataset Fill ratio Total pages used i ;
dsar-tree | dsa+-tree| dsa*-tree | dsat-ree| M-tree Se_/eral such poI_|C|es have already been_ studied f_or .the
Words 33% 56% 904 1536 | 1,608 main-memory variant [5], thus the_ focus will b_e, again, in
Documents| 84% 68% 12 22 31 achieving secondary-memory versions that retain goodesspac
Images 80% 67% 1,271 1,726 | 1,973 ilig ati _affini i _ ;
Histograms| 75% 70t 16781 | 21136 | 31791 utlllzatlo_n an_d are I/Q efhmept. Designing buII_< loading
mechanisms is also an interesting problem: In main memory,
Table | the construction by succesive insertions worked bettar tha
AVERAGE SPACE USAGE FOR THE DIFFERENT DATASETS the static construction [5]. Finally, alternative pag®adtion

policies might improve 1/Os, e.g. trying to share pages
among “close” subtrees.
Construction costs are shown in Figs. 5 (distances) and

6 (I/0s). In both aspects, th#sa*-treeand dsa+-treebuild] ACKNOWLEDGEMENTS)
significantly faster than thé/-tree 25%—-80% of the dis- Partially funded by Fondecyt Grant 1-080019, Chile (both

tance computations and 35%-80% of the 1/Os. Tka*-tree authors) and by the Millennium Institute for Cell Dynamics
uses (sometimes significantly) fewer I/Os than tea+- and Biotechnology (ICDB), Grant ICM P05-001-F, Mide-

tree, as it does not modify pointers in several disk pagesP/an. Chile (first author).

In practice the insertion cost on tldsa*-treeanddsa+-tree REFERENCES
grows very slowly (proportionally to the tree depth): Up 0 1 | sametFoundations of Multidimensional and Metric Data
25-36 distance computations (except80 for words) and Structures Morgan Kaufmann, 2005.

up to 2.0-5.5 1/0Os (except around 10.5 for histograms). o
[2] P. Zezula, G. Amato, V. Dohnal, and M. Batk&imilar-

B. Searches ity Search: The Metric Space Approacker. Advances in
Database Systems. Springer, 2006, vol. 32.
Search costs for thdsa*-tree dsa+-tree andM-tree, are
shown in Figs. 7 (distance evaluations) and 8 (pages read)[3] E. Chavez, G. Navarro, R. Baeza-Yates, and J. Marroqui
Let us call collectivelydsa-treethe first two. Searching in metric spacesACM Comp. Sury.vol. 33,

The result of the comparison is mixed. In documents, the no. 3, pp. 273-321, 2001.

M-treeis better in both aspects, where in histogramsobe [4] G. Hjaltason and H. Samet, “Index-driven similarity sea
tree is much better in both aspects. In words, Meree is g‘ogqsetf'c spaces,ACM TODS vol. 28, no. 4, pp. 517-580,

much better in 1/0% but the dsa-treeis better in distance
computations. Finally, on images tlisa-treeis better in [5] G. Navarro and N. Reyes, “Dynamic spatial approximation
distance computations, and the outcome in 1/Os depends trees,”ACM JEA vol. 12, p. article 1.5, 2009, 68 pages.

on the search radii; thél-tree is better for larger Tad“- [6] G. Hjaltason and H. Samet, “Incremental similarity sain
Note that thedsa*-treeuses the same number of distance *~ myjimedia databases,” Univ. of Maryland, Comp. Sci. Dept.
computations, but (sometimes many) more I/Os, than the Tech. Rep. CS-TR-4199, 2000.

dsa+-tree This shows that the consequences of a better

packing are a poorer search performance in l/Os. [7] G. Navarro, “Searching in metric spaces by spatial apipro

mation,” The VLDB Journalvol. 11, no. 1, pp. 28—-46, 2002.

VII. CONCLUSIONS [8] P. Ciaccia, M. Patella, and P. Zezula, “M-tree: an effitie
- ; access method for similarity search in metric spaces?rot.
We have pr(_asented a .secc_)ndary memory v_anant of the 23rd VLDB 1997, pp. 426-435.
Dynamic Spatial Approximation Tree [5], which retains
the original tree structure (and hence identical search and9] V. Dohnal, “An access structure for similarity searchietric
construction costs in terms of distance evaluations). Theis spaces,” IEDBT Workshops2004, pp. 133-143.

3Note that thedsa*-treemay read many more pages than the total. This [10] V. Dohnal, C. Gennaro, P. Savino, and P. Zezula, *D-ade

is because subtrees share pages and thus the same page ey beveral Distance searching index for metric data seMTAP, vol. 21,
times along the process. no. 1, pp. 9-33, 2003.

Distance evaluations Distance evaluations Distance evaluations

Distance evaluations

Figure

Construction Cost per element for n = 69,069 words

160

140 -]

120 - b

80 r

dsa-tree, arity 32—
-tree —=—

40
10 20 30 40 50 60 70 80 90 100

Percentage of database used

Construction Cost per element for n = 1,265 documents

60 dsa-tree, arity 4 ——

M-tree —=—

20 b

0
10 20 30 40 50 60 70 80 90 100

Percentage of database used

Construction Cost per element for n = 40,700 images

80

50 F dsa-tree, arity 4 ———
M-tree —e—

40 | i

30 | 4

20

10 20 30 40 50 60 70 80 90 100
Percentage of database used

Construction Cost per element for n = 112,682 histograms

32+ q
80T dsa-tree, arity 4 —— |

-tree —=—
28 ‘ ‘ ‘ ‘ ‘ ‘ ‘

10 20 30 40 50 60 70 80 90 100
Percentage of database used

5. Distance evaluations at construction, for the fpaces.

1/0 operations

1/0 operations

1/0 operations

1/0 operations

Construction Cost per element for n = 69,069 words

dsa*-tree, arity 32 ———
dsat-tree, arity 32 =ssssee=
M-tree —e—

L L L L L

10

10

22

20

18

16

14

12

20 30 40 50 60 70 80 90 100
Percentage of database used

Construction Cost per element for n = 1,265 documents

T T T T T T T T

dsa*-tree, arity 4 —— |
dsa+-tree, arity 4 =sw======
M;tree e

T L L L L

10

20 30 40 50 60 70 80 90 100
Percentage of database used

Construction Cost per element for n = 40,700 images

T T T T T T T T

dsa*-tree, arity 4 ——
dsa+-tree, arity 4 =reswer
M-tree —e—

10

20 30 40 50 60 70 80 90 100
Percentage of database used

Construction Cost per element for n = 112,682 histograms

dsa*-tree, arity 4 —— 9
dsa+-tree, arity 4
M-tree —e—

L L L L L L L L

Figure 6.

20 30 40 50 60 70 80 90 100
Percentage of database used

Number of disk page I/Os at construction, for ther fepaces.

Distance evaluations Distance evaluations Distance evaluations

Distance evaluations

50000

45000

40000

35000

30000

25000

20000

15000

10000

380

Query Cost per element for n = 69,069 words

T T

dsa-tree, arity 32— |
‘tree —=—

1 2 3 4
Search radius

Query Cost per element for n = 1,265 documents

370

360

350

340

330

320

310

dsa-tree, arity 4 -
M-tree —=—

L

300

0.01 0.1 1

10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

Percentage of database retrieved

Query Cost per element for n = 40,700 images

T

dsa-tree, arity 4 ———
M-tree —=—

L

0
0.01 0.1 1

40000

35000

30000

25000

20000

15000

10000

5000

Percentage of database retrieved

Query Cost per element for n = 112,682 histograms

T

dsa-tree, arity 4 ——

-tree —=—

L

0.01 0.1 1

Figure 7.

Percentage of database retrieved

Distance evaluations at search time, for the fpacas.

Number of pages read Number of pages read Number of pages read

Number of pages read

Query Cost per element for n = 69,069 words

3500 . .
dsa*-tree, arity 32—
dsat-tree, arity 32 ssw=wre=
3000 M-tree —e—
2500
2000
1500
1000
500 L L
1 2 3 4
Search radius
Query Cost per element for n = 1,265 documents
145 - ;
dsa*-tree, arity 4 =——
14 + dsat-tree, arity 4 =sss====-

M-tree —e—
135

13
125
12
115
11

105
10

9.5 .
0.01 0.1 1

Percentage of database retrieved

Query Cost per element for n = 40,700 images
1000 T

dsa*-tree, arity 4 ———
dsa+-tree, arity 4 =ewseen <
M-tree —e—

0 .
0.01 0.1 1
Percentage of database retrieved

Query Cost per element for n = 112,682 histograms
11000 T

10000

T
L

9000 - b
8000 - R
7000 - R
6000 -

5000 -
4000

3000 -
2000

1000 .
0.01 0.1 1

Percentage of database retrieved

dsa*-tree, arity 4 ———
dsa+-tree, arity 4 =re=wer

M-tree —e—

Figure 8. Number of disk pages read at search time, for thedpaces.

