
Dynamic Spatial Approximation Trees for Massive Data

Gonzalo Navarro
Dept. of Computer Science

University of Chile
Santiago, Chile

gnavarro@dcc.uchile.cl

Nora Reyes
Depto. de Inforḿatica

Universidad Nacional de San Luis
San Luis, Argentina
nreyes@unsl.edu.ar

Abstract—Metric space searching is an emerging technique
to address the problem of efficient similarity searching in
many applications, including multimedia databases and other
repositories handling complex objects. Although promising, the
metric space approach is still immature in several aspects that
are well established in traditional databases. In particular, most
indexing schemes are not dynamic, that is, few of them tolerate
insertion of elements at reasonable cost over an existing index
and only a few work efficiently in secondary memory.

In this paper we introduce a secondary-memory variant of
the Dynamic Spatial Approximation Tree, which has shown to
be competitive in main memory. The resulting index handles
well the secondary memory scenario and is competitive with the
state of the art, becoming a useful alternative in a wide range
of database applications. Moreover, our ideas are applicable
to other secondary-memory trees where there is little control
over the tree shape.

I. I NTRODUCTION

Similarity searching [1], [2] has applications in many
fields, such as multimedia databases, text retrieval, function
prediction, and many others. All those applications share
some common characteristics. There is a finitedatasetof
elements belonging to ametric space, where adistance
function is used to assess similarity.Similarity queriesare
posed to this dataset. These consist basically in, given a new
element of the space called thequery, looking for elements
of the dataset that are similar enough to the query. The
dataset is preprocessed so as to build anindex that reduces
query time. This metric space approach is becoming widely
popular [1], [2] and a large number of indexing methods
have flourished [1], [3], [4], but mature solutions from the
database viewpoint are a long way off.

Most of the existing indexes arestatic: Once they are built
for a given dataset, adding more elements to the dataset, or
removing an element from it, requires an expensive updating
of the index. Some indexes tolerate insertions in principle,
but their quality degrades and require periodic rebuildings.
Others tolerate deletions with the same quality degradation
problem. Thus there are very fewdynamicindexes.

There are also many interesting databases for similarity
searching where the objects are so large that they must
stay on disk; or the objects are so many that the index
itself cannot fit in main memory. In this case, although

the similarity computation can be expensive (e.g., taking
milliseconds of CPU time) we cannot disregard disk costs.

From the few dynamic indexes, even fewer work well
in secondary memory. That is, most of them need the data
structure in main memory in order to operate efficiently.

Although for some applications a static scheme may be
acceptable, many relevant ones do require dynamic capa-
bilities. Actually, in many cases it is sufficient to support
insertions, such as in digital libraries and archival systems,
versioned and historical databases, and several other scenar-
ios where objects are never updated or deleted.

In this paper we introduce a dynamic index aimed at
secondary memory. We base our work on the Dynamic
Spatial Approximation Tree (dsa-tree) [5]. It has been
shown that thedsa-treegives an attractive tradeoff between
memory usage, construction time, and search performance.
Our secondary memory versions (dsa*-treeand dsa+-tree)
retain these good features, and in addition perform well
in secondary memory. We focus on handling insertions
(and thus incremental construction) and searches in this
paper, leaving deletions for future work. Our experimental
comparisons show that our structures achieve very good disk
page utilization and are competitive with theM-tree(the best
known dynamic secondary-memory metric index), being
more efficient for insertions and comparable for searches.

The dsa*-treeensures a minimum fill ratio of 50% and
achieves 75%–85% in practice. Instead, thedsa+-tree is a
heuristic that does not ensure a minimum fill ratio, achieving
65%–70% in experiments. In terms of I/Os, thedsa+-tree
is costlier to build but faster to search than thedsa*-tree.

Although we will focus on range searches in this work,
the structures are capable of nearest neighbor searching ina
range optimal-way, by simply inheriting the corresponding
main-memory algorithms [5], [6].

II. BASIC CONCEPTS

Let U be a universe ofobjects, with a nonnegativedistance
function d : U × U −→ R

+ defined among them. This
distance satisfies the three axioms that make(U, d) a metric
space: strict positiveness, symmetry, and triangle inequality.
The smaller the distance between two objects, the more
“similar” they are. We handle a finitedatasetS ⊆ U, which

is a subset of the universe of objects and can be preprocessed
(to build an index). Later, given a new object from the
universe (aquery q ∈ U), we must retrieve all similar
elements found in the dataset. We focus on therange query
in this work: Givenq ∈ U andr > 0, retrieve all elements
of S within distancer to q. That is,{x ∈ S , d(x, q) ≤ r}.

The distance is assumed to be expensive to compute.
However, when we work in secondary memory, the complex-
ity of the search must consider both the number of distance
evaluations performed and the I/O time; other components
such as CPU time for side computations can usually be
disregarded. Given a dataset of|S| = n objects of total size
N and disk page sizeB, queries can be trivially answered
by performingn distance evaluations andN/B I/Os. The
goal of an index is to preprocess the dataset so as to answer
queries with as few distance evaluations and I/Os as possible.

III. D YNAMIC SPATIAL APPROXIMATION TREES

In this section we recall the Dynamic Spatial Approx-
imation Tree (dsa-tree) [5], which inherits from its static
variant [7]. Unlike most other structures, based on dividing
the search space, thedsa-tree is based on the idea of
approaching the query spatially, that is, starting at the tree
root and getting closer and closer to the query, with a
tolerance given by the query radius.

A number of alternatives for insertion of new elements
into a dsa-treehave been discussed and evaluated [5]. In
this section we describe only the best one, which we have
used in ourdsa*-treeanddsa+-tree. This is a combination
of timestampingand bounded arity. A maximum tree arity
MaxArity (maximum number of children per node) is
fixed, and also a timestamp of the insertion time of each
element is kept. Each tree nodea maintains its neighbor
setN(a), its timestampT (a), and its covering radiusR(a)
(maximum distance to a subtree element, used to prune the
searches). Whenever a new inserted elementx arrives at
node a, we check whether it is closer toa than to any
element inN(a). If so, we let x become a new element
of N(a) only if |N(a)| < MaxArity, in which case it
is inserted at the end ofN(a) and its insertion timeT (x)
is recorded. In any other case,x is recursively inserted
into the subtree of its closest element inN(a). Note each
element is older than its children and than its next sibling.
See Algorithm 1.

In general, the idea of the tree is that elements should be
inserted into the subtree of their closest element inN(a),
or as a new element inN(a) if they are closest toa. This
permits that the search looks for the closest element to the
query q in N(a), yet with tolerance given by the search
radius r. However, when a new element is inserted into
N(a), other elements that were inserted into other neighbors
in N(a) might now prefer the new neighbor. The timestamp
mechanism is used to avoid any rebuilding, for which the
search mechanism is modified as detailed next.

Algorithm 1 Insertion of a new elementx into a dsa-tree
with root a using timestamping plus bounded arity.

Insert(Node a, Element x)

1. R(a)← max(R(a), d(a, x))
2. c← argminb∈N(a)d(b, x)
3. If d(a, x) < d(c, x) ∧ |N(a)| < MaxArity Then
4. N(a)← N(a) : x
5. N(x)← 〈〉, R(x)← 0
6. T (x)← CurrentT ime
7. CurrentT ime← CurrentT ime + 1
8. Else Insert(c,x)

In principle, at search time forq with radiusr, one should
report the roota if d(a, q) ≤ r, then find the closest element
b ∈ {a} ∪ N(a), i.e., b = argminb∈a∪N(a)d(q, b), and
enter every childc such thatd(q, c) ≤ d(q, b) + 2r and
d(q, c) ≤ r+R(c). Yet, because of the timestamped insertion
process, we have to consider the neighbors〈b1, . . . , bk〉 of a
from oldest to newest, and perform the minimization (to
find b) while we traverse the neighbors, so as to decide
at each point whether to enter intobi or not. This is
because, between the insertion ofbi andbi+j , there may have
appeared new elements that preferred to be inserted intobi

just becausebi+j was not yet a neighbor, so we may miss
an element if we do not enterbi because of the existence
of bi+j . Moreover, we use the timestamps to reduce the
work done inside older neighbors at search time: Say that
d(q, bi) > d(q, bi+j) + 2r. We have to enterbi because it is
older. However, only the elements with timestamp smaller
than that ofbi+j should be considered when searching inside
bi; younger elements have seenbi+j and they cannot be
interesting for the search if they chosebi. As parent nodes
are older than their descendants, as soon as we find a node
inside the subtree ofbi with timestamp larger than that of
bi+j we can stop the search in that branch, because its
subtree is even younger.

Finally, as we bound the maximum arity, the roota is
not included in the minimization, as an element may have
been inserted into a child even if it should have become a
neighbor. Algorithm 2 depicts the search process. Note that
d(a, q) is always known except in the first invocation, and
the initial t is +∞.

IV. SECONDARY MEMORY

Our secondary-memory implementation maintains exactly
the same structure and carries out the same distance eval-
uations of the main-memory version. The challenge is how
to maintain a disk layout in order to minimize I/Os. We
describe thedsa*-tree in this section, and will spot the
differences with thedsa+-treein the next.

We will force that, for anya, the setN(a) will be packed
together in a disk page, which ensures that the traversal of
N(a) requires just one disk read. Moreover, for technical

Algorithm 2 Searching forq with radius r in a dsa-tree
rooted ata, built with timestamping plus bounded arity.

RangeSearch(Node a, Query q, Radius r,
Timestamp t)

1. If T (a) < t ∧ d(a, q) ≤ R(a) + r Then
2. If d(a, q) ≤ r Then Report a
3. dmin ←∞
4. For bi ∈ N(a) Do // ascend. timestamps
5. If d(bi, q) ≤ dmin + 2r Then
6. t′ ← min{t} ∪ {T (bj), j > i ∧

d(bi, q) > d(bj , q) + 2r}
7. RangeSearch(bi,q,r,t′)
8. dmin ← min{dmin, d(bi, q)}

reasons that become clear later,MaxArity must be such
that a disk page can store at least twoN() lists of maximum
length. Yet, we are free to use a considerably lower value
for MaxArity, which is usually beneficial for performance.

To avoid disk underutilization, we will allow several nodes
to share a single disk page. We define insertion policies
that maintain a partitioning of the tree into disk pages that
is efficient for searching and does not waste much space.
Indeed, we will guarantee a minimum average disk page
utilization of 50%, and will achieve much more in practice.

A. Data Structure Layout

We represent the children of a node as a linked list.
Therefore, each tree node has a first childF (a) and a next
sibling S(a) pointers, where the latter is always local to
the disk page. This allows making most changes toN(a)
without accessinga, which might be in another disk page.
Each node also stores its timestampT (a) and its covering
radiusR(a). Each disk page maintains the number of nodes
actually used. Far pointers likeF (a) (i.e., that potentially
point to another page) have two parts: the page and the node
offset inside that page. Fig. 1 illustrates theF (a) andS(a)
pointers (whileT (a) andR(a) are omitted).

Nodes have fixed size in our implementation, thus
varying-length objects like strings are padded to their max-
imum length. It is possible, with more programming effort,
to allocate varying sizes for each node within a disk page. In
this case the guarantee of holding at least twoN() lists per
page translates into a variable bound on the arity of each
node, so that a nodea is not permitted to acquire a new
neighbor if the total size of itsN() list would surpass half
the disk page. In the case, however, of large objects that
would force very low arities (or simply not fit in half a disk
page), one can use pointers to another disk area, as it is
customary in other metric structures, and treat the pointers
as the objects. In this case every distance calculation implies
also at least one disk access.

o1

o2 o3 o4 o7

o5 o6 o14

o8o10

o11

o12

o13

o9

Oid() F() S()

iPAGE

jPAGE

i

1

o2

o9 o10 o12
o8

o13o11

o6 o14
o5

o3 o4 o7

PAGE j

PAGE

o

Figure 1. Example ofF (a) andS(a) pointer layout.

B. Insertions

To insert a new elementx into the dsa*-tree we first
proceed exactly as in Algorithm 1: We find the insertion
point in the tree, following a unique path, so that when we
determine thatx should be added toN(a), we have both the
pages ofa andN(a) loaded in main memory (these pages
can be the same or different). Now we have to addx at the
end of listN(a) inside a disk page. IfN(a) was empty, then
x will become the first child ofa, thus we modifyF (a) and
insertx into the page ofa. Else,x must be added at the end
of N(a), in the page ofN(a).

In either case, we must addx to an existing page, and it
is possible that there is not enough space in the page. When
this is the case, the page must be split into two, or some
parts of the page must be inserted into an existing page. We
describe next our overflow management policy.

Because everyN(a) fits in a single disk page, the I/O
cost of an insertion is at mosth page reads plus 1-3 page
writes, whereh is the final depth ofx in the tree. The reads
can be much fewer thanh sincea andN(a) can be in the
same disk page for many nodes along the path.

C. Page Overflow Management

When the insertion ofx in N(a) produces a page over-
flow, we try out the following strategies, in order, until one
succeeds in solving the overflow. In the following, assume
x has already been inserted intoN(a), and nowN(a) does
not fit in its disk page.

1st (move to parent)If a andN(a) are located in different
pages, and there is enough free space in the page ofa to
hold the wholeN(a), then we moveN(a) to the page of
a and finish. This actually improves I/O access times for
N(a). We carry out 2 page writes in this case. See Fig. 2.

2nd (vertical split) If the page ofN(a) contains subtrees
with different parents from another page, we make room by

Figure 2. Example before (left) and after (right) applying the policymove
to parent.

moving the whole subtree where the insertion occurred to a
new page (that is, we move all the subtree nodes residing
in this page, to a new one). This maintains the number of
disk reads needed to traverse the subtree. This needs up to 3
page writes, as theF () pointer of the subtree parent resides
in another page, and it must be updated. Note that we know
where is the parent of the subtree to move, as we have just
descended toN(a). Fig. 3 illustrates this case.

Figure 3. Example before (top) and after (bottom) applying the policy
vertical split.

To maintain a property whose purpose will be apparent
in Section IV-D, we avoid using the vertical split whenever
the current page, after moving the chosen subtree to a new
page, is less than half-full.

3rd (horizontal split) We move to a new page all the nodes
of the subtree arrived at, with local depth larger thand, for
the smallestd that leaves the current page at least half-full.
The local depth is the depth within the subtree stored at
the page, and can be computed on the fly at the moment
of splitting. Note that(i) the nodes whose parent is in
another page have the smallestd and thus they are not moved

(otherwise we would be moving the whole subtree, which
is equivalent to a vertical split), hence only 2 page writes
suffice; (ii) no N(b) is split in this process because they
have all the samed; (iii) the new page contains children
of different nodes, and potentially of different pages after
future splits of the current node.

We have to refine the rule when even the largestd leaves
the current page less than half-full. In this case we can move
only some of theN(b) lists of depthd. This could still
leave the current page underfull if there is only oneN(b) of
maximum depthd, but this cannot happen because the disk
page capacity is at least twice the maximum length of a
N() list. Another potential problem is that, if the maximum
depth isd = 0, then we will move anN(b) list whose parent
is in another page. Yet, this is also impossible because the
current subtree should be formed by only the top-levelN()
list, and since it cannot account for more than half of the
page, a vertical split should have applied in case of overflow.

Fig. 4 illustrates a horizontal split.

Figure 4. Example before (left) and after (right) applying the policy
horizontal split.

Note thatmove to parentmay apply because avertical or
horizontal splitfreed some space ina since its children had
to move to a new page. Avertical split may apply after a
horizontal split has put several nodes of different parents
together. A horizontal split is always applicable because
any individualN(a) fits in a page. Finally, we try in the
beginning to putN(a) in the same page ofa (whenN(a)
is created) and later move it away via ahorizontal split
if necessary. Note that, in general terms, amove to parent
improves I/O performance (as it puts subtrees together), a
vertical split maintains it (as keeps subtrees together), and
a horizontal splitdegrades it. Hence the order in which we
try the policies.

D. Ensuring 50% Fill Ratio

The previous operations do not yet ensure that disk pages
are at least half-full. Themove to parentcase does: As in the
child pageN(a) plus the rest overflowed, removingN(a)
cannot leave the child page less than half-full, as the page
size is at least twice the size ofN(a). Yet, vertical and

horizontalpartitionings can create new underfull pages many
times, although they do guarantee that the existing pages are
always at least half-full.

To enforce the desired fill ratio, we will not allow indis-
criminate creation of new pages. We will point all the time
to onedisk page, which will bethe onlyone allowed to be
less than half-full (this is initially the root page, of course).
This will be called thepointed page, and we will always
keep a copy in main memory to avoid rereading it, apart
from maintaining it up to date on disk.

Whenever a new disk page is to be created, we try first to
fit the data within the pointed page. If it fits, no page will
be created. If it does not, we will create a new page for the
new data, and it will become the pointed page if and only
if it contains less data than the pointed page (thus only the
pointed page can be less than half-full).

E. Searches

Searches proceed exactly as in thedsa-tree, for example
the range search is depicted in Algorithm 2. LetT be the
rooted connected subgraph of the structure that is traversed
during a search, and letL be the leaves ofT (which are
not necessarily leaves in the structure). Because of the disk
layout of our structure, where sibling nodes are always in
the same page, the number of page reads in the search is at
most1 + |T | − |L|, and usually much less.

We assume we have sufficient space to store in main
memory the disk pages containing the nodes from the current
one towards the root, so that old disk pages must not be
reread across the backtracking. This is not a problem, as the
tree height is on average logarithmic at most [7].

V. A H EURISTIC VARIANT

The dsa*-treewe have described ensures 50% fill ratio,
but this has a price in terms of compactness. Specifically,
although our policies try to avoid it as much as possible,
the tree may become fragmented especially due to the use
of the pointed page mechanism. In this section we propose
a heuristic variant,dsa+-tree, which tries to achieve better
locality at the price of not ensuring 50% fill ratio (and
indeed, as seen later, achieving lower fill ratios).

The differences with respect to thedsa*-treeare as fol-
lows. In thedsa+-treeeach subtree root at a page maintains
a far pointer to its parent, and knows its global tree level.
The vertical split applies every time “move to parent” fails
and there is more than one subtree root in the page. It divides
the subtrees into two groups so that the partition is as even
as possible in number of nodes, and creates a new page with
one of the two groups. This page is a fresh one (no pointed
page concept is used). In order to move arbitrary subtrees to
another page we use their far parent pointers to update the
child pointers of their parents. If there is only one subtreein
the page, the horizontal split uses the global level to move
all the nodes over some threshold to a new fresh page, again
trying to make the sizes as even as possible.

VI. EXPERIMENTAL RESULTS

In order to give a broad picture of the performance of our
index, we have selected four widely different metric spaces,
all from the SISAP Metric Library (www.sisap.org).

Words: a dictionary of 69,069 English words. The distance
is the edit distance, that is, the minimum number
of character insertions, deletions and substitutions
needed to make two strings equal.

Documents:1,265 documents under the Cosine similarity,
from TREC-3 collection. In this model the space
has one coordinate per term and documents are
seen as vectors in this space. The distance we use
is the angle among the vectors.

Images: 40,700 20-dimensional feature vectors, generated
from NASA images, using Euclidean distance.

Histograms: 112,682 8-D color histograms (112-
dimensional vectors) from an image database.
Euclidean distance is used.

For the search experiments, we built the indexes with 90%
of the points and used the other 10% (randomly chosen)
as queries. All our results are averaged over 10 index
constructions using different permutations of the datasets.

We have considered range queries retrieving on average
0.01%, 0.1% and 1% of the dataset. This corresponds to
radii 0.140000, 0.150000 and0.195000 for the documents,
0.605740, 0.780000 and 1.009000 for the images, and
0.051768, 0.082514 and0.131163 for the histograms. Words
have a discrete distance, so we used radii 1 to 4, which
retrieved on average 0.00003%, 0.00037%, 0.00326% and
0.01757% of the dataset, respectively. The same queries
were used for all the experiments on the same datasets.
Given the existence of range-optimal algorithms fork-
NN searching [6], we have not considered these search
experiments separately, as their search cost is exactly that of
range searching with a radius that captures thek neighbors.

TheM-tree [8] is the best-known dynamic and secondary-
memory data structure, and its code is freely available1. We
have used the parameter setting suggested by the authors2.
Another relevant alternative is theD-index, which has been
shown to perform similarly to theM-tree [9], [10]. Thus we
only compare to theM-tree in this conference version.

The disk page size is 4KB. Both data structures cache the
tree root in main memory.

A. Construction

We build thedsa*-treeanddsa+-treeby successive inser-
tions, using theMaxArity that performed best for the main-
memory setup [5]. This is 4 for all the spaces but words,
where it is 32. We tried other arities for the secondary-
memory scenario, but these arities are still the best.

1At http://www-db.deis.unibo.it/research/Mtree/
2
SPLIT_FUNCTION = G_HYPERPL, PROMOTE_PART_FUNCTION = MIN_RAD,

SECONDARY_PART_FUNCTION = MIN_RAD, RADIUS_FUNCTION = LB, MIN_UTIL = 0.2.

Table I shows the average disk page occupancy achieved
for the different spaces. As explained, this is guaranteed to
be at least1/2 for the dsa*-tree, but in practice it is3/4 to
5/6. That of thedsa+-tree is around2/3, which coincides
with typical B-tree disk page occupancies (1/ ln 2 ≈ 69%).
We also show the total number of disk pages used, compared
to theM-tree. Thedsa*-treeuses (usually much) less space
than thedsa+-tree, and this in turn uses significantly less
than theM-tree.

Dataset Fill ratio Total pages used
dsa*-tree dsa+-tree dsa*-tree dsa+-tree M-tree

Words 83% 66% 904 1,536 1,608
Documents 84% 68% 12 22 31
Images 80% 67% 1,271 1,726 1,973
Histograms 75% 67% 18,781 21,136 31,791

Table I
AVERAGE SPACE USAGE FOR THE DIFFERENT DATASETS.

Construction costs are shown in Figs. 5 (distances) and
6 (I/Os). In both aspects, thedsa*-treeanddsa+-treebuild
significantly faster than theM-tree: 25%–80% of the dis-
tance computations and 35%–80% of the I/Os. Thedsa*-tree
uses (sometimes significantly) fewer I/Os than thedsa+-
tree, as it does not modify pointers in several disk pages.
In practice the insertion cost on thedsa*-treeanddsa+-tree
grows very slowly (proportionally to the tree depth): up to
25–36 distance computations (except≈ 80 for words) and
up to 2.0–5.5 I/Os (except around 10.5 for histograms).

B. Searches

Search costs for thedsa*-tree, dsa+-tree, andM-tree, are
shown in Figs. 7 (distance evaluations) and 8 (pages read).
Let us call collectivelydsa-treethe first two.

The result of the comparison is mixed. In documents, the
M-tree is better in both aspects, where in histograms thedsa-
tree is much better in both aspects. In words, theM-tree is
much better in I/Os3 but the dsa-treeis better in distance
computations. Finally, on images thedsa-tree is better in
distance computations, and the outcome in I/Os depends
on the search radii; theM-tree is better for larger radii.
Note that thedsa*-treeuses the same number of distance
computations, but (sometimes many) more I/Os, than the
dsa+-tree. This shows that the consequences of a better
packing are a poorer search performance in I/Os.

VII. C ONCLUSIONS

We have presented a secondary-memory variant of the
Dynamic Spatial Approximation Tree [5], which retains
the original tree structure (and hence identical search and
construction costs in terms of distance evaluations). Thusthe

3Note that thedsa*-treemay read many more pages than the total. This
is because subtrees share pages and thus the same page may be read several
times along the process.

focus is on disk page layout policies that achieve competitive
performance in terms of I/Os. We have shown that the
resulting structure achieves good space utilization (2/3 to
5/6) and is competitive in distance computations and I/Os:
It is consistently better than theM-tree for insertions, and
better or worse for searches, depending on the metric space.

Our techniques are general, and could be useful in other
scenarios where there is little control over the shape of the
tree when insertions are carried out.

The most important remaining work is to handle deletions.
Several such policies have already been studied for the
main-memory variant [5], thus the focus will be, again, in
achieving secondary-memory versions that retain good space
utilization and are I/O-efficient. Designing bulk-loading
mechanisms is also an interesting problem: In main memory,
the construction by succesive insertions worked better than
the static construction [5]. Finally, alternative page allocation
policies might improve I/Os, e.g. trying to share pages
among “close” subtrees.

ACKNOWLEDGEMENTS

Partially funded by Fondecyt Grant 1-080019, Chile (both
authors) and by the Millennium Institute for Cell Dynamics
and Biotechnology (ICDB), Grant ICM P05-001-F, Mide-
plan, Chile (first author).

REFERENCES

[1] H. Samet,Foundations of Multidimensional and Metric Data
Structures. Morgan Kaufmann, 2005.

[2] P. Zezula, G. Amato, V. Dohnal, and M. Batko,Similar-
ity Search: The Metric Space Approach, ser. Advances in
Database Systems. Springer, 2006, vol. 32.

[3] E. Chávez, G. Navarro, R. Baeza-Yates, and J. Marroquı́n,
“Searching in metric spaces,”ACM Comp. Surv., vol. 33,
no. 3, pp. 273–321, 2001.

[4] G. Hjaltason and H. Samet, “Index-driven similarity search
in metric spaces,”ACM TODS, vol. 28, no. 4, pp. 517–580,
2003.

[5] G. Navarro and N. Reyes, “Dynamic spatial approximation
trees,”ACM JEA, vol. 12, p. article 1.5, 2009, 68 pages.

[6] G. Hjaltason and H. Samet, “Incremental similarity search in
multimedia databases,” Univ. of Maryland, Comp. Sci. Dept.,
Tech. Rep. CS-TR-4199, 2000.

[7] G. Navarro, “Searching in metric spaces by spatial approxi-
mation,” The VLDB Journal, vol. 11, no. 1, pp. 28–46, 2002.

[8] P. Ciaccia, M. Patella, and P. Zezula, “M-tree: an efficient
access method for similarity search in metric spaces,” inProc.
23rd VLDB, 1997, pp. 426–435.

[9] V. Dohnal, “An access structure for similarity search inmetric
spaces,” inEDBT Workshops, 2004, pp. 133–143.

[10] V. Dohnal, C. Gennaro, P. Savino, and P. Zezula, “D-index:
Distance searching index for metric data sets,”MTAP, vol. 21,
no. 1, pp. 9–33, 2003.

 40

 60

 80

 100

 120

 140

 160

 10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database used

Construction Cost per element for n = 69,069 words

dsa-tree, arity 32
M-tree

 0

 20

 40

 60

 80

 100

 120

 10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database used

Construction Cost per element for n = 1,265 documents

dsa-tree, arity 4
M-tree

 20

 30

 40

 50

 60

 70

 80

 10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database used

Construction Cost per element for n = 40,700 images

dsa-tree, arity 4
M-tree

 28

 30

 32

 34

 36

 38

 40

 42

 44

 10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database used

Construction Cost per element for n = 112,682 histograms

dsa-tree, arity 4
M-tree

Figure 5. Distance evaluations at construction, for the four spaces.

 2

 3

 4

 5

 6

 7

 8

 9

 10 20 30 40 50 60 70 80 90 100

I/O
 o

pe
ra

tio
ns

Percentage of database used

Construction Cost per element for n = 69,069 words

dsa*-tree, arity 32
dsa+-tree, arity 32

M-tree

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 10 20 30 40 50 60 70 80 90 100

I/O
 o

pe
ra

tio
ns

Percentage of database used

Construction Cost per element for n = 1,265 documents

dsa*-tree, arity 4
dsa+-tree, arity 4

M-tree

 3

 4

 5

 6

 7

 8

 9

 10

 10 20 30 40 50 60 70 80 90 100

I/O
 o

pe
ra

tio
ns

Percentage of database used

Construction Cost per element for n = 40,700 images

dsa*-tree, arity 4
dsa+-tree, arity 4

M-tree

 6

 8

 10

 12

 14

 16

 18

 20

 22

 10 20 30 40 50 60 70 80 90 100

I/O
 o

pe
ra

tio
ns

Percentage of database used

Construction Cost per element for n = 112,682 histograms

dsa*-tree, arity 4
dsa+-tree, arity 4

M-tree

Figure 6. Number of disk page I/Os at construction, for the four spaces.

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 1 2 3 4

D
is

ta
nc

e
ev

al
ua

tio
ns

Search radius

Query Cost per element for n = 69,069 words

dsa-tree, arity 32
M-tree

 300

 310

 320

 330

 340

 350

 360

 370

 380

 0.01 0.1 1

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database retrieved

Query Cost per element for n = 1,265 documents

dsa-tree, arity 4
M-tree

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0.01 0.1 1

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database retrieved

Query Cost per element for n = 40,700 images

dsa-tree, arity 4
M-tree

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0.01 0.1 1

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database retrieved

Query Cost per element for n = 112,682 histograms

dsa-tree, arity 4
M-tree

Figure 7. Distance evaluations at search time, for the four spaces.

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1 2 3 4

N
um

be
r

of
 p

ag
es

 r
ea

d

Search radius

Query Cost per element for n = 69,069 words

dsa*-tree, arity 32
dsa+-tree, arity 32

M-tree

 9.5

 10

 10.5

 11

 11.5

 12

 12.5

 13

 13.5

 14

 14.5

 0.01 0.1 1

N
um

be
r

of
 p

ag
es

 r
ea

d

Percentage of database retrieved

Query Cost per element for n = 1,265 documents

dsa*-tree, arity 4
dsa+-tree, arity 4

M-tree

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0.01 0.1 1

N
um

be
r

of
 p

ag
es

 r
ea

d

Percentage of database retrieved

Query Cost per element for n = 40,700 images

dsa*-tree, arity 4
dsa+-tree, arity 4

M-tree

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 0.01 0.1 1

N
um

be
r

of
 p

ag
es

 r
ea

d

Percentage of database retrieved

Query Cost per element for n = 112,682 histograms

dsa*-tree, arity 4
dsa+-tree, arity 4

M-tree

Figure 8. Number of disk pages read at search time, for the four spaces.

