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Spatial distance has been for decades a natural concept in applications such as computational
geometry, geomatics, meshing, and others. There are several other applications, however, where a
more general notion ofproximity is necessary. To reuse the large body of knowledge built around
spatial distances, researchers have tried to map non-spatial proximity measures to those. This
approach is not always successful, and fails in some emblematic cases. Instead, a flexible model,
called “metric spaces”, captures in a natural way more general proximity concepts. We will briefly
present its fundamentals; exhaustive books and surveys exist [2, 3, 1].

A metric space is a pair(X, d) whereX is a universe of objects andd : X × X → R
+ is a

nonnegativedistance function defined among the objects. This distance satisfies the properties that
make it ametric: (1) strict positiveness:d(x, y) > 0 ⇔ x 6= y, (2) symmetry:d(x, y) = d(y, x),
(3) triangle inequality:d(x, y)+d(y, z) ≥ d(x, z). In a metric space coordinates are not necessarily
present, thus most of the algorithms designed for coordinate spaces do not apply directly.

Some examples of metric spaces are sequences with variants of the edit distance (used, say, in
computational biology, it measures the minimum number of single-character insertions, deletions
and substitutions that must be carried to convert one sequence into the other); documents with co-
sine similarity (used in Information Retrieval, the associated distance measures the angle between
unitary vectors representing the documents in a space of terms); and point clouds with Hausdorff
or Earthmover’s distances (used in clustering, pattern recognition, etc).

In such applications, one has a finitedataset U ⊂ X of sizen, which can beindexed (i.e., data
structures can be built on it) so as to answer various proximity queries. The most basic ones are
(a) range query (q, r), for q ∈ X andr ∈ R

+, returns{u ∈ U, d(q, u) ≤ r}, the dataset objects at
distance withinr of q; and(b) k-nearest neighbor query nn(q, k), for k ∈ N

+, a set ofk elements
of U nearest toq. Several other queries, such as proximity joins, are of interest in applications.

The simplest cost model assumes that computingd is so expensive that other costs can be
disregarded. Under this setup, the problem can be stated as follows: Given U, build an index on it
so that queries can be later answered with as few distance computations as possible.

The key to avoid comparingq with all of the dataset is the triangle inequality. Assumeu, v ∈ U,
so that the index has precomputedd(u, v). Now, if for solving range query(q, r) we compute
d(q, u), we might avoid computing alsod(q, v) if |d(q, u) − d(u, v)| > r, since by the triangle
inequality this impliesd(q, v) > r. Hence inter-dataset distance information, plus the triangle in-
equality, allows us provelower bounds on the distances between new objectsq and dataset objects.

The objects of the universe are seen as black boxes (in particular without any coordinate in-
formation), so that all we can know from them are their distances to other objects. Under such



model, the most information an index can store on the datasetis the complete symmetric matrix of
n(n−1)/2 distances. Using that much information, it has been shown theoretically and practically
thatnn(q, k) queries can be solved with a number of distance evaluations that is independent ofn.

Such a result hides, however, a dependence on what is called the intrinsic dimensionality of
the metric space (or of a finite sample dataset). In coordinate spaces this is defined as the lowest
dimensionality in which the dataset can be embedded withoutdistorting the distances more than
a threshold. In metric spaces the concept is much sloppier and no agreement exists on how to
measure it (two good examples of definitions that try to carrythe intuition of coordinate spaces
onto metric spaces are the exponent dimension and the doubling dimension). A rule of thumb is to
measure how concentrated is the histogram of distances: A sharp histogram is related to a higher
intrinsic dimensionality of the dataset. The intrinsic dimensionality is known to act as a lower
bound on the performance of any index for a given dataset, yetagain a more precise quantification
of this phenomenon, called thecurse of dimensionality, has been elusive.

A related problem is the difficulty of carrying out any kind offormal performance analysis
on metric spaces. Usually no meaningful worst-case analyses are possible, and average-case ones
are difficult because they depend on the distribution of the data and queries in a nontrivial way,
and researchers have not agreed on an appropriate model (simple enough to be tractable, realistic
enough to have some predictive power). We believe other paths might be worthy to explore, such
as competitive analysis, where a given index is compared to an “optimal” one that carries out the
minimum number of distance evaluations that fully determines the correct output.

Needless to say, storing theO(n2) distances is impractical for all but very small datasets. Many
alternative indexing schemes for metric spaces have been proposed along the years. All of them
can be regarded as different ways to use a given amount of memory in the best possible way,
by storing a subset of the inter-dataset distances, or ranges thereof. In addition, several schemes
include mechanisms to reduce the extra CPU time, which can beimportant in practice.

For simplicity, let us focus on range search algorithms. Nearest-neighbor algorithms are usually
more important in applications, yet from each range search algorithm, arange-optimal nearest-
neighbor one can be systematically derived. Range optimality means that the cost of the query
nn(q, k) is exactly that of a range query(q, r) wherer is the distance to thekth object returned.
There are also indexing schemes specifically designed to solve nearest-neighbor queries.

An important family of indexing schemes can be directly seenas a reduced-memory version
of the quadratic-space method. We choosem pivots P = {p1, p2, . . . , pm} ⊂ U and precompute
all the distancesd(p, u) for p ∈ P andu ∈ U. This requiresO(mn) space. Now, given a range
query(q, r), all the distancesd(q, p) for p ∈ P are computed, and the triangle inequality is used as
explained to discard as many elements ofU−P as possible. Non-discarded elements, that is those
u ∈ U such thatmax1≤i≤m |d(pi, q)− d(pi, u)| ≤ r, must be directly compared withq.

This method can be seen as a contractive mapping from the metric space(X, d) onto the coor-
dinate space (Rm, L∞), whereL∞ is Minkowski’s maximum distance: Eachu ∈ U is mapped to
vectorφ(u) = (d(u, p1), d(u, p2), . . . , d(u, pm)). At query timeq is also mapped onto(Rm, L∞)
(at the cost ofm computations ofd()). Now if L∞(φ(u), φ(q)) > r, then it also holdsd(q, u) > r
in the original space, and thusd(q, u) needs not be directly computed. We note that the search
for the candidate elementsu such thatL∞(φ(u), φ(q)) ≤ r is a geometric range search problem,



on which we could wish to minimize CPU time (this time is disregarded under the simple model
where only computations ofd() count).

The pivot-based method works well on sufficiently “easy” metric spaces and queries, where a
relatively smallm lets one discard most ofU. Note thism is both the cost in distance computations
to mapq to R

m, and the dimension of the coordinate space where the search for candidates must
be carried out. When the metric space has high intrinsic dimension, however, even using a largem
the achieved pruning is very modest. This is one incarnationof the curse of dimensionality.

A related issue is the quality of the pivots. Since the mapping is contractive,L∞◦φ ≤ d is guar-
anteed. A lower bound, such asL∞ ◦ φ ≥ α · d, 0 < α < 1, would be needed to offer performance
guarantees. Unfortunately such a lower bound cannot be offered in general, thus pivot selection
trying to offer a good-quality mapping is done using heuristics and validated experimentally.

Many indexing schemes are built on variants of the pivot idea. From a general viewpoint,
they can be seen as a quest for, given a limited amount of memory for the index, how to best
use that space. One can, for example, store only some distances towards each pivot (the most
“interesting” ones), store only the range where the distance falls (thus using fewer bits and storing
more distances in exchange), and so on. In particular, it is possible to build a tree of pivots, so
that each pivot knows the distances only to its subtree, and its children are organized into ranges of
distances towards it. This allows for linear-space indexesthat in addition allow one to use sublinear
extra CPU time, as whole subtrees can be pruned during the search using the triangle inequality.

Another family of indexes uses the pivots in a different way.The space is partitioned into
m zones, each zone being that of the objects closer to a pivot than to any other pivot. Such a
Voronoi-like partitioning of the space can be used with the triangle inequality to discard whole
zones at query time: Let(q, r) be a range query and letp be the pivot closest toq (it may costm
distance computations to determinep). Then, ifd(p, q) + r < d(p′, q) − r for another pivotp′,
there cannot be points relevant to the query within the zone of p′. Tree-structured indexes can be
built by dividing recursively the zones into sub-zones.

For some applications it is enough to have either an approximate answer, with proximity
guarantees to the true answer, or the correct answer with some probability. This relaxation has
been shown to offer excellent performance even on high-dimensional metric spaces, which are
intractable for exact proximity searching. A general (but not the only) approach is toprioritize
the traversal of the database in some “promising” order, so that after traversing a small subset of
U one has a large chance of having reached the best answers. Anynearest-neighbor algorithm,
range-optimal ones in particular, can be pruned at some point of its execution and turn it into an
algorithm that gives approximate answers. A particularly successful idea is to hint promising ob-
jects by observing the proximity order in which dataset elements “see” a set of pivots. Each object
is represented by a permutation and proximity is predicted by measuring the similarity between
objects’ and query’s permutations. The dataset is then traversed by permutation proximity order.

Open challenges. The field of metric space searching has made important progress since its
origins, both in theoretical and practical aspects. Yet, itis a far from solved area. A recently
created conference,Similarity Search and Applications (SISAP), is devoted to research on this
topic (see www.sisap.org). We finish by listing which we consider the main open challenges, each
of which is developed in the subsequent entries in this issue.



Intrinsic dimensionality: Finding a suitable definition of intrinsic dimensionality,consistent
with the case of coordinate spaces, and capturing the experimental performance of indexes, would
allow us explain why, and measure by how much, some metric spaces are intrinsically harder to
search than others, and to use appropriate techniques depending on their difficulty. This entry
shows that, despite the phenomenon is well-known among practitioners, there is no single theoret-
ical definition that fits all situations, and very few cases where a lower bound on the performance
of any index as a function of some definition of intrinsic dimension can be proved. It is shown
that pivot-based indexes can be viewed as instances of a moregeneral approach where the curse
of dimensionality arises in the form of a phenomenon called “concentration of measure”, which
states that any contractive mapping (satisfying|f(x)− f(y)| ≤ d(x, y)) tends to have almost all of
its values concentrated around the median, and this leads toineffective indexes. Finally, it shows
that if a space is found to have low dimension under some particular definition, this can be used to
design an effective index exploiting that feature. This is illustrated with the “Assouad dimension”,
related to the number of balls needed to cover the objects of aspace. When this dimension is low,
a metric tree effectively indexes the space. They conjecture that many spaces today considered as
hard could become tractable under a convenient definition ofintrinsic dimension.

Nearest-neighbor algorithms: Despite range-optimal algorithms can be systematically derived
from range search ones, which are usually simpler to design,it is possible to design specific al-
gorithms for nearest neighbor search. In many applicationsthis is the most important type of
search. This entry starts by describing four main algorithmic approaches to nearest-neighbor
search: branch and bound (where sets of candidate objects are defined according to some hier-
archy at indexing time, and at query time they are discarded or refined into subsets depending on
lower/upper bounds obtained from successive distance computations), walks (where one starts at
an object and tries to approach the target object by moving tonearby objects), mappings (where
objects are mapped to a target space where the problem can be solved more easily, and from the
solution in the target space a small candidate set in the original space can be derived), and epsilon-
nets (where the space is hierarchically divided into clusters and only a small number of clusters
per level must be examined at query time; sufficient separation between clusters lead to query-time
guarantees). Then the entry focuses on the “combinatorial approach”, a generalization of the met-
ric space approach where one can only tell whetherx is closer toy thanz, but there are no explicit
distances. A notion similar to that of intrinsic dimensionality (called a “disorder constant”D) can
be defined, and several nearest-neighbor algorithms have been derived, whose performance is a
function ofn andD. This framework allows one to define some subclasses of problems where the
nearest-neighbor problem is tractable (including some where a metric cannot be defined) and to
solve proximity problems where a metric is hard to define, as is the case in many real-life situations
handing complex objects. Several challenges pointing to real-life problems are posed.

Approximate and probabilistic algorithms: An exciting way out to the limits posed by intrin-
sic dimensionality is to relax the search problem to allow for non-exact solutions. The lower
bounds arising from the relation between approximations and intrinsic dimensionality remain un-
clear. This entry starts by noting that in many cases the correct answer is found quickly by the
search algorithm, but then much work is spent in ensuring that this is indeed the correct answer.
The entry then argues that approximate solutions are acceptable in most practical applications of



metric searching. Then it proposes to classify the many existing techniques along various dimen-
sions to facilitate comparing them. One important dimension is the approach used to obtain the
approximation, where three approaches are identified: mapping the objects to another space where
the problem is simpler to handle, using a mapping that preserves proximity as much as possible;
not considering some objects that are “unlikely” to belong to the answer (e.g., close to be elimi-
nated by lower bounds on the distances computed); and stopping an exact search algorithm earlier
than the necessary to ensure correctness and giving the bestanswer found so far, trying to consider
the more promising objects earlier in the process. The most important challenge posed is finding
techniques that offer guarantees on performance and/or quality of the result, either deterministic
or probabilistic. A couple of methods are covered, locality-sensitive hashing (LSH) and probably
approximately correct queries (PAC), that offer guarantees of those kinds.

Beyond the metric space model: Many applications require even more general similarity mod-
els than those provided by metric spaces. In the absence of the triangle inequality, usually only
approximate algorithms are possible. This is a largely under explored area. The entry starts by
enumerating several relevant applications where some of the metric axioms are violated in the sim-
ilarity functions that work best. The most frequently questioned axiom is the triangle inequality,
which is on the other hand the fundamental property used by all the metric space indexes. One way
to handle cases where it does not hold is that domain experts give alternative topological or statis-
tical properties that hold in the database and that allow designing other indexing schemes. Another
way is to discover or estimate those kinds of properties by studying a sample of the database. The
entry mentions several concrete approaches. Apart from domain-specific ones, general techniques
include mapping to a metric space (usually increasing the intrinsic dimensionality), and using ap-
proximate techniques directly on the nonmetric space. The identification of general alternative
topological features (such as in the “combinatorial framework” advocated in an earlier entry) is,
among others, an important challenge posed at the end.

Stronger metric operations: Range and nearest-neighbor search are the most basic queries. These
fall short to incorporate a metric object type to state-of-the-art database technology. A missing op-
eration, among others, is the metric join, i.e., find close-enough pairs of points among two sets.
The entry starts by enumerating some application areas for similarity joins. Then it refers to the
nested loop, where each element of a set is searched for in theother set using an index, as the
basic technique, which misses opportunities for optimization due to similar queries. Algorithms
improving upon this basic idea make use of spatial clustering to reduce the number of pairs of
objects to consider. Then the entry covers some particular algorithms for specific metric spaces.

Real-life performance: The idealized cost model we presented is helpful to understand the fun-
damentals of the problem. In many applications, however, side costs cannot be disregarded. This
is particularly true when the data resides on disk, whose access times are hardly negligible. Other
issues are index construction and maintenance, scalability, and distributed processing. This topic
is becoming of high interest with the advent of multicore processors and peer-to-peer systems.
The entry starts by emphasizing the challenges and opportunities derived from the massive gener-
ation of digital content from distributed heterogeneous sources, as well as the distributed storage
of digital information searchable by similarity. It coversthe M-tree family as the first and best-
known indexes to handle similarity search in secondary storage, a must when handling massive



data. Then it points at the problems posed by the parallelization of the M-tree (actually shared
by all hierarchical structures) and at the D-index as a hash-based (or cluster-based) index for sec-
ondary storage that is, instead, easily parallelizable. The entry then turns into P2P systems, which
manage to handle indexing and searching in distributed formwith no centralized scheme. It covers
several adaptations of existing techniques (such as cluster-based and mapping-based indexes) to
P2P architectures. In a more challenging scenario, which occurs in applications, nodes retain total
control on their data and will not index data from other nodes. Some systems are described that
manage to operate this more restricted version of a P2P network for similarity search. Finally, the
entry focuses in the challenges posed by the cost of extracting sufficiently good features from mas-
sive data so that good-quality retrieval is possible from the features. As the data volumes increase,
massively parallel schemes become mandatory to achieve reasonable indexing performance, and
this may reach the point where only stream processing on the data flow is possible.

Applications: The research in metric space indexing is driven by applications such as multimedia
searching, computational biology and data mining. It is important to exploit insight knowledge of
expert practitioners in order to design successful solutions. Two entries describe applications in
computational biology and in data mining. Similarity search arises in many subfields of compu-
tational biology. The entry focuses in the case of sequence comparisons used to find homologous
regions in DNA and protein sequences. Similarity measures such as PAM and BLOSUM matrices
have been developed which have a strong biological meaning,but are not metric. Recently, there
have been efforts in deriving metric variants that are stillbiologically plausible while admitting
searches using metric indexes. Protein identification by similarity of mass spectra is another area
where metric space methods have been applied.

The entry on data mining focuses on its applications to clustering. It first shows that several
clustering algorithms are directly based on distance computations, such ask-nearest-neighbors
classifiers,k-medioid clustering, and distance-based outlier detection methods. While the methods
themselves usually do not require the space to be metric, faster clustering is possible with metric
indexes when the spaces are metric. The entry then covers theproblem, which arises in many
real cases, of clustering in presence of noise. Practical solutions adapt clustering algorithms to
handling uncertain objects, for example by considering mean distances. Finally, the entry considers
clustering high-dimensional spaces, which is usually a consequence of the irrelevance of many of
the features. This can be addressed by finding out which features are relevant in which areas of the
space, via various projection techniques. Most of the problems are, however, basically open.
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