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Spatial distance has been for decades a natural concepplinagjons such as computational
geometry, geomatics, meshing, and others. There are tetleeaapplications, however, where a
more general notion gdroximity is necessary. To reuse the large body of knowledge builtrarou
spatial distances, researchers have tried to map norakpabiximity measures to those. This
approach is not always successful, and fails in some emhieoeases. Instead, a flexible model,
called “metric spaces”, captures in a natural way more gepeoximity concepts. We will briefly
present its fundamentals; exhaustive books and survegs[2xB, 1].

A metric space is a pair(X, d) whereX is auniverse of objects and! : X x X — Rt is a
nonnegativelistance function defined among the objects. This distance satisfeeprioperties that
make it ametric: (1) strict positivenessi(z,y) > 0 < x # y, (2) symmetryd(z,y) = d(y, x),

(3) triangle inequalityd(z, y)+d(y, z) > d(z, z). In a metric space coordinates are not necessarily
present, thus most of the algorithms designed for coordisdces do not apply directly.

Some examples of metric spaces are sequences with varfahtsexdit distance (used, say, in
computational biology, it measures the minimum number glg-character insertions, deletions
and substitutions that must be carried to convert one seguato the other); documents with co-
sine similarity (used in Information Retrieval, the assbed distance measures the angle between
unitary vectors representing the documents in a spacermgjeand point clouds with Hausdorff
or Earthmover’s distances (used in clustering, patterogeition, etc).

In such applications, one has a find&taset U C X of sizen, which can bendexed (i.e., data
structures can be built on it) so as to answer various prayiqueries. The most basic ones are
(a) range query (¢, ), for ¢ € X andr € R*, returns{u € U, d(q,u) < r}, the dataset objects at
distance within of ¢; and(b) k-nearest neighbor query nn(q, k), for k € N*, a set ofk elements
of U nearest tg. Several other queries, such as proximity joins, are oféstan applications.

The simplest cost model assumes that computing so expensive that other costs can be
disregarded. Under this setup, the problem can be statedlasd: Given U, build an index on it
so that queries can be later answered with as few distance computations as possible.

The key to avoid comparingwith all of the dataset is the triangle inequality. Assume < U,
so that the index has precomputéd:, v). Now, if for solving range querygq, r) we compute
d(q,u), we might avoid computing alsé(q, v) if |d(q,u) — d(u,v)| > r, since by the triangle
inequality this impliesi(¢, v) > r. Hence inter-dataset distance information, plus the gtem-
equality, allows us provewer bounds on the distances between new objecésd dataset objects.

The objects of the universe are seen as black boxes (in partiwithout any coordinate in-
formation), so that all we can know from them are their distanto other objects. Under such



model, the most information an index can store on the daisfiet complete symmetric matrix of
n(n—1)/2 distances. Using that much information, it has been shoewr#tically and practically
thatnn(q, k) queries can be solved with a number of distance evaluatiatssindependent of.

Such a result hides, however, a dependence on what is chbedttinsic dimensionality of
the metric space (or of a finite sample dataset). In cooréigpaces this is defined as the lowest
dimensionality in which the dataset can be embedded witbistiorting the distances more than
a threshold. In metric spaces the concept is much sloppekmamnagreement exists on how to
measure it (two good examples of definitions that try to cémneyintuition of coordinate spaces
onto metric spaces are the exponent dimension and the dgubinension). A rule of thumb is to
measure how concentrated is the histogram of distancesa#p $tistogram is related to a higher
intrinsic dimensionality of the dataset. The intrinsic @imsionality is known to act as a lower
bound on the performance of any index for a given dataseggaah a more precise quantification
of this phenomenon, called tlvarse of dimensionality, has been elusive.

A related problem is the difficulty of carrying out any kind fmrmal performance analysis
on metric spaces. Usually no meaningful worst-case analgsepossible, and average-case ones
are difficult because they depend on the distribution of e énd queries in a nontrivial way,
and researchers have not agreed on an appropriate modplg€®nough to be tractable, realistic
enough to have some predictive power). We believe othespatght be worthy to explore, such
as competitive analysis, where a given index is compared togtimal” one that carries out the
minimum number of distance evaluations that fully deteesithe correct output.

Needless to say, storing tlign?) distances is impractical for all but very small datasetsnivia
alternative indexing schemes for metric spaces have begoged along the years. All of them
can be regarded as different ways to use a given amount of ngemohe best possible way,
by storing a subset of the inter-dataset distances, or sathgeeof. In addition, several schemes
include mechanisms to reduce the extra CPU time, which campertant in practice.

For simplicity, let us focus on range search algorithms.riigtaneighbor algorithms are usually
more important in applications, yet from each range sealgbrithm, arange-optimal nearest-
neighbor one can be systematically derived. Range optynaleans that the cost of the query
nn(q, k) is exactly that of a range quefy, r) wherer is the distance to thkth object returned.
There are also indexing schemes specifically designed ve selarest-neighbor queries.

An important family of indexing schemes can be directly sasra reduced-memory version
of the quadratic-space method. We chopseivots P = {pi, ps,...,pn} C U and precompute
all the distanced(p, u) for p € P andu € U. This requireD(mn) space. Now, given a range
query(q, ), all the distanced(q, p) for p € P are computed, and the triangle inequality is used as
explained to discard as many element&lof P as possible. Non-discarded elements, that is those
u € U such thatmax;<;<, |d(pi, ¢) — d(p;, v)| < r, must be directly compared with

This method can be seen as a contractive mapping from thécraptice(X, d) onto the coor-
dinate spaceR™, L..), whereL., is Minkowski’'s maximum distance: Eaeche U is mapped to
vectoro(u) = (d(u,p1),d(u,ps),...,d(u,pn)). At query timeq is also mapped ont@R™, L)

(at the cost ofn computations ofl()). Now if L., (¢(u), #(q)) > r, then it also holdg(q, u) > r
in the original space, and thu&q, «) needs not be directly computed. We note that the search
for the candidate elementssuch thatl..(¢(u), ¢(q)) < r is a geometric range search problem,



on which we could wish to minimize CPU time (this time is dgmeded under the simple model
where only computations @f) count).

The pivot-based method works well on sufficiently “easy” nwetpaces and queries, where a
relatively smallm lets one discard most @f. Note thism is both the cost in distance computations
to mapq to R™, and the dimension of the coordinate space where the searcarididates must
be carried out. When the metric space has high intrinsic dgio@, however, even using a large
the achieved pruning is very modest. This is one incarnatidhe curse of dimensionality.

Arelated issue is the quality of the pivots. Since the magEtontractive.,o¢ < d is guar-
anteed. A lower bound, such as, o ¢ > a-d, 0 < o < 1, would be needed to offer performance
guarantees. Unfortunately such a lower bound cannot beedffi@ general, thus pivot selection
trying to offer a good-quality mapping is done using heuwssand validated experimentally.

Many indexing schemes are built on variants of the pivot.idBeom a general viewpoint,
they can be seen as a quest for, given a limited amount of mefapthe index, how to best
use that space. One can, for example, store only some distaowards each pivot (the most
“interesting” ones), store only the range where the distdalts (thus using fewer bits and storing
more distances in exchange), and so on. In particular, ibssiple to build a tree of pivots, so
that each pivot knows the distances only to its subtree,tarahildren are organized into ranges of
distances towards it. This allows for linear-space indéxasin addition allow one to use sublinear
extra CPU time, as whole subtrees can be pruned during thehsesing the triangle inequality.

Another family of indexes uses the pivots in a different wajhe space is partitioned into
m zones, each zone being that of the objects closer to a pivot thamyoosher pivot. Such a
Voronoi-like partitioning of the space can be used with th&ngle inequality to discard whole
zones at query time: Lét, ) be a range query and Igtbe the pivot closest tg (it may costm
distance computations to determipe Then, ifd(p,q) + r < d(p’,q) — r for another pivot/,
there cannot be points relevant to the query within the zdneg. ol'ree-structured indexes can be
built by dividing recursively the zones into sub-zones.

For some applications it is enough to have either an appremanswer, with proximity
guarantees to the true answer, or the correct answer witle goabability. This relaxation has
been shown to offer excellent performance even on high-asmaal metric spaces, which are
intractable for exact proximity searching. A general (bat the only) approach is tprioritize
the traversal of the database in some “promising” orderhabdfter traversing a small subset of
U one has a large chance of having reached the best answersne@angst-neighbor algorithm,
range-optimal ones in particular, can be pruned at somé pbits execution and turn it into an
algorithm that gives approximate answers. A particuladgcessful idea is to hint promising ob-
jects by observing the proximity order in which dataset elata “see” a set of pivots. Each object
is represented by a permutation and proximity is predictedhbasuring the similarity between
objects’ and query’s permutations. The dataset is theeitsad by permutation proximity order.

Open challenges. The field of metric space searching has made important gegiace its
origins, both in theoretical and practical aspects. Yeis i far from solved area. A recently
created conference&milarity Search and Applications (S SAP), is devoted to research on this
topic (see www.sisap.org). We finish by listing which we adesthe main open challenges, each
of which is developed in the subsequent entries in this issue



Intrinsic dimensionality: Finding a suitable definition of intrinsic dimensionaligpnsistent
with the case of coordinate spaces, and capturing the empetal performance of indexes, would
allow us explain why, and measure by how much, some metricespare intrinsically harder to
search than others, and to use appropriate techniquesdiegesn their difficulty. This entry
shows that, despite the phenomenon is well-known amongifiwaers, there is no single theoret-
ical definition that fits all situations, and very few casesveha lower bound on the performance
of any index as a function of some definition of intrinsic dms®n can be proved. It is shown
that pivot-based indexes can be viewed as instances of ageoeral approach where the curse
of dimensionality arises in the form of a phenomenon calle@htentration of measure”, which
states that any contractive mapping (satisfyfing:) — f(v)| < d(z, y)) tends to have almost all of
its values concentrated around the median, and this leadsftective indexes. Finally, it shows
that if a space is found to have low dimension under somegqodatti definition, this can be used to
design an effective index exploiting that feature. Thidlisstrated with the “Assouad dimension”,
related to the number of balls needed to cover the objectspéee. When this dimension is low,
a metric tree effectively indexes the space. They conjedhat many spaces today considered as
hard could become tractable under a convenient definitiamnsic dimension.

Nearest-neighbor algorithms. Despite range-optimal algorithms can be systematicaltivele
from range search ones, which are usually simpler to degtigypossible to design specific al-
gorithms for nearest neighbor search. In many applicatibissis the most important type of
search. This entry starts by describing four main algorithapproaches to nearest-neighbor
search: branch and bound (where sets of candidate objectéefined according to some hier-
archy at indexing time, and at query time they are discardedfmed into subsets depending on
lower/upper bounds obtained from successive distance gtatpns), walks (where one starts at
an object and tries to approach the target object by movinge#wby objects), mappings (where
objects are mapped to a target space where the problem carvied sore easily, and from the
solution in the target space a small candidate set in théatigpace can be derived), and epsilon-
nets (where the space is hierarchically divided into chsstéexd only a small number of clusters
per level must be examined at query time; sufficient segardtetween clusters lead to query-time
guarantees). Then the entry focuses on the “combinat@pabach”, a generalization of the met-
ric space approach where one can only tell whethisrcloser toy thanz, but there are no explicit
distances. A notion similar to that of intrinsic dimensibtyg(called a “disorder constant?)) can

be defined, and several nearest-neighbor algorithms hasre derived, whose performance is a
function ofn and D. This framework allows one to define some subclasses of gmubivhere the
nearest-neighbor problem is tractable (including somerg/emetric cannot be defined) and to
solve proximity problems where a metric is hard to definesdlse case in many real-life situations
handing complex objects. Several challenges pointingablife problems are posed.

Approximate and probabilistic algorithms.  An exciting way out to the limits posed by intrin-
sic dimensionality is to relax the search problem to allowrion-exact solutions. The lower
bounds arising from the relation between approximatiomsiattinsic dimensionality remain un-
clear. This entry starts by noting that in many cases theecbanswer is found quickly by the
search algorithm, but then much work is spent in ensuringtths is indeed the correct answer.
The entry then argues that approximate solutions are adaglepnh most practical applications of



metric searching. Then it proposes to classify the manytiagisechniques along various dimen-
sions to facilitate comparing them. One important dimemssothe approach used to obtain the
approximation, where three approaches are identified: mgpipe objects to another space where
the problem is simpler to handle, using a mapping that pvesguroximity as much as possible;
not considering some objects that are “unlikely” to belooghte answer (e.g., close to be elimi-
nated by lower bounds on the distances computed); and sipppiexact search algorithm earlier
than the necessary to ensure correctness and giving thartssgér found so far, trying to consider
the more promising objects earlier in the process. The mgsbitant challenge posed is finding
techniques that offer guarantees on performance and/dityqaathe result, either deterministic
or probabilistic. A couple of methods are covered, locadgysitive hashing (LSH) and probably
approximately correct queries (PAC), that offer guaramtd#ehose kinds.

Beyond the metric space model: Many applications require even more general similarity mod
els than those provided by metric spaces. In the absence dfiimgle inequality, usually only
approximate algorithms are possible. This is a largely uedplored area. The entry starts by
enumerating several relevant applications where somesgh#tric axioms are violated in the sim-
ilarity functions that work best. The most frequently qumséd axiom is the triangle inequality,
which is on the other hand the fundamental property used blyeametric space indexes. One way
to handle cases where it does not hold is that domain expedaalernative topological or statis-
tical properties that hold in the database and that allowgdasy other indexing schemes. Another
way is to discover or estimate those kinds of properties bghshg a sample of the database. The
entry mentions several concrete approaches. Apart fronmadwespecific ones, general techniques
include mapping to a metric space (usually increasing tliegic dimensionality), and using ap-
proximate techniques directly on the nonmetric space. dbatification of general alternative
topological features (such as in the “combinatorial fraroegy advocated in an earlier entry) is,
among others, an important challenge posed at the end.

Stronger metricoperations: Range and nearest-neighbor search are the most basicqjuérese
fall short to incorporate a metric object type to statefud-airt database technology. A missing op-
eration, among others, is the metric join, i.e., find closetgh pairs of points among two sets.
The entry starts by enumerating some application areasrfolasity joins. Then it refers to the
nested loop, where each element of a set is searched for otllee set using an index, as the
basic technique, which misses opportunities for optinmratiue to similar queries. Algorithms
improving upon this basic idea make use of spatial clugjetinreduce the number of pairs of
objects to consider. Then the entry covers some particlgarithms for specific metric spaces.

Real-life performance:  The idealized cost model we presented is helpful to undealdtae fun-
damentals of the problem. In many applications, howevdg sosts cannot be disregarded. This
is particularly true when the data resides on disk, whosesacttimes are hardly negligible. Other
issues are index construction and maintenance, scayaliht distributed processing. This topic
is becoming of high interest with the advent of multicore qgassors and peer-to-peer systems.
The entry starts by emphasizing the challenges and opptesiderived from the massive gener-
ation of digital content from distributed heterogeneousrses, as well as the distributed storage
of digital information searchable by similarity. It covete M-tree family as the first and best-
known indexes to handle similarity search in secondaryagira must when handling massive



data. Then it points at the problems posed by the paralteizaf the M-tree (actually shared
by all hierarchical structures) and at the D-index as a Hested (or cluster-based) index for sec-
ondary storage that is, instead, easily parallelizable &rtry then turns into P2P systems, which
manage to handle indexing and searching in distributed feitinno centralized scheme. It covers
several adaptations of existing techniques (such as clbhated and mapping-based indexes) to
P2P architectures. In a more challenging scenario, whichrsdn applications, nodes retain total
control on their data and will not index data from other nodeeme systems are described that
manage to operate this more restricted version of a P2P refaosimilarity search. Finally, the
entry focuses in the challenges posed by the cost of extastifficiently good features from mas-
sive data so that good-quality retrieval is possible fromfdatures. As the data volumes increase,
massively parallel schemes become mandatory to achiegerrable indexing performance, and
this may reach the point where only stream processing onatseflbw is possible.

Applications. The research in metric space indexing is driven by appboatsuch as multimedia
searching, computational biology and data mining. It isamg@nt to exploit insight knowledge of
expert practitioners in order to design successful salgtiotTwo entries describe applications in
computational biology and in data mining. Similarity sdaecises in many subfields of compu-
tational biology. The entry focuses in the case of sequean®arisons used to find homologous
regions in DNA and protein sequences. Similarity measurel as PAM and BLOSUM matrices
have been developed which have a strong biological meahutgre not metric. Recently, there
have been efforts in deriving metric variants that are btdlogically plausible while admitting
searches using metric indexes. Protein identification imyiaiity of mass spectra is another area
where metric space methods have been applied.

The entry on data mining focuses on its applications to ehusg. It first shows that several
clustering algorithms are directly based on distance cdatjpuns, such ag-nearest-neighbors
classifiersk-medioid clustering, and distance-based outlier detecgtiethods. While the methods
themselves usually do not require the space to be metrierfalsistering is possible with metric
indexes when the spaces are metric. The entry then coverdbé&m, which arises in many
real cases, of clustering in presence of noise. Practidatigns adapt clustering algorithms to
handling uncertain objects, for example by consideringmuiistances. Finally, the entry considers
clustering high-dimensional spaces, which is usually aseqnence of the irrelevance of many of
the features. This can be addressed by finding out whichriesature relevant in which areas of the
space, via various projection techniques. Most of the gmislare, however, basically open.
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