
Integrating Contents and Structure in Text Retrieval�Ricardo Baeza-Yates Gonzalo NavarroDepartment of Computer ScienceUniversity of ChileBlanco Encalada 2120 - Santiago - Chilefrbaeza,gnavarrog@dcc.uchile.clAbstractThe purpose of a textual database is to store textu-al documents. These documents have not only textu-al contents, but also structure. Many traditional tex-t database systems have focused only on querying bycontents or by structure. Recently, a number of modelsintegrating both types of queries have appeared. Weargue in favor of that integration, and focus our atten-tion on these recent models, covering a representativesampling of the proposals in the �eld. We pay specialattention to the tradeo�s between expressiveness ande�ciency, showing the compromises taken by the mod-els. We argue in favor of achieving a good compromise,since being weak in any of these two aspects makes themodel useless for many applications.1 IntroductionTextual databases are deserving more and more atten-tion, due to their multiple applications: libraries, o�ceautomation, software engineering, automated dictionar-ies and encyclopedias, and in general any problem basedon storing and retrieving textual information [20].The purpose of a textual database is to store text doc-uments, structured or not. A textual database is com-posed of two parts: content and structure (if present).The content is the text itself; the structure relates dif-ferent parts of the database by some criterion.Any informationmodel for a text database should com-prise three parts: text, structure, and query language.It must specify how the text is seen (i.e. character set,synonyms, stopwords, hidden portions, etc.), the struc-turing mechanism (i.e. markup, index structure, typeof structuring, etc.), and the query language (i.e. whatthings can be asked, what the answers are, etc.).The major challenge of any system related to infor-mation retrieval is to help its users to �nd what they�This work has been supported in part by FONDECYT grants1940271 and 1950622.

need. Textual databases are not as relational databases[16], in which the information is already formatted andmeant to be retrieved by a \key". In this case, the in-formation is there, but there is no easy way to extractit. The user must specify what he/she wants, see theresults, then reformulate the query, and so on, until issatis�ed with the answer. Anything that helps users to�nd what they want is worth considering.Traditionally, textual databases have allowed to searchtheir contents (words, phrases, etc.) or their structure(e.g. by navigating through a table of contents), butnot both at the same time. Recently, many models haveappeared that allow mixing both types of queries.Mixing contents and structure in queries allows to posevery powerful queries, being much more expressive thaneach mechanism by itself. By using a query languagethat integrates both types of queries, the retrieval qual-ity of textual databases can be potentiated.Because of this, we see these models as an evolutionfrom the classical ones. Suppose, for example, a typicalsituation of \visual memory": a user remembers thatwhat he/she wants was typed in italics, short beforea �gure that said something about \earth". Searchingfor the word \earth" may not be a good idea, as wellas searching all �gures or all the text in italics. Whatreally would help is a language in which we can say \Iwant a text on italics, near a �gure containing the word`earth' ". This query mixes content and structure of thedatabase, and only new models can handle it.This work studies this new kind of models. They arenot in general as mature as the classical ones. Not onlythey lack the long process of testing and maturing thattraditional models have enjoyed, but also many of themare primitive as software systems, having been imple-mented mainly as research prototypes. However, thepromise they represent in terms of new query facilitiesand the challenges they pose are so exciting that theydeserve a serious study.On one hand, the \content" of the database is not for-matted, but in natural language form. This means thatno traditional model relying on formatted data (e.g. the

relational model) or assuming uninterpreted data ob-jects and relying only on their (formatted) attributes(e.g. multimedia databases [4]) is powerful enough torepresent the wealth of information contained in the tex-t. The information has to be extracted from the text,but not in a rigid way (see also [38]).On the other hand, there is no consensus on how thestructuring model of a database should be. There are anumber of possible models, ranging from no structuringat all to complex interrelation networks. Deciding to usea structuring model involves choosing also what kind ofqueries about structure can be posed.Finally, there is no consensus on how powerful a modelshould be. The more powerful the model, the less ef-�ciently it can be implemented. We are going to payspecial attention to this expressiveness/e�ciency trade-o�, since being weak in any of these two aspects makesthe model impractical for many applications.The purpose of this work is thus to analyze how theproblem of mixing content and structure is addressedin the new models, to compare and classify di�erentapproaches, and to discuss their good and bad points.We do not discuss how this aspect should be includedin a full model, nor suitable end-user interfaces.See [31] for another survey, which studies a number ofapproaches to structured text retrieval. That study isbroader, since it also covers indexing and editing aspect-s, but its focus on data models and query languages isnot so deep as ours. Moreover, we only share two of allthe models under study.Throughout this work, we use the term \match" or\match point" to mean a position of the text thatmatches a searched word or pattern. A \region", \area"or \segment" is a contiguous portion of the text. A \n-ode" is a structural component (e.g. a chapter), and itnormally is associated with a text area.This work is organized as follows. In section 2, we re-view traditional approaches, showing why they do notserve our purposes. In section 3, we analyze a represen-tative sampling of the new proposals. In section 4, wecompare the models and discuss their tradeo�s. Finally,in section 5 we draw our conclusions.2 Traditional ApproachesThis section briey presents the classical approachesto textual information retrieval (IR). By \classical" wemean that they do not integrate content and structurein queries. However, they address other problems thatthe new models do not solve in general (e.g. tuplesand joins, relevance ranking, and implementation issuessuch as security, fault-tolerance and concurrency).

The Relational Model [16] expresses the relation-ships present in a database by a �xed structure of tables,in which the data is organized. By developing an e�-cient and versatile set of operators to manipulate thosetables, this model has been successfully applied to awide range of information management problems.However, this model is not suitable for expressing thefuzzy, complex and highly variable structuring presentin a textual database [22, 27], not to mention the ex-traction of information from contents.Some proposals for integrating the relational model witha textual query language can be found in [42] and T-DM [18]. There are also commercial products, such asOracle SQL*TextRetrieval. However, those embeddedsystems do not have the best possible performance, s-ince the text is usually stored together with other typeof data.The Traditional IR Model [40, 41] was the �rstin recognizing the particular information requirementsposed by text, and the need to create a model orientedto it. In this model, a database is organized as a set ofdocuments, which are assigned keywords, that is, word-s or phrases meant to describe the semantic contentsof the document. Queries are in terms of those key-words, and by examining the correlation between thewords of the query and the keywords of the document,the relevance of the document for that query is estab-lished. Therefore, the answer to the query consists of asequence of documents (ranked according to the com-puted relevance). There are many variations on thistopic, for example the boolean, the probabilistic, or thevector model. [20, chapters 11, 12, 14 and 15].In some cases, we can also query on contents. The onlystructure allowed on the content consists of non-nested,non-overlapped \�elds", regions which cover the wholedocument. Those �elds can only be used to restrict theareas in which match points are to be found.The problem with this approach is that although it doesa very good job in capturing the contents of documents,their �ne structure is lost, since they are seen as \blackboxes" whose only description are their keywords, their(restricted) �elds and their content.The Full Text Model queries only by contents. Aquery is a pattern, which is searched in the wholedatabase. The answers are the match points and thedocuments containing them [20, chapter 10]. Thissearch may not use indexes, in which case it has to tra-verse the whole text database; or it may use some kindof index (e.g. inverted �les [20, chapter 3], signature�les [20, chapter 4], su�x or PAT arrays [20, chapter5] and [34], etc.). The problem of this model is that itis not possible to query on the structure of documents.Most commercial products combine full text retrievalwith the IR model (e.g. Fulcrum, Topic, BRS, etc.).

Hypertext [12] organizes the database as a graphwhere nodes are small portions of the database andedges connect nodes related by some design criterion.In this case, the idea is not to use querying but to nav-igate through the edges. Edges may not only expressassociations by semantic similarity, but also the struc-ture of the text, cross references, etc. Hypertexts modelquery by structure well, but not by content; moreover,not always a navigational approach is acceptable. Re-cently, some models combining a semantic network [24]with structured text have appeared [43], resulting in ahypertext with some facilities to query on the text andits structure.Related to this we can mention also graph query lan-guages [13] and object-oriented databases [29]. Someattempts have been made to integrate structured tex-t searching into object-oriented databases (e.g. [9]),which generally result in expressing the structure asa (hierarchical) network, linked by part-of attributes.Queries are translated into path expressions in the gen-eral language of the database. This approach is pow-erful but ine�cient, since it does not fully consider thesemantics of inclusion [14].3 Novel ModelsWe present a sample of novel models, which cover dif-ferent approaches to integrate queries on content andstructure in a uniform syntax. This analysis is summa-rized in Table 1.The other models studied in [31] are TDM [18] (alreadymentioned as integrating the relational model with atextual query language), TOMS [17] (a more naviga-tional variation of Lists of References, see later), an oldversion of Overlapped Lists (see later), MdF (a purely-theoretical model) and others not oriented to queryingbut to organizing the database, structured editing, etc.(the Bayan system, MAESTRO, Grif and MULTOS).3.1 A Hybrid ModelPerhaps one of the simplest approaches is [2], whichhas been partially implemented in SearchCity [1]. Themodel sees the database as composed of a set of doc-uments (or �les, if no structure is de�ned), which mayhave �elds. Those �elds need not to fully cover the text,and can nest and overlap.The query language is an algebra over pairs (D;M),where D is a set of documents and M is a set of matchpoints in those documents. There are a number of oper-ations to obtain match points: pre�x search, proximity,etc. There are operations for union, intersection, dif-ference and complement of both documents and matchpoints; to restrict matches to only some �elds, and to

retrieve �elds containing some match point. Since it isnot possible to determine whether a �eld is included inother (except under certain assumptions on the hierar-chy) we say that the model is \at", and since it is notpossible to make certain compositions of expressions in-volving �elds, we say that it is not \compositional".This model is more expressive than traditional ones,mixing the best of classical IR and full text retrieval,making a �rst incursion on the problem of mixingqueries on structure and contents. This model can beimplemented very e�ciently, thanks to its simplicity.3.2 PAT ExpressionsThis model [39] has been implemented in the PAT Tex-t Searching System [19]. The only index is on matchpoints, there is no indexing on structure. For that pur-pose, the language allows dynamic de�nition of struc-tures, based on match point expressions for the begin-ning and end of regions. It also allows to use externallycomputed regions. Although the dynamic de�nition ap-proach is exible, it relies on speci�c markup require-ments: it must be possible to de�ne regions by sim-ple expressions on match points. For example, it doesnot allow to recognize the structure of C code. Thismodel has been applied successfully to the computeriza-tion of the Oxford English Dictionary (the OED project[3, 21]), because it uses an SGML-like markup.Structures can have substructures of other type; thisfact is not explicit, but derived from the inclusion re-lationship between regions. Recursive structures (e.g.sections having other sections inside) are not allowed,each structure owns a set of non-overlapping areas of thetext. When an operation (e.g. union) results in over-lapping regions, only their start points are taken. Thus,the algebra mixes points and regions. This causes a lotof trouble and lack of orthogonality and compositionali-ty in the language, as is pointed out in [39]. Sometimes,it is even impossible to determine statically whether anan expression will yield points or regions (e.g. set unionand di�erence, and \followed by").Although it is not supposed to depend on the underlyingimplementation of the index, the operations de�ned onthe text are oriented to the use of a PAT array [20,chapter 5]. Indeed, some operations are included mainlybecause they are easy to implement with a PAT array,although, as it is pointed out in [39], they are rarelyused and di�cult to grasp and even to specify (e.g. thelongest repeated string).Despite these drawbacks, the model is a good exampleof structuring and querying documents by mixing con-tent and structure. What is most important, since alloperations are based on the PAT array, they are ex-tremely fast. Operations on areas are also fast, sincethey are non-overlapping and non-recursive. Thus, it

Model Structuring Contents Structuralmechanism query language query languageIR-like documents Query = matches + Only to restrict match+ �elds + text. documents. Almost all the points to be in aFields can nest and language is oriented to given �eld or to selectHybrid Model overlap, but this matches, which are seen �elds including match[2] cannot be later as their start point. Ex- points (selectedqueried. It is a presses distances. Has sep- �elds are then seen asat model. arate set manipulation tools match points).for matches and documents. Very simple in general.Dynamic de�nition Powerful matching lang- Simple, since structuresof regions, by pattern uage. Handles points are at. Can expressPAT Expressions matching. Each region and regions. Has set inclusion, set manip-[39] is a at list of manipulation operations. ulation and some verydisjoint segments. Expresses distances. specialized operations.A set of regions, Not speci�ed. Words and Results can overlap,Overlapped Lists each one a at regions are seen in a but not nest. Can[10] list of possibly uniform way, by an inverted express inclusion, unionoverlapping segments. list metaphor. and combinations.A single hierarchy Text queries can only be Results are at and fromLists of References with attributes in used to restrict other the same constructor. Can[33] nodes and hypertext queries. express inclusions,links. complex context conditionsand set manipulation.A set of disjoint Text is a special view. Can express inclusion,strict trees (views), Text queries are leaves positions, direct andViews can overlap. of query syntax trees. transitive relations,Nodes cannot be Text content is accessed and set manipulation.Proximal Nodes dissociated from only in matching sub- Can express complex[37] segments. queries, thereafter it is context conditions ifseen just as segments. they involve proximalThere are powerful dis- nodes.tance operators, andspecial set operators fortext.A single tree, with Not speci�ed, orthogonal Powerful tree patternstrict hierarchy. to the model. It can matching language. CanNo more only be used to restrict distinguish order butrestrictions. sets of nodes of the tree not positions nor dir-Tree Matching (leaves of patterns). ect relationships. Can[27] Weak link between express equality betweencontent and structure. di�erent parts of astructure, by usinglogical variables. Setmanipulation featuresvia logical connectives.Table 1: Features of novel models.

achieves high e�ciency at the cost of some restrictions,which are reasonable for some applications.3.3 Overlapped ListsA recent work with some resemblance to PAT Expres-sions is [10, 11], an evolution from an older idea [6, 7].The original idea was to have at lists of disjoint seg-ments, originated by textual searches or by \regions"like chapters, for example. Both searches were uni�edby using an extension of inverted lists [20, chapter 3],where areas were indexed the same way as words. Theoperations were simple: select regions (not) containingother regions; select regions (not) contained in otherregions; select a given region or word; and other opera-tions closer to traditional IR (e.g. relevance ranking).This new work enhances the algebra with overlappingcapabilities, some new operators and a framework for animplementation. With these enhancements, the modelbecomes a reworking of PAT expressions that solves el-egantly its semantic problems.The new operators allow to perform set union, and tocombine areas. Combination means selecting the mini-mal text areas including two segments, for any two seg-ments taken from two sets. A \followed by" operatorimposes the additional restriction that the �rst segmentmust be before the second one. An \n words" opera-tor generates the set of all (overlapping) sequences of nwords of the text.These operations produce nested and overlapped result-s. The last ones are allowed, but nesting is avoided byselecting the minimal segments from those that nest. Itis not clear whether this feature is good or not to cap-ture the structural properties that information has inpractice.The implementation relies in four primitives, that areused to iterate on the operands to produce the result.Since both the operands and the result can be linearlyordered, the implementation can be very e�cient.3.4 Lists of ReferencesIn [33, 32], a model is proposed to achieve uniform def-inition and querying of structured databases, by meansof a common language. It is strongly based on SGML[25], although the ideas are not dependent on it.The language is somewhat outside the scope that we arestudying, since it does not only include data de�nitionfeatures, but also hypertext-like linkages and some op-erations closer to object-oriented databases (by allow-ing nodes to have attributes that can also be queried).It also incorporates \external procedures" to the querylanguage, much as in object-oriented databases.

Although the structure of documents is hierarchical(with only one strict hierarchy), answers to queries areat (only the top-level elements qualify), and all ele-ments must be from the same type (e.g. only sections,or only paragraphs).Answers to queries are seen as lists of \references". Areference is a pointer to a region of the database. Thisintegrates in an elegant way answers to queries and hy-pertext links, since all are lists of references. The modelhas also navigational features to traverse those lists.This model is very powerful, and because of this, hase�ciency problems in its implementation [33]. To makethe model suitable for our comparisons, we consider on-ly the portion related to querying structures. Even thisportion is quite powerful, and allows to e�ciently solvequeries by �rst locating the text matches and then �l-tering the candidates with the structural restrictions .3.5 Proximal NodesIn [35, 37] a model is proposed that �nds a good com-promise between expressiveness and e�ciency. It doesnot de�ne a speci�c language, but a model in whichit is shown that a number of useful operators can beincluded, while achieving good e�ciency.Many independent structures can be de�ned on thesame text, each one being a strict hierarchy, but al-lowing overlaps between areas delimited by di�eren-t hierarchies (e.g. chapters/sections/paragraphs andpages/lines).A query can relate di�erent hierarchies, but returns asubset of the nodes of one of them only (i.e. nestedelements are allowed in the answers, but no overlaps).Each node has an associated segment, the area of thetext it comprises. The segment of a node includes thatof its descendants. Text matching queries are modeledas returning nodes from a special \text hierarchy".The model speci�es a fully compositional language withthree types of operators: (1) text pattern-matching; (2)to retrieve structural components by name (e.g. al-l chapters); and (3) to combine other results. The mainidea behind the e�cient evaluation of these operationsis a bottom-up approach, by �rst searching the querieson contents and then going up the structural part.Two indices are used, for text and for structure, mean-t to e�ciently solve queries of type 1 and 2 withouttraversing the whole database. To make operations oftype 3 e�cient, only operations that relate \nearby"nodes are allowed. Nearby nodes are those whose seg-ments are more or less proximal. This way, the answeris built by traversing both operands in synchronization,leading in most cases to a constant amortized cost perprocessed element.It is shown that many useful operators �t into this mod-

el: selecting elements that (directly or transitively) in-clude or are included in others, that are included at agiven position (e.g. the third paragraph of each chap-ter), that are after or before others; union, intersection,di�erence; and many powerful variations. Operationsof type 1 form a separate text matching sublanguage,which is independent of the model. In [36, 35], the ex-pressiveness of this model is compared against othersand found competitive or superior to most of them.The model can be e�ciently implemented, being linearfor most operations and in all practical cases (this issupported by analysis and experimental results). Thetime to solve a query is proportional to the sum of thesizes of the intermediate results (and not the size of thedatabase). A lazy version is also studied, which behavesbetter in some situations. This model is as e�cient asmany others which are less expressive.3.6 Tree MatchingIn [26, 27] a model relying on a single primitive, treeinclusion, is proposed. The idea of tree inclusion is, see-ing both the structure of the database and the query (apattern on structure) as trees, to �nd an embedding ofthe pattern into the database which respects the hierar-chical relationships between nodes of the pattern. Theapproach is not meant to be comprehensive in expres-siveness, but to study the properties of that primitive.Two variants are studied. Ordered inclusion forces theembedding to respect the left-to-right relations amongsiblings in the pattern, while unordered inclusion doesnot. The leaves of the pattern can be not only struc-tural elements but also text patterns, meaning that theancestor of the leaf must contain that pattern.Tree inclusion is a way to query on structural proper-ties in which the user does not need to be aware of allthe details of the structure, but only on what he/she isinterested. This stands for \data independence".Simple queries return the roots of the matches, and thelanguage is enriched by Prolog-like variables, which canbe used to express requirements on equality betweenparts of the matched substructure, and to retrieve an-other part of the match, not only the root. Logical vari-ables are also used for union and intersection of queries,as well as emulate tuples and joins capabilities.Although the language is set-oriented, the algorithmswork by sequentially obtaining each match. The useof logical variables makes the problem intractable (NP-hard in many cases), and even without them, unorderedtree inclusion is NP-complete. Ordered tree inclusion ofa pattern P into a textual database T takes O(jP jjT j),and O(jT j) if the structure is not recursive (i.e. no nodecan be the ancestor of an equally labeled node). See[26, 28] for the complexity study.

3.7 Parsed StringsThis approach has also been used for the OED project[3], but in di�erent problems [22]. Those problems arerelated to transforming a database, or to generating newviews by processing the data and structure. It has beensuccessfully applied to the Short OED (SOED) project[5], for example, in which the goal is to extract a shorterversion from the original dictionary.Since it has to be a data manipulation rather than aplain query language, the approach is quite di�erent(and we left it aside in some comparisons). The lan-guage used to express a database schema is a context-free grammar, that is, the database is structured bygiving a grammar to parse its text. The fundamentaldata structure is the p-string, or parsed string, which iscomposed of a derivation tree plus the underlying tex-t. The parsing process implicitly comprises the workof pattern-matching, there are no further operations toexpress it. The language relies on the facilities of itshost language, G�odel, based on Maple [8].There are a number of powerful operations that can beperformed to manipulate parsed strings: they can bereparsed by another grammar, some nonterminals canbe hidden, etc. With those operators, the job of takinginto account all the complex variations that appear inthe structure of the dictionary is simpli�ed, althoughnot eliminated. The approach is extremely powerful,and it is shown to be relationally complete.The problem is e�ciency. Being such a dynamic ap-proach, it is hard to implement e�ciently. In [5], wecan see that the operations are really slow, althoughthis was not a concern for the SOED project (since theresults had to be worked on further by human experts).A formalization of a data manipulation model based ongrammars, quite similar to this approach, together witha study of its expressiveness, can be found in [23].4 A Taxonomy of ModelsOur aim in this section is to analyze and discuss thedi�erent approaches presented by the novel models, di-viding this analysis in three parts: structuring power,query language and e�ciency. We are going to pay spe-cial attention to the way in which decisions about ex-pressiveness a�ect the e�ciency that can be achieved.Figure 1 presents a graphical version of the expressive-ness analysis. The main desirable features are present-ed, and each model is represented as a set of the featuresit reasonably supports. Recall that we only considerpart of Lists of References.

PAT expressions
Hybrid model
Lists of references

Text is first-
class object

Overlaps
in resultsCompositional

language

Positional
inclusion

Direct
ancestorship

Distances

Semijoin

by contentsand join

Tuples

Set
manipulationstructures

structure

Inclusion
relations

Tree
matching

Combination
of nodes

lists
Overlapped

Overlaps in

Nested
results

Nested

nodes
Proximal

Figure 1: A graphical representation of the expressiveness analysis.4.1 Structuring PowerSince there is no consensus on how to structure a textualdatabase, there is a wide variety of structuring mecha-nisms. We point out a number of relevant aspects here.Table 2 summarizes this analysis.4.1.1 Type of StructureThis refers to the form of the structure allowed. Forexample, structure can be seen as a graph (e.g. hyper-text), as a tree, as a sequence of blocks (e.g. traditionalIR), etc. The richer the structure, the more di�cult toimplement e�ciently.Most of the new models use a hierarchic structure,where ancestorship is dictated by the inclusion relationbetween structural elements. This is reasonable, sincethe problem of designing a powerful and e�cient querylanguage is hard even under this restriction. Moreover,a hierarchical structure is enough for many application-s. Even when the structure must be a network, it isnormally not required to query on paths, but they areused in a navigational way. Because of this, a good �rststep is to satisfactorily solve the problem under the hi-erarchical hypothesis, and then integrate this solutioninto a model that allows to specify graphs for navigation(e.g. Lists of References).Flat: In this case, no structural element can containanother. This is the case of the Hybrid Model, wherethe inclusion is not forbidden, but it is not possible to

query it except under special conditions. The structuralelements are intended to limit pattern-matching queries.Hierarchical: This is the most general case, althoughmany models deviate from this schema. For example,PAT Expressions does not allow recursive structures.Some of them allow many independent hierarchies onthe same text (e.g. Proximal Nodes). Overlapped Listsallows overlaps in the structure.Network: There are no truly network models amongthose studied. Only Lists of References allows express-ing nonhierarchical relationships, but this is to be usedin the navigational portion of the language.4.1.2 Implicit or Explicit StructureSome models rely on parsing or on markup to determinethe structure of the text. That is, there is no a separatehierarchy information, but the text itself encodes thestructure.Each alternative has good and bad points. On one hand,models relying on markup are somewhat dependent onthe encoding, since structures that cannot be represent-ed by the provided markup mechanism are forbidden(e.g. it is di�cult to have recursive structures). Onthe other hand, the markup can easily express types ofstructures that are not allowed in many models usingan explicit structure, e.g. overlapping.Another important consideration relates to querying:while implicit structure models can be very simple and

Model Type of Implicit or Static or Bound to Answersstructure explicit dynamicHybrid Model Flat Implicit Static Text FlatPAT Hierarchy Implicit Dynamic Text FlatExpressions (not recursive)Overlapped Hierarchy Implicit Dynamic Text OverlappedLists (with overlaps)Lists of Hierarchy Explicit Static Structure Flat (and ofReferences (and network) (single) the same type)Proximal Hierarchy Explicit Static Intermediate NestedNodes (multiple)Tree Hierarchy Explicit Static Structure NestedMatching (single)p-strings Hierarchy Explicit Dynamic Intermediate Nested(multiple)Table 2: Analysis of structuring power.e�cient by translating structural queries into pattern-matching expressions (thus unifying the implementa-tion), explicit structure models can pose queries aboutdirect ancestorship (i.e. nodes that are direct parentsor children of others), and can discriminate ancestor-ship even when the nodes own exactly the same textarea (this happens frequently in parsing, when for ex-ample an isolated number is also a constant, a factor,an additive expression, etc.).Finally, implicit structure databases tend to be easierto reindex.Implicit: PAT Expressions and Overlapped Lists relyon (SGML-like) markup. Overlapped Lists takes fulladvantage of the exibility allowed. The Hybrid Modelalso uses markup to identify components.Explicit: The remaining models use explicit structur-ing. Among them we can classify those allowing justone or many hierarchies (since implicit structuring nat-urally allows to see the text in many ways):Single: Tree Matching and Lists of References workwith a single hierarchy.Multiple: Proximal Nodes and p-strings allow manyindependent hierarchies, although only Proximal Nodesrelates the di�erent views in a single query.4.1.3 Static or Dynamic StructuresSome models work reasonably well only under the as-sumption that the structure is more or less static, whileothers are more oriented to manipulation of dynamicstructures. Generally, implicit structure models allowdynamic structures, and explicit structure models needstatic ones. The exception is p-strings, which is precise-

ly oriented to manipulate structures, allowing to dy-namically specify grammars to reparse the database.Dynamic structure models allow easy reindexing, andquerying is normally fast too, while static structuremodels cannot reindex very e�ciently. The advantageof static structuring lies in its related feature: explicitstructuring. Of course the alternative of explicit anddynamic structures cannot be e�ciently implemented.Static: Hybrid Model, Lists of References, ProximalNodes and Tree Matching.Dynamic: Overlapped Lists, PAT Expressions and p-strings.4.1.4 Link Between Content and StructureThis is a very important point, central to integratingboth types of queries. Some models are biased towardsone type of query, disregarding in part the other. Weclassify models attending to how bounded they are totext or to structure.Being strongly text-bound allows an e�cient implemen-tation, since all queries can be translated into a textmatching language, which can be e�ciently solved. Theproblem is that many structural manipulations are for-bidden (e.g. direct ancestorship). On the other hand,being bound to structure does not involve any advan-tage to e�ciency, but restricts the number of text ma-nipulation features available to the language.Strongly text-bound: These models normally putthe structure into the same text, that is, they use im-plicit structure. All operations are translated into textoperations. These models are PAT Expressions, HybridModel and Overlapped Lists.

Strongly structure-bound: These models see thestructure as mostly separated from the text. The textis used just to restrict matches in structure, but it isnot possible, for example, to retrieve text. These areTree Matching and Lists of References.Intermediate: These models pay the same attentionto text and to structure, i.e. although the structurehas separate identity and it is possible to manipulate itindependently from the text, the text is also a �rst-classobject: it can be retrieved and operated the same way asstructure nodes. These models are Proximal Nodes andp-strings. In Proximal Nodes, the text forms a separatehierarchy to which any text matching result is supposedto belong, and thereafter it can be operated as any truestructural node.4.1.5 Structure of AnswersThe structure allowed by the models for answers toqueries is not necessarily the same as that of thedatabase. Some models allow just a \at" set of answer-s, others nested, and yet others overlapped answers.Flat answers are clearly the less expressive ones. Theother two are formally not comparable, although eachapplication may �nd one of them more suitable to itsneeds. On the other hand, all these schemas can be e�-ciently implemented, although having both nested andoverlapped answers seems not suitable for an e�cientimplementation.Having a di�erent structure for the database and forthe results of operations is not desirable, since it limitsthe compositionality (i.e. the ability to compose opera-tions freely) and makes the semantics of the model morecomplex. This is incidentally the case of the models thatreturn only at answers.Flat: PAT Expressions, Hybrid Model and Lists of Ref-erences, although have a richer structure, allow only atanswers. In Lists of References all nodes retrieved mustalso be of the same type.Overlapped: Overlapped Lists allow overlapping an-swers, coherently with its database structure.Nested: ProximalNodes and Tree Matching, coherent-ly with their database structure, allow nested answers.Since p-strings retrieves trees, one could say that it re-turns \nested answers", although it is in fact a uniqueanswer.4.2 Query LanguageThe other expressiveness aspect under study is thequery language o�ered by the models. Although they

must be inuenced by the structuring model, the sub-ject constitutes a wholly separate issue.We analyze di�erent aspects of a query language: tex-t matching, set manipulation, inclusion relationships,and distances. Being a data manipulation language, p-strings is be left aside from this analysis.We summarize the main points of this subsection inTable 3.4.2.1 Text MatchingThis aspect refers to what queries can be posed in themodel that refer purely to text pattern-matching. Thisis normally a wholly independent issue, and we left itaside from this study. We should say, however, thatthe most powerful text pattern-matching languages arethose of PAT Expressions and the Hybrid Model. Somemodels, such as Proximal Nodes, do not de�ne the textmatching sublanguage, being independent of it.An important issue related to text matching has alsobeen mentioned when discussing structuring power, i.e.how is the link between text and structure. This isa question related to querying too. The support (orthe lack of it) for seeing the text as a �rst-class entityinuences also what the query language allows to dowith text, although it does not determine it.We pay attention to what can be done with text regard-ing each aspect we cover in this section.4.2.2 Set ManipulationAll models are set-oriented. That means that answersare sets of entities. The models with non-nested answersimpose a linear ordering in the sets they manipulate.The area of set manipulation refers to what can be donein each model to combine two sets of results, and underwhat restrictions. Most models can make set union,intersection and di�erence of results, although each onehas its own special features.The Hybrid Model supports two kinds of set operations.Since all answers include a set of documents and a setof matches inside those documents, there are for the setof documents and others for the set of matches. This s-tands for full text support in set manipulation. Anotherinteresting feature is that it supports the \complement"operation on sets.PAT Expressions allows union, intersection and di�er-ence of results, and also a negated version for each selec-tion operator. Since the model has two types of answers(match points and regions) the set operations must bede�ned to operate in all cases. This forces a very com-plicated conversion semantics (e.g. to avoid a union ofregions resulting in overlapped answers).Overlapped Lists solves this problem elegantly by al-

Model Set Inclusion Distancesmanipulation relationshipsHybrid Separate for text and Restricted to Only in matchesModel documents. Complement �eldsPAT Yes. Also negation Including n Yes, distance-Expressions of operations and included boundOverlapped Union and Including and included, CombinationLists combination plus negations and \n words"Lists of Yes, but only for nodes Including n and inc- NoneReferences of the same type luded. Restricted directProximal Yes (same hierarchy). Including n and Both distance-Nodes A di�erent set for included. Direct and bound and minimalnodes and for text positional inclusion Inside a given nodeTree Yes, via logical Tree patterns NoneMatching connectives + variablesTable 3: Analysis of query languages.lowing overlapped answers. However, since nesting isnot allowed, the minimal segment is selected whenevera nesting results. Another interesting feature is a vari-ant of union consisting on \combining" nodes instead oftaking both of them. The model does not specify anyintersection nor di�erence operator.Lists of References provides the three set operations onresults, but the operands must be all from the same type(i.e. it is not possible to join chapters and �gures). Thisforces answers to be of only one type. Only structuralnodes can be operated, not text.Proximal Nodes also provides the three set operationson results. Since the results cannot overlap, only nodesof the same hierarchy can be operated. This works forall the normal hierarchies, but not for text, since it isa special hierarchy in which overlaps are possible. Tooperate text, a language is proposed that deals onlywith text results, and interprets all set operations as ifthe areas were sets of points. That is, text segmentslose their identity and are seen as sets of points that areoperated and converted into new segments.Finally, Tree Matching does not provide set operationsexplicitly, but through the logic language it is embeddedinto. The \and" and \or" operations make the samee�ect as intersection and union of results (since the setof results is generated one answer at a time, ala Prolog).Negation is not provided. Only structural nodes can beoperated, not text.4.2.3 Inclusion RelationshipsInclusion relationships refers to selecting nodes whichare included or include others. Although all modelsprovide some kind of selection by inclusion, they greatlydi�er in the details.

The Hybrid Model has very restrictive inclusion opera-tions. It only allows to restrict a text matching query tooccur inside a given �eld type, and to retrieve all �elds(of a given type) containing a given text pattern. Thisis the only usage of �elds, and because of this we saythat the model is at. Observe also that is not fullycompositional, since there are no expressions returning�elds (the second type of query mentioned retrieves s-tart points of �elds, not �elds).PAT Expressions allows to select areas which include atleast n areas of another set, and areas included in somearea of another set. Recall that there are also negatedversions of these operators (i.e. areas not included ornot including).Overlapped Lists is quite the same, but the \includingn" feature is not present. It is replaced by using com-bination operators (one of them already discussed).Lists of References has complex inclusion operators, al-lowing to select nodes including n elements of anotherset, or included in a node of another set. It can also ex-press direct ancestorship (although with some complexrestrictions). Finally, the only support provided for textis to select nodes that include a given text pattern.Proximal Nodes allows many kinds of inclusions. Thesimplest one selects nodes containing at least n nodesof another set, or contained in some node of anotherset. Those sets can be from di�erent hierarchies. Italso allows \positional inclusion", i.e. to select the i-thelement from those included in an element of anotherset (e.g. the third paragraph of all chapters that have a�gure). The sets can also be from di�erent hierarchies.If two sets are from the same hierarchy, a third typeof inclusion makes sense: direct ancestorship. It canselect nodes that are parents in the structure of at leastn nodes of another set, and nodes that are children of a

node of another set. i-th children can also be selected.Tree Matching has all its power in inclusion expression-s. It does not use operators such as \included in" or\including", but uses \tree patterns" that must be em-bedded into the tree of the database structure to �ndthe answers. The answers are the roots of the matches,but logical variables can be used to extract other ele-ments of the embedding. This is also the place wheretext is included in the model: it is possible to selec-t nodes containing a given text pattern. Two variantsof the model are presented, di�ering in whether theyrespect or not the ordering among siblings of the query.4.2.4 DistancesThis aspect refers to what restrictions can be expressedregarding the distance between elements in the text.Some models are quite poor in this aspect, which isvery important in practice.The Hybrid Model has distance operations, althoughthey are part of the pattern-matching sublanguage. Nodistance restrictions can be expressed outside it.PAT Expressions allows to combine results by selectingelements from a set which are near (or only short before)some element of another set. The distance is measuredfrom start point to start point, which is not the ideal.Overlapped Lists has another combination operation,\followed by", which combine nodes of one set with n-odes of another set that follow them. This allows toselect something like \this followed by this followed bythis" (not possible in other models). Another feature isthe operation \n words", with returns all (overlapping)segments formed by n consecutive words. This is usedto force results to be of a given size, e.g. \word followedby word within 5 words" forces the two words to be atdistance �ve.Proximal Nodes has two di�erent after/before opera-tions, that can be used to relate any two sets of nodes,even from di�erent hierarchies. A �rst one selects ele-ments from a set which are after/before some elementof another set, at a distance of at most k. A third argu-ment (another set of nodes) means that both elementsthat form the after/before pair must be inside the sameminimal node of the third argument. This allows to say,for example, \I want all �gures preceded by an empha-sized text at a distance of 10, being both in the samesection". The other form does not impose a maximumdistance k, but selects the nearest candidate node foreach element of the second set.Lists of References and Tree Matching do not supportdistance operations.

4.3 Query Time ComplexityIn order to make a fair comparison between models, notonly their expressiveness must be taken into account,but also how e�ciently can the di�erent features beimplemented.Since it is not easy to know precise details of the ef-�ciency of a model, we use the order of the involvedalgorithms. We do not consider indexing times, since itcan always be done in reasonable time and querying ismore frequent.From the description of the implementation of the dif-ferent models, we classify them according to queryingtimes. We measure the e�ciency of a query as a func-tion of n, the total size of intermediate results, exceptotherwise speci�ed. Observe that n is normally muchless than the size of the whole database (this is so be-cause most models manage to avoid traversing the wholedatabase to search their candidate results).� O(n): The Hybrid Model, PAT Expressions andOverlapped Lists are susceptible of a linear imple-mentation, since all results can be put in sequen-tial order and all operations can be implementedby traversing both sequences.� Almost O(n): Proximal Nodes is linear in mostoperations. This is achieved by allowing only op-erators that relate proximal nodes. The few oper-ations that are not linear in theory are linear inmost practical situations.� O(n logn): The description of the implementationof Lists of References suggests this behavior. Thereare in fact more costly operations, but they corre-spond to the more powerful part of the model, thatwe are not considering here.� O(n2): It is not easy to predict the behavior ofp-strings, but given that there are operations re-turning O(n2) results, this is the minimumpossiblecomplexity. On the other hand, the times pointedout in [5] show that the operations are very costly.� Non-polynomial: Tree Matching is even more cost-ly. Although for some good cases it is linear in thesize of the whole database, it is not linear in the sizeof intermediate results. For bad cases, the problem-s are shown to be NP-complete or NP-hard. Thegood case is ordered tree inclusion with no logicalvariables, which is too restrictive.It is interesting to observe that object-oriented mod-els applied to this problem lead probably to non-polynomial costs, since operations are translated intosearching paths in a graph.

5 ConclusionsWe began this work by arguing that classical textdatabases do not allow to mix contents and structurein queries, and that that feature could improve their re-trieval capabilities. We deeply analyzed a set of novelmodels that address that problem, focusing speci�callyon the modeling and language aspects of the integrationof both types of queries. We also paid special attentionto the expressiveness versus e�ciency tradeo�s.We have pointed out a number of important issues relat-ed to the expressiveness of this kind of models, regard-ing structuring and querying the database. We showeda number of design decisions that must be made to builda model of this kind, and gave an idea of the cost of eachalternative in terms of e�ciency.No model is the best for all applications, especially be-cause the more expressive the model, the less e�cientcan it be. Each application has its own set of require-ments, and should select the most e�cient model sup-porting them.We have not discussed how this focused subject is em-bedded into a full database model, including importanttopics such as indexing, and necessary features such asthose present in relational databases, traditional docu-ment retrieval, etc. Speci�cally, we have not consideredhow to manage tuples and relevance ranking in thesemodels. Further problems arise regarding a sound im-plementation, with all the required security, concurren-cy, fault-tolerance, etc.In [38] it is argued that is better to put a layer integrat-ing a traditional database system with a textual one,than trying to design a language comprising all the fea-tures. For example, in [14] it is shown that structure-related queries are handled better by a query enginethat knows about the semantics of hierarchies than bya general-purpose object-oriented database language.Another important issue that we did not cover is theperspective of the user. When we incorporate operatorsand evaluate the cost of implementing them, we areimplicitly assuming that they are useful for the user ofthe system. This in fact deserves a deeper study, toavoid including theoretically interesting features thatare of no use. Moreover, not only it is important toknow what the users want to express, but to devise user-friendly languages to implement on top of the algebraswe covered here. Some interesting attempts are [27, 30].On the other hand, a formal and complete study onexpressiveness is required. See for example [23, 15].AcknowledgmentsWe want to thank Jos�e Blakeley for his careful readingand useful suggestions to improve this paper.

References[1] Ars Innovandi, Santiago, Chile. Search City 1.1.Text Retrieval for Windows Power Users, 1992.[2] R. Baeza-Yates. An hybrid query model for full tex-t retrieval systems. Technical Report DCC-1994-2,Dept. of Computer Science, Univ. of Chile, 1994.[3] D. Berg, G. Gonnet, and F. Tompa. The new Ox-ford English Dictionary project at the Universi-ty of Waterloo. In Computational Issues in Lex-icology and Linguistics, Special Issue in Honour ofBernard Quemada, 1991.[4] E. Bertino, F. Rabitti, and S. Gibbs. Query pro-cessing in a multimedia document system. ACMTOIS, 6(1):1{41, January 1988.[5] G. Blake, T. Bray, and F. Tompa. Shorten-ing the OED: Experience with a grammar-de�neddatabase. ACM TIS, 10(3):213{232, July 1992.[6] F. Burkowski. An algebra for hierarchically orga-nized text-dominated databases. Information Pro-cessing & Management, 28(3):333{348, 1992.[7] F. Burkowski. Retrieval activities in a databaseconsisting of heterogeneous collections of struc-tured text. In Proc. ACM SIGIR'92, pages 112{125, 1992.[8] B. Char, K. Geddes, G. Gonnet, M. Monagan, andS. Watt. Maple Reference Manual, 5th Edition.Waterloo, 1988.[9] V. Christophides, S. Abiteboul, S. Cluet, andM. Scholl. From structured documents to novelquery facilities. In Proc. ACM SIGMOD'94, pages313{324, 1994.[10] C. Clarke, G. Cormack, and F. Burkowski. An alge-bra for structured text search and a framework forits implementation. The Computer Journal, 1995.[11] C. Clarke, G. Cormack, and F. Burkowski.Schema-independent retrieval from heterogeneousstructured text. In Procs. of the 4th Annual Sympo-sium on Document Analysis and Information Re-trieval, April 1995.[12] J. Conklin. Hypertext: An introduction and sur-vey. IEEE Computer, 20(9):17{41, September1987.[13] M. Consens and A. Mendelzon. Hy+: A hygraph-based query and visualization system. In Proc.ACM SIGMOD'93, pages 511{516, 1993. Videopresentation summary.

[14] M. Consens and T. Milo. Optimizing queries on�les. In Proc. ACM SIGMOD'94, pages 301{312,1994.[15] M. Consens and T. Milo. Algebras for queryingtext regions. In Proc. PODS'95, 1995. California.[16] C. Date. An Introduction to Database Systems.Addison-Wesley, Reading, Massachusetts, 6th edi-tion, 1995.[17] S. Deerwester, K. Waclena, and M. LaMar. A tex-tual object management system. In Proc. ACMSIGIR'92, pages 126{139, 1992.[18] B. Desai, P. Goyal, and S. Sadri. A data model foruse with formatted and textual data. Journal ofASIS, 37(3):158{165, 1986.[19] H. Fawcett. PAT 3.3 User's Guide. UW Centre forthe New OED and Text Research, Univ. of Water-loo, 1989.[20] W. Frakes and R. Baeza-Yates, editors. Informa-tion Retrieval: Data Structures and Algorithms.Prentice-Hall, Englewood Cli�s, New Jersey 07632,1992.[21] G. Gonnet. Examples of PAT applied to the OxfordEnglish Dictionary. Technical Report OED-87-02,UW Centre for the New OED and Text Research,Univ. of Waterloo, 1987.[22] G. Gonnet and F. Tompa. Mind Your Grammar:a new approach to modelling text. In Proc. VLD-B'87, pages 339{346, 1987.[23] M. Gyssens, J. Paredaens, and D. Van Gucht. Agrammar-based approach towards unifying hierar-chical data models. In Proc. ACM SIGMOD'89,pages 263{272, 1989.[24] R. Hull and R. King. Semantic database modelling:Survey, applications and research issues. ACMComputing Surveys, 19(3):201{260, 1987.[25] International Standards Organization. InformationProcessing | Text and O�ce Systems | StandardGeneralized Markup Language (SGML), 1986. ISO8879-1986.[26] P. Kilpel�ainen. Tree matching problems with ap-plications to structured text dat abases. TechnicalReport A-1992-6, Dept. of Computer Science, Uni-v. of Helsinki, November 1992.[27] P. Kilpel�ainen and H. Mannila. Retrieval from hi-erarchical texts by partial patterns. In Proc. ACMSIGIR'93, pages 214{222, 1993.[28] P. Kilpel�ainen and H. Mannila. Ordered and un-ordered tree inclusion. SIAM Journal on Comput-ing, 24(2):340{356, April 1995.

[29] W. Kim and F. Lochovski, editors. Object-OrientedConcepts, Databases and Applications. Addison-Wesley, Reading, Massachusetts, 1989.[30] E. Kuikka and A. Salminen. Two-dimensional �l-ters for structured text. Dept. of Computer Sci-ence, Univ. of Waterloo (submitted for publication-s), 1995.[31] A. Loe�en. Text databases: A survey of text mod-els and systems. ACM SIGMOD Conference. ACMSIGMOD RECORD, 23(1):97{106, March 1994.[32] I. MacLeod. Storage and retrieval of structureddocuments. Information Processing & Manage-ment, 26(2):197{208, 1990.[33] I. MacLeod. A query language for retrieving infor-mation from hierarchic text structures. The Com-puter Journal, 34(3):254{264, 1991.[34] U. Manber and G. Myers. Su�x arrays: A newmethod for on-line string searches. In Proc. ACM-SIAM'90, pages 319{327, 1990.[35] G. Navarro. A language for queries on structureand contents of textual databases. Master's thesis,Dept. of Computer Science, Univ. of Chile, April1995.[36] G. Navarro and R. Baeza-Yates. Expressive powerof a new model for structured text databases. InProc. PANEL'95, pages 1151{1162, 1995.[37] G. Navarro and R. Baeza-Yates. A languagefor queries on structure and contents of textualdatabases. In Proc. ACM SIGIR'95, pages 93{101,1995.[38] R. Sacks-Davis, T. Arnold-Moore, and J. Zobel.Database systems for structured documents. InProc. ADTI'94, pages 272{283, 1994.[39] A. Salminen and F. Tompa. PAT expressions: analgebra for text search. In COMPLEX'92, pages309{332, 1992.[40] G. Salton and M. McGill. Introduction to ModernInformation Retrieval. McGraw-Hill, New York,1983.[41] G. Salton and M. McGill. Automatic text pro-cessing. Addison-Wesley, Reading, Massachusetts,1989.[42] M. Stonebraker, H. Stettner, N. Lynn, J. Kalash,and A. Guttman. Document processing in a rela-tional database system. ACM TOIS, 1(2):143{158,April 1983.[43] J. Tague, A. Salminen, and C. McClellan. Com-plete formal model for information retrieval sys-tems. In Proc. ACM SIGIR'91, pages 14{20, 1991.

