Integrating Contents and Structure in Text Retrieval*

Ricardo Baeza-Yates

Gonzalo Navarro

Department of Computer Science
University of Chile
Blanco Encalada 2120 - Santiago - Chile

{rbaeza,gnavarro}@dcc.uchile.cl

Abstract

The purpose of a textual database is to store textu-
al documents. These documents have not only textu-
al contents, but also structure. Many traditional tex-
t database systems have focused only on querying by
contents or by structure. Recently, a number of models
integrating both types of queries have appeared. We
argue in favor of that integration, and focus our atten-
tion on these recent models, covering a representative
sampling of the proposals in the field. We pay special
attention to the tradeoffs between expressiveness and
efficiency, showing the compromises taken by the mod-
els. We argue in favor of achieving a good compromise,
since being weak in any of these two aspects makes the
model useless for many applications.

1 Introduction

Textual databases are deserving more and more atten-
tion, due to their multiple applications: libraries, office
automation, software engineering, automated dictionar-
ies and encyclopedias, and in general any problem based
on storing and retrieving textual information [20].

The purpose of a textual database is to store text doc-
uments, structured or not. A textual database is com-
posed of two parts: content and structure (if present).
The content is the text itself; the structure relates dif-
ferent parts of the database by some criterion.

Any information model for a text database should com-
prise three parts: text, structure, and query language.
It must specify how the text is seen (i.e. character set,
synonyms, stopwords, hidden portions, etc.), the struc-
turing mechanism (i.e. markup, index structure, type
of structuring, etc.), and the query language (i.e. what
things can be asked, what the answers are, etc.).

The major challenge of any system related to infor-
mation retrieval is to help its users to find what they

*This work has been supported in part by FONDECYT grants
1940271 and 1950622.

need. Textual databases are not as relational databases
[16], in which the information is already formatted and
meant to be retrieved by a “key”. In this case, the in-
formation is there, but there is no easy way to extract
it. The user must specify what he/she wants, see the
results, then reformulate the query, and so on, until 1s
satisfied with the answer. Anything that helps users to
find what they want is worth considering.

Traditionally, textual databases have allowed to search
their contents (words, phrases, etc.) or their structure
(e.g. by navigating through a table of contents), but
not both at the same time. Recently, many models have
appeared that allow mixing both types of queries.

Mixing contents and structure in queries allows to pose
very powerful queries, being much more expressive than
each mechanism by itself. By using a query language
that integrates both types of queries, the retrieval qual-
ity of textual databases can be potentiated.

Because of this, we see these models as an evolution
from the classical ones. Suppose, for example, a typical
situation of “visual memory”: a user remembers that
what he/she wants was typed in talics, short before
a figure that said something about “earth”. Searching
for the word “earth” may not be a good idea, as well
as searching all figures or all the text in italics. What
really would help 1s a language in which we can say “I
want a text on italics, near a figure containing the word
‘earth’ 7. This query mixes content and structure of the
database, and only new models can handle it.

This work studies this new kind of models. They are
not in general as mature as the classical ones. Not only
they lack the long process of testing and maturing that
traditional models have enjoyed, but also many of them
are primitive as software systems, having been imple-
mented mainly as research prototypes. However, the
promise they represent in terms of new query facilities
and the challenges they pose are so exciting that they
deserve a serious study.

On one hand, the “content” of the database is not for-
matted, but in natural language form. This means that
no traditional model relying on formatted data (e.g. the

relational model) or assuming uninterpreted data ob-
jects and relying only on their (formatted) attributes
(e.g. multimedia databases [4]) is powerful enough to
represent the wealth of information contained in the tex-
t. The information has to be extracted from the text,
but not in a rigid way (see also [38]).

On the other hand, there is no consensus on how the
structuring model of a database should be. There are a
number of possible models, ranging from no structuring
at all to complex interrelation networks. Deciding to use
a structuring model involves choosing also what kind of
queries about structure can be posed.

Finally, there is no consensus on how powerful a model
should be. The more powerful the model, the less ef-
ficiently it can be implemented. We are going to pay
special attention to this expressiveness/efficiency trade-
off, since being weak in any of these two aspects makes
the model impractical for many applications.

The purpose of this work is thus to analyze how the
problem of mixing content and structure is addressed
in the new models, to compare and classify different
approaches, and to discuss their good and bad points.
We do not discuss how this aspect should be included
in a full model, nor suitable end-user interfaces.

See [31] for another survey, which studies a number of
approaches to structured text retrieval. That study is
broader, since it also covers indexing and editing aspect-
s, but its focus on data models and query languages is
not so deep as ours. Moreover, we only share two of all
the models under study.

Throughout this work, we use the term “match” or
“match point” to mean a position of the text that
matches a searched word or pattern. A “region”, “area”
or “segment” is a contiguous portion of the text. A “n-
ode” is a structural component (e.g. a chapter), and it
normally is associated with a text area.

This work is organized as follows. In section 2, we re-
view traditional approaches, showing why they do not
serve our purposes. In section 3, we analyze a represen-
tative sampling of the new proposals. In section 4, we
compare the models and discuss their tradeoffs. Finally,
in section 5 we draw our conclusions.

2 Traditional Approaches

This section briefly presents the classical approaches
to textual information retrieval (IR). By “classical” we
mean that they do not integrate content and structure
in queries. However, they address other problems that
the new models do not solve in general (e.g. tuples
and joins, relevance ranking, and implementation issues
such as security, fault-tolerance and concurrency).

The Relational Model [16] expresses the relation-
ships present in a database by a fixed structure of tables,
in which the data is organized. By developing an effi-
cient and versatile set of operators to manipulate those
tables, this model has been successfully applied to a
wide range of information management problems.

However, this model is not suitable for expressing the
fuzzy, complex and highly variable structuring present
in a textual database [22, 27], not to mention the ex-
traction of information from contents.

Some proposals for integrating the relational model with
a textual query language can be found in [42] and T-
DM [18]. There are also commercial products, such as
Oracle SQL*TextRetrieval. However, those embedded
systems do not have the best possible performance, s-
ince the text is usually stored together with other type
of data.

The Traditional IR Model [40, 41] was the first
in recognizing the particular information requirements
posed by text, and the need to create a model oriented
to it. In this model, a database 1s organized as a set of
documents, which are assigned keywords, that is, word-
s or phrases meant to describe the semantic contents
of the document. Queries are in terms of those key-
words, and by examining the correlation between the
words of the query and the keywords of the document,
the relevance of the document for that query is estab-
lished. Therefore, the answer to the query consists of a
sequence of documents (ranked according to the com-
puted relevance). There are many variations on this
topic, for example the boolean, the probabilistic, or the
vector model. [20, chapters 11, 12, 14 and 15].

In some cases, we can also query on contents. The only
structure allowed on the content consists of non-nested,
non-overlapped “fields”, regions which cover the whole
document. Those fields can only be used to restrict the
areas in which match points are to be found.

The problem with this approach 1s that although it does
a very good job in capturing the contents of documents,
their fine structure is lost, since they are seen as “black
boxes” whose only description are their keywords, their
(restricted) fields and their content.

The Full Text Model queries only by contents. A
query is a pattern, which is searched in the whole
database. The answers are the match points and the
documents containing them [20, chapter 10]. This
search may not use indexes, in which case 1t has to tra-
verse the whole text database; or it may use some kind
of index (e.g. inverted files [20, chapter 3], signature
files [20, chapter 4], suffix or PAT arrays [20, chapter
5] and [34], etc.). The problem of this model is that it
1s not possible to query on the structure of documents.
Most commercial products combine full text retrieval
with the TR model (e.g. Fulcrum, Topic, BRS, etc.).

Hypertext [12] organizes the database as a graph
where nodes are small portions of the database and
edges connect nodes related by some design criterion.
In this case, the idea is not to use querying but to nav-
igate through the edges. Edges may not only express
assoclations by semantic similarity, but also the struc-
ture of the text, cross references, etc. Hypertexts model
query by structure well, but not by content; moreover,
not always a navigational approach is acceptable. Re-
cently, some models combining a semantic network [24]
with structured text have appeared [43], resulting in a
hypertext with some facilities to query on the text and
its structure.

Related to this we can mention also graph query lan-
guages [13] and object-oriented databases [29]. Some
attempts have been made to integrate structured tex-
t searching into object-oriented databases (e.g. [9]),
which generally result in expressing the structure as
a (hierarchical) network, linked by part-of attributes.
Queries are translated into path expressions in the gen-
eral language of the database. This approach i1s pow-
erful but inefficient, since it does not fully consider the
semantics of inclusion [14].

3 Novel Models

We present a sample of novel models, which cover dif-
ferent approaches to integrate queries on content and
structure in a uniform syntax. This analysis is summa-
rized in Table 1.

The other models studied in [31] are TDM [18] (already
mentioned as integrating the relational model with a
textual query language), TOMS [17] (a more naviga-
tional variation of Lists of References, see later), an old
version of Overlapped Lists (see later), MdF (a purely-
theoretical model) and others not oriented to querying
but to organizing the database, structured editing, etc.

(the Bayan system, MAESTRO, Grif and MULTOS).

3.1 A Hybrid Model

Perhaps one of the simplest approaches is [2], which
has been partially implemented in SearchCity [1]. The
model sees the database as composed of a set of doc-
uments (or files, if no structure is defined), which may
have fields. Those fields need not to fully cover the text,
and can nest and overlap.

The query language is an algebra over pairs (D, M),
where D is a set of documents and M 1is a set of match
points in those documents. There are a number of oper-
ations to obtain match points: prefix search, proximity,
etc. There are operations for union, intersection, dif-
ference and complement of both documents and match
points; to restrict matches to only some fields, and to

retrieve fields containing some match point. Since it is
not possible to determine whether a field is included in
other (except under certain assumptions on the hierar-
chy) we say that the model is “flat”, and since it is not
possible to make certain compositions of expressions in-
volving fields, we say that it is not “compositional”.

This model 1s more expressive than traditional ones,
mixing the best of classical IR and full text retrieval,
making a first incursion on the problem of mixing
queries on structure and contents. This model can be
implemented very efficiently, thanks to its simplicity.

3.2 PAT Expressions

This model [39] has been implemented in the PAT Tex-
t Searching System [19]. The only index is on match
points, there is no indexing on structure. For that pur-
pose, the language allows dynamic definition of struc-
tures, based on match point expressions for the begin-
ning and end of regions. It also allows to use externally
computed regions. Although the dynamic definition ap-
proach is flexible, it relies on specific markup require-
ments: it must be possible to define regions by sim-
ple expressions on match points. For example, it does
not allow to recognize the structure of C code. This
model has been applied successfully to the computeriza-
tion of the Oxford English Dictionary (the OED project
[3, 21]), because it uses an SGML-like markup.

Structures can have substructures of other type; this
fact is not explicit, but derived from the inclusion re-
lationship between regions. Recursive structures (e.g.
sections having other sections inside) are not allowed,
each structure owns a set of non-overlapping areas of the
text. When an operation (e.g. union) results in over-
lapping regions, only their start points are taken. Thus,
the algebra mixes points and regions. This causes a lot
of trouble and lack of orthogonality and compositionali-
ty in the language, as is pointed out in [39]. Sometimes,
it 1s even impossible to determine statically whether an
an expression will yield points or regions (e.g. set union
and difference, and “followed by”).

Although it is not supposed to depend on the underlying
implementation of the index, the operations defined on
the text are oriented to the use of a PAT array [20,
chapter 5]. Indeed, some operations are included mainly
because they are easy to implement with a PAT array,
although, as it is pointed out in [39], they are rarely
used and difficult to grasp and even to specify (e.g. the
longest repeated string).

Despite these drawbacks, the model is a good example
of structuring and querying documents by mixing con-
tent and structure. What is most important, since all
operations are based on the PAT array, they are ex-
tremely fast. Operations on areas are also fast, since
they are non-overlapping and non-recursive. Thus, it

Model

Structuring
mechanism

Contents
query language

Structural
query language

Hybrid Model
2]

IR-like documents
+ fields + text.
Fields can nest and
overlap, but this
cannot be later
queried. It is a
flat model.

Query = matches +
documents. Almost all the
language is oriented to
matches, which are seen
as their start point. Ex-
presses distances. Has sep-
arate set manipulation tools
for matches and documents.

Only to restrict match
points to be in a
given field or to select
fields including match
points (selected
fields are then seen as
match points).
Very simple in general.

PAT Expressions
[39]

Dynamic definition
of regions, by pattern
matching. Each region

is a flat list of
disjoint segments.

Powerful matching lang-
uage. Handles points
and regions. Has set

manipulation operations.
Expresses distances.

Simple, since structures
are flat. Can express
inclusion, set manip-

ulation and some very

specialized operations.

Overlapped Lists
[10]

A set of regions,
each one a flat
list of possibly

overlapping segments.

Not specified. Words and
regions are seen in a
uniform way, by an inverted
list metaphor.

Results can overlap,
but not nest. Can
express inclusion, union
and combinations.

Lists of References

[33]

A single hierarchy
with attributes in
nodes and hypertext
links.

Text queries can only be
used to restrict other
queries.

Results are flat and from
the same constructor. Can
express inclusions,
complex context conditions
and set manipulation.

Proximal Nodes

[37]

A set of disjoint
strict trees (views),
Views can overlap.

Nodes cannot be

dissociated from

segments.

Text is a special view.
Text queries are leaves
of query syntax trees.

Text content is accessed
only in matching sub-
queries, thereafter it is
seen just as segments.
There are powerful dis-
tance operators, and

special set operators for

text.

Can express inclusion,
positions, direct and
transitive relations,

and set manipulation.

Can express complex
context conditions if
they involve proximal

nodes.

Tree Matching
[27]

A single tree, with
strict hierarchy.
No more
restrictions.

Not specified, orthogonal
to the model. It can
only be used to restrict
sets of nodes of the tree
(leaves of patterns).
Weak link between

content and structure.

Powerful tree pattern
matching language. Can
distinguish order but
not positions nor dir-
ect relationships. Can
express equality between
different parts of a
structure, by using
logical variables. Set
manipulation features

via logical connectives.

Table 1: Features of novel models.

achieves high efficiency at the cost of some restrictions,
which are reasonable for some applications.

3.3 Overlapped Lists

A recent work with some resemblance to PAT Expres-
sions is [10, 11], an evolution from an older idea [6, 7].

The original idea was to have flat lists of disjoint seg-
ments, originated by textual searches or by “regions”
like chapters, for example. Both searches were unified
by using an extension of inverted lists [20, chapter 3],
where areas were indexed the same way as words. The
operations were simple: select regions (not) containing
other regions; select regions (not) contained in other
regions; select a given region or word; and other opera-
tions closer to traditional IR (e.g. relevance ranking).

This new work enhances the algebra with overlapping
capabilities, some new operators and a framework for an
implementation. With these enhancements, the model
becomes a reworking of PAT expressions that solves el-
egantly its semantic problems.

The new operators allow to perform set union, and to
combine areas. Combination means selecting the mini-
mal text areas including two segments, for any two seg-
ments taken from two sets. A “followed by” operator
imposes the additional restriction that the first segment
must be before the second one. An “n words” opera-
tor generates the set of all (overlapping) sequences of n
words of the text.

These operations produce nested and overlapped result-
s. The last ones are allowed, but nesting is avoided by
selecting the minimal segments from those that nest. It
is not clear whether this feature is good or not to cap-
ture the structural properties that information has in
practice.

The implementation relies in four primitives, that are
used to iterate on the operands to produce the result.
Since both the operands and the result can be linearly
ordered, the implementation can be very efficient.

3.4 Lists of References

In [33, 32], a model is proposed to achieve uniform def-
inition and querying of structured databases, by means
of a common language. It is strongly based on SGML
[25], although the ideas are not dependent on it.

The language is somewhat outside the scope that we are
studying, since it does not only include data definition
features, but also hypertext-like linkages and some op-
erations closer to object-oriented databases (by allow-
ing nodes to have attributes that can also be queried).
It also incorporates “external procedures” to the query
language, much as in object-oriented databases.

Although the structure of documents is hierarchical
(with only one strict hierarchy), answers to queries are
flat (only the top-level elements qualify), and all ele-
ments must be from the same type (e.g. only sections,
or only paragraphs).

Answers to queries are seen as lists of “references”. A
reference 1s a pointer to a region of the database. This
integrates in an elegant way answers to queries and hy-
pertext links, since all are lists of references. The model
has also navigational features to traverse those lists.

This model is very powerful, and because of this, has
efficiency problems in its implementation [33]. To make
the model suitable for our comparisons, we consider on-
ly the portion related to querying structures. Even this
portion is quite powerful, and allows to efficiently solve
queries by first locating the text matches and then fil-
tering the candidates with the structural restrictions .

3.5 Proximal Nodes

In [35, 37] a model is proposed that finds a good com-
promise between expressiveness and efficiency. It does
not define a specific language, but a model in which
it is shown that a number of useful operators can be
included, while achieving good efficiency.

Many independent structures can be defined on the
same text, each one being a strict hierarchy, but al-
lowing overlaps between areas delimited by differen-
t hierarchies (e.g. chapters/sections/paragraphs and
pages/lines).

A query can relate different hierarchies, but returns a
subset of the nodes of one of them only (i.e. nested
elements are allowed in the answers, but no overlaps).
Each node has an associated segment, the area of the
text it comprises. The segment of a node includes that
of its descendants. Text matching queries are modeled
as returning nodes from a special “text hierarchy”.

The model specifies a fully compositional language with
three types of operators: (1) text pattern-matching; (2)
to retrieve structural components by name (e.g. al-
| chapters); and (3) to combine other results. The main
idea behind the efficient evaluation of these operations
is a bottom-up approach, by first searching the queries
on contents and then going up the structural part.

Two indices are used, for text and for structure, mean-
t to efficiently solve queries of type 1 and 2 without
traversing the whole database. To make operations of
type 3 efficient, only operations that relate “nearby”
nodes are allowed. Nearby nodes are those whose seg-
ments are more or less proximal. This way, the answer
is built by traversing both operands in synchronization,
leading in most cases to a constant amortized cost per
processed element.

It is shown that many useful operators fit into this mod-

el: selecting elements that (directly or transitively) in-
clude or are included in others, that are included at a
given position (e.g. the third paragraph of each chap-
ter), that are after or before others; union, intersection,
difference; and many powerful variations. Operations
of type 1 form a separate text matching sublanguage,
which is independent of the model. In [36, 35], the ex-
pressiveness of this model is compared against others
and found competitive or superior to most of them.

The model can be efficiently implemented, being linear
for most operations and in all practical cases (this is
supported by analysis and experimental results). The
time to solve a query is proportional to the sum of the
sizes of the intermediate results (and not the size of the
database). A lazy version is also studied, which behaves
better in some situations. This model is as efficient as
many others which are less expressive.

3.6 Tree Matching

In [26, 27] a model relying on a single primitive, tree
inclusion, is proposed. The 1dea of tree inclusion is, see-
ing both the structure of the database and the query (a
pattern on structure) as trees, to find an embedding of
the pattern into the database which respects the hierar-
chical relationships between nodes of the pattern. The
approach is not meant to be comprehensive in expres-
siveness, but to study the properties of that primitive.

Two variants are studied. Ordered inclusion forces the
embedding to respect the left-to-right relations among
siblings in the pattern, while unordered inclusion does
not. The leaves of the pattern can be not only struc-
tural elements but also text patterns, meaning that the
ancestor of the leaf must contain that pattern.

Tree inclusion is a way to query on structural proper-
ties in which the user does not need to be aware of all
the details of the structure, but only on what he/she is
interested. This stands for “data independence”.

Simple queries return the roots of the matches, and the
language 1s enriched by Prolog-like variables, which can
be used to express requirements on equality between
parts of the matched substructure, and to retrieve an-
other part of the match, not only the root. Logical vari-
ables are also used for union and intersection of queries,
as well as emulate tuples and joins capabilities.

Although the language is set-oriented, the algorithms
work by sequentially obtaining each match. The use
of logical variables makes the problem intractable (NP-
hard in many cases), and even without them, unordered
tree inclusion is NP-complete. Ordered tree inclusion of
a pattern P into a textual database T takes O(|P||T),
and O(|T) if the structure is not recursive (i.e. no node
can be the ancestor of an equally labeled node). See
[26, 28] for the complexity study.

3.7 Parsed Strings

This approach has also been used for the OED project
[3], but in different problems [22]. Those problems are
related to transforming a database, or to generating new
views by processing the data and structure. It has been
successfully applied to the Short OED (SOED) project
[5], for example, in which the goal is to extract a shorter
version from the original dictionary.

Since it has to be a data manipulation rather than a
plain query language, the approach is quite different
(and we left it aside in some comparisons). The lan-
guage used to express a database schema is a context-
free grammar, that is, the database is structured by
giving a grammar to parse its text. The fundamental
data structure is the p-sitring, or parsed string, which is
composed of a derivation tree plus the underlying tex-
t. The parsing process implicitly comprises the work
of pattern-matching, there are no further operations to
express it. The language relies on the facilities of its
host language, Godel, based on Maple [8].

There are a number of powerful operations that can be
performed to manipulate parsed strings: they can be
reparsed by another grammar, some nonterminals can
be hidden, etc. With those operators, the job of taking
into account all the complex variations that appear in
the structure of the dictionary is simplified, although
not eliminated. The approach is extremely powerful,
and it is shown to be relationally complete.

The problem is efficiency. Being such a dynamic ap-
proach, it is hard to implement efficiently. In [5], we
can see that the operations are really slow, although
this was not a concern for the SOED project (since the
results had to be worked on further by human experts).

A formalization of a data manipulation model based on
grammars, quite similar to this approach, together with
a study of its expressiveness, can be found in [23].

4 A Taxonomy of Models

Our aim 1in this section is to analyze and discuss the
different approaches presented by the novel models, di-
viding this analysis in three parts: structuring power,
query language and efficiency. We are going to pay spe-
cial attention to the way in which decisions about ex-
pressiveness affect the efficiency that can be achieved.

Figure 1 presents a graphical version of the expressive-
ness analysis. The main desirable features are present-
ed, and each model is represented as a set of the features
it reasonably supports. Recall that we only consider
part of Lists of References.

— Overlapped
Proximal T N lists
nodes s Positional AN
J inclusion \ Lot o
, \;-" Overlaps in H
: Direct K structure
i ancestorship . [\ F=-——- - ———- .
| . \ f .
‘ 9 Distances @ Text is first- 1
\ 1 S~ . class object 1
\ TTTe-al 1
1 N
\ . 1 . N 1
Y .* Nested . Set . *\ 1
\ -, structures ; Manipulation H Mo Qverlaps
NN : Compositional 1] | inresults
AN I inclusion : language .
S I relations . -
\\\\ 1 - - L’
Nested B S e S Combination
results of nodes
Tuples Semijoin
and join by contents
Tree .
. - = = PAT expressions
matching

Hybrid model
Lists of references

Figure 1: A graphical representation of the expressiveness analysis.

4.1 Structuring Power

Since there is no consensus on how to structure a textual
database, there is a wide variety of structuring mecha-
nisms. We point out a number of relevant aspects here.
Table 2 summarizes this analysis.

4.1.1 Type of Structure

This refers to the form of the structure allowed. For
example, structure can be seen as a graph (e.g. hyper-
text), as a tree, as a sequence of blocks (e.g. traditional
IR), etc. The richer the structure, the more difficult to
implement efficiently.

Most of the new models use a hierarchic structure,
where ancestorship is dictated by the inclusion relation
between structural elements. This is reasonable, since
the problem of designing a powerful and efficient query
language is hard even under this restriction. Moreover,
a hierarchical structure is enough for many application-
s. Even when the structure must be a network, it 1s
normally not required to query on paths, but they are
used in a navigational way. Because of this, a good first
step 1s to satisfactorily solve the problem under the hi-
erarchical hypothesis, and then integrate this solution
into a model that allows to specify graphs for navigation
(e.g. Lists of References).

Flat: In this case, no structural element can contain
another. This is the case of the Hybrid Model, where
the inclusion is not forbidden, but it 1s not possible to

query 1t except under special conditions. The structural
elements are intended to limit pattern-matching queries.

Hierarchical: This is the most general case, although
many models deviate from this schema. For example,
PAT Expressions does not allow recursive structures.
Some of them allow many independent hierarchies on
the same text (e.g. Proximal Nodes). Overlapped Lists
allows overlaps in the structure.

Network: There are no truly network models among
those studied. Only Lists of References allows express-
ing nonhierarchical relationships, but this is to be used
in the navigational portion of the language.

4.1.2 Implicit or Explicit Structure

Some models rely on parsing or on markup to determine
the structure of the text. That is, there is no a separate
hierarchy information, but the text itself encodes the
structure.

Each alternative has good and bad points. On one hand,
models relying on markup are somewhat dependent on
the encoding, since structures that cannot be represent-
ed by the provided markup mechanism are forbidden
(e.g. it is difficult to have recursive structures). On
the other hand, the markup can easily express types of
structures that are not allowed in many models using
an explicit structure, e.g. overlapping.

Another important consideration relates to querying:
while implicit structure models can be very simple and

Model Type of Implicit or | Static or Bound to Answers
structure explicit dynamic
Hybrid Model Flat Implicit Static Text Flat
PAT Hierarchy Implicit Dynamic Text Flat
Expressions (not recursive)
Overlapped Hierarchy Implicit Dynamic Text Overlapped
Lists (with overlaps)
Lists of Hierarchy Explicit Static Structure Flat (and of
References (and network) (single) the same type)
Proximal Hierarchy Explicit Static Intermediate Nested
Nodes (multiple)
Tree Hierarchy Explicit Static Structure Nested
Matching (single)
p-strings Hierarchy Explicit Dynamic | Intermediate Nested
(multiple)

Table 2: Analysis of structuring power.

efficient by translating structural queries into pattern-
matching expressions (thus unifying the implementa-
tion), explicit structure models can pose queries about
direct ancestorship (i.e. nodes that are direct parents
or children of others), and can discriminate ancestor-
ship even when the nodes own exactly the same text
area (this happens frequently in parsing, when for ex-
ample an isolated number is also a constant, a factor,
an additive expression, etc.).

Finally, implicit structure databases tend to be easier
to reindex.

Implicit: PAT Expressions and Overlapped Lists rely
on (SGML-like) markup. Overlapped Lists takes full
advantage of the flexibility allowed. The Hybrid Model
also uses markup to identify components.

Explicit: The remaining models use explicit structur-
ing. Among them we can classify those allowing just
one or many hierarchies (since implicit structuring nat-
urally allows to see the text in many ways):

Single: Tree Matching and Lists of References work
with a single hierarchy.

Multiple: Proximal Nodes and p-sirings allow many
independent hierarchies; although only Proximal Nodes
relates the different views in a single query.

4.1.3 Static or Dynamic Structures

Some models work reasonably well only under the as-
sumption that the structure is more or less static, while
others are more oriented to manipulation of dynamic
structures. Generally, implicit structure models allow
dynamic structures, and explicit structure models need
static ones. The exception is p-strings, which is precise-

ly oriented to manipulate structures; allowing to dy-
namically specify grammars to reparse the database.

Dynamic structure models allow easy reindexing, and
querying is normally fast too, while static structure
models cannot reindex very efficiently. The advantage
of static structuring lies in its related feature: explicit
structuring. Of course the alternative of explicit and
dynamic structures cannot be efficiently implemented.

Static: Hybrid Model, Lists of References, Proximal
Nodes and Tree Matching.

Dynamic: Overlapped Lists, PAT Expressions and p-
strings.

4.1.4 Link Between Content and Structure

This is a very important point, central to integrating
both types of queries. Some models are biased towards
one type of query, disregarding in part the other. We
classify models attending to how bounded they are to
text or to structure.

Being strongly text-bound allows an efficient implemen-
tation, since all queries can be translated into a text
matching language, which can be efficiently solved. The
problem is that many structural manipulations are for-
bidden (e.g. direct ancestorship). On the other hand,
being bound to structure does not involve any advan-
tage to efficiency, but restricts the number of text ma-
nipulation features available to the language.

Strongly text-bound: These models normally put
the structure into the same text, that is, they use im-
plicit structure. All operations are translated into text
operations. These models are PAT Expressions, Hybrid
Model and Overlapped Lists.

Strongly structure-bound: These models see the
structure as mostly separated from the text. The text
i1s used just to restrict matches in structure, but it 1s
not possible, for example, to retrieve text. These are
Tree Matching and Lists of References.

Intermediate: These models pay the same attention
to text and to structure, i.e. although the structure
has separate identity and it is possible to manipulate it
independently from the text, the text is also a first-class
object: it can be retrieved and operated the same way as
structure nodes. These models are Proximal Nodes and
p-strings. In Proximal Nodes, the text forms a separate
hierarchy to which any text matching result is supposed
to belong, and thereafter it can be operated as any true
structural node.

4.1.5 Structure of Answers

The structure allowed by the models for answers to
queries is not necessarily the same as that of the
database. Some models allow just a “flat” set of answer-
s, others nested, and yet others overlapped answers.

Flat answers are clearly the less expressive ones. The
other two are formally not comparable, although each
application may find one of them more suitable to its
needs. On the other hand, all these schemas can be effi-
ciently implemented, although having both nested and
overlapped answers seems not suitable for an efficient
implementation.

Having a different structure for the database and for
the results of operations is not desirable, since it limits
the compositionality (i.e. the ability to compose opera-
tions freely) and makes the semantics of the model more
complex. This isincidentally the case of the models that
return only flat answers.

Flat: PAT Expressions, Hybrid Model and Lists of Ref-
erences, although have a richer structure, allow only flat
answers. In Lists of References all nodes retrieved must
also be of the same type.

Overlapped: Overlapped Lists allow overlapping an-
swers, coherently with its database structure.

Nested: Proximal Nodes and Tree Matching, coherent-
ly with their database structure, allow nested answers.
Since p-strings retrieves trees, one could say that it re-
turns “nested answers”, although it is in fact a unique
answer.

4.2 Query Language

The other expressiveness aspect under study is the
query language offered by the models. Although they

must be influenced by the structuring model, the sub-
ject constitutes a wholly separate issue.

We analyze different aspects of a query language: tex-
t matching, set manipulation, inclusion relationships,
and distances. Being a data manipulation language, p-
strings is be left aside from this analysis.

We summarize the main points of this subsection in

Table 3.

4.2.1 Text Matching

This aspect refers to what queries can be posed in the
model that refer purely to text pattern-matching. This
is normally a wholly independent issue, and we left it
aside from this study. We should say, however, that
the most powerful text pattern-matching languages are
those of PAT Expressions and the Hybrid Model. Some
models, such as Proximal Nodes, do not define the text
matching sublanguage, being independent of it.

An important issue related to text matching has also
been mentioned when discussing structuring power, i.e.
how is the link between text and structure. This is
a question related to querying too. The support (or
the lack of it) for seeing the text as a first-class entity
influences also what the query language allows to do
with text, although it does not determine it.

We pay attention to what can be done with text regard-
ing each aspect we cover in this section.

4.2.2 Set Manipulation

All models are set-oriented. That means that answers
are sets of entities. The models with non-nested answers
impose a linear ordering in the sets they manipulate.
The area of set manipulation refers to what can be done
in each model to combine two sets of results, and under
Most models can make set union,
intersection and difference of results, although each one
has its own special features.

what restrictions.

The Hybrid Model supports two kinds of set operations.
Since all answers include a set of documents and a set
of matches inside those documents, there are for the set
of documents and others for the set of matches. This s-
tands for full text support in set manipulation. Another
interesting feature is that it supports the “complement”
operation on sets.

PAT Expressions allows union, intersection and differ-
ence of results, and also a negated version for each selec-
tion operator. Since the model has two types of answers
(match points and regions) the set operations must be
defined to operate in all cases. This forces a very com-
plicated conversion semantics (e.g. to avoid a union of
regions resulting in overlapped answers).

Overlapped Lists solves this problem elegantly by al-

Model Set Inclusion Distances
manipulation relationships
Hybrid Separate for text and Restricted to Only in matches
Model documents. Complement fields
PAT Yes. Also negation Including n Yes, distance-
Expressions of operations and included bound
Overlapped Union and Including and included, Combination
Lists combination plus negations and “n words”
Lists of Yes, but only for nodes Including n and inc- None
References of the same type luded. Restricted direct
Proximal Yes (same hierarchy). Including n and Both distance-
Nodes A different set for included. Direct and bound and minimal
nodes and for text positional inclusion Inside a given node
Tree Yes, via logical Tree patterns None
Matching connectives + variables

Table 3: Analysis of query languages.

lowing overlapped answers. However, since nesting is
not allowed, the minimal segment is selected whenever
a nesting results. Another interesting feature is a vari-
ant of union consisting on “combining” nodes instead of
taking both of them. The model does not specify any
intersection nor difference operator.

Lists of References provides the three set operations on
results, but the operands must be all from the same type
(i.e. it is not possible to join chapters and figures). This
forces answers to be of only one type. Only structural
nodes can be operated, not text.

Proximal Nodes also provides the three set operations
on results. Since the results cannot overlap, only nodes
of the same hierarchy can be operated. This works for
all the normal hierarchies, but not for text, since it 1s
a special hierarchy in which overlaps are possible. To
operate text, a language is proposed that deals only
with text results, and interprets all set operations as if
the areas were sets of points. That is, text segments
lose their identity and are seen as sets of points that are
operated and converted into new segments.

Finally, Tree Matching does not provide set operations
explicitly, but through the logic language it is embedded
into. The “and” and “or” operations make the same
effect as intersection and union of results (since the set
of results is generated one answer at a time, ala Prolog).
Negation is not provided. Only structural nodes can be
operated, not text.

4.2.3 Inclusion Relationships

Inclusion relationships refers to selecting nodes which
are included or include others. Although all models
provide some kind of selection by inclusion, they greatly
differ in the details.

The Hybrid Model has very restrictive inclusion opera-
tions. It only allows to restrict a text matching query to
occur inside a given field type, and to retrieve all fields
(of a given type) containing a given text pattern. This
is the only usage of fields, and because of this we say
that the model is flat. Observe also that is not fully
compositional, since there are no expressions returning
fields (the second type of query mentioned retrieves s-
tart points of fields, not fields).

PAT Expressions allows to select areas which include at
least n areas of another set, and areas included in some
area of another set. Recall that there are also negated
versions of these operators (i.e. areas not included or
not including).

Overlapped Lists is quite the same, but the “including
n” feature is not present. It is replaced by using com-
bination operators (one of them already discussed).

Lists of References has complex inclusion operators, al-
lowing to select nodes including n elements of another
set, or included in a node of another set. It can also ex-
press direct ancestorship (although with some complex
restrictions). Finally, the only support provided for text
is to select nodes that include a given text pattern.

Proximal Nodes allows many kinds of inclusions. The
simplest one selects nodes containing at least n nodes
of another set, or contained in some node of another
set. Those sets can be from different hierarchies. It
also allows “positional inclusion”, i.e. to select the i-th
element from those included in an element of another
set (e.g. the third paragraph of all chapters that have a
figure). The sets can also be from different hierarchies.
If two sets are from the same hierarchy, a third type
of inclusion makes sense: direct ancestorship. It can
select nodes that are parents in the structure of at least
n nodes of another set, and nodes that are children of a

node of another set. 7-th children can also be selected.

Tree Matching has all its power in inclusion expression-
s. It does not use operators such as “included in” or
“including”, but uses “tree patterns” that must be em-
bedded into the tree of the database structure to find
the answers. The answers are the roots of the matches,
but logical variables can be used to extract other ele-
ments of the embedding. This is also the place where
text is included in the model: it is possible to selec-
t nodes containing a given text pattern. Two variants
of the model are presented, differing in whether they
respect or not the ordering among siblings of the query.

4.2.4 Distances

This aspect refers to what restrictions can be expressed
regarding the distance between elements in the text.
Some models are quite poor in this aspect, which is
very important in practice.

The Hybrid Model has distance operations, although
they are part of the pattern-matching sublanguage. No
distance restrictions can be expressed outside it.

PAT Expressions allows to combine results by selecting
elements from a set which are near (or only short before)
some element of another set. The distance is measured
from start point to start point, which i1s not the ideal.

Overlapped Lists has another combination operation,
“followed by”, which combine nodes of one set with n-
odes of another set that follow them. This allows to
select something like “this followed by this followed by
this” (not possible in other models). Another feature is
the operation “n words”, with returns all (overlapping)
segments formed by n consecutive words. This is used
to force results to be of a given size, e.g. “word followed
by word within 5 words” forces the two words to be at
distance five.

Proximal Nodes has two different after/before opera-
tions, that can be used to relate any two sets of nodes,
even from different hierarchies. A first one selects ele-
ments from a set which are after/before some element
of another set, at a distance of at most k. A third argu-
ment (another set of nodes) means that both elements
that form the after/before pair must be inside the same
minimal node of the third argument. This allows to say,
for example, “I want all figures preceded by an empha-
sized text at a distance of 10, being both in the same
section”. The other form does not impose a maximum
distance k, but selects the nearest candidate node for
each element of the second set.

Lists of References and Tree Matching do not support
distance operations.

4.3 Query Time Complexity

In order to make a fair comparison between models, not
only their expressiveness must be taken into account,
but also how efficiently can the different features be
implemented.

Since it is not easy to know precise details of the ef-
ficiency of a model, we use the order of the involved
algorithms. We do not consider indexing times, since it
can always be done in reasonable time and querying is
more frequent.

From the description of the implementation of the dif-
ferent models, we classify them according to querying
times. We measure the efficiency of a query as a func-
tion of n, the total size of intermediate results, except
otherwise specified. Observe that n is normally much
less than the size of the whole database (this is so be-
cause most models manage to avoid traversing the whole
database to search their candidate results).

e O(n): The Hybrid Model, PAT Expressions and
Overlapped Lists are susceptible of a linear imple-
mentation, since all results can be put in sequen-
tial order and all operations can be implemented
by traversing both sequences.

e Almost O(n): Proximal Nodes is linear in most
operations. This is achieved by allowing only op-
erators that relate proximal nodes. The few oper-
ations that are not linear in theory are linear in

most practical situations.

e O(nlogn): The description of the implementation
of Lists of References suggests this behavior. There
are in fact more costly operations, but they corre-
spond to the more powerful part of the model, that
we are not considering here.

e O(n?): It is not easy to predict the behavior of
p-strings, but given that there are operations re-
turning O(n?) results, this is the minimum possible
complexity. On the other hand, the times pointed
out in [5] show that the operations are very costly.

e Non-polynomial: Tree Matching is even more cost-
ly. Although for some good cases it 1s linear in the
size of the whole database, it is not linear in the size
of intermediate results. For bad cases, the problem-
s are shown to be NP-complete or NP-hard. The
good case is ordered tree inclusion with no logical
variables, which 1s too restrictive.

It is interesting to observe that object-oriented mod-
els applied to this problem lead probably to non-
polynomial costs, since operations are translated into
searching paths in a graph.

5 Conclusions

We began this work by arguing that classical text
databases do not allow to mix contents and structure
in queries, and that that feature could improve their re-
trieval capabilities. We deeply analyzed a set of novel
models that address that problem, focusing specifically
on the modeling and language aspects of the integration
of both types of queries. We also paid special attention
to the expressiveness versus efficiency tradeoffs.

We have pointed out a number of important issues relat-
ed to the expressiveness of this kind of models, regard-
ing structuring and querying the database. We showed
a number of design decisions that must be made to build
a model of this kind, and gave an idea of the cost of each
alternative in terms of efficiency.

No model is the best for all applications, especially be-
cause the more expressive the model, the less efficient
can 1t be. Each application has its own set of require-
ments, and should select the most efficient model sup-
porting them.

We have not discussed how this focused subject is em-
bedded into a full database model, including important
topics such as indexing, and necessary features such as
those present in relational databases, traditional docu-
ment retrieval, etc. Specifically, we have not considered
how to manage tuples and relevance ranking in these
models. Further problems arise regarding a sound im-
plementation, with all the required security, concurren-
cy, fault-tolerance, etc.

In [38] it is argued that is better to put a layer integrat-
ing a traditional database system with a textual one,
than trying to design a language comprising all the fea-
tures. For example, in [14] it is shown that structure-
related queries are handled better by a query engine
that knows about the semantics of hierarchies than by
a general-purpose object-oriented database language.

Another important issue that we did not cover is the
perspective of the user. When we incorporate operators
and evaluate the cost of implementing them, we are
implicitly assuming that they are useful for the user of
the system. This in fact deserves a deeper study, to
avoid including theoretically interesting features that
are of no use. Moreover, not only it is important to
know what the users want to express, but to devise user-
friendly languages to implement on top of the algebras
we covered here. Some interesting attempts are [27, 30].
On the other hand, a formal and complete study on
expressiveness is required. See for example [23, 15].

Acknowledgments

We want to thank José Blakeley for his careful reading
and useful suggestions to improve this paper.

References

[1] Ars Innovandi, Santiago, Chile. Search City 1.1.
Text Retrieval for Windows Power Users, 1992.

[2] R. Baeza-Yates. An hybrid query model for full tex-
t retrieval systems. Technical Report DCC-1994-2,
Dept. of Computer Science, Univ. of Chile, 1994.

[3] D. Berg, G. Gonnet, and F. Tompa. The new Ox-
ford English Dictionary project at the Universi-
ty of Waterloo. In Computational Issues in Lea-

teology and Linguistics, Special Issue tn Honour of
Bernard Quemada, 1991.

[4] E. Bertino, F. Rabitti, and S. Gibbs. Query pro-
cessing in a multimedia document system. ACM

TOIS, 6(1):1-41, January 1988.

[5] G. Blake, T. Bray, and F. Tompa. Shorten-
ing the OED: Experience with a grammar-defined
database. ACM TIS, 10(3):213-232, July 1992.

[6] F. Burkowski. An algebra for hierarchically orga-
nized text-dominated databases. Information Pro-

cessing & Management, 28(3):333-348, 1992.

[7] F. Burkowski. Retrieval activities in a database
consisting of heterogeneous collections of struc-
tured text. In Proc. ACM SIGIR’92, pages 112—
125, 1992.

[8] B. Char, K. Geddes, G. Gonnet, M. Monagan, and
S. Watt. Maple Reference Manual, 5th Edition.
Waterloo, 1988.

[9] V. Christophides, S. Abiteboul, S. Cluet, and
M. Scholl. From structured documents to novel
query facilities. In Proc. ACM SIGMOD’9, pages
313-324, 1994.

[10] C. Clarke, G. Cormack, and F. Burkowski. An alge-
bra for structured text search and a framework for
its implementation. The Computer Journal, 1995.

[11] C. Clarke, G. Cormack, and F. Burkowski.
Schema-independent retrieval from heterogeneous
structured text. In Procs. of the 4th Annual Sympo-
stum on Document Analysis and Information Re-

trieval, April 1995.

[12] J. Conklin. Hypertext: An introduction and sur-
vey. IEEE Computer, 20(9):17-41, September

1987.

[13] M. Consens and A. Mendelzon. HyT: A hygraph-
based query and visualization system. In Proc.
ACM SIGMOD’93, pages 511-516, 1993. Video

presentation summary.

[14]

[15]

[16]

[17]

[18]

[21]

[26]

M. Consens and T. Milo. Optimizing queries on
files. In Proc. ACM SIGMOD’9}, pages 301-312,
1994.

M. Consens and T. Milo. Algebras for querying
text regions. In Proc. PODS’95, 1995. California.

C. Date. An Introduction to Database Systems.
Addison-Wesley, Reading, Massachusetts, 6th edi-
tion, 1995.

S. Deerwester, K. Waclena, and M. LaMar. A tex-
tual object management system. In Proc. ACM

SIGIR 92, pages 126-139, 1992.

B. Desai, P. Goyal, and S. Sadri. A data model for
use with formatted and textual data. Journal of

ASIS, 37(3):158-165, 1986.

H. Fawcett. PAT 3.3 User’s Guide. UW Centre for
the New OED and Text Research, Univ. of Water-
loo, 1989.

W. Frakes and R. Baeza-Yates, editors. Informa-
tion Retrieval: Data Structures and Algorithms.
Prentice-Hall, Englewood Cliffs, New Jersey 07632,
1992.

G. Gonnet. Examples of PAT applied to the Oxford
English Dictionary. Technical Report OED-87-02,
UW Centre for the New OED and Text Research,
Univ. of Waterloo, 1987.

G. Gonnet and F. Tompa. Mind Your Grammar:
a new approach to modelling text. In Proc. VLD-
B’87, pages 339-346, 1987.

M. Gyssens, J. Paredaens, and D. Van Gucht. A
grammar-based approach towards unifying hierar-
chical data models. In Proc. ACM SIGMOD’89,
pages 263-272, 1989.

R. Hull and R. King. Semantic database modelling:
Survey, applications and research issues. ACM

Computing Surveys, 19(3):201-260, 1987.

International Standards Organization. Information
Processing — Text and Office Systems — Standard
Generalized Markup Language (SGML), 1986. ISO
8879-1986.

P. Kilpelainen. Tree matching problems with ap-
plications to structured text dat abases. Technical
Report A-1992-6, Dept. of Computer Science, Uni-
v. of Helsinki, November 1992.

P. Kilpelainen and H. Mannila. Retrieval from hi-
erarchical texts by partial patterns. In Proc. ACM
SIGIR’93, pages 214-222, 1993.

P. Kilpelainen and H. Mannila. Ordered and un-
ordered tree inclusion. SIAM Journal on Comput-

ing, 24(2):340-356, April 1995.

[29]

[30]

[33]

[34]

[35]

[41]

[42]

[43]

W. Kim and F. Lochovski, editors. Object-Oriented
Concepts, Databases and Applications. Addison-
Wesley, Reading, Massachusetts, 1989.

E. Kuikka and A. Salminen. Two-dimensional fil-
ters for structured text. Dept. of Computer Sci-
ence, Univ. of Waterloo (submitted for publication-

s), 1995.

A. Loeffen. Text databases: A survey of text mod-
els and systems. ACM SIGMOD Conference. ACM
SIGMOD RECORD, 23(1):97-106, March 1994.

I. MacLeod. Storage and retrieval of structured
documents. Information Processing & Manage-

ment, 26(2):197-208, 1990.

I. MacLeod. A query language for retrieving infor-
mation from hierarchic text structures. The Com-

puter Journal, 34(3):254-264, 1991.

U. Manber and G. Myers. Suffix arrays: A new
method for on-line string searches. In Proc. ACM-

STAM’90, pages 319-327, 1990.

G. Navarro. A language for queries on structure
and contents of textual databases. Master’s thesis,
Dept. of Computer Science, Univ. of Chile, April
1995.

G. Navarro and R. Baeza-Yates. Expressive power
of a new model for structured text databases. In

Proc. PANEL 95, pages 1151-1162, 1995.

G. Navarro and R. Baeza-Yates. A language
for queries on structure and contents of textual
databases. In Proc. ACM SIGIR’95, pages 93-101,
1995.

R. Sacks-Davis, T. Arnold-Moore, and J. Zobel.
Database systems for structured documents. In

Proc. ADTI’9), pages 272-283, 1994.

A. Salminen and F. Tompa. PAT expressions: an
algebra for text search. In COMPLEX’92, pages
309-332, 1992.

G. Salton and M. McGill. Introduction to Modern
Information Retrieval. McGraw-Hill, New York,
1983.

G. Salton and M. McGill. Automatic text pro-
cessing. Addison-Wesley, Reading, Massachusetts,
1989.

M. Stonebraker, H. Stettner, N. Lynn, J. Kalash,
and A. Guttman. Document processing in a rela-
tional database system. ACM TOIS, 1(2):143-158,
April 1983.

J. Tague, A. Salminen, and C. McClellan. Com-
plete formal model for information retrieval sys-

tems. In Proc. ACM SIGIR’91, pages 14-20, 1991.

