Worst-Case-Optimal Similarity Joins on Graph Databases

DIEGO ARROYUELOQO, DCC, Escuela de Ingenieria, Pontificia Universidad Catélica & IMFD, Chile
BENJAMIN BUSTOS, DCC, University of Chile & IMFD, Chile

ADRIAN GOMEZ-BRANDON, Universidade da Corufia & CITIC & IMFD, Spain

AIDAN HOGAN, DCC, University of Chile & IMFD, Chile

GONZALO NAVARRO, DCC, University of Chile & IMFD, Chile

JUAN REUTTER, DCC, Escuela de Ingenieria, Pontificia Universidad Catélica & Instituto de Ingenieria
Matematica y Computacional, Pontificia Universidad Catélica & IMFD, Chile

We extend the concept of worst-case optimal equijoins in graph databases to the case where some nodes are
required to be within the k-nearest neighbors (k-NN) of others under some similarity function. We model
the problem by superimposing the database graph with the k-NN graph and show that a variant of Leapfrog
TrieJoin (LTJ) implemented over a compact data structure called the Ring can be seamlessly extended to
integrate similarity clauses with the equijoins in the LT] query process, retaining worst-case optimality in
many relevant cases. Our experiments on a benchmark that combines Wikidata and IMGpedia show that our
enhanced LT]J algorithm outperforms by a considerable margin a baseline that first applies classic LTJ and
then completes the query by applying the similarity predicates. The difference is more pronounced on queries
where the similarity clauses are more densely connected to the query, becoming of an order of magnitude in
some cases.

CCS Concepts: « Theory of computation — Database query processing and optimization (theory);
Data structures and algorithms for data management.

Additional Key Words and Phrases: Worst-case optimal joins; Leapfrog Triejoin; graph patterns; graph
databases; graph indexing; similarity joins; nearest-neighbor graphs

ACM Reference Format:

Diego Arroyuelo, Benjamin Bustos, Adrian Gémez-Brandén, Aidan Hogan, Gonzalo Navarro, and Juan Reutter.

2024. Worst-Case-Optimal Similarity Joins on Graph Databases. Proc. ACM Manag. Data 2, 1 (SIGMOD),
Article 39 (February 2024), 26 pages. https://doi.org/10.1145/3639294

1 INTRODUCTION

Graph databases [5] are enjoying a resurgence, seen in the emergence of novel graph query
languages [19] and new commercial graph database systems [8, 11]. Open knowledge graphs, such
as Wikidata [54], receive millions of SPARQL queries per day [38]. These developments call for
(1) time- and space-efficient techniques to evaluate queries over graph databases [40], and (2) new
features that enhance the expressivity of graph query languages [4].
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Regarding efficiency, worst-case optimal (wco) join algorithms [44] have provided notable reduc-
tions in runtimes for evaluating complex graph patterns compared to traditional methods [3, 6,
7, 25, 33, 34, 39, 45]. While such algorithms typically require extra index permutations, and thus
more space when compared to, e.g., pairwise joins, recent works address this limitation through
on-the-fly indexing [24], and compact data structures [6, 7].

Regarding expressivity, wco algorithms have mainly been studied in the context of evaluating
equijoins. Their suitability for other types of joins is not yet well understood. Wco guarantees have
been proven for relaxed joins [44], whereby not all of the tuples of the join query need to be satisfied.
Such guarantees have also been studied for top-k queries [50], where only the top k results in
some ordering are returned. Though interesting variants, both relaxed and top-k queries are still
based on equijoins. Similar guarantees have recently been studied in the context of theta-joins [51],
which allow inequalities, non-equalities, etc., in join conditions. It remains of interest to study wco
guarantees for other types of join.

Our goal in this paper is to push the envelope for wco join algorithms by studying their applicabil-
ity for similarity joins, which relax equijoins by matching elements of the database that are “similar”
(according to some predefined criteria), rather than precisely equal. Two variants of similarity joins
are commonly considered: range-based similarity joins (or e-joins) match pairs of elements within
a certain distance, while k—nearest neighbor joins (or k-NN joins) match, for each element in the
left relation, its k most similar elements in the right relation [48]. Such joins have been widely
studied since the mid 1990’s [56], having been folklore for longer, with works citing applications for
multimedia databases [56], time-series databases [56], DNA databases [56], spatial databases [31],
text mining [15], clustering [31], record linkage [13, 15], and more besides. Supporting similarity
joins could then open up a wide range of such applications for graph databases [23].

Contributions: Our specific contributions are as follows: (i) we present a compact data structure
and novel algorithms for evaluating k-NN similarity joins over graph databases; (ii) we prove the
worst-case optimality of these techniques under certain conditions of (a)cyclicity; (iii) we create a
pseudo-real-world benchmark for this task that combines graphs with multimedia (image) content;
(iv) we show that our algorithm clearly outperforms a baseline using wco join algorithms that
postpone similarity joins until last.

Motivating examples. Graph patterns, the most typical queries on graph databases, look for
partially instantiated subgraphs in the labeled graph. For instance, Twitter searches for diamond

patterns in order to make recommendations about whom to follow [29, 39]: if (x, Follows, y) denotes

a graph edge x Follovs, y, then

(x,Follows,y), (x,Follows,z), (y,Follows,z), (y,Follows,w), (z,Follows,w),

might indicate that user w is a good recommendation for user x to follow, based on the topology of
its social network. However, one would also want to take advantage of certain similarities among
users in order to improve suggestions. For instance, in the previous example it might be the case
that user y does not necessarily follow user z, but they are similar in some sense (for example, they
have similar interests, they produce similar posts about certain topics, or they live in the same
region or country). The same happens with users z and w. Hence, one could issue a query like

(x, Follows, y), (x, Follows, z),y ~ z, (y, Follows, W),z ~ w,

where ~ denotes similarity among the involved variables. This would allow us recommend x to
follow w not only based on the graph topology, but also considering certain similarities. Indeed,
based on the same query we might also want to suggest y to follow z (and vice versa), and even z
to follow w.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 39. Publication date: February 2024.



Worst-Case-Optimal Similarity Joins on Graph Databases 39:3

Beyond this example, combining similarity joins with graph patterns can be useful in diverse
domains, for instance, to find: (1) stadia of German football clubs whose geographically closest
stadium is of a team in the same league; (2) similar messages posted by bot accounts and politicians
they follow on a social network; (3) visually similar works by Henri Matisse and works by a Cubist
compatriot. Combining criteria via multiple similarity joins, we can find, for example: (4) pairs of
songs with similar tonality and lyrics by Asian artists, or (5) countries similar in terms of population
and area that are neighbors. Using similarity joins on distinct entities we can find, for example, (6)
pairs of stars and their orbiting exoplanets with similar mass, resp., to a solar planet and our sun;
(7) researchers working on similar topics at geographically close institutes. Our goal is to evaluate
such queries efficiently in time and space.

Related work. Kiefer et al. [35] propose iSPARQL, which adds an IMPRECISE clause to SPARQL
that allows for specifying a similarity join. Ferrada et al. [23] extend SPARQL with a syntax,
semantics and set of rewriting rules for similarity joins. Other works extend graph databases with
domain-specific similarity joins in the context of query relaxation [32], record deduplication [26, 47],
multimedia databases [22], and geographic databases [10, 58], among others.

In terms of novelty, little work has been done on optimizing similarity joins within graph
patterns [23] (or indeed, in the relational setting [48]), and no work that we are aware of has looked
at wco guarantees for join queries with similarity clauses.

2 LEAPFROG TRIEJOIN AND THE RING
2.1 Graph databases and BGP matching

We introduce key concepts and notation needed for this paper.

DEFINITION 1. Let U be a universe of constants. A graph database is a labeled graph G(V,E),
where V C U is a finite set of nodes and E C V x U X V is a finite set of labeled edges; (u, p,v) € E

denotes u 2> v. We call dom(G) = {u, p,v | (u, p,v) € G} the subset of U used as constants in G and
D = |dom(G)|. Furthermore, we call n = |V| the number of nodes in G and N = |E| the number of
edges.

To simplify, we assume U = [1..D]; noten < D < 3N, N < D3
A graph database G is often used to search for patterns of interest, that is, subgraphs of G that
are homomorphic to a basic graph pattern Q. We define a basic graph pattern formally as follows.

DerINITION 2. Let G(V, E) be a graph database, U be its universe of constants, and W be a universe
of variables disjoint from U. A basic graph pattern (BGP) Q is a set of triple patterns (x, y, z), where
x,y,z € U U W. The output Q(G) of the BGP is the set of all assignments A : Wy — U, where
Wo C W are the variables that appear in Q, such that for each triple pattern (x,y,z) € Q, it holds
that (A’(x),A’(y),A’(z)) € G, where A’(x) = x forallx € U and A’ (x) = A(x) for allx € Wp.

Given a BGP Q over a graph database G, the task is to enumerate Q(G). A BGP Q is equivalent to
a join query, as follows. Each triple pattern in Q is an atomic query over G, equivalent to equality-
based selections on a single ternary relation. Then, a BGP corresponds to a conjunctive query (i.e.,
a join query plus simple selections) over the relational representation of the graph.

The AGM bound [9] establishes the maximum output size of a join query free of self joins.
This bound can also be applied to BGPs, which feature self joins, constants in U, and multiple
occurrences of a variable in a triple pattern. The idea is to regard each triple pattern as a relation
formed by the triples matching its constants [33]. Thus, the AGM bound of Q over a graph database
instance G, denoted Q¥, is the maximum size Q(G’) could have over any database instance G’ of
size |G’| < |G|, where | - | denotes the number of edges of a graph. A join algorithm is worst-case
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optimal (wco) if it has a running time in O(Q*), where O ignores polylogs and data-independent
factors. Atserias et al. [9] proved that for queries as simple as {(x, p, y), (y, p, 2), (z, p,x)} (for some
constant p), no classical plan involving only pair-wise joins can be wco.

2.2 Leapfrog Triejoin (LT))

Leapfrog Triejoin [53] (LTJ, for short) is a worst-case optimal algorithm for computing natural
joins in relational databases that has been adapted for evaluating BGPs [33] as described next.
Assume that the graph database has been stored using a trie (or digital tree) data structure, such
that for each edge (u, p,v) € E there is a path of length 3 in the trie storing the values u, p, and v,
respectively. In the RDF notation, these values are called s (subject), P (predicate), and o (object),
respectively. So, the above is called the spo trie, as tuples are stored following that order. Indeed,
for LTJ to work properly, one needs to store 3! = 6 different tries, corresponding to the 6 different

permutations of the values s, P, and o. Now, let us consider a BGP Q = {1,.. ., tq} whose set of
variables is {x1, ..., x,}. LTJ uses a so-called variable elimination approach, carrying out v iterations,
each handling a particular variable. This implies defining a total order (x;,, ..., x;,) in which the

variables will be processed.

Each triple pattern t; has an associated trie 7; whose edge values have been stored in a manner
consistent with the given variable ordering. LTJ starts at the root of every 7; and descends by the
children that correspond to the constants in ¢;. It then proceeds to the variable elimination phase.
Let Q; € Q be the triple patterns that contain variable x;,. Starting with the first variable in the
order, x;,, LTJ finds each ¢; € dom(G) such that for every t € Qy, if x;, is replaced by c; in ¢, the
evaluation of the modified triple pattern t over G is non-empty (i.e., there may be answers to Q
where x;, is equal to ¢;). To find such a ¢;, we must intersect the children of the current nodes in
all the tries 7;, for t; € Q;. During execution, we keep a mapping y that binds variables already
processed. As we find each constant c¢; suitable for x;,, we set g = {(x; := ¢1)} and branch on this
value cq, going down by c¢; in all the tries 7;, for ; € Q;. We now repeat the same process with
Q,, finding suitable constants c; for x;, and extending the mapping to p = {(x1 :=¢1), (x2 :=c2)},
and so on. Once we have eliminated all variables, y is a solution for Q (solutions can be found
on each branch for distinct values of ¢y, ..., c,). If for some variable Xi, there is no value c; in
the intersection, the algorithm backtracks and continues with the next value for Q;_;. When the
process finishes, the algorithm has reported all the solutions for Q.

LTJ carries out the intersection at the trie nodes using the primitive leap(z;, ¢), which finds the
next smallest constant ¢; > ¢ within the children of the current node in trie 7;; if there is no such
value c¢;, leap(7;, ¢) returns a special value L. Veldhuizen [53] showed that LTJ is wco if leap()
runs in polylogarithmic time.

2.3 Fundamental operations on strings

Let B be a bit vector of length |B|. On it we define the following operations, for b € {0, 1}: (1)
ranky (B, i), with 1 < i < |B|, counts the number of bits with value b in B[1..i], and (2) select (B, j),
with 1 < j < ranky (B, |B|), yields the position in B of the jth bit with value b from the left. These
operations, as well as accessing B[i], can be supported in O(1) time using |B| + o(|B|) bits of space
[14, 41]. They can also be extended to a string S[1.. N] over an alphabet X = [0, D), as rank.(S, i)
and select.(S, j), for ¢ € X. Wavelet trees (WT, for short) are the paradigmatic data structure
supporting these operations efficiently, specifically in O(log D) time and using N log D+o0(N log D)
bits of space [28] (we use logarithms in base 2). WTs efficiently support an extended set of operations
[42], including: (1) range_next_value(S, rp, e, ¢), which finds, for ¢ € 3, the smallest symbol ¢’ > ¢
that occurs in range S[rp . .r.], in O(log D) time; and (2) range_symbols(S, rp, re), which counts
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the number of different values in S[r}, .. r.] in O(log N) time and using O(N log D) additional bits
of space.

2.4 The Ring data structure

The Ring [6] data structure supports the six orders needed by LTJ using a single bidirectional
cyclical index that uses space close to the raw data representation (and even less in some cases),
while supporting the leap() operation needed by the algorithm.

The data structure is essentially a column store, built as follows for a graph G(V,E). Let
Tspo[1..N][1..3] be the table storing the N = |E| edges (u, p,v) of the graph, sorted accord-
ing to the spo order. Let C, denote the last column of Tgp,, which intuitively corresponds to the
last level (i.e., the one corresponding to o) of the trie for spo. Next, the process moves the third
column to the front in the table, making it the first column. The table is then re-sorted to obtain
table Togsp. Let Cp denote the last column of this table, which corresponds to the last level of the
trie for the order osp. Finally, the third column in table Ty is moved to the front and the table is
re-sorted once again, obtaining table Tyos and column Cs. The Ring index is then formed by the
sequences Cs, C,, and Cp, which are represented using wavelet trees, with a total space requirement
of 3N log D + o(Nlog D) bits. It also contains arrays A;, for each C; with j € {s,p,0}, defined
as Aj[k] = |{i € [1..N], Cj[i] < k}|, for k = 1,...,D + 1. These arrays store the cumulative
number of occurrences of the symbols of U in C; and are represented using bit vectors with
3(N + D) +0(N + D) bits. The total space is thus close to the 3N log D bits of a plain representation
of the graph G.

By using C; and Aj, for j € {s,p,0}, we can switch between tables using the function F; :
[1..N] — [1..N], defined as F;(i) = Aj[c] + rank.(C}, i), where ¢ = C;[i]. So, function F, maps
a position in table Ty, using A, and C,, to the corresponding one in Tygp. Similarly, F, maps from
Tose 10 Tyos and Fs maps from Tyos back to Tgpo. The mappings work in O(log D) time if we compute
rank. using the WT. We can also move in the other direction in O(log D) time using the inverse
function of F;: Fj_l(i’) = select.(Cj,i" — Aj[c]), where c is such that Aj[c] < i’ < Aj[c+1].

Every node v in any of the 6 tries corresponds to a range C;[b .. e] in some of the three columns.
Consider, for example, the trie To, Wwhose leaves are enumerated in column C,,. If v is the root,
then its range is the whole C,[1.. N]. If v is in the first level and corresponds to the subject s = x,
then its range C, [b . . ] is that of all triples starting with x, [b..e] = [As[x] +1.. As[x + 1]]. If v
is in the second level and corresponds to (s, P) = (x,y), then Co[b . . €] is the range of the triples in
Tspo starting with xy. A leaf node denoting the triple (s, P, 0) = (x,y, z) corresponds to the single
position in C, where Ty, contains xyz. The same holds, analogously, for the tries Tosp and Tpos.
The other tries can also be simulated with ranges. Consider Ty, for example. A first-level node v
by s = x corresponds to the same range in C, as before, but a second-level node corresponding
to (s,0) = (x,z) is equivalent to (0, s) = (z, x), which is a node in T, and thus to a range in C.
Then, if we descend from s = x to (s, P) = (x,y), we restrict the range in C,, but if we descend to
(s,0) = (x,z), we switch to a range in Cp. The new column ranges are computed with extensions
of the functions F; and Fj_l, all in O(log D) time; see the original paper [6] for details.

ExampLE 1. Consider the graph on the top-left of Figure 1, where the labels indicate (c)heap or
(e)xpensive travel routes from the source to the target node. The columns Cs, Cy, and C,, are shown on the
bottom-left; ignore the rest of the figure for now. The BGP Q = {(x, ¢,y), (y, ¢, z) } looks for places (y, z)
we can reach from x at low cost with at most one stop. Both triples (x, ¢, y) and (y, ¢, z) have the initial
range Cs[1..5], corresponding to p = c. Say we first eliminate variable y. For (y, c, z), the candidate
subjects {2,3,4} are the distinct elements in Cs[1..5], whereas for (x,c,y), the candidate objects
{1,4,5,6} are the distinct elements in C, that are mapped to Cs[1..5)] by F;!. The Ring efficiently
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Fig. 1. A graph G and its K-NN graph with K = 3 at its right. Below, the Ring index of G. On the right, the
representation of the K-NN graph using S, S’, and B. The dotted lines mark the internal divisions in each S}
for the different values of t. The grayed ranges correspond to Examples 1 and 3.

finds the intersection {4}. We then bind y := 4. The new range associated with (y,c,z) = (4,¢,2) is
Co[5 .. 6] — corresponding to (s, P) = (4, ¢) in Typo — whereas the one associated with (x, c,y) = (x, ¢, 4)
is Cs[2..3] — corresponding to (p,0) = (c,4) in Tyos. Those ranges are outlined. We continue later in
Example 3.

In the Ring-supported LTJ algorithm, then, each triple pattern of Q is associated with some range
Cj[b..e], and the intersections of trie nodes correspond, intuitively, to finding the common values
in the ranges of all the triple patterns that share the next variable to bind. Operation leap(), which
powers the intersection, is supported in O(log D) time by using, in particular, the WT operation
range_next_value, which finds the smallest ¢, > ¢ within a range C;[b .. e]. The LTJ intersection
algorithm works in time bounded by the size of the smallest intersected range multiplied by the
number of intersected ranges and by the cost of 1eap(), which yields worst-case optimality. For
compatibility, we state their results using log N = O(log D) instead of log D.

THEOREM 1 ([6]). Let G be a graph database with N edges and Q be a BGP. Then, a representation
using 3N +0(N) words of space can compute Q(G) in O(Q*|Q|log N) time, where Q" is the maximum
possible output (AGM bound) of Q on some graph of N edges.

3 LTJ) WITH SIMILARITY JOINS
3.1 Modeling similarity

Based on the observation that users struggle with distance-based similarity given that distances
— particularly in high-dimensional abstract spaces — can be difficult to conceptualize [23, 57], we
model similarity via k-nearest neighbors, which allows us to abstract away details of particular
distance functions.

DEFINITION 3. LetV be a set andd : V XV — R* be a distance function on'V. Foru,v € V and
any integer 1 < k < |V|, we define k-NN(u) as a set satisfying u ¢ k-NN(u), |k-NN(u)| = k, and
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Vo € k-NN(u), Vo’ ¢ {u} Uk-NN(u), d(u,v) < d(u,v’). That is, k-NN(u) is the set of the k elements
closest to u, with ties broken arbitrarily.

In order to have a consistent definition of k-NN for all values of k in presence of ties, we define
the concept of a K-NN graph.

DEFINITION 4. Given an integer 1 < K < |V|, a K-NN graph of V is a directed graph whose node
set is V and the out-neighbors of everyu € V is a set K-NN(u). We additionally regard K-NN(u) as
ordered by nondecreasing distance to u, so we say that K-NN(u)[j] is the jth closest element to u and,
forany 1 < k < K, we say thatv € k-NN(u) iffv = K-NN(u)[j] for some1 < j < k.

We consider the K-NN graph as part of the input, just like the graph G. Except for simple cases
like, say, geographic distance, the distance function is given by an expert on the data domain. In
some cases, the expert directly gives the K-NN graph, as it might be easier to rank by closeness
than to come up with a similarity function [49]. When a similarity function is given, the K-NN
graph is computed only once, at index construction time, not for each query. The naive approach
for building the K-NN graph takes time ©(n?), by computing all pairwise distances between nodes
in V. Paredes et al. [46] present methods for building K-NN graphs for general metric spaces, taking
empirical times of O(n!'?”) for low-dimensional spaces and O(n'*°) for high-dimensional ones,
using O(n(K +log n)) space. In the case of R%, Vaidya [52] proposes an algorithm for K = 1 that
takes O((cd)?nlogn) time, for a constant ¢ [18]. Dickerson and Eppstein [20] compute the K-NN
graph in R? in O(Kn + nlog n) time, although they leave open the dependence of the bound on d.
There are several algorithms for computing approximated K-NN graphs, such as NN-Descent [21]
(arbitrary similarity measure, empirical time O(n'*)), multiple random divide & conquer and
neighborhood propagation [55] (data in R¢, time O(dnlogn)), and a method based on Locality
Sensitive Hashing [59] (data in R%, time O(£(d + log n)n) with £ a parameter).

We will enrich the classic BGPs of graph databases by assuming a given K-NN graph on the same
nodes of the graph database and permitting, in addition to the triple patterns of the BGPs, zero or
more expressions of the form x < y, where x and y can be constants or variables and 1 < k < K
is an integer. The expression x < y means that y is among the k closest elements to x, that is,
y € k-NN(x). Let us define our extended BGPs and their worst-case optimality.

DEFINITION 5. Let G(V, E) be a graph database, U be its universe of constants, and W be a universe
of variables disjoint from U. An extended BGP Q is a set of triple patterns (x,y, z), wherex,y,z € UUW,
and a set of clauses x <. y, wherex,y € U U W, x # y, and k > 1 is an integer. The output Q(G) of
the extended BGP is the set of all assignments A : Wo — U, where Wo C W are the variables that
appear in Q, such that (1) for each triple pattern (x,y, z) € Q, it holds that (A’(x),A’(y),A’(z)) € G,
and (2) for each clause x < y € Q, it holds that A’(y) € k-NN(A’(x)), where A’(x) = x forallx € U
and A’(x) = A(x) forall x € Wp.

DEFINITION 6. Given a graph database G with N triples and a K-NN graph for a metric distance d
on its nodes V, an algorithm to compute Q(G) for an extended BGP Q is worst-case optimal (wco) if
its time complexity is O(Q*), where Q* is the maximum size of Q(G’) on any graph G’ with N’ < N
triples and the K-NN graph of any metric d’ on the nodes V' of G'.

Though we use x < y as our similarity primitive, its asymmetric nature may be unintuitive for
final users. We thus build upon it the following more intuitive symmetric operator:

X~ Y S X<y A Y<X,

that is, x is among the k nearest neighbors of y and vice versa. We simply convert any clause x ~; y
per its definition in order to handle it in the extended BGPs we just defined.
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We will assume for simplicity that all the nodes V participate in the similarity. Our techniques
can handle K-NN graphs defined on a subset of V only, assuming the k-NN predicates involving
other nodes are always false. We could also have fewer than K neighbors for some nodes of V,
for example to disregard neighbors that are too far away in terms of the distance d. Furthermore,
we could have various independent K-NN relations and refer to them in the same queries. Our
techniques can work with any k-NN relation, without requiring that it corresponds to some distance
d; therefore they are useful to model similarity functions that are non-metric, for example. Our
optimality proofs are valid even in the more restrictive case of metric distances (the more restrictive
the relation, the harder to be wco because not every input table is possible).

We can also extend our results to distance-based similarity joins, that is, indicating that two
elements x and y must be within distance d to each other. We return to this point at the end of
Section 3.3.

3.2 A basicidea

In principle, any indexing scheme solving BGPs in wco time can be extended to handle the similarity
clauses x < y. At index construction time, the value K is chosen and a suitable representation of
the K-NN graph is built. At query time, for every clause x < y, we materialize the relation kNN(-, -)
containing all the pairs (a, b) such that b € k-NN(a), and replace the clause x < y by the expression
kNN (x, y). We then run the wco algorithm on the modified query.

Materializing. A first problem is how to efficiently materialize kNN(-, -) from the K-NN graph,
because the value k used at query time can be much smaller than K (additionally, each clause may
use a different k value). For the discussion, let us regard the K-NN graph as a table of triples (u, v, j),
meaning that v = K-NN(u)[j]. To materialize kNN(-, -) we must extract all the triples (u, v, j)
for 1 < j < k, and then sort them by (u,v) and by (v, u) to build the two LT]J tries representing
KNN(-, -). The most efficient way is to maintain the K-NN graph sorted by j, so the extraction takes
O(kn) time and the sorting for trie construction takes time O(knlogn).

While this time is proportional to the input size and thus within wco bounds in theory, the
approach is totally impractical because in most useful cases the output is much smaller than
the input. As an example, in our experimental setup of Section 6, just copying the part of the
K-NN graph and sorting it twice, for k = 50, takes 260 seconds, only after which the actual query
processing starts. Instead, our proposed index handles the complete query process in as little as 1.3
seconds for the fastest queries we consider, or as much as 103 seconds for the most expensive ones.

We show in Section 3.3 how our data structures manage to simulate the desired tables kNN(-, -),
without ever materializing them, by representing the K-NN graph in a specific way, using WTs.
Additionally, we seamlessly extend the Ring to emulate the tries of these simulated tables without
building them at query time.

Optimality. Using LT] is not wco in this case, because the relations kNN(-, -) satisfy what is known
as a degree constraint: there are only k tuples in the relation sharing their same first component.
When the k-NN constraints follow an ayclicity property one can retain worst-case optimality
by choosing an order that respects such acycilicity [1, 43]. In the general case, optimality can
be obtained by using PANDA [2], an algorithm that is optimal for the setting considered in this
paper. This is, again, impractical, however. While the PANDA algorithm may work with theoretical
guarantees in data complexity, the authors themselves note that this involves huge query-dependent
factors, and that it is important to find algorithms that work faster in practice [2]. The approach
we develop in Section 4 is to construct a good variable ordering for LTJ in a greedy fashion, taking
advantage of the fact that the Ring can retrieve the number of instantiations for each triple pattern
before processing them. We show that our approach remains worst-case optimal (just as PANDA)
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for a relevant class of extended BGPs that includes queries with cyclic k-NN constraints. Our
experiments in Section 6 show that our variable ordering strategy can improve query computation
time in practice, even for queries where our strategy is not necessarily worst-case optimal.

3.3 Our solution

In order to extend the LTJ algorithm to handle the similarity constraints x < y, we merge the classic
Ring representation of the database graph (Section 2.4) with a representation of the K-NN graph.
We choose K at index construction time, and then can handle queries x < y for any 1 < k < K.
Importantly, depending on the elimination order of the variables in LTJ, it may be the case that we
need to compute the relation x < y in a backwards fashion: instead of looking for the k nearest
neighbors of a node u, we may have to look for those nodes of which u is a k-nearest neighbor.
Thus, our K-NN graph representation consists of two sequences, S[1..Kn] and S’[1..Kn], plus a
bitvector B[1..2nK], which record the K-NN graph and its transpose. For simplicity, let us identify
the graph nodes V with the integers in [1..n].

DEFINITION 7. For anyu € [1..n], let Sy[1..K] be such that S,[j] = K-NN(u)[j]. We then
define S[1..Kn] =81 - S, -+ Sy, thus S, [j] = S[(u — 1)K + j].

DEFINITION 8. For any u € [1..n], let S, be the sequence of elements v such that S,[j,] = u
for some 1 < j, < K, sorted by increasing value of j, with ties broken arbitrarily. We then define
S’[1..Kn] = S]-S,---S;. To distinguish the different values of j, in S’, let S], contain s; elements
v with j, = t, then we define bitvector B, = 10°110% - - - 10°¢ and B[1..2nK] = By - By - - - B,,. Then
S’[i] corresponds to the ith 0 in B; note B contains Kn 0s and Kn 1s.

ExXAMPLE 2. In the middle of Figure 1 we show a 3-NN graph, where each node u points to the nodes
in 3-NN(u) using Euclidean distance on the plane. For example, the three nearest neighbors of node
u = 1 are, from closest to farthest, Sy = 324, and those of node u = 2 are S, = 134. These strings
of length K = 3 are concatenated into the string S, shown vertically on the right of the graph. Now
consider S; on the right of the figure, which contains the nodes v for which u = 4 is in 3-NN(0), i.e.,
such that u appears in S,. We see that u = 4 appears in Sy, Sz, S3, Ss, S¢, and S, at positions j; = 3,
J2=3,j3 =3, j5s = 2, jo = 1, and j; = 1, respectively. We write those values of v in S; = 675123
by increasing order of j,, that is, from smallest to largest value of k. Then, S;[1..2] = 67 are the
nodes v for whichu € 1-NN(v), S;[1..3] = 675 are those for which u € 2-NN(v), and S;[1..6] are
those for which u € 3-NN(v). These limits inside S;, at positions 2, 3, and 6, are marked in unary by
B4 = 100101000. As another example, we have S| = 23 with B; = 10011 because 1 € 1-NN(2) and
1 € 1-NN(3).

This arrangement in S’ allows us to have a range for the values x such that x <x y when y is fixed.

LEMMA 1. For any v, the values u such that K-NN(u)[t] = v are written in S’ from position
S’ [po(t)], with py(t) = select;(B,(v — 1)K +t) — (v — 1)K —t + 1.

ProOF. Let s; be as in Def. 8; then the first of the desired elements u is at S,[p], with p =
s1+ -+ $;-1 + 1. By the definition of B,, it holds that p = select;(B,,t) —t + 1. Since B, starts
at the ((v — 1)K + 1)th 1 of B and the 0s of B correspond to the positions in §’, S, starts at
S’[select; (B, (v — 1)K + 1) — (v — 1)K]. Therefore, S, [p] corresponds to S’[p,(t)]. o

LEMMA 2. The following are equivalent.

(a) v € k-NN(u),
(b) visinS[(u—1)K+1..(u—-1)K+k] and
(c) wisinS' [p,(1)..p,(k+1) —1].
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Proor. Conditions (a) and (b) are equivalent by Def. 7. Condition (a) is equivalent to v appearing
inS,[1..k],ie., S,[t] =0 for some 1 <t < k. By Lemma 1, u appears in S’ [p,(t) .. p,(t + 1) — 1].
Taking the union of those ranges for 1 < t < k, we have that condition (a) is equivalent to u

appearing in S’ [p,(1) .. p,(k+1) — 1]. O

Consider a clause of the form x < y in the query. Our algorithm proceeds exactly as if we had
materialized the relation kNN(x;, y). Therefore, whenever x or y is bound, our LTJ algorithm must
simulate the binding of the first or the second component of kNN(-, -) to x or y, respectively. In
LT]J, this would correspond to representing kNN(x, y) with two tries, Ty, with order xy and T
with order yx, and descending by T if x is materialized first and by T, if y is materialized first.
We do not materialize those tries either, however. Just as the Ring represents every node of the
tries Tspo, etc. as some range C;[b..e], we represent the nodes of Ty, and Ty, as ranges in S or
S’. Precisely, by Lemma 2, if x is bound first, we simulate descending in T, by associating the
range S[(x — 1)K +1.. (x — 1)K + k| with the clause x < y. If, instead, y is bound first, we simulate
descending in T,y by associating the range S"[p,(1) .. py(k + 1) — 1] with the clause x < y. Those
ranges will then be included in the corresponding intersections when the variable y (in the first
case) or x (in the second case) is bound, exactly as any other column range C;[b .. e] corresponding
to triple patterns in Q. The WT operation range_next_value allows us running intersections on
the ranges in S and S” without the need of sorting the values.

ExampLE 3. Consider again Figure 1, and consider now the extended BGPQ = {(x, ¢, y), (y, ¢, 2),y ~2
z}, which looks for nearby places (y, z) we can go consecutively from x at low cost. We start the process
as in Example 1, but when we bind y := 4, we also descend by y = 4 in the tries of T, and T,, as we
have the clausey ~; z = y<uz Az<y. This corresponds to associating the range S4[1..2] = S[10..11]
with 4 <3 z and the range S;[1..3] = S'[7..9] with z <, 4. These ranges are also outlined in the figure.
Say we now eliminate z. The Ring intersects the ranges Co[5. . 6] associated with (4, ¢, z), S[10..11]
associated with 4 < z, and S’[7 . . 9] associated with z <, 4. The intersection yields the candidate set
{6}. We then bind z := 6, associating C,[6] with the triple (4, c, 6), S[10] with 4 <, 6, and S’[7] to
6 <, 4. We finally eliminate x, which has two bindings in Cs[2..3] = {2,3}. The solutions are then
(x,y,2) = (2,4,6) and (x,y,z) = (3,4,6). If we used y ~3 z we would have also found the solutions
(2,4,5) and (3,4, 5).

In order for those ranges in S and S’ to be seamlessly integrated into the LTJ algorithm supported
by the Ring, we represent the sequences S and S’ using wavelet trees, whereas the bitvector B must
be represented supporting constant-time select queries. The total space of S, S’ and B adds up to
2nK + o(nK) words.

Range-based similarity. While as discussed in Section 3.1 the k-NN model is preferred in many
cases, there are others (e.g., geographic distances) where using distance constraints may be more
intuitive. Our scheme can be extended to support range-based similarity joins, with clauses of the
form dist(x,y) < d, where d is bounded by some maximum distance of interest, dyax. To support it,
we could store a distance graph represented as the WT of a sequence D, much like S’ in the K-NN
graph, where for every u we store all the nodes v within distance at most dpnax from u, in increasing
distance order, and a bitvector similar to B to mark the region of every node u in D. Whenever x
(or y) is bound in the clause dist(x,y) < d, we find the range of x (or y) in D and binary search the
prefix of the nodes at distance at most d from u. This range is added to participate in the intersection
when later y (or x) is bound. If computing the distances d(u, v) takes non-constant time, we could
store them in an array parallel to D. Overall, this adds O(log N) extra time per binding of x (or
y), which does not alter the total complexity. The resulting time is then the same as if we had set
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clauses x < y and y < x, where x and y have k and k’ nodes within distance d, respectively. Note
that k and k’ will be known to the algorithm and could be used to choose the variable elimination
order. Since k and k’ depend on each binding of x and y, however, the analysis is messier; this is
why we fix k for simplicity of exposition.

4 OPTIMAL VARIABLE ORDERINGS

Previous work on the LTJ algorithm in the graph context shows that the order in which variables
are instantiated makes no difference in the worst-case optimality of the algorithm (although it does
have an impact in practice [33, 44]). We will show that, on the contrary, the variable elimination
order does make a difference in our extended LTJ algorithm due to the degree constraints naturally
present in the kNN(., -) tables, and thus we face the problem of finding variable orderings that
reach worst-case optimality.

Our variable ordering strategy builds from, and extends, previous strategies designed for queries
with acyclic degree constraints [1, 43]. It is based on instantiating variables in an adaptive fashion,
choosing at each step the variable with the fewest bindings among those that can be chosen in a
topological traversal of the graph of query constraints, whenever possible (i.e., avoiding binding y
before x in clauses x < y). Our resulting LTJ extension, which can handle any extended BGP, not
only inherits the worst-case optimality of the strategies that handle acyclic topologies, but also
produces wco strategies on some classes of queries with cyclic constraints.

Compared to PANDA [2], which can deal with arbitrary degree constraints and always achieves
worst-case optimality, our extended LTJ strategy provides a simpler way of handling extended
BGPs. While our strategy is not optimal for all queries, it is known that the running time of PANDA
includes factors of important magnitude that depend on the structure of the query, even when
restricted to the class of degree constraints present in extended BGPs. Hence, our extended LTJ
strategy can be seen as a lightweight alternative to PANDA, which is asymptotically optimal for a
relevant class of queries.

4.1 Size bounds for extended BGPs

We can reason about output size bounds for our queries by regarding, again, each clause x < y as
a relation kNN(x, y). As explained, the degree of this relation is at most k. Relations with degree
constraints usually restrain the number of tuples in the output.

ExamrLE 4. Consider Q = (x,R,y), (y,S, 2z), x < z, which corresponds to the classic triangle query
where one of the relations is replaced by a k-NN constraint. Let G be a graph with N edges. If we treat
the constraint x < z as a virtual relation kNN(x, z) and apply the classic AGM result, we obtain the
bound O(N3/?).

This bound, however, is not tight, because kNN(x, z) satisfies a degree constraint: each constant
eliminating x can be connected only to its k nearest neighbors. This reduces the size of the answers,
which are now tightly bound by O(kN): there are at most N edges matching (x, R, y), where for each
such edge we find the k nearest neighbors from x < z, and thereafter (y, S, z) can (at most) filter results.

In their seminal paper, Atserias et al. [9] showed that the maximum number of output tuples of
an equijoin was always bounded by the result of a linear program depending on the query and the
database instance; that bound was further shown to be tight.

For the case of extended BGPs, we can also bound their number of answers by using a specific
linear program. Moreover, while the problem of devising tight lower bounds for BGPs with degree
constraints is open (see, e.g., [1]), we will show that our program produces an upper bound that
is tight (in data complexity) for a wide class of extended BGPs covering many queries one would
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expect in practice. Our linear program extends work by Ngo [43] with an additional restriction on
dependencies following a cyclic constraint. Let us begin with some definitions.

DEFINITION 9. The constraint graph of an extended BGP Q has the variables W as nodes, and one
directed edge x — y per constraint x < y where both x and y are variables. We say that the constraints
of Q are acyclic iff its constraint graph is acyclic. A constraint is cyclic if its edge participates in a
cycle in the constraint graph of Q.

To specify our linear program, let us assume first that our queries are safe: for every clause x < y
in Q there must be a triple pattern mentioning x; we will later explain how to deal with unsafe
queries. Let Q be an extended BGP with M triple patterns over a graph with N tuples. We associate
two sets of weights with Q: a weight w; for t;, the ith triple pattern in Q, and a weight J, for
each constraint x < y in Q. We write x € t; to indicate that variable x appears in t;. The program
associated with Q is then:

M
minimize Zwi logN + Z Oxylogk
i=1 X< yeQ
where Z w;i + Z 8zx = 1for each variable x in Q, (1)

i, x€t; zUx€Q

Z w; — 0xy = 0 for each cyclic constraint x < y in Q.

i, x€t;

Let p*(Q, N) denote the optimal solution to this linear program. The value Q* = 2°"(@N) was
shown to be a tight upper bound on |Q(G)| when the constraints of Q are acyclic [43]. The following
lemma transfers this result into our framework.

LEMMA 3 (CF. [43]). The number of answers to an extended BGP Q whose constraints are acyclic,
over any graph with N tuples, is bounded by Q*, and this bound is tight.

Note that the only restriction we are considering on the tables kNN(, -) is their degree constraint,
whereas worst-case optimality in Def. 6 refers to valid K-NN graphs that correspond to some
metric on V. The lower bound still holds because there is always a suitable metric d for every
desired table kNN(-, -): On the trivial metric d(x, x) = 0 and d(x,y) = 1 for all x # y, where all the
nearest-neighbor comparisons are ties, every table kNN(-, -) is valid.

The program may overestimate the number of answers when the constraint graph of Q has cycles,
however. While there are better bounds for queries with general degree constraints [1, 2], our
program provides a simpler bound that can nevertheless be shown to be tight in several practical
cases. We further show desirable properties of this program for queries with small cycles, and
empirically show that it leads to efficient practical algorithms.

Abo Khamis et al. assume in their analysis that queries are safe. To deal with unsafe queries,
we add a predicate Dom(x) for each constraint x < y, which is instantiated as the domain of the
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graph. Adding weights s, for each unsafe constraint, the program is then:

M
minimize Z w;log N + Z (6xylogk + sy log D)

i=1 x4 yeQ
where Zwi + Z Oz + Z Sxy = Lyvarxin Q, @)
i, x€t; zZx€Q X< yeQ

Z w; + Z Sxy | = 6xy = 0; x ¢ y cyclic.

i, X€t; X< yeQ

Note that this program is equivalent to to the program (1) when queries are safe and N < D: in
this case there is always an optimal solution where all weights s, are set to 0.

4.2 Queries with acyclic constraint graphs

Even in the case of acyclic constraint graphs, variable orderings are important for the evaluation
of queries. For instance, when running LT] to evaluate the query of Example 4 over graphs with
N edges, the order y, z, x requires up to N 3/2 eliminations of variables, whereas the order Y, X,z
requires only kN, because the constraint x < z restricts to only k bindings for z for each binding of
X.

Previous work on processing queries with degree constraints has shown that wco time can be
obtained on acyclic queries by instantiating variables according to the topological ordering of the
query (i.e., always instantiating x before y if there are at most k bindings of y per value of x). Since
our data representation (Section 3.3) allows us to intersect k-NN relations while using leap() in
LT]J, we can use the same variable ordering strategy (i.e., respecting the order of the edges of the
constraint graph) to achieve worst case optimality. Such a topological order on the constraint
graph can be computed in O(]Q|) time. We can now state our result about optimality for queries
with acyclic constraints.

THEOREM 2. Let G be a graph database with n nodes and N edges and K be an integer. Then, a
representation using 3N + 2nK + o(N + nK) words of space can compute Q(G) for extended BGPs Q
with acyclic constraints of the form x < y, with1 < k < K, in O(Q*|Q|log N) time, where Q* is the
solution to the program (2).

Before proving the theorem we develop some additional notation; we will use it again in the
following section when we extend Theorem 2 for queries with cycles.

DEFINITION 10. For an unbound variable x, let Qy be the set of (partially instantiated) triplest € Q
such that x € t, and let t(x) be the set of distinct values in the database to which x can be instantiated
in triple t € Qy (i.e., the answers to t as if every other variable were existentially quantified). Further
let £, = min;cp, [t(x)].

We are ready for the proof.

Proor oF THEOREM 2. We simulate LT] with the Ring, as explained in Section 3.3, from where
the space follows. We use a variable ordering that is compatible with a traversal of the constraint
graph of Q in topological order.

Let G be a graph of N edges over a domain of size D, Q a query, and {wi}?;fl, {0xy}xaryeos
{Sxy}x«yeo be a (not necessarily optimal) solution to the linear program (2). Letting |¢| denote the
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number of triples matching ¢, we show that the algorithm runs in time bounded by

M
QltogN - [ J1a™ [ ¥ [] b 3)
i=1

X yeQ X yeQ

The proof is by induction on the number of steps performed by the algorithm, binding one variable
x at a time.

For the base case, Q has a single variable x. The algorithm computes the intersection of the sets
t(x) for every triple t € Qy, and also of the sets k-NN(a) for every clause a < x, with constant a,
and the sets {b | x € k-NN(b)} for every clause x < b with constant b. Using the Ring, we can
intersect all these sets in time bounded by the size of the smallest set we intersect, times a |Q|log N
factor (recall Section 2.4). Given that those sets are always bounded by the minimum between ¢,
and D, the size of k-NN(a) is bounded by k, and the size of {b | x € k-NN(b)} is bounded by D
(actually, by n < D), we have that the time is bounded by min(¥y, k, D), or min(¥, D) if no clauses
of the form a < x exist in Q. We have assumed weights w;, dx, and s, are an admissible solution,
so they verify the constraint 3, co, Wi+ X gqxe0 Sax + Lxabeo Sxb = 1 by Eq. (2). This means that

min(#y, k,D) < 1—[ ;] ™ l_[ feOax 1—[ Db,

ti €Qx a<x€Q x<beQ

because ¢y is smaller than each [t;| and the minimum of a set of reals is bounded by their geometric
mean.
The inductive case follows from the proof of Ngo [43, Thm. 5.1], adapted to our base case. O

4.3 Queries with constraint cycles

We now consider the general case, where the constraint graph of Q can have cycles. Knowing how
to operate optimally when the constraint graph is acyclic, we break the cycles in the graph of Q
adaptively, following a topological ordering of the strongly connected components, and from each
component, binding the variable that yields the minimum number of candidates. We start with
some definitions.

DEFINITION 11. Given nodes x and y in a directed graph C, we say that x <c y if there is no path
fromy to x in C. Furthermore, we say that node x is C-minimal if x <¢ z for every other node z in C.

We then proceed adaptively as follows, where C is the constraint graph of the current query Q,
that is, the query Q with all the variables already bound replaced by their corresponding constraints:

(1) If there are C-minimal variables, choose the C-minimal variable x with minimum value #,.
(2) Otherwise, choose the variable x with minimum value £,.

Note that, in the second case, we are forced to bind some x before z in a constraint z < x. In either
case, once we bind x, new variables may become C-minimal because the edges in the constraint
graph consider only constraints where both variables are (yet) unbound.

In order to enable such a strategy, we need to be able to compute the quantity ¢, for every
candidate variable x. We can do this with the Ring, as it can retrieve any |t(x)| in O(log N) time
using the operation range_symbols on the range corresponding to #(x); recall Section 2.3. It can
also compute the cardinalities of kNN(q, x) or kNN(x, a) in constant time because they are the
sizes of the corresponding ranges in S or S’. Every time a variable x is bound along the adaptive
algorithm, the LTJ algorithm recomputes the range of each tuple t, € Qy in time O(log N), so the
cost of recomputing |#(x)| and updating £, is subsumed in the current cost of LT]J. The space of the
Ring, in this case, grows but is still O(N).
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In section 6 we show that this strategy can lead to fast query resolution in practice, even though
it is not necessarily wco: when several constraints form a cycle it could be the case that the variable
x minimizing ¢, leads to more total instantiations than other orderings. However, we can show
that the running time of this algorithm is still bounded by our program in the particular case where
there is a single “maximal” cycle of length two. This case is especially interesting because the
symmetric clauses x ~; y, with variables x and y, form cycles of length 2.

DEFINITION 12. The constraint graph of Q is single 2-cyclic iff it has at most one cycle, it is of the
form {x < y,y < x}, and there are no edges x < z or y < z, with a variable z ¢ {x,y}.

THEOREM 3. Let G be a graph database with n nodes and N edges and K be an integer. Then, a
representation using O(N) + 2nK + o(nK) words of space can compute Q(G) for extended BGPs Q with
constraints of the form x < y, with 1 < k < K, and forming a single 2-cyclic graph, in O(Q*|Q|log N)
time, where Q" is the solution to the linear program (2).

Proor. Given the structure of Q, we can think of the algorithm as a sequence of steps where it
binds one minimal variable x at a time, finishing with a step where it either binds one variable (if
Q is acyclic), or the two variables of the only 2-cycle (x, y).

As in the proof of Theorem 2, we consider any solution {wi}?;ll, {6xy}xerye0> {Sxytxayeo to the
linear program (2), and prove that the algorithm runs in time bounded by Eq. (3).

The proof is again by induction on the steps performed by the algorithm. This time, for the base
case we have two options: either Q has a single variable, or it has two variables forming a 2-cycle.
The proof for the case of a single variable is exactly as in Theorem 2.

If the query features two variables (x,y) forming a 2-cycle, we proceed as follows. Assume
& < {,; the proof in the other case is analogous. The algorithm would then first iterate over all
bindings I for x, that is, I is the intersection between all sets #(x), all sets k-NN(a) for constraints
a < x in Q, and all sets {b | x € k-NN(b)} for constraints x < b in Q. Let us call ¢ = |I|.

Then, for each such instantiation c € I, the algorithm processes Q[x — c] (the query Q where
we replace every x by c), which implies intersecting the following sets; t[x — c] denotes the triple
t as (possibly) instantiated in Q[x — c].

e Set t[x — c](y) for every triple t € Oy, N Ox.

e Set t[x — c](y) = t(y) for every triple t € Q, \ Ox.

e Set k-NN(a) for each constraint a < y in Q[x — c], with constant a. Note there exists (at
least) one such set, for a = c.

e Set {b | y € k-NN(b)} for each constraint y < b.

For an instantiation x := ¢, let ¢, be the minimum number of values over all the sets t[x — c](y).
As explained, the Ring can process this intersection in time O(min(t., k, D) - |Q]log N), and hence
the total running time is bounded by |Q|log N Y’ ¢y min(#., k, D). As for the previous base case, for
any p, g, r such that p + g +r > 1, this entails that the running time is bounded by |Q|log N times

)

cel cel

Ztﬁ’qu’ < quthflq“ < k1D’

cel cel

where the last part follows by Holder’s inequality; to apply it we introduced the factor 19*" in the
second term.

We note that the rightmost summation is exactly 1. Then, by the same reasoning as in the case
where we bind one variable, we have that 19" < min(¢, k, D)9*", or min(#,, D)?*" if there were
no constraints a < x with a # y in Q. Now for any numbers « + f + y > q + r we have that
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min(y, k, D) < £ k# DY, and min(¢,, D)% < e k? DY with f = 0. Summing up, we have:

(5 < 5

cel cel cel

k9 D"

Because our weights satisfy program (2), we have that §yx < 2/, co, Wi+ 2 o ze0 Syz- We identify
three cases, depending on the value of §y.
Case 1 holds when 6yx < 3./, c0,\0, Wi-
Case 2 holds when ;. Wi < Oyx < Dt.c0, Wi
Case 3 holds when %Zigz\\?ft <15yx. " Zt’EQy l

Consider case 1; we explain how to deal with the other cases shortly. Let p; = Ztier\Qx Wi = Oyx,
and take

p= Ztier Wi = 5yx a= ZtieQx\Qy Wi—p1+ 6yx
q= 22<ky€Q 6zy + 5yx ﬂ = ZZ"kXEQ Ozx — 5yx
r= max(l —pP—q O) Y= Zx<kZ€Q Sxz
Note that our assumptions guarantee that each of these values is nonnegative. Moreover, we
have that p; = Zt,-EQy w;j — ZtiEQ,,,mQx Wi — Oyx, and thus a + f +y is

Zwi+ Z Oox + Z Sxz — Zwi—éyx >1-p>q+r.

t; €Qx zZx€Q x<z€Q ti€Qy

Before finishing we need to further bound the term (3¢ t.)f. Writing p, = ¥, €00, Wi> SO
that p = py + pz, we have that (Xeer te)? = (Zeer te)* (Zeer te)™.

Recall that p; > 0in case 1. Thus, we can find a set of weights w{ > 0 such that p; = 3/ <0, \0, W;-
Then, (¥.cst.)?" can be bounded by £ [Tsc0,\0. |t:|™, because 1 < £ and t. < |t;| for any triple
t; that only mentions variable y and not x. Moreover, 3. tc < |t;| for any ¢; € Qx N Q. Putting
everything together, we obtain

p
kP D (Z tc) < koo [t [ e @
cel tiEQy\Qx tierﬁQx

. . Z X i X
Finally, note that o + p; = ZQX\Qy w; + . Thus, we rewrite 028" as £ 2x\Qy ™ t’,fy . We know
that £, < |t;| for any triple t; € Qx \ Qy. Given that £, < ¢, and that £, < |t;| also holds for any
triple t; € Qy \ Qx, we have that £, < |t;| for any such triple, and we can then write

et ] wl< ] 1™ ]

tiEQy\Qx tieQx\Qy tiGQy\Qx
by redistributing back the weight &, to each of the weights w]. Substituting back in Eq. (4), we

obtain
p
o s ( 3 tc) <kt [T
cel 1 €QxUQy

which finishes the proof of case 1. Indeed, g + f contains all weights of constraints associated with
X O Y, Doz ye Ozy + 2izauxe Ozx, Where z is either x or a constant. Likewise, r + y is bounded by
the sum of all the relevant weights s,, and 5.

The other two cases are proved using the same ideas. For case 2, we set instead p; = §yx, and for
case 3 we further need to redistribute weights between p and r so as to subtract ..
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As the inductive case only features instantiations of variables out of a cycle, we can prove it by
combining the proof of Ngo [43, Thm. 5.1] with the techniques introduced in our base case. O

We remark that the proof of this theorem, and hence the good properties of our variable ordering,
holds for a much wider class of BGPs, in which we permit any number of 2-cycles as long as one of
the variables in each of these cycles is also the target of a k-NN constraint. The proof is omitted for
lack of space.

5 IMPLEMENTATION

Our data structure is an extension of the Ring, whose implementation [6] is coded in C++ using
several structures from the SDSL library [27]. We extend the Ring data structure with those for
the sequences S, S’, and bitvector B. The sequences are represented with the same wavelet trees
used by the Ring. Bitvector B is implemented in plain form, with the bit_vector class of SDSL. To
support select, we use select_support_mcl, which takes constant time by using 20% extra space.
We compile our code using gcc version 6.3.0 with -09 optimization.

An important aspect of a practical implementation of LTJ-style algorithms is the order in which
variables are bound, as explained. We use the following rule [6]: The next variable to bind is the x
with minimum ¢, value in the current (i.e., partially instantiated) query Q. Finally, we leave for the
end the lonely variables, that is, those that appear only once in Q [33]. This algorithm is adaptive in
the sense that, after binding the first variable x with each value c, the next variable to bind may
differ on each Q[x — c¢].

Per the Ring, we do not compute |#(x)| precisely for the triple ¢ in order to compute ., but
rather use the size e — b + 1 of the range [b .. e] corresponding to ¢ in the current Q. In the case
of similarity clauses x < a or a < x, the size of the corresponding ranges in S or S” are the exact
number of different values x can be bound to.

We implemented two variants of our algorithm, and a baseline.

5.1 Ring-KNN-S
This variant is a faithful implementation of the technique we describe in Section 3.3, but it does not
incorporate the restrictions derived from our optimality analysis in Section 4. That is, we use the
variable binding order just described. Although Section 4 suggests that we should aim to eliminate
only C-minimal variables when similarity clauses are involved, this comes from the fact that the
condition x < y can only bound to k the number of candidates for y given x, not the other way. On
average, however, the number of values for x given y is also k, because there are exactly kn tuples
in the virtual relation KNN(-, -).

Therefore, we expect a similar performance on average when disregarding this restriction,
although this could lead to some bad cases and higher variance. On the other hand, having more
freedom to choose the next variable to bind may lead to better query plans.

5.2 Ring-KNN

This is the full implementation of our technique, observing the restrictions of Section 4.

Each time we must choose the next (non-lonely) variable to eliminate, we pass through the edges
x — y of the current constraint graph (i.e., the clauses x < y where both x and y are variable),
marking the variables y as not yet ready to be bound. At the end, if there are unmarked variables,
we choose to eliminate the unmarked variable x with the least value £. If all the variables are
marked, instead, we choose the (marked) variable x with the least value £,.
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5.3 Baseline

Not having an implementation to compare with, we developed a baseline with a simple solution to
the problem that avoids materializing the kNN(., -) relation, as discussed in Section 3.2. The idea is
to first solve the extended BGP as a BGP, ignoring the similarity clauses, and then postprocessing
the solutions with the similarity clauses. Our baseline also builds on the Ring for BGPs; it thus
solves the query in the following two phases:

(1) With the Ring, it computes the full solution to the query without taking into account any
similarity constraint.

(2) Then, it filters or extends the previous results by checking the direct and reverse nearest
neighbor graph. Both graphs are represented as adjacency vectors in plain form.

Note that a clause x < y where both x and y appear in other triple patterns of Q will have both
variables bound in the final solution, and thus we only have to filter the solution by checking
whether y € k-NN(x). Instead, if only one variable is bound, we must extend the result with all
the possible values of the other, using the direct or the reverse graph. This may bind the variable
of another similarity clause, and so on. Our baseline does not support similarity clauses that are
disconnected from the rest of the query.

Filtering should be prioritized, as it may eliminate the solution before wasting time extending
it. For step 2, then, we first classify the similarity clauses into 2-ready, ready and sim: the clauses
X < y where both x and y are bound are in 2-ready; those with one of them bound are in ready; and
those with both unbound are in sim. We start filtering the results with the clauses in 2-ready, which
can preempt the whole query process if they fail. When 2-ready becomes empty, we continue with
ready, generating all the possible values for the other variable by means of the stored K-NN graph.
When ready becomes empty, we continue with sim. We process first the clauses that contain the
variable that participates in most triples. Note that when we extend a variable from sim, others can
move to ready. Therefore, every time we extend a variable, we update both groups. The process
finishes when all groups are empty.

Note that, in essence, the baseline corresponds to solving the triples of the query and leaving all
the similarity clauses to the end, whereas our general technique fully incorporates those clauses
into the LTJ process, aiming at processing them at the best moment.

6 EXPERIMENTS

We compared our implementations on a benchmark we created for this purpose, lacking any
standard one. In this section we describe the benchmark and the results of the comparisons, as well
as some experiments on the quality of our similarity operators.

6.1 Benchmark

We created a benchmark from a dataset that combines the Wikidata graph [54] and IMGpedia [22],
a linked-dataset that incorporates images from the Wikimedia Commons dataset and their nearest
neighbor graph computed based on visual descriptors of the image content. The identifiers of these
images appear as nodes in the Wikidata graph, for example, to indicate that a particular entity
(person, building, artwork, etc.) is depicted by a given image. Our dataset contains 617, 065, 092
triples which, using 32-bit numbers for the identifiers, occupies 6.9 GB. Additionally, storing the
K-NN graph for K = 50 requires 5.3 GB of extra space. In total, our data set occupies 12.2 GB in
plain form.

Regarding queries, based on a real-world query log [12, 38], we keep only those queries that
involve some image, obtaining a total of 2,942 queries. Note that those BGPs do not contain similarity
constraints. We aim to generate realistic extended BGPs by adding, to those real queries, one or

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 39. Publication date: February 2024.



Worst-Case-Optimal Similarity Joins on Graph Databases 39:19

Q1 Qlb Q2 Q2b 100 Q3 Q4 100 Q5

600{m w | 600 1 ] 600]F + | 600] + -
80
500 500 500 500 80 80
60
7400 400 400 400 60 3 60
(7] m H | | |
3 I | | |
=300 3007 [+ 300 i 300 i | | |
2 T | | o | | ol olll
F 200 | 200 o U 20014 L 2001 4 i 3
| | T ol 2l
100 +| 100 = | 100{T T 10097 4 I+ = | I
0ol i A i T A
0 i s i ol & i i 0 - 1. i 0 i 1 i 0{=*= E3 + ol & + T 04 +

[ Baseline Ring-KNN [ Ring-KNN-S

Fig. 2. Query time distribution per query type (600 seconds is the timeout). The upper segment in each plot
is the mean and the lower is the median. The Baseline and Ring-KNN-S reach the timeout in Q3 and Q5.

more similarity constraints between image nodes. We extended the queries with different similarity
patterns in order to show different situations that affect query evaluation performance, and use
k = 50 throughout. We obtain a total of 1,470 queries, classified as follows (g4 denotes that g
contains, at least, the variables in the set A).

e (QI: contains 100 queries that join two queries by using the operator x < y. Given two BGPs
q{(xy and q(,}, where x and y are images, we produce the extended BGP q(x} U {x <t y} Uqqy.
The variant Q1b uses {x ~, y} instead of {x < y}.

e (2: contains 14 queries that join three queries by using the operator x < y twice in a path.
Given BGPs q(x}, 9{y}, q{z}> Where the three variables are images, we produce g} U {x <
Y} Uqqyy U{y <z} Uq(z). The variant Q2b replaces unidirectional by bidirectional similarity
operators. We omit a third variant, Q2t, that closes the triangle with {z < x}, because it gives
almost the same results as Q2.

e (3: contains 307 queries that extend a query with a triangle involving similarity. Given
a BGP g,y that contains (x, p,y), where y is an image, we extend it with the patterns
{(x,p,y),y < y'}. We get close pairs y, y’ related to x by p.

e (O4: contains 20 queries that extend a query as in Q3, but now looking for y’ with all the
properties of y. Given a query q, where y is an image and participates in more than one
triple pattern (to avoid duplicating Q3), we add a new variable y’ and, for each triple pattern
that mentions y, we add a copy that mentions y’ instead. We finally add a clause y < y’.

e 5: contains the same 307 queries of Q3, further extended with a triple pattern (y, I3, l5),
where [; and I, are variables that only participate in this triple (i.e., they are lonely). This
extracts all the information about y for each pair y, y’.

6.2 Results

The experiments were conducted on an Intel® Core™ i7-3820 CPU @ 3.60GHz (4 cores) with 10MB
of cache and 256 GB of RAM, running Debian GNU/Linux 9 with kernel 4.9.0-8 (64 bits).

In space, both Ring variants need 12.15 GB to store the Ring and the K-NN graph. This is almost
the same space to store the raw data (which our index replaces, as any edge of G or of the K-NN
graph can be retrieved from the wavelet trees). The baseline uses more space, 17.99 GB, as it stores
the K-NN graph in plain form.

We evaluated the 1,470 queries on the baseline and our Ring variants. All the queries are run
with a timeout of 10 minutes and without limiting the number of results. Figure 2 shows the query
time distributions using violin plots [30] (which show a symmetric histogram of values along the y
axis) plus averages and medians.
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Queries Q1. In these queries Ring-KNN is on average 15% faster than the baseline. The queries
have the form qx} - x < y - gy}, so the baseline will fully compute q(,} and q(,} and finally
filter the pairs (x, y) that do not satisfy the constraint. The Ring variants, instead, may restrict the
results earlier using the similarity clause. Per Section 4, Ring-KNN cannot bind y before binding x,
whereas Ring-KNN-S is free to do so. This makes Ring-KNN-S 60% faster than the baseline, and
also significantly faster than Ring-KNN.

On Q1b, again per Section 4, Ring-KNN will not bind x nor y until the end, as they form a 2-cycle
x ~k y. Still, x and y are always bound before the lonely variables, that is, Ring-KNN does not
compute all the results of g} - q{,}, while the baseline does. This makes Ring-KNN still 10% faster
than the baseline on average. Due to its flexibility, Ring-KNN-S still outperforms Ring-KNN by 60%
on average. The difference in their plans is illustrated by the fact that, on average, Ring-KNN-S
and Ring-KNN bind the first variable involved in a similarity constraint after processing 36% and
68% of the variables, respectively.

A closer analysis of the time distribution reveals additional benefits of the Ring-KNN plans, as
its median is 40% lower than the baseline. This means that, although there are bad cases that make
its average closer to that of the baseline, Ring-KNN solves many queries faster. Ring-KNN-S times
also distribute much better than the baseline, with the medians being 2.6 times lower. The better
distribution of times for Ring-KNN and the even-better distribution for Ring-KNN-S are observed
in the violin plots.

Queries Q2. These queries feature two or three independent similarity predicates between three
variables, which the baseline is forced to leave to the end. The average difference between Ring-
KNN and the baseline stretches to 55%, while Ring-KNN-S is now only 12% faster than Ring-KNN
on average. The fact that the median of Ring-KNN is “only” 20% faster than that of the baseline
shows that the former is also more stable. It is also more stable than Ring-KNN-S, as the difference
in their medians reaches 45%, but in exchange the latter is considerably faster in most queries. The
violin plots clearly show that the guards of Ring-KNN sharply limits the bad cases, which reach
the timeouts for Ring-KNN-S. Interestingly, there is little difference between Q2, where x, y, and z
form a chain, and Q2f, where they form a triangle.

Both Ring variants worsen on the symmetric queries of Q2b. The cycles force Ring-KNN to leave
the three variables to the end (still before the lonely ones), so its distance to the baseline decreases
to 20% in average and 25% in medians. Ring-KNN-S is 10% faster than Ring-KNN, but its median
is worse by 13%. The violin plot shows that, again, the variable ordering of Ring-KNN limits its
worst cases; the distribution is in general preferable to that of Ring-KNN-S.

Queries Q3. These queries represent a different situation, where the similarity clause appears “in
an extreme” of the query, instead of “in the middle” connecting two queries as in Q2. The baseline
generates and tests all the pairs y, y’ where both are connected to x by predicate p. Ring-KNN can
bind y at any moment, and then y’. Ring-KNN-S, instead, binds y and y” with no restrictions.

As a result, Ring-KNN is 55% faster than the baseline on average, and its median is also 25%
lower. Interestingly, it is also 60% faster than Ring-KNN-S on average, although the medians are
nearly the same. This shows that the query plans of Ring-KNN, which cares about binding y before
y’, feature more stable times than those of Ring-KNN-S, as it avoids some bad cases that worsen the
average of the latter. The violin plots clearly illustrate the better stability and overall performance
of Ring-KNN over Ring-KNN-S.

Queries Q4. In this case, y and y’ are more densely connected to the query than in Q3, which
yields fewer candidate pairs to check by the baseline, but more triple patterns to handle. In this
query Ring-KNN and Ring-KNN-S become more than 4 and 3 times faster than the baseline on
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average, respectively. This is the only set of queries that includes empty results, which is detected
very early by the Ring variants, but not by the baseline: the median of the baseline is over 4 seconds,
whereas those of the Ring variants are 3 - 107°. We also note that Ring-KNN performs better than
Ring-KNN-S: 35% faster on average and with better worst cases, plus a slightly more stable violin
plot.

Queries Q5. The last type of query is designed specifically to illustrate how bad a simple baseline
that separates the similarity clauses from the main query plan can perform, since it must produce
all the instantiations of /1 and /2 before checking if y satisfies the similarity clause. As expected,
the baseline is an order of magnitude slower than the Ring variants. As in Q3, Ring-KNN clearly
outperforms the simple Ring-KNN-S, being 50% faster on average. The distributions are similar
(the median of Ring-KNN being only 7% lower), which again shows that Ring-KNN-S incurs many
more bad cases that raise its average. This is confirmed in the violin plots.

Summary. Our experiments demonstrate that incorporating the similarity clauses in the main
body of the LTJ query algorithm performs much better than a naive strategy that uses LT]J over
triples as a black box and postpones the similarity checks until the end. While the difference is
moderate in simple cases (Q1), it becomes more noticeable when the clauses are more connected to
the query (Q2, Q3), and it may become very sharp (Q4, Q5).

The comparison between the simple and the full Ring variants also depends on the complexity
of the query. In simpler cases (Q1), Ring-KNN-S is more effective by exploiting the opportunity of
binding the variables involved in similarity clauses earlier. The full Ring-KNN is slower in practice
on those queries. In particular, the cycles further restrict Ring-KNN’s plans and make it closer
to the baseline, as it must bind all the other non-lonely variables first. As the queries get more
complicated, however, with more similarity constraints or with constraints involved in cycles (Q2
onwards), the careful variable ordering of Ring-KNN protects it against bad cases and makes it
preferable over Ring-KNN-S. The latter is completely outperformed in the more involved queries

(Q3-09).

6.3 On the quality of the symmetric similarity

Per the possible unintuitiveness of the asymmetric operator x < y for users, we introduced a
symmetric version x ~j y that intersects the results of x < y and y <¢ x. Implementing the sym-
metric version brought a number of challenges, both theoretical (to achieve worst-case optimality,
Section 4.3) and practical (restricted query plans, Section 6.2) . A natural question is about the
quality of the results obtained with this symmetric operator compared to the classic k-NN results.
We present an experiment to address that question.

For this experiment, we use real datasets that serve as a ground truth about which returned
results are considered “good” or “bad”. We use two different datasets for this purpose, which divide
the data into classes. We assume that a result returned from the same class of the query is good,
otherwise it is bad.

e Anuran Calls dataset [16, 17]: It consists of 7,195 vectors of dimension 22, formed by audio
features (Mel Frequency Cepstral Coefficients or MFCCs) extracted from syllabes of frog calls.
There are 10 unbalanced classes in the dataset (size of smaller class is 68, size of larger class
is 3,478), each corresponding to a different species of frogs.

e Dry Bean dataset [36, 37]: It consists of 13,611 vectors of dimension 16, formed by features
extracted from dry bean grains. There are 7 unbalanced classes in the dataset (size of smaller
class is 522, size of larger class is 3,546), each corresponding to a different class of beans. We
normalized linearly the values of each feature in the range [0, 1] .
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We built the K-NN graph of both datasets, for K = 100, using Euclidean distance on the vectors,
and then queried every object x in each dataset for each value k in {5, 10, ..., 100}. For each query
object x and value of k, we performed queries according to four strategies: (1) k-NN (labeled kNN
and corresponding to x < y), where we return the first k neighbors y of x in the K-NN graph;
(2) reverse k-NN (labeled reverse and corresponding to y <¢ x), where we return those y that
list x among their first k neighbors in the K-NN graph; (3) the intersection of k-NN and reverse
k-NN (labeled intersection and corresponding to x ~j y); and (4) the union of k-NN and reverse
k-NN (labeled union, another symmetric alternative to the intersection). For each dataset and k,
we average the precision value (fraction of the elements returned that belong to the same class of
x) over all the query objects x. The higher the precision, the better is the quality of the operation.

Figure 3 shows the average precision for each strategy on both datasets; see the four lines that
reach k = 100 for now. We observe that the precision of the k-NN strategy diminishes with k,
which is expected because a larger answer is more likely to contain objects from other classes
(which lowers the precision). This is the case of the other strategies as well, though some start
growing for low values of k. The reverse k-NN strategy, although returning on average k answers,
consistently displays less precision than that of k-NN. The same occurs with the union strategy,
the other symmetric option we disregarded. The intersection, instead, is competitive with the k-NN
strategy and outperforms it from some value of k between 25 and 30, more markedly on the the
Anuran Calls dataset.

Note that the strategy k-NN returns exactly k objects, the reverse strategy returns on average
k objects (and thus exactly k objects in our plots that query for all the objects), the intersection
returns at most k objects, and the union returns at least k objects. Thus comparing them all for the
same k may be seen as unfair. The figure then also shows the results for union and intersection
classified according to the average number of values returned by the queries. The relative results
are similar as before, although the k-NN strategy outperforms intersection on the Dry Bean dataset.

On both datasets, the difference on average precision comparing equally-sized rankings is not so
high: the maximum difference, for k > 10, is below 8% on the Anuran Calls dataset. These results
evidence that all tested similarity join strategies could be meaningful and useful in practice. Still,
kNN and intersection, the two we implemented, perform consistently better (note also that union
is not as natural to support with LTJ as intersection). There is no conclusive difference in quality
between kNN and intersection. While the x < y operation is more efficient, the x ~ y operator
may be more intuitive for some users. In particular, since the reverse strategy is consistently
worse than kNN, it turns out that the y’s that match each x in the result of x < y are of better quality
that the x’s that match each y; such an asymmetry also reduces intuitiveness.

7 DISCUSSION AND FUTURE WORK

Our theoretical results show that the acyclic queries are easily solved in wco time by just taking
the similarity constraints x < y in topological order. When the query has cycles, we could only
prove bounds for queries featuring one 2-cycle by binding its variables at the end (save for lonely
variables). Our algorithm Ring-KNN extends this strategy to general queries, by never binding
y before x if possible. While the general wco of this strategy is not established, it proves to be
superior in practice — for all but the simplest cases — when compared with the basic Ring-KNN-S
that treats the constraints as any other triple. In simplest cases, Ring-KNN-S is faster as it has more
freedom to choose the binding order.

Our experiments also show that, though the symmetric operator x ~; y (which produces,
precisely, 2-cycles) might be more intuitive than the basic asymmetric x < y version, they are
equivalent in terms of retrieval quality (and better than the operator defined as the union of x < y
and y <¢ x). Our experiments also show that the cost per delivered tuple is 2-5 times higher with
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Fig. 3. Average Precision@k for both datasets.

the symmetric operator with all Ring strategies. This situation leads us to consider other ways to
define a symmetric operator that is equally intuitive and easier to handle algorithmically.

One choice, for example, is to interpret any similarity clause in either direction, whichever
appears to be more convenient at query time. In particular, if the user does not specify the direction
of a similarity clause and the system can define it as x < y or y < x, we can always make the query
acyclic and solve it in wco time. Query answers may differ slightly depending on which order is
chosen, so this approach can be seen as a way of producing faster, approximate answers, akin to the
technology used in vector databases to perform similarity searches. Further setting the direction
of the constraint opens new avenues for query optimization, looking for the fastest query plan
regardless of its comparative quality.

Towards devising further similarity operators that can be powered with our algorithmic ma-
chinery, we will pursue eliminating the need to specify k at the low-level operations x < y or
x ~k y; the query would instead ask for the k* “best” results, where the nodes involved in similarity
constraints are most similar. For example, in the query {Chile <5 y, (y, continent, Europe)}, which
looks for European countries similar (under some metric) to Chile, a user may want to select the
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best three results, even if no European country is among the k = 3 countries most similar to Chile
worldwide. In order to enable this semantics, the system would increase the value of k until k* =3
results are obtained.
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