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We extend the concept of worst-case optimal equijoins in graph databases to the case where some nodes are

required to be within the 𝑘-nearest neighbors (𝑘-NN) of others under some similarity function. We model

the problem by superimposing the database graph with the 𝑘-NN graph and show that a variant of Leapfrog

TrieJoin (LTJ) implemented over a compact data structure called the Ring can be seamlessly extended to

integrate similarity clauses with the equijoins in the LTJ query process, retaining worst-case optimality in

many relevant cases. Our experiments on a benchmark that combines Wikidata and IMGpedia show that our

enhanced LTJ algorithm outperforms by a considerable margin a baseline that first applies classic LTJ and

then completes the query by applying the similarity predicates. The difference is more pronounced on queries

where the similarity clauses are more densely connected to the query, becoming of an order of magnitude in

some cases.
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1 INTRODUCTION
Graph databases [5] are enjoying a resurgence, seen in the emergence of novel graph query

languages [19] and new commercial graph database systems [8, 11]. Open knowledge graphs, such

as Wikidata [54], receive millions of SPARQL queries per day [38]. These developments call for

(1) time- and space-efficient techniques to evaluate queries over graph databases [40], and (2) new

features that enhance the expressivity of graph query languages [4].
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Regarding efficiency, worst-case optimal (wco) join algorithms [44] have provided notable reduc-

tions in runtimes for evaluating complex graph patterns compared to traditional methods [3, 6,

7, 25, 33, 34, 39, 45]. While such algorithms typically require extra index permutations, and thus

more space when compared to, e.g., pairwise joins, recent works address this limitation through

on-the-fly indexing [24], and compact data structures [6, 7].

Regarding expressivity, wco algorithms have mainly been studied in the context of evaluating

equijoins. Their suitability for other types of joins is not yet well understood. Wco guarantees have

been proven for relaxed joins [44], whereby not all of the tuples of the join query need to be satisfied.

Such guarantees have also been studied for top-𝑘 queries [50], where only the top 𝑘 results in

some ordering are returned. Though interesting variants, both relaxed and top-𝑘 queries are still

based on equijoins. Similar guarantees have recently been studied in the context of theta-joins [51],

which allow inequalities, non-equalities, etc., in join conditions. It remains of interest to study wco

guarantees for other types of join.

Our goal in this paper is to push the envelope for wco join algorithms by studying their applicabil-

ity for similarity joins, which relax equijoins by matching elements of the database that are “similar”

(according to some predefined criteria), rather than precisely equal. Two variants of similarity joins

are commonly considered: range-based similarity joins (or 𝜖-joins) match pairs of elements within

a certain distance, while 𝑘–nearest neighbor joins (or 𝑘-NN joins) match, for each element in the

left relation, its 𝑘 most similar elements in the right relation [48]. Such joins have been widely

studied since the mid 1990’s [56], having been folklore for longer, with works citing applications for

multimedia databases [56], time-series databases [56], DNA databases [56], spatial databases [31],

text mining [15], clustering [31], record linkage [13, 15], and more besides. Supporting similarity

joins could then open up a wide range of such applications for graph databases [23].

Contributions: Our specific contributions are as follows: (i) we present a compact data structure

and novel algorithms for evaluating 𝑘-NN similarity joins over graph databases; (ii) we prove the

worst-case optimality of these techniques under certain conditions of (a)cyclicity; (iii) we create a

pseudo-real-world benchmark for this task that combines graphs with multimedia (image) content;

(iv) we show that our algorithm clearly outperforms a baseline using wco join algorithms that

postpone similarity joins until last.

Motivating examples. Graph patterns, the most typical queries on graph databases, look for

partially instantiated subgraphs in the labeled graph. For instance, Twitter searches for diamond

patterns in order to make recommendations about whom to follow [29, 39]: if (𝑥, Follows, 𝑦) denotes
a graph edge 𝑥

Follows−−−−−→ 𝑦, then

(𝑥 ,Follows,𝑦), (𝑥 ,Follows,𝑧), (𝑦,Follows,𝑧), (𝑦,Follows,𝑤), (𝑧,Follows,𝑤),
might indicate that user𝑤 is a good recommendation for user 𝑥 to follow, based on the topology of

its social network. However, one would also want to take advantage of certain similarities among

users in order to improve suggestions. For instance, in the previous example it might be the case

that user 𝑦 does not necessarily follow user 𝑧, but they are similar in some sense (for example, they

have similar interests, they produce similar posts about certain topics, or they live in the same

region or country). The same happens with users 𝑧 and𝑤 . Hence, one could issue a query like

(𝑥, Follows, 𝑦), (𝑥, Follows, 𝑧), 𝑦 ∼ 𝑧, (𝑦, Follows,𝑤), 𝑧 ∼ 𝑤,
where ∼ denotes similarity among the involved variables. This would allow us recommend 𝑥 to

follow𝑤 not only based on the graph topology, but also considering certain similarities. Indeed,

based on the same query we might also want to suggest 𝑦 to follow 𝑧 (and vice versa), and even 𝑧

to follow𝑤 .

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 39. Publication date: February 2024.



Worst-Case-Optimal Similarity Joins on Graph Databases 39:3

Beyond this example, combining similarity joins with graph patterns can be useful in diverse

domains, for instance, to find: (1) stadia of German football clubs whose geographically closest
stadium is of a team in the same league; (2) similar messages posted by bot accounts and politicians

they follow on a social network; (3) visually similar works by Henri Matisse and works by a Cubist

compatriot. Combining criteria via multiple similarity joins, we can find, for example: (4) pairs of

songs with similar tonality and lyrics by Asian artists, or (5) countries similar in terms of population
and area that are neighbors. Using similarity joins on distinct entities we can find, for example, (6)

pairs of stars and their orbiting exoplanets with similar mass, resp., to a solar planet and our sun;

(7) researchers working on similar topics at geographically close institutes. Our goal is to evaluate

such queries efficiently in time and space.

Related work. Kiefer et al. [35] propose iSPARQL, which adds an IMPRECISE clause to SPARQL

that allows for specifying a similarity join. Ferrada et al. [23] extend SPARQL with a syntax,

semantics and set of rewriting rules for similarity joins. Other works extend graph databases with

domain-specific similarity joins in the context of query relaxation [32], record deduplication [26, 47],

multimedia databases [22], and geographic databases [10, 58], among others.

In terms of novelty, little work has been done on optimizing similarity joins within graph

patterns [23] (or indeed, in the relational setting [48]), and no work that we are aware of has looked

at wco guarantees for join queries with similarity clauses.

2 LEAPFROG TRIEJOIN AND THE RING
2.1 Graph databases and BGP matching
We introduce key concepts and notation needed for this paper.

Definition 1. Let 𝑈 be a universe of constants. A graph database is a labeled graph 𝐺 (𝑉 , 𝐸),
where 𝑉 ⊆ 𝑈 is a finite set of nodes and 𝐸 ⊆ 𝑉 ×𝑈 ×𝑉 is a finite set of labeled edges; (𝑢, 𝑝, 𝑣) ∈ 𝐸
denotes 𝑢

𝑝
→ 𝑣 . We call dom(𝐺) = {𝑢, 𝑝, 𝑣 | (𝑢, 𝑝, 𝑣) ∈ 𝐺} the subset of 𝑈 used as constants in 𝐺 and

𝐷 = |dom(𝐺) |. Furthermore, we call 𝑛 = |𝑉 | the number of nodes in 𝐺 and 𝑁 = |𝐸 | the number of
edges.

To simplify, we assume𝑈 = [1 . . 𝐷]; note 𝑛 ≤ 𝐷 ≤ 3𝑁 , 𝑁 ≤ 𝐷3
.

A graph database 𝐺 is often used to search for patterns of interest, that is, subgraphs of 𝐺 that

are homomorphic to a basic graph pattern 𝑄 . We define a basic graph pattern formally as follows.

Definition 2. Let𝐺 (𝑉 , 𝐸) be a graph database,𝑈 be its universe of constants, and𝑊 be a universe
of variables disjoint from𝑈 . A basic graph pattern (BGP) 𝑄 is a set of triple patterns (𝑥,𝑦, 𝑧), where
𝑥,𝑦, 𝑧 ∈ 𝑈 ∪𝑊 . The output 𝑄 (𝐺) of the BGP is the set of all assignments 𝐴 : 𝑊𝑄 → 𝑈 , where
𝑊𝑄 ⊆𝑊 are the variables that appear in 𝑄 , such that for each triple pattern (𝑥,𝑦, 𝑧) ∈ 𝑄 , it holds
that (𝐴′(𝑥), 𝐴′(𝑦), 𝐴′(𝑧)) ∈ 𝐺 , where 𝐴′(𝑥) = 𝑥 for all 𝑥 ∈ 𝑈 and 𝐴′(𝑥) = 𝐴(𝑥) for all 𝑥 ∈𝑊𝑄 .

Given a BGP𝑄 over a graph database𝐺 , the task is to enumerate𝑄 (𝐺). A BGP𝑄 is equivalent to

a join query, as follows. Each triple pattern in 𝑄 is an atomic query over 𝐺 , equivalent to equality-

based selections on a single ternary relation. Then, a BGP corresponds to a conjunctive query (i.e.,

a join query plus simple selections) over the relational representation of the graph.

The AGM bound [9] establishes the maximum output size of a join query free of self joins.

This bound can also be applied to BGPs, which feature self joins, constants in 𝑈 , and multiple

occurrences of a variable in a triple pattern. The idea is to regard each triple pattern as a relation

formed by the triples matching its constants [33]. Thus, the AGM bound of𝑄 over a graph database

instance 𝐺 , denoted 𝑄∗
, is the maximum size 𝑄 (𝐺 ′) could have over any database instance 𝐺 ′

of

size |𝐺 ′ | ≤ |𝐺 |, where | · | denotes the number of edges of a graph. A join algorithm is worst-case

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 39. Publication date: February 2024.



39:4 Diego Arroyuelo et al.

optimal (wco) if it has a running time in 𝑂̃ (𝑄∗), where 𝑂̃ ignores polylogs and data-independent

factors. Atserias et al. [9] proved that for queries as simple as {(𝑥, 𝑝,𝑦), (𝑦, 𝑝, 𝑧), (𝑧, 𝑝, 𝑥)} (for some

constant 𝑝), no classical plan involving only pair-wise joins can be wco.

2.2 Leapfrog Triejoin (LTJ)
Leapfrog Triejoin [53] (LTJ, for short) is a worst-case optimal algorithm for computing natural

joins in relational databases that has been adapted for evaluating BGPs [33] as described next.

Assume that the graph database has been stored using a trie (or digital tree) data structure, such

that for each edge (𝑢, 𝑝, 𝑣) ∈ 𝐸 there is a path of length 3 in the trie storing the values 𝑢, 𝑝 , and 𝑣 ,

respectively. In the RDF notation, these values are called s (subject), p (predicate), and o (object),
respectively. So, the above is called the spo trie, as tuples are stored following that order. Indeed,

for LTJ to work properly, one needs to store 3! = 6 different tries, corresponding to the 6 different

permutations of the values s, p, and o. Now, let us consider a BGP 𝑄 = {𝑡1, . . . , 𝑡𝑞} whose set of
variables is {𝑥1, . . . , 𝑥𝑣}. LTJ uses a so-called variable elimination approach, carrying out 𝑣 iterations,
each handling a particular variable. This implies defining a total order ⟨𝑥𝑖1 , . . . , 𝑥𝑖𝑣 ⟩ in which the

variables will be processed.

Each triple pattern 𝑡𝑖 has an associated trie 𝜏𝑖 whose edge values have been stored in a manner

consistent with the given variable ordering. LTJ starts at the root of every 𝜏𝑖 and descends by the

children that correspond to the constants in 𝑡𝑖 . It then proceeds to the variable elimination phase.

Let 𝑄 𝑗 ⊆ 𝑄 be the triple patterns that contain variable 𝑥𝑖 𝑗 . Starting with the first variable in the

order, 𝑥𝑖1 , LTJ finds each 𝑐1 ∈ dom(𝐺) such that for every 𝑡 ∈ 𝑄1, if 𝑥𝑖1 is replaced by 𝑐1 in 𝑡 , the

evaluation of the modified triple pattern 𝑡 over 𝐺 is non-empty (i.e., there may be answers to 𝑄

where 𝑥𝑖1 is equal to 𝑐1). To find such a 𝑐1, we must intersect the children of the current nodes in

all the tries 𝜏𝑖 , for 𝑡𝑖 ∈ 𝑄1. During execution, we keep a mapping 𝜇 that binds variables already

processed. As we find each constant 𝑐1 suitable for 𝑥𝑖1 , we set 𝜇 = {(𝑥1 := 𝑐1)} and branch on this

value 𝑐1, going down by 𝑐1 in all the tries 𝜏𝑖 , for 𝑡𝑖 ∈ 𝑄1. We now repeat the same process with

𝑄2, finding suitable constants 𝑐2 for 𝑥𝑖2 and extending the mapping to 𝜇 = {(𝑥1 := 𝑐1), (𝑥2 := 𝑐2)},
and so on. Once we have eliminated all variables, 𝜇 is a solution for 𝑄 (solutions can be found

on each branch for distinct values of 𝑐1, . . . , 𝑐𝑣). If for some variable 𝑥𝑖 𝑗 there is no value 𝑐 𝑗 in

the intersection, the algorithm backtracks and continues with the next value for 𝑄 𝑗−1. When the

process finishes, the algorithm has reported all the solutions for 𝑄 .

LTJ carries out the intersection at the trie nodes using the primitive leap(𝜏𝑖 , 𝑐), which finds the

next smallest constant 𝑐𝑖 ≥ 𝑐 within the children of the current node in trie 𝜏𝑖 ; if there is no such

value 𝑐𝑖 , leap(𝜏𝑖 , 𝑐) returns a special value ⊥. Veldhuizen [53] showed that LTJ is wco if leap()
runs in polylogarithmic time.

2.3 Fundamental operations on strings
Let 𝐵 be a bit vector of length |𝐵 |. On it we define the following operations, for 𝑏 ∈ {0, 1}: (1)
rank𝑏 (𝐵, 𝑖), with 1 ≤ 𝑖 ≤ |𝐵 |, counts the number of bits with value 𝑏 in 𝐵 [1..𝑖], and (2) select𝑏 (𝐵, 𝑗),
with 1 ≤ 𝑗 ≤ rank𝑏 (𝐵, |𝐵 |), yields the position in 𝐵 of the 𝑗th bit with value 𝑏 from the left. These

operations, as well as accessing 𝐵 [𝑖], can be supported in 𝑂 (1) time using |𝐵 | + 𝑜 ( |𝐵 |) bits of space
[14, 41]. They can also be extended to a string 𝑆 [1 . . 𝑁 ] over an alphabet Σ = [0, 𝐷), as rank𝑐 (𝑆, 𝑖)
and select𝑐 (𝑆, 𝑗), for 𝑐 ∈ Σ. Wavelet trees (WT, for short) are the paradigmatic data structure

supporting these operations efficiently, specifically in𝑂 (log𝐷) time and using 𝑁 log𝐷+𝑜 (𝑁 log𝐷)
bits of space [28] (we use logarithms in base 2). WTs efficiently support an extended set of operations

[42], including: (1) range_next_value(𝑆, 𝑟𝑏, 𝑟𝑒 , 𝑐), which finds, for 𝑐 ∈ Σ, the smallest symbol 𝑐 ′ ≥ 𝑐
that occurs in range 𝑆 [𝑟𝑏 . . 𝑟𝑒 ], in 𝑂 (log𝐷) time; and (2) range_symbols(𝑆, 𝑟𝑏, 𝑟𝑒 ), which counts
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the number of different values in 𝑆 [𝑟𝑏 . . 𝑟𝑒 ] in 𝑂 (log𝑁 ) time and using 𝑂 (𝑁 log𝐷) additional bits
of space.

2.4 The Ring data structure
The Ring [6] data structure supports the six orders needed by LTJ using a single bidirectional

cyclical index that uses space close to the raw data representation (and even less in some cases),

while supporting the leap() operation needed by the algorithm.

The data structure is essentially a column store, built as follows for a graph 𝐺 (𝑉 , 𝐸). Let
𝑇spo [1 . . 𝑁 ] [1 . . 3] be the table storing the 𝑁 = |𝐸 | edges (𝑢, 𝑝, 𝑣) of the graph, sorted accord-

ing to the spo order. Let 𝐶o denote the last column of 𝑇spo, which intuitively corresponds to the

last level (i.e., the one corresponding to o) of the trie for spo. Next, the process moves the third

column to the front in the table, making it the first column. The table is then re-sorted to obtain

table 𝑇osp. Let 𝐶p denote the last column of this table, which corresponds to the last level of the

trie for the order osp. Finally, the third column in table 𝑇osp is moved to the front and the table is

re-sorted once again, obtaining table 𝑇pos and column 𝐶s. The Ring index is then formed by the

sequences𝐶s,𝐶o, and𝐶p, which are represented using wavelet trees, with a total space requirement

of 3𝑁 log𝐷 + 𝑜 (𝑁 log𝐷) bits. It also contains arrays 𝐴 𝑗 , for each 𝐶 𝑗 with 𝑗 ∈ {s, p, o}, defined
as 𝐴 𝑗 [𝑘] = |{𝑖 ∈ [1 . . 𝑁 ], 𝐶 𝑗 [𝑖] < 𝑘}|, for 𝑘 = 1, . . . , 𝐷 + 1. These arrays store the cumulative

number of occurrences of the symbols of 𝑈 in 𝐶 𝑗 and are represented using bit vectors with

3(𝑁 +𝐷) +𝑜 (𝑁 +𝐷) bits. The total space is thus close to the 3𝑁 log𝐷 bits of a plain representation

of the graph 𝐺 .

By using 𝐶 𝑗 and 𝐴 𝑗 , for 𝑗 ∈ {s, p, o}, we can switch between tables using the function 𝐹 𝑗 :

[1 . . 𝑁 ] → [1 . . 𝑁 ], defined as 𝐹 𝑗 (𝑖) ≡ 𝐴 𝑗 [𝑐] + rank𝑐 (𝐶 𝑗 , 𝑖), where 𝑐 = 𝐶 𝑗 [𝑖]. So, function 𝐹o maps

a position in table 𝑇spo, using 𝐴o and 𝐶o, to the corresponding one in 𝑇osp. Similarly, 𝐹p maps from

𝑇osp to𝑇pos and 𝐹s maps from𝑇pos back to𝑇spo. The mappings work in𝑂 (log𝐷) time if we compute

rank𝑐 using the WT. We can also move in the other direction in 𝑂 (log𝐷) time using the inverse

function of 𝐹 𝑗 : 𝐹
−1
𝑗 (𝑖 ′) ≡ select𝑐 (𝐶 𝑗 , 𝑖

′ −𝐴 𝑗 [𝑐]), where 𝑐 is such that 𝐴 𝑗 [𝑐] < 𝑖 ′ ≤ 𝐴 𝑗 [𝑐 + 1].
Every node 𝑣 in any of the 6 tries corresponds to a range 𝐶 𝑗 [𝑏 . . 𝑒] in some of the three columns.

Consider, for example, the trie 𝑇spo, whose leaves are enumerated in column 𝐶o. If 𝑣 is the root,

then its range is the whole 𝐶o [1 . . 𝑁 ]. If 𝑣 is in the first level and corresponds to the subject s = 𝑥 ,

then its range 𝐶o [𝑏 . . 𝑒] is that of all triples starting with 𝑥 , [𝑏 . . 𝑒] = [𝐴s [𝑥] + 1 . . 𝐴s [𝑥 + 1]]. If 𝑣
is in the second level and corresponds to (s, p) = (𝑥,𝑦), then 𝐶o [𝑏 . . 𝑒] is the range of the triples in
𝑇spo starting with 𝑥𝑦. A leaf node denoting the triple (s, p, o) = (𝑥,𝑦, 𝑧) corresponds to the single

position in 𝐶o where 𝑇spo contains 𝑥𝑦𝑧. The same holds, analogously, for the tries 𝑇osp and 𝑇pos.

The other tries can also be simulated with ranges. Consider 𝑇sop, for example. A first-level node 𝑣

by s = 𝑥 corresponds to the same range in 𝐶o as before, but a second-level node corresponding

to (s, o) = (𝑥, 𝑧) is equivalent to (o, s) = (𝑧, 𝑥), which is a node in 𝑇osp, and thus to a range in 𝐶p.

Then, if we descend from s = 𝑥 to (s, p) = (𝑥,𝑦), we restrict the range in 𝐶o, but if we descend to

(s, o) = (𝑥, 𝑧), we switch to a range in 𝐶p. The new column ranges are computed with extensions

of the functions 𝐹 𝑗 and 𝐹
−1
𝑗 , all in 𝑂 (log𝐷) time; see the original paper [6] for details.

Example 1. Consider the graph on the top-left of Figure 1, where the labels indicate (c)heap or
(e)xpensive travel routes from the source to the target node. The columns𝐶s,𝐶p, and𝐶o are shown on the
bottom-left; ignore the rest of the figure for now. The BGP𝑄 = {(𝑥, c, 𝑦), (𝑦, c, 𝑧)} looks for places (𝑦, 𝑧)
we can reach from 𝑥 at low cost with at most one stop. Both triples (𝑥, c, 𝑦) and (𝑦, c, 𝑧) have the initial
range 𝐶s [1 . . 5], corresponding to p = c. Say we first eliminate variable 𝑦. For (𝑦, c, 𝑧), the candidate
subjects {2, 3, 4} are the distinct elements in 𝐶s [1 . . 5], whereas for (𝑥, c, 𝑦), the candidate objects
{1, 4, 5, 6} are the distinct elements in 𝐶o that are mapped to 𝐶s [1 . . 5] by 𝐹−1s

. The Ring efficiently
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Fig. 1. A graph 𝐺 and its 𝐾-NN graph with 𝐾 = 3 at its right. Below, the Ring index of 𝐺 . On the right, the
representation of the 𝐾-NN graph using 𝑆 , 𝑆 ′, and 𝐵. The dotted lines mark the internal divisions in each 𝑆 ′𝑥
for the different values of 𝑡 . The grayed ranges correspond to Examples 1 and 3.

finds the intersection {4}. We then bind 𝑦 := 4. The new range associated with (𝑦, c, 𝑧) = (4, c, 𝑧) is
𝐶o [5 . . 6] – corresponding to (s, p) = (4, c) in𝑇spo – whereas the one associated with (𝑥, c, 𝑦) = (𝑥, c, 4)
is 𝐶s [2 . . 3] – corresponding to (p, o) = (c, 4) in 𝑇pos. Those ranges are outlined. We continue later in
Example 3.

In the Ring-supported LTJ algorithm, then, each triple pattern of𝑄 is associated with some range

𝐶 𝑗 [𝑏 . . 𝑒], and the intersections of trie nodes correspond, intuitively, to finding the common values

in the ranges of all the triple patterns that share the next variable to bind. Operation leap(), which
powers the intersection, is supported in 𝑂 (log𝐷) time by using, in particular, the WT operation

range_next_value, which finds the smallest 𝑐𝑥 ≥ 𝑐 within a range𝐶 𝑗 [𝑏 . . 𝑒]. The LTJ intersection
algorithm works in time bounded by the size of the smallest intersected range multiplied by the

number of intersected ranges and by the cost of leap(), which yields worst-case optimality. For

compatibility, we state their results using log𝑁 = Θ(log𝐷) instead of log𝐷 .

Theorem 1 ([6]). Let 𝐺 be a graph database with 𝑁 edges and 𝑄 be a BGP. Then, a representation
using 3𝑁 +𝑜 (𝑁 ) words of space can compute𝑄 (𝐺) in𝑂 (𝑄∗ |𝑄 | log𝑁 ) time, where𝑄∗ is the maximum
possible output (AGM bound) of 𝑄 on some graph of 𝑁 edges.

3 LTJ WITH SIMILARITY JOINS
3.1 Modeling similarity
Based on the observation that users struggle with distance-based similarity given that distances

– particularly in high-dimensional abstract spaces – can be difficult to conceptualize [23, 57], we

model similarity via 𝑘-nearest neighbors, which allows us to abstract away details of particular

distance functions.

Definition 3. Let 𝑉 be a set and 𝑑 : 𝑉 ×𝑉 → R+ be a distance function on 𝑉 . For 𝑢, 𝑣 ∈ 𝑉 and
any integer 1 ≤ 𝑘 < |𝑉 |, we define 𝑘-NN(𝑢) as a set satisfying 𝑢 ∉ 𝑘-NN(𝑢), |𝑘-NN(𝑢) | = 𝑘 , and
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∀𝑣 ∈ 𝑘-NN(𝑢), ∀𝑣 ′ ∉ {𝑢} ∪𝑘-NN(𝑢), 𝑑 (𝑢, 𝑣) ≤ 𝑑 (𝑢, 𝑣 ′). That is, 𝑘-NN(𝑢) is the set of the 𝑘 elements
closest to 𝑢, with ties broken arbitrarily.

In order to have a consistent definition of 𝑘-NN for all values of 𝑘 in presence of ties, we define

the concept of a 𝐾-NN graph.

Definition 4. Given an integer 1 ≤ 𝐾 < |𝑉 |, a 𝐾-NN graph of 𝑉 is a directed graph whose node
set is 𝑉 and the out-neighbors of every 𝑢 ∈ 𝑉 is a set 𝐾-NN(𝑢). We additionally regard 𝐾-NN(𝑢) as
ordered by nondecreasing distance to 𝑢, so we say that 𝐾-NN(𝑢) [ 𝑗] is the 𝑗 th closest element to 𝑢 and,
for any 1 ≤ 𝑘 ≤ 𝐾 , we say that 𝑣 ∈ 𝑘-NN(𝑢) iff 𝑣 = 𝐾-NN(𝑢) [ 𝑗] for some 1 ≤ 𝑗 ≤ 𝑘 .

We consider the 𝐾-NN graph as part of the input, just like the graph 𝐺 . Except for simple cases

like, say, geographic distance, the distance function is given by an expert on the data domain. In

some cases, the expert directly gives the 𝐾-NN graph, as it might be easier to rank by closeness

than to come up with a similarity function [49]. When a similarity function is given, the 𝐾-NN

graph is computed only once, at index construction time, not for each query. The naïve approach

for building the 𝐾-NN graph takes time Θ(𝑛2), by computing all pairwise distances between nodes

in𝑉 . Paredes et al. [46] present methods for building 𝐾-NN graphs for general metric spaces, taking

empirical times of 𝑂 (𝑛1.27) for low-dimensional spaces and 𝑂 (𝑛1.90) for high-dimensional ones,

using 𝑂 (𝑛(𝐾 + log𝑛)) space. In the case of R𝑑 , Vaidya [52] proposes an algorithm for 𝐾 = 1 that

takes 𝑂 ((𝑐𝑑)𝑑𝑛 log𝑛) time, for a constant 𝑐 [18]. Dickerson and Eppstein [20] compute the 𝐾-NN

graph in R𝑑 in 𝑂 (𝐾𝑛 + 𝑛 log𝑛) time, although they leave open the dependence of the bound on 𝑑 .

There are several algorithms for computing approximated 𝐾-NN graphs, such as NN-Descent [21]

(arbitrary similarity measure, empirical time 𝑂 (𝑛1.14)), multiple random divide & conquer and

neighborhood propagation [55] (data in R𝑑 , time 𝑂 (𝑑𝑛 log𝑛)), and a method based on Locality

Sensitive Hashing [59] (data in R𝑑 , time 𝑂 (ℓ (𝑑 + log𝑛)𝑛) with ℓ a parameter).

We will enrich the classic BGPs of graph databases by assuming a given 𝐾-NN graph on the same

nodes of the graph database and permitting, in addition to the triple patterns of the BGPs, zero or

more expressions of the form 𝑥 ⊳𝑘 𝑦, where 𝑥 and 𝑦 can be constants or variables and 1 ≤ 𝑘 ≤ 𝐾

is an integer. The expression 𝑥 ⊳𝑘 𝑦 means that 𝑦 is among the 𝑘 closest elements to 𝑥 , that is,

𝑦 ∈ 𝑘-NN(𝑥). Let us define our extended BGPs and their worst-case optimality.

Definition 5. Let𝐺 (𝑉 , 𝐸) be a graph database,𝑈 be its universe of constants, and𝑊 be a universe
of variables disjoint from𝑈 . An extended BGP𝑄 is a set of triple patterns (𝑥,𝑦, 𝑧), where 𝑥,𝑦, 𝑧 ∈ 𝑈 ∪𝑊 ,
and a set of clauses 𝑥 ⊳𝑘 𝑦, where 𝑥,𝑦 ∈ 𝑈 ∪𝑊 , 𝑥 ≠ 𝑦, and 𝑘 ≥ 1 is an integer. The output 𝑄 (𝐺) of
the extended BGP is the set of all assignments 𝐴 :𝑊𝑄 → 𝑈 , where𝑊𝑄 ⊆𝑊 are the variables that
appear in 𝑄 , such that (1) for each triple pattern (𝑥,𝑦, 𝑧) ∈ 𝑄 , it holds that (𝐴′(𝑥), 𝐴′(𝑦), 𝐴′(𝑧)) ∈ 𝐺 ,
and (2) for each clause 𝑥 ⊳𝑘 𝑦 ∈ 𝑄 , it holds that 𝐴′(𝑦) ∈ 𝑘-NN(𝐴′(𝑥)), where 𝐴′(𝑥) = 𝑥 for all 𝑥 ∈ 𝑈
and 𝐴′(𝑥) = 𝐴(𝑥) for all 𝑥 ∈𝑊𝑄 .

Definition 6. Given a graph database𝐺 with 𝑁 triples and a 𝐾-NN graph for a metric distance 𝑑
on its nodes 𝑉 , an algorithm to compute 𝑄 (𝐺) for an extended BGP 𝑄 is worst-case optimal (wco) if
its time complexity is 𝑂̃ (𝑄∗), where 𝑄∗ is the maximum size of 𝑄 (𝐺 ′) on any graph 𝐺 ′ with 𝑁 ′ ≤ 𝑁

triples and the 𝐾-NN graph of any metric 𝑑 ′ on the nodes 𝑉 ′ of 𝐺 ′.

Though we use 𝑥 ⊳𝑘 𝑦 as our similarity primitive, its asymmetric nature may be unintuitive for

final users. We thus build upon it the following more intuitive symmetric operator:

𝑥 ∼𝑘 𝑦 ⇔ 𝑥 ⊳𝑘 𝑦 ∧ 𝑦 ⊳𝑘 𝑥,

that is, 𝑥 is among the 𝑘 nearest neighbors of 𝑦 and vice versa. We simply convert any clause 𝑥 ∼𝑘 𝑦

per its definition in order to handle it in the extended BGPs we just defined.
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We will assume for simplicity that all the nodes 𝑉 participate in the similarity. Our techniques

can handle 𝐾-NN graphs defined on a subset of 𝑉 only, assuming the 𝑘-NN predicates involving

other nodes are always false. We could also have fewer than 𝐾 neighbors for some nodes of 𝑉 ,

for example to disregard neighbors that are too far away in terms of the distance 𝑑 . Furthermore,

we could have various independent 𝐾-NN relations and refer to them in the same queries. Our

techniques can work with any 𝑘-NN relation, without requiring that it corresponds to some distance

𝑑 ; therefore they are useful to model similarity functions that are non-metric, for example. Our

optimality proofs are valid even in the more restrictive case of metric distances (the more restrictive

the relation, the harder to be wco because not every input table is possible).

We can also extend our results to distance-based similarity joins, that is, indicating that two

elements 𝑥 and 𝑦 must be within distance 𝑑 to each other. We return to this point at the end of

Section 3.3.

3.2 A basic idea
In principle, any indexing scheme solving BGPs in wco time can be extended to handle the similarity

clauses 𝑥 ⊳𝑘 𝑦. At index construction time, the value 𝐾 is chosen and a suitable representation of

the 𝐾-NN graph is built. At query time, for every clause 𝑥 ⊳𝑘 𝑦, wematerialize the relation 𝑘NN(·, ·)
containing all the pairs (𝑎, 𝑏) such that 𝑏 ∈ 𝑘-NN(𝑎), and replace the clause 𝑥 ⊳𝑘 𝑦 by the expression

𝑘NN(𝑥,𝑦). We then run the wco algorithm on the modified query.

Materializing. A first problem is how to efficiently materialize 𝑘NN(·, ·) from the 𝐾-NN graph,

because the value 𝑘 used at query time can be much smaller than 𝐾 (additionally, each clause may

use a different 𝑘 value). For the discussion, let us regard the 𝐾-NN graph as a table of triples (𝑢, 𝑣, 𝑗),
meaning that 𝑣 = 𝐾-NN(𝑢) [ 𝑗]. To materialize 𝑘NN(·, ·) we must extract all the triples (𝑢, 𝑣, 𝑗)
for 1 ≤ 𝑗 ≤ 𝑘 , and then sort them by (𝑢, 𝑣) and by (𝑣,𝑢) to build the two LTJ tries representing

𝑘NN(·, ·). The most efficient way is to maintain the 𝐾-NN graph sorted by 𝑗 , so the extraction takes

𝑂 (𝑘𝑛) time and the sorting for trie construction takes time 𝑂 (𝑘𝑛 log𝑛).
While this time is proportional to the input size and thus within wco bounds in theory, the

approach is totally impractical because in most useful cases the output is much smaller than

the input. As an example, in our experimental setup of Section 6, just copying the part of the

𝐾-NN graph and sorting it twice, for 𝑘 = 50, takes 260 seconds, only after which the actual query

processing starts. Instead, our proposed index handles the complete query process in as little as 1.3

seconds for the fastest queries we consider, or as much as 103 seconds for the most expensive ones.

We show in Section 3.3 how our data structures manage to simulate the desired tables 𝑘NN(·, ·),
without ever materializing them, by representing the 𝐾-NN graph in a specific way, using WTs.

Additionally, we seamlessly extend the Ring to emulate the tries of these simulated tables without

building them at query time.

Optimality. Using LTJ is not wco in this case, because the relations𝑘NN(·, ·) satisfy what is known
as a degree constraint: there are only 𝑘 tuples in the relation sharing their same first component.

When the 𝑘-NN constraints follow an ayclicity property one can retain worst-case optimality

by choosing an order that respects such acycilicity [1, 43]. In the general case, optimality can

be obtained by using PANDA [2], an algorithm that is optimal for the setting considered in this

paper. This is, again, impractical, however. While the PANDA algorithm may work with theoretical

guarantees in data complexity, the authors themselves note that this involves huge query-dependent

factors, and that it is important to find algorithms that work faster in practice [2]. The approach

we develop in Section 4 is to construct a good variable ordering for LTJ in a greedy fashion, taking

advantage of the fact that the Ring can retrieve the number of instantiations for each triple pattern

before processing them. We show that our approach remains worst-case optimal (just as PANDA)
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for a relevant class of extended BGPs that includes queries with cyclic 𝑘-NN constraints. Our

experiments in Section 6 show that our variable ordering strategy can improve query computation

time in practice, even for queries where our strategy is not necessarily worst-case optimal.

3.3 Our solution
In order to extend the LTJ algorithm to handle the similarity constraints 𝑥 ⊳𝑘 𝑦, we merge the classic

Ring representation of the database graph (Section 2.4) with a representation of the 𝐾-NN graph.

We choose 𝐾 at index construction time, and then can handle queries 𝑥 ⊳𝑘 𝑦 for any 1 ≤ 𝑘 ≤ 𝐾 .

Importantly, depending on the elimination order of the variables in LTJ, it may be the case that we

need to compute the relation 𝑥 ⊳𝑘 𝑦 in a backwards fashion: instead of looking for the 𝑘 nearest

neighbors of a node 𝑢, we may have to look for those nodes of which 𝑢 is a 𝑘-nearest neighbor.

Thus, our 𝐾-NN graph representation consists of two sequences, 𝑆 [1 . . 𝐾𝑛] and 𝑆 ′[1 . . 𝐾𝑛], plus a
bitvector 𝐵 [1 . . 2𝑛𝐾], which record the 𝐾-NN graph and its transpose. For simplicity, let us identify

the graph nodes 𝑉 with the integers in [1 . . 𝑛].
Definition 7. For any 𝑢 ∈ [1 . . 𝑛], let 𝑆𝑢 [1 . . 𝐾] be such that 𝑆𝑢 [ 𝑗] = 𝐾-NN(𝑢) [ 𝑗]. We then

define 𝑆 [1 . . 𝐾𝑛] = 𝑆1 · 𝑆2 · · · 𝑆𝑛 , thus 𝑆𝑢 [ 𝑗] = 𝑆 [(𝑢 − 1)𝐾 + 𝑗].
Definition 8. For any 𝑢 ∈ [1 . . 𝑛], let 𝑆 ′𝑢 be the sequence of elements 𝑣 such that 𝑆𝑣 [ 𝑗𝑣] = 𝑢

for some 1 ≤ 𝑗𝑣 ≤ 𝐾 , sorted by increasing value of 𝑗𝑣 with ties broken arbitrarily. We then define
𝑆 ′[1 . . 𝐾𝑛] = 𝑆 ′

1
· 𝑆 ′

2
· · · 𝑆 ′𝑛 . To distinguish the different values of 𝑗𝑣 in 𝑆 ′, let 𝑆 ′𝑢 contain 𝑠𝑡 elements

𝑣 with 𝑗𝑣 = 𝑡 , then we define bitvector 𝐵𝑢 = 10
𝑠1
10

𝑠2 · · · 10𝑠𝐾 and 𝐵 [1 . . 2𝑛𝐾] = 𝐵1 · 𝐵2 · · ·𝐵𝑛 . Then
𝑆 ′[𝑖] corresponds to the 𝑖th 0 in 𝐵; note 𝐵 contains 𝐾𝑛 0s and 𝐾𝑛 1s.

Example 2. In the middle of Figure 1 we show a 3-NN graph, where each node 𝑢 points to the nodes
in 3-NN(𝑢) using Euclidean distance on the plane. For example, the three nearest neighbors of node
𝑢 = 1 are, from closest to farthest, 𝑆1 = 324, and those of node 𝑢 = 2 are 𝑆2 = 134. These strings
of length 𝐾 = 3 are concatenated into the string 𝑆 , shown vertically on the right of the graph. Now
consider 𝑆 ′

4
on the right of the figure, which contains the nodes 𝑣 for which 𝑢 = 4 is in 3-NN(𝑣), i.e.,

such that 𝑢 appears in 𝑆𝑣 . We see that 𝑢 = 4 appears in 𝑆1, 𝑆2, 𝑆3, 𝑆5, 𝑆6, and 𝑆7, at positions 𝑗1 = 3,
𝑗2 = 3, 𝑗3 = 3, 𝑗5 = 2, 𝑗6 = 1, and 𝑗7 = 1, respectively. We write those values of 𝑣 in 𝑆 ′

4
= 675123

by increasing order of 𝑗𝑣 , that is, from smallest to largest value of 𝑘 . Then, 𝑆 ′
4
[1 . . 2] = 67 are the

nodes 𝑣 for which 𝑢 ∈ 1-NN(𝑣), 𝑆 ′
4
[1 . . 3] = 675 are those for which 𝑢 ∈ 2-NN(𝑣), and 𝑆 ′

4
[1 . . 6] are

those for which 𝑢 ∈ 3-NN(𝑣). These limits inside 𝑆 ′
4
, at positions 2, 3, and 6, are marked in unary by

𝐵4 = 100101000. As another example, we have 𝑆 ′
1
= 23 with 𝐵1 = 10011 because 1 ∈ 1-NN(2) and

1 ∈ 1-NN(3).
This arrangement in 𝑆 ′ allows us to have a range for the values 𝑥 such that 𝑥 ⊳𝑘 𝑦 when 𝑦 is fixed.

Lemma 1. For any 𝑣 , the values 𝑢 such that 𝐾-NN(𝑢) [𝑡] = 𝑣 are written in 𝑆 ′ from position
𝑆 ′[𝑝𝑣 (𝑡)], with 𝑝𝑣 (𝑡) = select1 (𝐵, (𝑣 − 1)𝐾 + 𝑡) − (𝑣 − 1)𝐾 − 𝑡 + 1.

Proof. Let 𝑠𝑡 be as in Def. 8; then the first of the desired elements 𝑢 is at 𝑆 ′𝑣 [𝑝], with 𝑝 =

𝑠1 + · · · + 𝑠𝑡−1 + 1. By the definition of 𝐵𝑣 , it holds that 𝑝 = select1 (𝐵𝑣, 𝑡) − 𝑡 + 1. Since 𝐵𝑣 starts

at the ((𝑣 − 1)𝐾 + 1)th 1 of 𝐵 and the 0s of 𝐵 correspond to the positions in 𝑆 ′, 𝑆 ′𝑣 starts at

𝑆 ′[select1 (𝐵, (𝑣 − 1)𝐾 + 1) − (𝑣 − 1)𝐾]. Therefore, 𝑆 ′𝑣 [𝑝] corresponds to 𝑆 ′[𝑝𝑣 (𝑡)]. □

Lemma 2. The following are equivalent.

(𝑎) 𝑣 ∈ 𝑘-NN(𝑢),
(𝑏) 𝑣 is in 𝑆 [(𝑢 − 1)𝐾 + 1 . . (𝑢 − 1)𝐾 + 𝑘] and
(𝑐) 𝑢 is in 𝑆 ′[𝑝𝑣 (1) . . 𝑝𝑣 (𝑘 + 1) − 1].
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Proof. Conditions (𝑎) and (𝑏) are equivalent by Def. 7. Condition (𝑎) is equivalent to 𝑣 appearing
in 𝑆𝑢 [1 . . 𝑘], i.e., 𝑆𝑢 [𝑡] = 𝑣 for some 1 ≤ 𝑡 ≤ 𝑘 . By Lemma 1, 𝑢 appears in 𝑆 ′[𝑝𝑣 (𝑡) . . 𝑝𝑣 (𝑡 + 1) − 1].
Taking the union of those ranges for 1 ≤ 𝑡 ≤ 𝑘 , we have that condition (𝑎) is equivalent to 𝑢
appearing in 𝑆 ′[𝑝𝑣 (1) . . 𝑝𝑣 (𝑘 + 1) − 1]. □

Consider a clause of the form 𝑥 ⊳𝑘 𝑦 in the query. Our algorithm proceeds exactly as if we had

materialized the relation 𝑘NN(𝑥,𝑦). Therefore, whenever 𝑥 or 𝑦 is bound, our LTJ algorithm must

simulate the binding of the first or the second component of 𝑘NN(·, ·) to 𝑥 or 𝑦, respectively. In

LTJ, this would correspond to representing 𝑘NN(𝑥,𝑦) with two tries, 𝑇𝑥𝑦 with order 𝑥𝑦 and 𝑇𝑦𝑥
with order 𝑦𝑥 , and descending by 𝑇𝑥𝑦 if 𝑥 is materialized first and by 𝑇𝑦𝑥 if 𝑦 is materialized first.

We do not materialize those tries either, however. Just as the Ring represents every node of the

tries 𝑇spo, etc. as some range 𝐶 𝑗 [𝑏 . . 𝑒], we represent the nodes of 𝑇𝑥𝑦 and 𝑇𝑦𝑥 as ranges in 𝑆 or

𝑆 ′. Precisely, by Lemma 2, if 𝑥 is bound first, we simulate descending in 𝑇𝑥𝑦 by associating the

range 𝑆 [(𝑥 − 1)𝐾 + 1 . . (𝑥 − 1)𝐾 +𝑘] with the clause 𝑥 ⊳𝑘 𝑦. If, instead, 𝑦 is bound first, we simulate

descending in 𝑇𝑦𝑥 by associating the range 𝑆 ′[𝑝𝑦 (1) . . 𝑝𝑦 (𝑘 + 1) − 1] with the clause 𝑥 ⊳𝑘 𝑦. Those

ranges will then be included in the corresponding intersections when the variable 𝑦 (in the first

case) or 𝑥 (in the second case) is bound, exactly as any other column range𝐶 𝑗 [𝑏 . . 𝑒] corresponding
to triple patterns in 𝑄 . The WT operation range_next_value allows us running intersections on

the ranges in 𝑆 and 𝑆 ′ without the need of sorting the values.

Example 3. Consider again Figure 1, and consider now the extended BGP𝑄 = {(𝑥, c, 𝑦), (𝑦, c, 𝑧), 𝑦 ∼2

𝑧}, which looks for nearby places (𝑦, 𝑧) we can go consecutively from 𝑥 at low cost. We start the process
as in Example 1, but when we bind 𝑦 := 4, we also descend by 𝑦 = 4 in the tries of 𝑇𝑦𝑧 and 𝑇𝑧𝑦 , as we
have the clause𝑦 ∼2 𝑧 ≡ 𝑦 ⊳2𝑧∧𝑧 ⊳2𝑦. This corresponds to associating the range 𝑆4 [1 . . 2] = 𝑆 [10 . . 11]
with 4 ⊳2 𝑧 and the range 𝑆 ′4 [1 . . 3] = 𝑆 ′[7 . . 9] with 𝑧 ⊳2 4. These ranges are also outlined in the figure.
Say we now eliminate 𝑧. The Ring intersects the ranges 𝐶o [5 . . 6] associated with (4, c, 𝑧), 𝑆 [10 . . 11]
associated with 4 ⊳2 𝑧, and 𝑆 ′[7 . . 9] associated with 𝑧 ⊳2 4. The intersection yields the candidate set
{6}. We then bind 𝑧 := 6, associating 𝐶o [6] with the triple (4, c, 6), 𝑆 [10] with 4 ⊳2 6, and 𝑆 ′[7] to
6 ⊳2 4. We finally eliminate 𝑥 , which has two bindings in 𝐶s [2 . . 3] = {2, 3}. The solutions are then
(𝑥,𝑦, 𝑧) = (2, 4, 6) and (𝑥,𝑦, 𝑧) = (3, 4, 6). If we used 𝑦 ∼3 𝑧 we would have also found the solutions
(2, 4, 5) and (3, 4, 5).

In order for those ranges in 𝑆 and 𝑆 ′ to be seamlessly integrated into the LTJ algorithm supported

by the Ring, we represent the sequences 𝑆 and 𝑆 ′ using wavelet trees, whereas the bitvector 𝐵 must

be represented supporting constant-time select queries. The total space of 𝑆 , 𝑆 ′ and 𝐵 adds up to

2𝑛𝐾 + 𝑜 (𝑛𝐾) words.

Range-based similarity. While as discussed in Section 3.1 the 𝑘-NN model is preferred in many

cases, there are others (e.g., geographic distances) where using distance constraints may be more

intuitive. Our scheme can be extended to support range-based similarity joins, with clauses of the

form 𝑑𝑖𝑠𝑡 (𝑥,𝑦) ≤ 𝑑 , where 𝑑 is bounded by some maximum distance of interest, 𝑑max. To support it,

we could store a distance graph represented as the WT of a sequence 𝐷 , much like 𝑆 ′ in the 𝐾-NN

graph, where for every 𝑢 we store all the nodes 𝑣 within distance at most 𝑑max from 𝑢, in increasing

distance order, and a bitvector similar to 𝐵 to mark the region of every node 𝑢 in 𝐷 . Whenever 𝑥

(or 𝑦) is bound in the clause 𝑑𝑖𝑠𝑡 (𝑥,𝑦) ≤ 𝑑 , we find the range of 𝑥 (or 𝑦) in 𝐷 and binary search the

prefix of the nodes at distance at most 𝑑 from𝑢. This range is added to participate in the intersection

when later 𝑦 (or 𝑥 ) is bound. If computing the distances 𝑑 (𝑢, 𝑣) takes non-constant time, we could

store them in an array parallel to 𝐷 . Overall, this adds 𝑂 (log𝑁 ) extra time per binding of 𝑥 (or

𝑦), which does not alter the total complexity. The resulting time is then the same as if we had set
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clauses 𝑥 ⊳𝑘 𝑦 and 𝑦 ⊳𝑘′ 𝑥 , where 𝑥 and 𝑦 have 𝑘 and 𝑘 ′ nodes within distance 𝑑 , respectively. Note

that 𝑘 and 𝑘 ′ will be known to the algorithm and could be used to choose the variable elimination

order. Since 𝑘 and 𝑘 ′ depend on each binding of 𝑥 and 𝑦, however, the analysis is messier; this is

why we fix 𝑘 for simplicity of exposition.

4 OPTIMAL VARIABLE ORDERINGS

Previous work on the LTJ algorithm in the graph context shows that the order in which variables

are instantiated makes no difference in the worst-case optimality of the algorithm (although it does

have an impact in practice [33, 44]). We will show that, on the contrary, the variable elimination

order does make a difference in our extended LTJ algorithm due to the degree constraints naturally

present in the 𝑘NN(·, ·) tables, and thus we face the problem of finding variable orderings that

reach worst-case optimality.

Our variable ordering strategy builds from, and extends, previous strategies designed for queries

with acyclic degree constraints [1, 43]. It is based on instantiating variables in an adaptive fashion,

choosing at each step the variable with the fewest bindings among those that can be chosen in a

topological traversal of the graph of query constraints, whenever possible (i.e., avoiding binding 𝑦

before 𝑥 in clauses 𝑥 ⊳𝑘 𝑦). Our resulting LTJ extension, which can handle any extended BGP, not

only inherits the worst-case optimality of the strategies that handle acyclic topologies, but also

produces wco strategies on some classes of queries with cyclic constraints.

Compared to PANDA [2], which can deal with arbitrary degree constraints and always achieves

worst-case optimality, our extended LTJ strategy provides a simpler way of handling extended

BGPs. While our strategy is not optimal for all queries, it is known that the running time of PANDA

includes factors of important magnitude that depend on the structure of the query, even when

restricted to the class of degree constraints present in extended BGPs. Hence, our extended LTJ

strategy can be seen as a lightweight alternative to PANDA, which is asymptotically optimal for a

relevant class of queries.

4.1 Size bounds for extended BGPs
We can reason about output size bounds for our queries by regarding, again, each clause 𝑥 ⊳𝑘 𝑦 as

a relation 𝑘NN(𝑥,𝑦). As explained, the degree of this relation is at most 𝑘 . Relations with degree

constraints usually restrain the number of tuples in the output.

Example 4. Consider 𝑄 = (𝑥, 𝑅,𝑦), (𝑦, 𝑆, 𝑧), 𝑥 ⊳𝑘 𝑧, which corresponds to the classic triangle query
where one of the relations is replaced by a 𝑘-NN constraint. Let𝐺 be a graph with 𝑁 edges. If we treat
the constraint 𝑥 ⊳𝑘 𝑧 as a virtual relation 𝑘NN(𝑥, 𝑧) and apply the classic AGM result, we obtain the
bound 𝑂 (𝑁 3/2).
This bound, however, is not tight, because 𝑘NN(𝑥, 𝑧) satisfies a degree constraint: each constant

eliminating 𝑥 can be connected only to its 𝑘 nearest neighbors. This reduces the size of the answers,
which are now tightly bound by 𝑂 (𝑘𝑁 ): there are at most 𝑁 edges matching (𝑥, 𝑅,𝑦), where for each
such edge we find the 𝑘 nearest neighbors from 𝑥 ⊳𝑘 𝑧, and thereafter (𝑦, 𝑆, 𝑧) can (at most) filter results.

In their seminal paper, Atserias et al. [9] showed that the maximum number of output tuples of

an equijoin was always bounded by the result of a linear program depending on the query and the

database instance; that bound was further shown to be tight.

For the case of extended BGPs, we can also bound their number of answers by using a specific

linear program. Moreover, while the problem of devising tight lower bounds for BGPs with degree

constraints is open (see, e.g., [1]), we will show that our program produces an upper bound that

is tight (in data complexity) for a wide class of extended BGPs covering many queries one would
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expect in practice. Our linear program extends work by Ngo [43] with an additional restriction on

dependencies following a cyclic constraint. Let us begin with some definitions.

Definition 9. The constraint graph of an extended BGP 𝑄 has the variables𝑊𝑄 as nodes, and one
directed edge 𝑥 → 𝑦 per constraint 𝑥 ⊳𝑘 𝑦 where both 𝑥 and 𝑦 are variables. We say that the constraints
of 𝑄 are acyclic iff its constraint graph is acyclic. A constraint is cyclic if its edge participates in a
cycle in the constraint graph of 𝑄 .

To specify our linear program, let us assume first that our queries are safe: for every clause 𝑥 ⊳𝑘 𝑦
in 𝑄 there must be a triple pattern mentioning 𝑥 ; we will later explain how to deal with unsafe

queries. Let𝑄 be an extended BGP with𝑀 triple patterns over a graph with 𝑁 tuples. We associate

two sets of weights with 𝑄 : a weight 𝑤𝑖 for 𝑡𝑖 , the 𝑖th triple pattern in 𝑄 , and a weight 𝛿𝑥𝑦 for

each constraint 𝑥 ⊳𝑘 𝑦 in 𝑄 . We write 𝑥 ∈ 𝑡𝑖 to indicate that variable 𝑥 appears in 𝑡𝑖 . The program

associated with 𝑄 is then:

minimize

𝑀∑︁
𝑖=1

𝑤𝑖 log𝑁 +
∑︁

𝑥⊳𝑘𝑦∈𝑄
𝛿𝑥𝑦 log𝑘

where

∑︁
𝑖, 𝑥 ∈𝑡𝑖

𝑤𝑖 +
∑︁

𝑧⊳𝑘𝑥 ∈𝑄
𝛿𝑧𝑥 ≥ 1 for each variable 𝑥 in 𝑄 ,∑︁

𝑖, 𝑥 ∈𝑡𝑖
𝑤𝑖 − 𝛿𝑥𝑦 ≥ 0 for each cyclic constraint 𝑥 ⊳𝑘 𝑦 in 𝑄 .

(1)

Let 𝜌∗ (𝑄, 𝑁 ) denote the optimal solution to this linear program. The value 𝑄∗ = 2
𝜌∗ (𝑄,𝑁 )

was

shown to be a tight upper bound on |𝑄 (𝐺) | when the constraints of𝑄 are acyclic [43]. The following

lemma transfers this result into our framework.

Lemma 3 (cf. [43]). The number of answers to an extended BGP 𝑄 whose constraints are acyclic,
over any graph with 𝑁 tuples, is bounded by 𝑄∗, and this bound is tight.

Note that the only restriction we are considering on the tables 𝑘NN(·, ·) is their degree constraint,
whereas worst-case optimality in Def. 6 refers to valid 𝐾-NN graphs that correspond to some

metric on 𝑉 . The lower bound still holds because there is always a suitable metric 𝑑 for every

desired table 𝑘NN(·, ·): On the trivial metric 𝑑 (𝑥, 𝑥) = 0 and 𝑑 (𝑥,𝑦) = 1 for all 𝑥 ≠ 𝑦, where all the

nearest-neighbor comparisons are ties, every table 𝑘NN(·, ·) is valid.
The programmay overestimate the number of answers when the constraint graph of𝑄 has cycles,

however. While there are better bounds for queries with general degree constraints [1, 2], our

program provides a simpler bound that can nevertheless be shown to be tight in several practical

cases. We further show desirable properties of this program for queries with small cycles, and

empirically show that it leads to efficient practical algorithms.

Abo Khamis et al. assume in their analysis that queries are safe. To deal with unsafe queries,

we add a predicate Dom(𝑥) for each constraint 𝑥 ⊳𝑘 𝑦, which is instantiated as the domain of the
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graph. Adding weights 𝑠𝑥𝑦 for each unsafe constraint, the program is then:

minimize

𝑀∑︁
𝑖=1

𝑤𝑖 log𝑁 +
∑︁

𝑥⊳𝑘𝑦∈𝑄
(𝛿𝑥𝑦 log𝑘 + 𝑠𝑥𝑦 log𝐷)

where

∑︁
𝑖, 𝑥 ∈𝑡𝑖

𝑤𝑖 +
∑︁

𝑧⊳𝑘𝑥 ∈𝑄
𝛿𝑧𝑥 +

∑︁
𝑥⊳𝑘𝑦∈𝑄

𝑠𝑥𝑦 ≥ 1; var 𝑥 in 𝑄 ,

©­«
∑︁
𝑖, 𝑥 ∈𝑡𝑖

𝑤𝑖 +
∑︁

𝑥⊳𝑘𝑦∈𝑄
𝑠𝑥𝑦

ª®¬ − 𝛿𝑥𝑦 ≥ 0; 𝑥 ⊳𝑘 𝑦 cyclic.

(2)

Note that this program is equivalent to to the program (1) when queries are safe and 𝑁 ≤ 𝐷 : in

this case there is always an optimal solution where all weights 𝑠𝑥𝑦 are set to 0.

4.2 Queries with acyclic constraint graphs
Even in the case of acyclic constraint graphs, variable orderings are important for the evaluation

of queries. For instance, when running LTJ to evaluate the query of Example 4 over graphs with

𝑁 edges, the order 𝑦, 𝑧, 𝑥 requires up to 𝑁 3/2
eliminations of variables, whereas the order 𝑦, 𝑥, 𝑧

requires only 𝑘𝑁 , because the constraint 𝑥 ⊳𝑘 𝑧 restricts to only 𝑘 bindings for 𝑧 for each binding of

𝑥 .

Previous work on processing queries with degree constraints has shown that wco time can be

obtained on acyclic queries by instantiating variables according to the topological ordering of the

query (i.e., always instantiating 𝑥 before 𝑦 if there are at most 𝑘 bindings of 𝑦 per value of 𝑥 ). Since

our data representation (Section 3.3) allows us to intersect 𝑘-NN relations while using leap() in
LTJ, we can use the same variable ordering strategy (i.e., respecting the order of the edges of the

constraint graph) to achieve worst case optimality. Such a topological order on the constraint

graph can be computed in 𝑂 ( |𝑄 |) time. We can now state our result about optimality for queries

with acyclic constraints.

Theorem 2. Let 𝐺 be a graph database with 𝑛 nodes and 𝑁 edges and 𝐾 be an integer. Then, a
representation using 3𝑁 + 2𝑛𝐾 + 𝑜 (𝑁 + 𝑛𝐾) words of space can compute 𝑄 (𝐺) for extended BGPs 𝑄
with acyclic constraints of the form 𝑥 ⊳𝑘 𝑦, with 1 ≤ 𝑘 ≤ 𝐾 , in 𝑂 (𝑄∗ |𝑄 | log𝑁 ) time, where 𝑄∗ is the
solution to the program (2).

Before proving the theorem we develop some additional notation; we will use it again in the

following section when we extend Theorem 2 for queries with cycles.

Definition 10. For an unbound variable 𝑥 , let𝑄𝑥 be the set of (partially instantiated) triples 𝑡 ∈ 𝑄
such that 𝑥 ∈ 𝑡 , and let 𝑡 (𝑥) be the set of distinct values in the database to which 𝑥 can be instantiated
in triple 𝑡 ∈ 𝑄𝑥 (i.e., the answers to 𝑡 as if every other variable were existentially quantified). Further
let ℓ𝑥 = min𝑡 ∈𝑄𝑥 |𝑡 (𝑥) |.

We are ready for the proof.

Proof of Theorem 2. We simulate LTJ with the Ring, as explained in Section 3.3, from where

the space follows. We use a variable ordering that is compatible with a traversal of the constraint

graph of 𝑄 in topological order.

Let 𝐺 be a graph of 𝑁 edges over a domain of size 𝐷 , 𝑄 a query, and {𝑤𝑖 }𝑀𝑖=1, {𝛿𝑥𝑦}𝑥⊳𝑘𝑦∈𝑄 ,
{𝑠𝑥𝑦}𝑥⊳𝑘𝑦∈𝑄 be a (not necessarily optimal) solution to the linear program (2). Letting |𝑡 | denote the
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number of triples matching 𝑡 , we show that the algorithm runs in time bounded by

|𝑄 | log𝑁 ·
𝑀∏
𝑖=1

|𝑡𝑖 |𝑤𝑖
∏

𝑥⊳𝑘𝑦∈𝑄
𝑘𝛿𝑥𝑦

∏
𝑥⊳𝑘𝑦∈𝑄

𝐷𝑠𝑥𝑦 . (3)

The proof is by induction on the number of steps performed by the algorithm, binding one variable

𝑥 at a time.

For the base case, 𝑄 has a single variable 𝑥 . The algorithm computes the intersection of the sets

𝑡 (𝑥) for every triple 𝑡 ∈ 𝑄𝑥 , and also of the sets 𝑘-NN(𝑎) for every clause 𝑎 ⊳𝑘 𝑥 , with constant 𝑎,

and the sets {𝑏 | 𝑥 ∈ 𝑘-NN(𝑏)} for every clause 𝑥 ⊳𝑘 𝑏 with constant 𝑏. Using the Ring, we can
intersect all these sets in time bounded by the size of the smallest set we intersect, times a |𝑄 | log𝑁
factor (recall Section 2.4). Given that those sets are always bounded by the minimum between ℓ𝑥
and 𝐷 , the size of 𝑘-NN(𝑎) is bounded by 𝑘 , and the size of {𝑏 | 𝑥 ∈ 𝑘-NN(𝑏)} is bounded by 𝐷

(actually, by 𝑛 ≤ 𝐷), we have that the time is bounded by min(ℓ𝑥 , 𝑘, 𝐷), or min(ℓ𝑥 , 𝐷) if no clauses

of the form 𝑎 ⊳𝑘 𝑥 exist in 𝑄 . We have assumed weights𝑤𝑖 , 𝛿𝑥𝑦 and 𝑠𝑥𝑦 are an admissible solution,

so they verify the constraint

∑
𝑡𝑖 ∈𝑄𝑥 𝑤𝑖 +

∑
𝑎⊳𝑘𝑥 ∈𝑄 𝛿𝑎𝑥 +

∑
𝑥⊳𝑘𝑏∈𝑄 𝑠𝑥𝑏 ≥ 1 by Eq. (2). This means that

min(ℓ𝑥 , 𝑘, 𝐷) ≤
∏
𝑡𝑖 ∈𝑄𝑥

|𝑡𝑖 |𝑤𝑖
∏

𝑎⊳𝑘𝑥 ∈𝑄
𝑘𝛿𝑎𝑥

∏
𝑥⊳𝑘𝑏∈𝑄

𝐷𝑠𝑥𝑏 ,

because ℓ𝑥 is smaller than each |𝑡𝑖 | and the minimum of a set of reals is bounded by their geometric

mean.

The inductive case follows from the proof of Ngo [43, Thm. 5.1], adapted to our base case. □

4.3 Queries with constraint cycles
We now consider the general case, where the constraint graph of 𝑄 can have cycles. Knowing how

to operate optimally when the constraint graph is acyclic, we break the cycles in the graph of 𝑄

adaptively, following a topological ordering of the strongly connected components, and from each

component, binding the variable that yields the minimum number of candidates. We start with

some definitions.

Definition 11. Given nodes 𝑥 and 𝑦 in a directed graph 𝐶 , we say that 𝑥 ≺𝐶 𝑦 if there is no path
from 𝑦 to 𝑥 in 𝐶 . Furthermore, we say that node 𝑥 is 𝐶-minimal if 𝑥 ≺𝐶 𝑧 for every other node 𝑧 in 𝐶 .

We then proceed adaptively as follows, where 𝐶 is the constraint graph of the current query 𝑄 ,
that is, the query𝑄 with all the variables already bound replaced by their corresponding constraints:

(1) If there are 𝐶-minimal variables, choose the 𝐶-minimal variable 𝑥 with minimum value ℓ𝑥 .

(2) Otherwise, choose the variable 𝑥 with minimum value ℓ𝑥 .

Note that, in the second case, we are forced to bind some 𝑥 before 𝑧 in a constraint 𝑧 ⊳𝑘 𝑥 . In either

case, once we bind 𝑥 , new variables may become 𝐶-minimal because the edges in the constraint

graph consider only constraints where both variables are (yet) unbound.

In order to enable such a strategy, we need to be able to compute the quantity ℓ𝑥 for every

candidate variable 𝑥 . We can do this with the Ring, as it can retrieve any |𝑡 (𝑥) | in 𝑂 (log𝑁 ) time

using the operation range_symbols on the range corresponding to 𝑡 (𝑥); recall Section 2.3. It can

also compute the cardinalities of 𝑘NN(𝑎, 𝑥) or 𝑘NN(𝑥, 𝑎) in constant time because they are the

sizes of the corresponding ranges in 𝑆 or 𝑆 ′. Every time a variable 𝑥 is bound along the adaptive

algorithm, the LTJ algorithm recomputes the range of each tuple 𝑡𝑥 ∈ 𝑄𝑥 in time 𝑂 (log𝑁 ), so the

cost of recomputing |𝑡 (𝑥) | and updating ℓ𝑥 is subsumed in the current cost of LTJ. The space of the

Ring, in this case, grows but is still 𝑂 (𝑁 ).
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In section 6 we show that this strategy can lead to fast query resolution in practice, even though

it is not necessarily wco: when several constraints form a cycle it could be the case that the variable

𝑥 minimizing ℓ𝑥 leads to more total instantiations than other orderings. However, we can show

that the running time of this algorithm is still bounded by our program in the particular case where

there is a single “maximal” cycle of length two. This case is especially interesting because the

symmetric clauses 𝑥 ∼𝑘 𝑦, with variables 𝑥 and 𝑦, form cycles of length 2.

Definition 12. The constraint graph of 𝑄 is single 2-cyclic iff it has at most one cycle, it is of the
form {𝑥 ⊳𝑘 𝑦,𝑦 ⊳𝑘 𝑥}, and there are no edges 𝑥 ⊳𝑘 𝑧 or 𝑦 ⊳𝑘 𝑧, with a variable 𝑧 ∉ {𝑥,𝑦}.

Theorem 3. Let 𝐺 be a graph database with 𝑛 nodes and 𝑁 edges and 𝐾 be an integer. Then, a
representation using𝑂 (𝑁 ) + 2𝑛𝐾 +𝑜 (𝑛𝐾) words of space can compute𝑄 (𝐺) for extended BGPs𝑄 with
constraints of the form 𝑥 ⊳𝑘 𝑦, with 1 ≤ 𝑘 ≤ 𝐾 , and forming a single 2-cyclic graph, in𝑂 (𝑄∗ |𝑄 | log𝑁 )
time, where 𝑄∗ is the solution to the linear program (2).

Proof. Given the structure of 𝑄 , we can think of the algorithm as a sequence of steps where it

binds one minimal variable 𝑥 at a time, finishing with a step where it either binds one variable (if

𝑄 is acyclic), or the two variables of the only 2-cycle (𝑥,𝑦).
As in the proof of Theorem 2, we consider any solution {𝑤𝑖 }𝑀𝑖=1, {𝛿𝑥𝑦}𝑥⊳𝑘𝑦∈𝑄 , {𝑠𝑥𝑦}𝑥⊳𝑘𝑦∈𝑄 to the

linear program (2), and prove that the algorithm runs in time bounded by Eq. (3).

The proof is again by induction on the steps performed by the algorithm. This time, for the base

case we have two options: either 𝑄 has a single variable, or it has two variables forming a 2-cycle.

The proof for the case of a single variable is exactly as in Theorem 2.

If the query features two variables (𝑥,𝑦) forming a 2-cycle, we proceed as follows. Assume

ℓ𝑥 ≤ ℓ𝑦 ; the proof in the other case is analogous. The algorithm would then first iterate over all

bindings 𝐼 for 𝑥 , that is, 𝐼 is the intersection between all sets 𝑡 (𝑥), all sets 𝑘-NN(𝑎) for constraints
𝑎 ⊳𝑘 𝑥 in 𝑄 , and all sets {𝑏 | 𝑥 ∈ 𝑘-NN(𝑏)} for constraints 𝑥 ⊳𝑘 𝑏 in 𝑄 . Let us call 𝜄 = |𝐼 |.

Then, for each such instantiation 𝑐 ∈ 𝐼 , the algorithm processes 𝑄 [𝑥 → 𝑐] (the query 𝑄 where

we replace every 𝑥 by 𝑐), which implies intersecting the following sets; 𝑡 [𝑥 → 𝑐] denotes the triple
𝑡 as (possibly) instantiated in 𝑄 [𝑥 → 𝑐].

• Set 𝑡 [𝑥 → 𝑐] (𝑦) for every triple 𝑡 ∈ 𝑄𝑦 ∩𝑄𝑥 .

• Set 𝑡 [𝑥 → 𝑐] (𝑦) = 𝑡 (𝑦) for every triple 𝑡 ∈ 𝑄𝑦 \𝑄𝑥 .

• Set 𝑘-NN(𝑎) for each constraint 𝑎 ⊳𝑘 𝑦 in 𝑄 [𝑥 → 𝑐], with constant 𝑎. Note there exists (at

least) one such set, for 𝑎 = 𝑐 .

• Set {𝑏 | 𝑦 ∈ 𝑘-NN(𝑏)} for each constraint 𝑦 ⊳𝑘 𝑏.

For an instantiation 𝑥 := 𝑐 , let 𝑡𝑐 be the minimum number of values over all the sets 𝑡 [𝑥 → 𝑐] (𝑦).
As explained, the Ring can process this intersection in time 𝑂 (min(𝑡𝑐 , 𝑘, 𝐷) · |𝑄 | log𝑁 ), and hence

the total running time is bounded by |𝑄 | log𝑁 ∑
𝑐∈𝐼 min(𝑡𝑐 , 𝑘, 𝐷). As for the previous base case, for

any 𝑝 , 𝑞, 𝑟 such that 𝑝 + 𝑞 + 𝑟 ≥ 1, this entails that the running time is bounded by |𝑄 | log𝑁 times∑︁
𝑐∈𝐼

𝑡
𝑝
𝑐 𝑘

𝑞 𝐷𝑟 ≤ 𝑘𝑞 𝐷𝑟
∑︁
𝑐∈𝐼

𝑡
𝑝
𝑐 1

𝑞+𝑟 ≤ 𝑘𝑞 𝐷𝑟

(∑︁
𝑐∈𝐼

𝑡𝑐

)𝑝 (∑︁
𝑐∈𝐼

1

)𝑞+𝑟
where the last part follows by Holder’s inequality; to apply it we introduced the factor 1

𝑞+𝑟
in the

second term.

We note that the rightmost summation is exactly 𝜄. Then, by the same reasoning as in the case

where we bind one variable, we have that 𝜄𝑞+𝑟 ≤ min(ℓ𝑥 , 𝑘, 𝐷)𝑞+𝑟 , or min(ℓ𝑥 , 𝐷)𝑞+𝑟 if there were
no constraints 𝑎 ⊳𝑘 𝑥 with 𝑎 ≠ 𝑦 in 𝑄 . Now for any numbers 𝛼 + 𝛽 + 𝛾 ≥ 𝑞 + 𝑟 we have that
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min(ℓ𝑥 , 𝑘, 𝐷)𝑞+𝑟 ≤ ℓ𝛼𝑥 𝑘
𝛽 𝐷𝛾

, and min(ℓ𝑥 , 𝐷)𝑞+𝑟 ≤ ℓ𝛼𝑥 𝑘
𝛽 𝐷𝛾

with 𝛽 = 0. Summing up, we have:

𝑘𝑞 𝐷𝑟

(∑︁
𝑐∈𝐼

𝑡𝑐

)𝑝 (∑︁
𝑐∈𝐼

1

)𝑞+𝑟
≤ 𝑘𝑞+𝛽 𝐷𝑟+𝛾 ℓ𝛼𝑥

(∑︁
𝑐∈𝐼

𝑡𝑐

)𝑝
.

Because our weights satisfy program (2), we have that 𝛿𝑦𝑥 ≤ ∑
𝑡𝑖 ∈𝑄𝑦 𝑤𝑖 +

∑
𝑦⊳𝑘𝑧∈𝑄 𝑠𝑦𝑧 . We identify

three cases, depending on the value of 𝛿𝑦𝑥 .

Case 1 holds when 𝛿𝑦𝑥 ≤ ∑
𝑡𝑖 ∈𝑄𝑦\𝑄𝑥 𝑤𝑖 .

Case 2 holds when

∑
𝑡𝑖 ∈𝑄𝑦\𝑄𝑥 𝑤𝑖 < 𝛿𝑦𝑥 ≤ ∑

𝑡𝑖 ∈𝑄𝑦 𝑤𝑖 .

Case 3 holds when

∑
𝑡𝑖 ∈𝑄𝑦 𝑤𝑖 < 𝛿𝑦𝑥 .

Consider case 1; we explain how to deal with the other cases shortly. Let 𝑝1 =
∑

𝑡𝑖 ∈𝑄𝑦\𝑄𝑥 𝑤𝑖 −𝛿𝑦𝑥 ,
and take

𝑝 =
∑

𝑡𝑖 ∈𝑄𝑦 𝑤𝑖 − 𝛿𝑦𝑥 𝛼 =
∑

𝑡𝑖 ∈𝑄𝑥 \𝑄𝑦 𝑤𝑖 − 𝑝1 + 𝛿𝑦𝑥
𝑞 =

∑
𝑧⊳𝑘𝑦∈𝑄 𝛿𝑧𝑦 + 𝛿𝑦𝑥 𝛽 =

∑
𝑧⊳𝑘𝑥 ∈𝑄 𝛿𝑧𝑥 − 𝛿𝑦𝑥

𝑟 = max(1 − 𝑝 − 𝑞, 0) 𝛾 =
∑

𝑥⊳𝑘𝑧∈𝑄 𝑠𝑥𝑧

Note that our assumptions guarantee that each of these values is nonnegative. Moreover, we

have that 𝑝1 =
∑

𝑡𝑖 ∈𝑄𝑦 𝑤𝑖 −
∑

𝑡𝑖 ∈𝑄𝑦∩𝑄𝑥 𝑤𝑖 − 𝛿𝑦𝑥 , and thus 𝛼 + 𝛽 + 𝛾 is∑︁
𝑡𝑖 ∈𝑄𝑥

𝑤𝑖 +
∑︁

𝑧⊳𝑘𝑥 ∈𝑄
𝛿𝑧𝑥 +

∑︁
𝑥⊳𝑘𝑧∈𝑄

𝑠𝑥𝑧 − ©­«
∑︁
𝑡𝑖 ∈𝑄𝑦

𝑤𝑖 − 𝛿𝑦𝑥ª®¬ ≥ 1 − 𝑝 ≥ 𝑞 + 𝑟 .

Before finishing we need to further bound the term (∑𝑐∈𝐼 𝑡𝑐 )𝑝 . Writing 𝑝2 =
∑

𝑡𝑖 ∈𝑄𝑥∩𝑄𝑦 𝑤𝑖 , so

that 𝑝 = 𝑝1 + 𝑝2, we have that (
∑

𝑐∈𝐼 𝑡𝑐 )𝑝 = (∑𝑐∈𝐼 𝑡𝑐 )𝑝1 (
∑

𝑐∈𝐼 𝑡𝑐 )𝑝2 .
Recall that 𝑝1 ≥ 0 in case 1. Thus, we can find a set of weights𝑤 ′

𝑖 ≥ 0 such that 𝑝1 =
∑

𝑡𝑖 ∈𝑄𝑦\𝑄𝑥 𝑤
′
𝑖 .

Then, (∑𝑐∈𝐼 𝑡𝑐 )𝑝1 can be bounded by ℓ
𝑝1
𝑥

∏
𝑡𝑖 ∈𝑄𝑦\𝑄𝑥 |𝑡𝑖 |𝑤

′
𝑖 , because 𝜄 ≤ ℓ𝑥 and 𝑡𝑐 ≤ |𝑡𝑖 | for any triple

𝑡𝑖 that only mentions variable 𝑦 and not 𝑥 . Moreover,

∑
𝑐∈𝐼 𝑡𝑐 ≤ |𝑡𝑖 | for any 𝑡𝑖 ∈ 𝑄𝑥 ∩𝑄𝑦 . Putting

everything together, we obtain

𝑘𝑞+𝛽 𝐷𝑟+𝛾 ℓ𝛼𝑥

(∑︁
𝑐∈𝐼

𝑡𝑐

)𝑝
≤ 𝑘𝑞+𝛽 𝐷𝑟+𝛾 ℓ𝛼𝑥 ℓ

𝑝1
𝑥

∏
𝑡𝑖 ∈𝑄𝑦\𝑄𝑥

|𝑡𝑖 |𝑤
′
𝑖

∏
𝑡𝑖 ∈𝑄𝑦∩𝑄𝑥

|𝑡𝑖 |𝑤𝑖 . (4)

Finally, note that 𝛼 + 𝑝1 =
∑

𝑄𝑥 \𝑄𝑦 𝑤𝑖 + 𝛿𝑦𝑥 . Thus, we rewrite ℓ𝛼𝑥 ℓ
𝑝1
𝑥 as ℓ

∑
𝑄𝑥 \𝑄𝑦 𝑤𝑖

𝑥 ℓ
𝛿𝑦𝑥
𝑥 . We know

that ℓ𝑥 ≤ |𝑡𝑖 | for any triple 𝑡𝑖 ∈ 𝑄𝑥 \ 𝑄𝑦 . Given that ℓ𝑥 ≤ ℓ𝑦 and that ℓ𝑦 ≤ |𝑡𝑖 | also holds for any

triple 𝑡𝑖 ∈ 𝑄𝑦 \𝑄𝑥 , we have that ℓ𝑥 ≤ |𝑡𝑖 | for any such triple, and we can then write

ℓ𝛼𝑥 ℓ
𝑝1
𝑥

∏
𝑡𝑖 ∈𝑄𝑦\𝑄𝑥

|𝑡𝑖 |𝑤
′
𝑖 ≤

∏
𝑡𝑖 ∈𝑄𝑥 \𝑄𝑦

|𝑡𝑖 |𝑤𝑖
∏

𝑡𝑖 ∈𝑄𝑦\𝑄𝑥

|𝑡𝑖 |𝑤𝑖 ,

by redistributing back the weight 𝛿𝑦𝑥 to each of the weights𝑤 ′
𝑖 . Substituting back in Eq. (4), we

obtain

𝑘𝑞+𝛽 𝐷𝑟+𝛾 ℓ𝛼𝑥

(∑︁
𝑐∈𝐼

𝑡𝑐

)𝑝
≤ 𝑘𝑞+𝛽 𝐷𝑟+𝛾

∏
𝑡𝑖 ∈𝑄𝑥∪𝑄𝑦

|𝑡𝑖 |𝑤𝑖 ,

which finishes the proof of case 1. Indeed, 𝑞 + 𝛽 contains all weights of constraints associated with

𝑥 or 𝑦,
∑

𝑧⊳𝑘𝑦∈𝑄 𝛿𝑧𝑦 +
∑

𝑧⊳𝑘𝑥 ∈𝑄 𝛿𝑧𝑥 , where 𝑧 is either 𝑥 or a constant. Likewise, 𝑟 + 𝛾 is bounded by

the sum of all the relevant weights 𝑠𝑥𝑧 and 𝑠𝑦𝑧 .

The other two cases are proved using the same ideas. For case 2, we set instead 𝑝1 = 𝛿𝑦𝑥 , and for

case 3 we further need to redistribute weights between 𝑝 and 𝑟 so as to subtract 𝛿𝑦𝑥 .
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As the inductive case only features instantiations of variables out of a cycle, we can prove it by

combining the proof of Ngo [43, Thm. 5.1] with the techniques introduced in our base case. □

We remark that the proof of this theorem, and hence the good properties of our variable ordering,

holds for a much wider class of BGPs, in which we permit any number of 2-cycles as long as one of

the variables in each of these cycles is also the target of a 𝑘-NN constraint. The proof is omitted for

lack of space.

5 IMPLEMENTATION
Our data structure is an extension of the Ring, whose implementation [6] is coded in C++ using

several structures from the SDSL library [27]. We extend the Ring data structure with those for

the sequences 𝑆 , 𝑆 ′, and bitvector 𝐵. The sequences are represented with the same wavelet trees

used by the Ring. Bitvector 𝐵 is implemented in plain form, with the bit_vector class of SDSL. To
support select, we use select_support_mcl, which takes constant time by using 20% extra space.

We compile our code using gcc version 6.3.0 with -O9 optimization.

An important aspect of a practical implementation of LTJ-style algorithms is the order in which

variables are bound, as explained. We use the following rule [6]: The next variable to bind is the 𝑥

with minimum ℓ𝑥 value in the current (i.e., partially instantiated) query 𝑄 . Finally, we leave for the

end the lonely variables, that is, those that appear only once in𝑄 [33]. This algorithm is adaptive in
the sense that, after binding the first variable 𝑥 with each value 𝑐 , the next variable to bind may

differ on each 𝑄 [𝑥 → 𝑐].
Per the Ring, we do not compute |𝑡 (𝑥) | precisely for the triple 𝑡 in order to compute ℓ𝑥 , but

rather use the size 𝑒 − 𝑏 + 1 of the range [𝑏 . . 𝑒] corresponding to 𝑡 in the current 𝑄 . In the case

of similarity clauses 𝑥 ⊳𝑘 𝑎 or 𝑎 ⊳𝑘 𝑥 , the size of the corresponding ranges in 𝑆 or 𝑆
′
are the exact

number of different values 𝑥 can be bound to.

We implemented two variants of our algorithm, and a baseline.

5.1 Ring-KNN-S
This variant is a faithful implementation of the technique we describe in Section 3.3, but it does not

incorporate the restrictions derived from our optimality analysis in Section 4. That is, we use the

variable binding order just described. Although Section 4 suggests that we should aim to eliminate

only 𝐶-minimal variables when similarity clauses are involved, this comes from the fact that the

condition 𝑥 ⊳𝑘 𝑦 can only bound to 𝑘 the number of candidates for 𝑦 given 𝑥 , not the other way. On

average, however, the number of values for 𝑥 given 𝑦 is also 𝑘 , because there are exactly 𝑘𝑛 tuples

in the virtual relation 𝑘NN(·, ·).
Therefore, we expect a similar performance on average when disregarding this restriction,

although this could lead to some bad cases and higher variance. On the other hand, having more

freedom to choose the next variable to bind may lead to better query plans.

5.2 Ring-KNN
This is the full implementation of our technique, observing the restrictions of Section 4.

Each time we must choose the next (non-lonely) variable to eliminate, we pass through the edges

𝑥 → 𝑦 of the current constraint graph (i.e., the clauses 𝑥 ⊳𝑘 𝑦 where both 𝑥 and 𝑦 are variable),

marking the variables 𝑦 as not yet ready to be bound. At the end, if there are unmarked variables,

we choose to eliminate the unmarked variable 𝑥 with the least value ℓ𝑥 . If all the variables are

marked, instead, we choose the (marked) variable 𝑥 with the least value ℓ𝑥 .
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5.3 Baseline
Not having an implementation to compare with, we developed a baseline with a simple solution to

the problem that avoids materializing the 𝑘NN(·, ·) relation, as discussed in Section 3.2. The idea is

to first solve the extended BGP as a BGP, ignoring the similarity clauses, and then postprocessing

the solutions with the similarity clauses. Our baseline also builds on the Ring for BGPs; it thus

solves the query in the following two phases:

(1) With the Ring, it computes the full solution to the query without taking into account any

similarity constraint.

(2) Then, it filters or extends the previous results by checking the direct and reverse nearest

neighbor graph. Both graphs are represented as adjacency vectors in plain form.

Note that a clause 𝑥 ⊳𝑘 𝑦 where both 𝑥 and 𝑦 appear in other triple patterns of 𝑄 will have both

variables bound in the final solution, and thus we only have to filter the solution by checking

whether 𝑦 ∈ 𝑘-NN(𝑥). Instead, if only one variable is bound, we must extend the result with all

the possible values of the other, using the direct or the reverse graph. This may bind the variable

of another similarity clause, and so on. Our baseline does not support similarity clauses that are

disconnected from the rest of the query.

Filtering should be prioritized, as it may eliminate the solution before wasting time extending

it. For step 2, then, we first classify the similarity clauses into 2-ready, ready and sim: the clauses

𝑥 ⊳𝑘 𝑦 where both 𝑥 and 𝑦 are bound are in 2-ready; those with one of them bound are in ready; and
those with both unbound are in sim. We start filtering the results with the clauses in 2-ready, which
can preempt the whole query process if they fail. When 2-ready becomes empty, we continue with

ready, generating all the possible values for the other variable by means of the stored 𝐾-NN graph.

When ready becomes empty, we continue with sim. We process first the clauses that contain the

variable that participates in most triples. Note that when we extend a variable from sim, others can

move to ready. Therefore, every time we extend a variable, we update both groups. The process

finishes when all groups are empty.

Note that, in essence, the baseline corresponds to solving the triples of the query and leaving all

the similarity clauses to the end, whereas our general technique fully incorporates those clauses

into the LTJ process, aiming at processing them at the best moment.

6 EXPERIMENTS
We compared our implementations on a benchmark we created for this purpose, lacking any

standard one. In this section we describe the benchmark and the results of the comparisons, as well

as some experiments on the quality of our similarity operators.

6.1 Benchmark
We created a benchmark from a dataset that combines the Wikidata graph [54] and IMGpedia [22],

a linked-dataset that incorporates images from the Wikimedia Commons dataset and their nearest

neighbor graph computed based on visual descriptors of the image content. The identifiers of these

images appear as nodes in the Wikidata graph, for example, to indicate that a particular entity

(person, building, artwork, etc.) is depicted by a given image. Our dataset contains 617, 065, 092

triples which, using 32-bit numbers for the identifiers, occupies 6.9 GB. Additionally, storing the

𝐾-NN graph for 𝐾 = 50 requires 5.3 GB of extra space. In total, our data set occupies 12.2 GB in

plain form.

Regarding queries, based on a real-world query log [12, 38], we keep only those queries that

involve some image, obtaining a total of 2,942 queries. Note that those BGPs do not contain similarity

constraints. We aim to generate realistic extended BGPs by adding, to those real queries, one or
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Fig. 2. Query time distribution per query type (600 seconds is the timeout). The upper segment in each plot
is the mean and the lower is the median. The Baseline and Ring-KNN-S reach the timeout in Q3 and Q5.

more similarity constraints between image nodes. We extended the queries with different similarity

patterns in order to show different situations that affect query evaluation performance, and use

𝑘 = 50 throughout. We obtain a total of 1,470 queries, classified as follows (𝑞𝐴 denotes that 𝑞

contains, at least, the variables in the set 𝐴).

• Q1: contains 100 queries that join two queries by using the operator 𝑥 ⊳𝑘 𝑦. Given two BGPs

𝑞 {𝑥 } and 𝑞 {𝑦 } , where 𝑥 and 𝑦 are images, we produce the extended BGP 𝑞 {𝑥 } ∪ {𝑥 ⊳𝑘 𝑦} ∪𝑞 {𝑦 } .
The variant Q1b uses {𝑥 ∼𝑘 𝑦} instead of {𝑥 ⊳𝑘 𝑦}.

• Q2: contains 14 queries that join three queries by using the operator 𝑥 ⊳𝑘 𝑦 twice in a path.

Given BGPs 𝑞 {𝑥 } , 𝑞 {𝑦 } , 𝑞 {𝑧 } , where the three variables are images, we produce 𝑞 {𝑥 } ∪ {𝑥 ⊳𝑘
𝑦} ∪𝑞 {𝑦 } ∪ {𝑦 ⊳𝑘 𝑧} ∪𝑞 {𝑧 } . The variant Q2b replaces unidirectional by bidirectional similarity

operators. We omit a third variant, Q2t, that closes the triangle with {𝑧 ⊳𝑘 𝑥}, because it gives
almost the same results as Q2.

• Q3: contains 307 queries that extend a query with a triangle involving similarity. Given

a BGP 𝑞 {𝑥,𝑦 } that contains (𝑥, 𝑝,𝑦), where 𝑦 is an image, we extend it with the patterns

{(𝑥, 𝑝,𝑦 ′), 𝑦 ⊳𝑘 𝑦
′}. We get close pairs 𝑦,𝑦 ′ related to 𝑥 by 𝑝 .

• Q4: contains 20 queries that extend a query as in Q3, but now looking for 𝑦 ′ with all the

properties of 𝑦. Given a query 𝑞𝑦 where 𝑦 is an image and participates in more than one

triple pattern (to avoid duplicating Q3), we add a new variable 𝑦 ′ and, for each triple pattern

that mentions 𝑦, we add a copy that mentions 𝑦 ′ instead. We finally add a clause 𝑦 ⊳𝑘 𝑦
′
.

• Q5: contains the same 307 queries of Q3, further extended with a triple pattern (𝑦, 𝑙1, 𝑙2),
where 𝑙1 and 𝑙2 are variables that only participate in this triple (i.e., they are lonely). This

extracts all the information about 𝑦 for each pair 𝑦,𝑦 ′.

6.2 Results
The experiments were conducted on an Intel

®
Core

TM
i7-3820 CPU @ 3.60GHz (4 cores) with 10MB

of cache and 256 GB of RAM, running Debian GNU/Linux 9 with kernel 4.9.0-8 (64 bits).

In space, both Ring variants need 12.15 GB to store the Ring and the 𝐾-NN graph. This is almost

the same space to store the raw data (which our index replaces, as any edge of 𝐺 or of the 𝐾-NN

graph can be retrieved from the wavelet trees). The baseline uses more space, 17.99 GB, as it stores

the 𝐾-NN graph in plain form.

We evaluated the 1,470 queries on the baseline and our Ring variants. All the queries are run
with a timeout of 10 minutes and without limiting the number of results. Figure 2 shows the query

time distributions using violin plots [30] (which show a symmetric histogram of values along the 𝑦

axis) plus averages and medians.
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Queries Q1. In these queries Ring-KNN is on average 15% faster than the baseline. The queries

have the form 𝑞 {𝑥 } · 𝑥 ⊳𝑘 𝑦 · 𝑞 {𝑦 } , so the baseline will fully compute 𝑞 {𝑥 } and 𝑞 {𝑦 } and finally

filter the pairs (𝑥,𝑦) that do not satisfy the constraint. The Ring variants, instead, may restrict the

results earlier using the similarity clause. Per Section 4, Ring-KNN cannot bind 𝑦 before binding 𝑥 ,

whereas Ring-KNN-S is free to do so. This makes Ring-KNN-S 60% faster than the baseline, and

also significantly faster than Ring-KNN.
On Q1b, again per Section 4, Ring-KNN will not bind 𝑥 nor 𝑦 until the end, as they form a 2-cycle

𝑥 ∼𝑘 𝑦. Still, 𝑥 and 𝑦 are always bound before the lonely variables, that is, Ring-KNN does not

compute all the results of 𝑞 {𝑥 } ·𝑞 {𝑦 } , while the baseline does. This makes Ring-KNN still 10% faster

than the baseline on average. Due to its flexibility, Ring-KNN-S still outperforms Ring-KNN by 60%

on average. The difference in their plans is illustrated by the fact that, on average, Ring-KNN-S
and Ring-KNN bind the first variable involved in a similarity constraint after processing 36% and

68% of the variables, respectively.

A closer analysis of the time distribution reveals additional benefits of the Ring-KNN plans, as

its median is 40% lower than the baseline. This means that, although there are bad cases that make

its average closer to that of the baseline, Ring-KNN solves many queries faster. Ring-KNN-S times

also distribute much better than the baseline, with the medians being 2.6 times lower. The better

distribution of times for Ring-KNN and the even-better distribution for Ring-KNN-S are observed
in the violin plots.

Queries Q2. These queries feature two or three independent similarity predicates between three

variables, which the baseline is forced to leave to the end. The average difference between Ring-
KNN and the baseline stretches to 55%, while Ring-KNN-S is now only 12% faster than Ring-KNN
on average. The fact that the median of Ring-KNN is “only” 20% faster than that of the baseline

shows that the former is also more stable. It is also more stable than Ring-KNN-S, as the difference
in their medians reaches 45%, but in exchange the latter is considerably faster in most queries. The

violin plots clearly show that the guards of Ring-KNN sharply limits the bad cases, which reach

the timeouts for Ring-KNN-S. Interestingly, there is little difference between Q2, where 𝑥 , 𝑦, and 𝑧
form a chain, and Q2t, where they form a triangle.

Both Ring variants worsen on the symmetric queries of Q2b. The cycles force Ring-KNN to leave

the three variables to the end (still before the lonely ones), so its distance to the baseline decreases

to 20% in average and 25% in medians. Ring-KNN-S is 10% faster than Ring-KNN, but its median

is worse by 13%. The violin plot shows that, again, the variable ordering of Ring-KNN limits its

worst cases; the distribution is in general preferable to that of Ring-KNN-S.

Queries Q3. These queries represent a different situation, where the similarity clause appears “in

an extreme” of the query, instead of “in the middle” connecting two queries as in Q2. The baseline
generates and tests all the pairs 𝑦,𝑦 ′ where both are connected to 𝑥 by predicate 𝑝 . Ring-KNN can

bind 𝑦 at any moment, and then 𝑦 ′. Ring-KNN-S, instead, binds 𝑦 and 𝑦 ′ with no restrictions.

As a result, Ring-KNN is 55% faster than the baseline on average, and its median is also 25%

lower. Interestingly, it is also 60% faster than Ring-KNN-S on average, although the medians are

nearly the same. This shows that the query plans of Ring-KNN, which cares about binding 𝑦 before

𝑦 ′, feature more stable times than those of Ring-KNN-S, as it avoids some bad cases that worsen the

average of the latter. The violin plots clearly illustrate the better stability and overall performance

of Ring-KNN over Ring-KNN-S.

Queries Q4. In this case, 𝑦 and 𝑦 ′ are more densely connected to the query than in Q3, which
yields fewer candidate pairs to check by the baseline, but more triple patterns to handle. In this

query Ring-KNN and Ring-KNN-S become more than 4 and 3 times faster than the baseline on
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average, respectively. This is the only set of queries that includes empty results, which is detected

very early by the Ring variants, but not by the baseline: the median of the baseline is over 4 seconds,

whereas those of the Ring variants are 3 · 10−5. We also note that Ring-KNN performs better than

Ring-KNN-S: 35% faster on average and with better worst cases, plus a slightly more stable violin

plot.

Queries Q5. The last type of query is designed specifically to illustrate how bad a simple baseline

that separates the similarity clauses from the main query plan can perform, since it must produce

all the instantiations of 𝑙1 and 𝑙2 before checking if 𝑦 satisfies the similarity clause. As expected,

the baseline is an order of magnitude slower than the Ring variants. As in Q3, Ring-KNN clearly

outperforms the simple Ring-KNN-S, being 50% faster on average. The distributions are similar

(the median of Ring-KNN being only 7% lower), which again shows that Ring-KNN-S incurs many

more bad cases that raise its average. This is confirmed in the violin plots.

Summary. Our experiments demonstrate that incorporating the similarity clauses in the main

body of the LTJ query algorithm performs much better than a naive strategy that uses LTJ over

triples as a black box and postpones the similarity checks until the end. While the difference is

moderate in simple cases (Q1), it becomes more noticeable when the clauses are more connected to

the query (Q2, Q3), and it may become very sharp (Q4, Q5).
The comparison between the simple and the full Ring variants also depends on the complexity

of the query. In simpler cases (Q1), Ring-KNN-S is more effective by exploiting the opportunity of

binding the variables involved in similarity clauses earlier. The full Ring-KNN is slower in practice

on those queries. In particular, the cycles further restrict Ring-KNN’s plans and make it closer

to the baseline, as it must bind all the other non-lonely variables first. As the queries get more

complicated, however, with more similarity constraints or with constraints involved in cycles (Q2
onwards), the careful variable ordering of Ring-KNN protects it against bad cases and makes it

preferable over Ring-KNN-S. The latter is completely outperformed in the more involved queries

(Q3–Q5).

6.3 On the quality of the symmetric similarity
Per the possible unintuitiveness of the asymmetric operator 𝑥 ⊳𝑘 𝑦 for users, we introduced a

symmetric version 𝑥 ∼𝑘 𝑦 that intersects the results of 𝑥 ⊳𝑘 𝑦 and 𝑦 ⊳𝑘 𝑥 . Implementing the sym-

metric version brought a number of challenges, both theoretical (to achieve worst-case optimality,

Section 4.3) and practical (restricted query plans, Section 6.2) . A natural question is about the

quality of the results obtained with this symmetric operator compared to the classic 𝑘-NN results.

We present an experiment to address that question.

For this experiment, we use real datasets that serve as a ground truth about which returned

results are considered “good” or “bad”. We use two different datasets for this purpose, which divide

the data into classes. We assume that a result returned from the same class of the query is good,

otherwise it is bad.

• Anuran Calls dataset [16, 17]: It consists of 7,195 vectors of dimension 22, formed by audio

features (Mel Frequency Cepstral Coefficients or MFCCs) extracted from syllabes of frog calls.

There are 10 unbalanced classes in the dataset (size of smaller class is 68, size of larger class

is 3,478), each corresponding to a different species of frogs.

• Dry Bean dataset [36, 37]: It consists of 13,611 vectors of dimension 16, formed by features

extracted from dry bean grains. There are 7 unbalanced classes in the dataset (size of smaller

class is 522, size of larger class is 3,546), each corresponding to a different class of beans. We

normalized linearly the values of each feature in the range [0, 1] .
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We built the 𝐾-NN graph of both datasets, for 𝐾 = 100, using Euclidean distance on the vectors,

and then queried every object 𝑥 in each dataset for each value 𝑘 in {5, 10, . . . , 100}. For each query

object 𝑥 and value of 𝑘 , we performed queries according to four strategies: (1) 𝑘-NN (labeled kNN
and corresponding to 𝑥 ⊳𝑘 𝑦), where we return the first 𝑘 neighbors 𝑦 of 𝑥 in the 𝐾-NN graph;

(2) reverse 𝑘-NN (labeled reverse and corresponding to 𝑦 ⊳𝑘 𝑥), where we return those 𝑦 that

list 𝑥 among their first 𝑘 neighbors in the 𝐾-NN graph; (3) the intersection of 𝑘-NN and reverse

𝑘-NN (labeled intersection and corresponding to 𝑥 ∼𝑘 𝑦); and (4) the union of 𝑘-NN and reverse

𝑘-NN (labeled union, another symmetric alternative to the intersection). For each dataset and 𝑘 ,

we average the precision value (fraction of the elements returned that belong to the same class of

𝑥 ) over all the query objects 𝑥 . The higher the precision, the better is the quality of the operation.

Figure 3 shows the average precision for each strategy on both datasets; see the four lines that

reach 𝑘 = 100 for now. We observe that the precision of the 𝑘-NN strategy diminishes with 𝑘 ,

which is expected because a larger answer is more likely to contain objects from other classes

(which lowers the precision). This is the case of the other strategies as well, though some start

growing for low values of 𝑘 . The reverse 𝑘-NN strategy, although returning on average 𝑘 answers,

consistently displays less precision than that of 𝑘-NN. The same occurs with the union strategy,

the other symmetric option we disregarded. The intersection, instead, is competitive with the 𝑘-NN

strategy and outperforms it from some value of 𝑘 between 25 and 30, more markedly on the the

Anuran Calls dataset.

Note that the strategy 𝑘-NN returns exactly 𝑘 objects, the reverse strategy returns on average

𝑘 objects (and thus exactly 𝑘 objects in our plots that query for all the objects), the intersection

returns at most 𝑘 objects, and the union returns at least 𝑘 objects. Thus comparing them all for the

same 𝑘 may be seen as unfair. The figure then also shows the results for union and intersection

classified according to the average number of values returned by the queries. The relative results

are similar as before, although the 𝑘-NN strategy outperforms intersection on the Dry Bean dataset.

On both datasets, the difference on average precision comparing equally-sized rankings is not so

high: the maximum difference, for 𝑘 ≥ 10, is below 8% on the Anuran Calls dataset. These results

evidence that all tested similarity join strategies could be meaningful and useful in practice. Still,

kNN and intersection, the two we implemented, perform consistently better (note also that union
is not as natural to support with LTJ as intersection). There is no conclusive difference in quality

between kNN and intersection. While the 𝑥 ⊳𝑘 𝑦 operation is more efficient, the 𝑥 ∼𝑘 𝑦 operator

may be more intuitive for some users. In particular, since the reverse strategy is consistently

worse than kNN, it turns out that the 𝑦’s that match each 𝑥 in the result of 𝑥 ⊳𝑘 𝑦 are of better quality

that the 𝑥 ’s that match each 𝑦; such an asymmetry also reduces intuitiveness.

7 DISCUSSION AND FUTUREWORK
Our theoretical results show that the acyclic queries are easily solved in wco time by just taking

the similarity constraints 𝑥 ⊳𝑘 𝑦 in topological order. When the query has cycles, we could only

prove bounds for queries featuring one 2-cycle by binding its variables at the end (save for lonely

variables). Our algorithm Ring-KNN extends this strategy to general queries, by never binding

𝑦 before 𝑥 if possible. While the general wco of this strategy is not established, it proves to be

superior in practice – for all but the simplest cases – when compared with the basic Ring-KNN-S
that treats the constraints as any other triple. In simplest cases, Ring-KNN-S is faster as it has more

freedom to choose the binding order.

Our experiments also show that, though the symmetric operator 𝑥 ∼𝑘 𝑦 (which produces,

precisely, 2-cycles) might be more intuitive than the basic asymmetric 𝑥 ⊳𝑘 𝑦 version, they are

equivalent in terms of retrieval quality (and better than the operator defined as the union of 𝑥 ⊳𝑘 𝑦

and 𝑦 ⊳𝑘 𝑥). Our experiments also show that the cost per delivered tuple is 2–5 times higher with
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Fig. 3. Average Precision@k for both datasets.

the symmetric operator with all Ring strategies. This situation leads us to consider other ways to

define a symmetric operator that is equally intuitive and easier to handle algorithmically.

One choice, for example, is to interpret any similarity clause in either direction, whichever

appears to be more convenient at query time. In particular, if the user does not specify the direction

of a similarity clause and the system can define it as 𝑥 ⊳𝑘 𝑦 or 𝑦 ⊳𝑘 𝑥 , we can always make the query

acyclic and solve it in wco time. Query answers may differ slightly depending on which order is

chosen, so this approach can be seen as a way of producing faster, approximate answers, akin to the

technology used in vector databases to perform similarity searches. Further setting the direction

of the constraint opens new avenues for query optimization, looking for the fastest query plan

regardless of its comparative quality.

Towards devising further similarity operators that can be powered with our algorithmic ma-

chinery, we will pursue eliminating the need to specify 𝑘 at the low-level operations 𝑥 ⊳𝑘 𝑦 or

𝑥 ∼𝑘 𝑦; the query would instead ask for the 𝑘
∗
“best” results, where the nodes involved in similarity

constraints are most similar. For example, in the query {Chile ⊳3 𝑦, (𝑦, continent, Europe)}, which
looks for European countries similar (under some metric) to Chile, a user may want to select the
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best three results, even if no European country is among the 𝑘 = 3 countries most similar to Chile

worldwide. In order to enable this semantics, the system would increase the value of 𝑘 until 𝑘∗ = 3

results are obtained.
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