
Worst-Case Optimal Graph Joins in Almost No Space:
Additional Material

Anonymous Author(s)

ACM Reference Format:
Anonymous Author(s). 2021. Worst-Case Optimal Graph Joins in Almost

No Space: Additional Material. In SIGMOD ’21: International Conference on
Management of Data, June 20–25, 2021, Xi’an, Shaanxi, China. ACM, New

York, NY, USA, 6 pages. https://doi.org/XX.XXXX/XXXXXXX.XXXXXXX

A Omitted theory
A.1 Proof of Lemma 3.3
Let us call LF and LF

∗
the LF-functions associated with BWT and

BWT
∗
, respectively, as well as 𝐶 and 𝐶∗

their 𝐶 arrays of Eq. (1).

Since 𝐶 = 𝐶∗
except that 𝐶 has the extra entry 𝐶 [$] = 3𝑛, we call

them both 𝐶 for simplicity. Figure 1 illustrates the proof.

Let 𝑞 be such that 2𝑛 < 𝑞 ≤ 3𝑛. Then, 𝐴[𝑞] = 3(𝑡 − 1) + 3 for

some 𝑡 , so 𝑇 [𝐴[𝑞]] = 𝑜𝑡 and BWT[𝑞] = 𝑝𝑡 . By Eq. (1), it holds

LF
∗ (𝑞) = 𝐶 [𝑝𝑡 ] + rank𝑝𝑡 (BWT

∗, 𝑞).

Since BWT
∗ [2𝑛 + 1 . . 3𝑛] = BWT[2𝑛 + 1 . . 3𝑛] (the predicate zone),

we have LF
∗ (𝑞) = LF(𝑞) = 𝑞′ for some 𝑛 < 𝑞′ ≤ 2𝑛 (in the subject

zone). By the properties of LF, it holds that 𝐴[𝑞′] = 3(𝑡 − 1) + 2,

𝑇 [𝐴[𝑞′]] = 𝑝𝑡 , and BWT[𝑞′] = 𝑠𝑡 . Again, by Eq. (1), it holds

LF
∗ (𝑞′) = 𝐶 [𝑠𝑡 ] + rank𝑠𝑡 (BWT

∗, 𝑞′) .

Since BWT
∗ [𝑛 + 1 . . 2𝑛] = BWT[𝑛 + 1 . . 2𝑛] (the subject zone), we

have that LF
∗ (𝑞′) = LF(𝑞′) = 𝑞′′ for some 0 < 𝑞′′ ≤ 𝑛.

Now 𝐴[𝑞′′] = 3(𝑡 − 1) + 1, 𝑇 [𝐴[𝑞′′]] = 𝑠𝑡 , and BWT[𝑞′′] = 𝑜 ,

where 𝑜 = 𝑜𝑡−1 if 𝑡 > 1 and 𝑜 = $ if 𝑡 = 1. Moreover, by property

(1), we have 𝑞′′ = 𝑡 . By Eq. (1), letting 𝑐 = BWT
∗ [𝑡], it holds that

LF
∗ (𝑡) = 𝐶 [𝑐] + rank𝑐 (BWT

∗, 𝑡) .

Since BWT
∗ [1 . . 𝑛] = BWT[2 . . 𝑛] · 𝑜𝑛 , we have two cases:

(1) If 𝑡 < 𝑛 then rank𝑐 (BWT
∗, 𝑡) = rank𝑐 (BWT, 𝑡 + 1) (since

BWT[1] = $ ≠ 𝑐). Furthermore, we have 𝐴[𝑡 + 1] = 3𝑡 + 1

by property (2). Thus BWT[𝑡 + 1] = 𝑜𝑡 = BWT
∗ [𝑡] = 𝑐 , and

therefore LF
∗ (𝑡) = LF(𝑡 + 1) because, by Eq. (1) in holds that

LF(𝑡 + 1) = 𝐶 [𝑜𝑡 ] + rank𝑜𝑡 (BWT, 𝑡 + 1),

and LF(𝑡 + 1) must be precisely 𝑞 because 𝐴[𝑡 + 1] = 3𝑡 + 1

(property (2)) and thus𝐴[LF(𝑡+1)] = 3𝑡 = 3(𝑡−1)+3 = 𝐴[𝑞].
(2) If 𝑡 = 𝑛, then 𝑐 = 𝑜𝑛 and LF

∗ (𝑡) = 𝐶 [𝑜𝑛]+rank𝑜𝑛 (BWT
∗, 𝑛) =

𝐶 [𝑜𝑛 + 1]. This is the position of the lexicographically last

suffix of 𝑇 that starts with 𝑜𝑛 . This position is 3𝑛, because

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD ’21, June 20–25, 2021, Xi’an, Shaanxi, China
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $YY.YY

https://doi.org/XX.XXXX/XXXXXXX.XXXXXXX

3n-21 4 7 3t-2 3n+1

s1 p1 o1 s2 p2 o2

1 2 3

s3 p3o3 st pt ot snpnon

BWT

s1s2 s3 sn

$

$

$ o1 on 1ot 1

BWT∗

ot st pt

o1 on 1ot 1ot st pton

on

n 2n

LF LF

LF

3n

LF∗

LF∗ LF∗

st
q′′ q′

pt

T
i

A
i

ot
q

Figure 1: Illustration of the proof of Lemma 3.3

𝑇 [3𝑛 . . 3𝑛 + 1] = 𝑜𝑛 $, thus LF
∗ (𝑡) = 3𝑛. But in this case it

holds that 3𝑛 = 𝑞, because 𝐴[𝑞] = 3(𝑡 − 1) + 3 = 3𝑛.

In both cases, we have that LF
∗ (𝑡) = 𝑞 and have thus completed

the cycle, LF
∗ (LF∗ (LF∗ (𝑞))) = 𝑞, as claimed: 𝑞′′ = 𝑡 = LF

∗ (𝑞′); 𝑞 =

LF
∗ (𝑞′′) = LF

∗ (𝑡) and 𝑇 [𝐴[𝑞]] = 𝑜𝑡 ; 𝑞
′ = LF

∗ (𝑞) = LF
∗ (LF∗ (𝑡))

and 𝑇 [𝐴[𝑞′]] = 𝑝𝑡 ; LF
∗ (LF∗ (LF∗ (𝑞′′))) = 𝑞′′.

A.2 Proof of Lemma 3.6
The case for 𝑏 = 0 constants is trivial as [𝑠 . . 𝑒] = [1 . . 𝑛].

Next, if 𝑏 = 1, and 𝑑 is the lone constant in 𝑡 , then [𝑠 . . 𝑒] =

[𝐶 [𝑑] + 1 . .𝐶 [𝑑 + 1]]; note 𝑇 [𝐴[𝑘]] = 𝑑 for all 𝑠 ≤ 𝑘 ≤ 𝑒 .

When 𝑏 = 2, let [𝑠 . . 𝑒] be the result of the backward search for

the string 𝑃 that concatenates the two constants (i.e., 𝑃 = 𝛼𝛽 , or

𝑃 = 𝛽𝛾 , or 𝑃 = 𝛾𝛼). The search takes𝑂 (log𝑈 ) time since it involves

two applications of Eq. (2).

Finally, for 𝑏 = 3we obtain the range [𝑠 . . 𝑒] by backward search-
ing for 𝑃 = 𝛼𝛽𝛾 , in 𝑂 (log𝑈 ) time as well.

In all cases, we change to 𝑠, 𝑒 = ⊥ when 𝑠 > 𝑒 , as this means that

𝑡 has no occurrences in 𝐺 .

A.3 Rings in compressed space
We show that the space of the ring index can be made close to the

size of a compressed representation of the text.

Assume we divide BWT = BWT𝑜 · BWT𝑠 · BWT𝑝 as in Sec-

tion 4.1. By representing BWT𝑜 , BWT𝑠 , and BWT𝑝 separately, and

using compressed bitvectors [11] in the wavelet matrices, the main

component of the space, 3𝑛 log
2
𝑈 bits, is reduced to the empirical

zero-order entropy of the strings [3, 8],

𝑛(H0 (BWT𝑜 ) + H0 (BWT𝑠 ) + H0 (BWT𝑝 )),

where, if symbol 𝑐 appears 𝑛𝑐 times in 𝑆 over alphabet [1, 𝜏], then

H0 (𝑆) =
∑

𝑐∈[1,𝜏 ]

𝑛𝑐

𝑛
log

2

𝑛

𝑛𝑐
≤ log

2
𝜏 ;

all our sums range over the symbols 𝑐 where 𝑛𝑐 > 0.

https://doi.org/XX.XXXX/XXXXXXX.XXXXXXX
https://doi.org/XX.XXXX/XXXXXXX.XXXXXXX


SIGMOD ’21, June 20–25, 2021, Xi’an, Shaanxi, China Anon.

Further, when 𝑆 is the BWT transform of 𝑇 , the zero-order en-

tropies become even smaller high-order entropies of𝑇 [8]. The rea-

son is that the space is not only |𝑆 |H0 (𝑆), but also
∑𝑘
𝑖=1 |𝑆𝑖 |H (𝑆𝑖 )

for any partition 𝑆 = 𝑆1 · · · 𝑆𝑘 . In our case, for example, BWT𝑜 can

be partitioned into the subranges where the 𝑜𝑖 symbols are followed

by each specific substring 𝑠𝑝 , and therefore, extending our notation

𝑛𝑐 to 𝑛𝑥 for cyclic substrings 𝑥 of 𝑇 , we require space∑
𝑠𝑝∈𝑈×𝑈

𝑛𝑠𝑝

∑
𝑜∈𝑈

𝑛𝑠𝑝𝑜

𝑛𝑠𝑝
log

2

𝑛𝑠𝑝

𝑛𝑠𝑝𝑜
=

∑
𝑠𝑝∈𝑈×𝑈

𝑛𝑠𝑝 log2 𝑛𝑠𝑝 ,

the equality holding because the triples are unique and then 𝑛𝑠𝑝𝑜 =

1. The cases of BWT𝑠 and BWT𝑜 are analogous. The space for the

whole BWT is then∑
𝑠𝑝∈𝑈×𝑈

𝑛𝑠𝑝 log2 𝑛𝑠𝑝 +
∑

𝑝𝑜∈𝑈×𝑈
𝑛𝑝𝑜 log2 𝑛𝑝𝑜 +

∑
𝑜𝑠∈𝑈×𝑈

𝑛𝑜𝑠 log2 𝑛𝑜𝑠

bits. To this we must add 𝑜 (𝑛 log𝑈 ) +𝑂 (𝑈 3
log𝑛) bits of encoding

overhead, though the latter is a very pessimistic upper bound [8]

(as our C-Ring space shows). This is essentially the same space an

order-2 statistical compressor on 𝑇 can achieve if it encodes each

symbol using the other two symbols of its triple as the context.

B Variables appearing more than once in a
triple pattern

When a variable 𝑥 hasmore than one occurrence in a triple pattern 𝑡 ,

these are consecutive (in the cyclic interpretation). Thus, to support

leap(𝑡, 𝑥, 𝑐) on our unmodified index, we can process 𝑡 backwards.

First, we consider only the second occurrence (which is just behind

the matched part of the triple pattern). Every time we find a binding

𝑥 := 𝑐𝑥 , we perform a second backward search step on the triple,

with 𝑐𝑥 . If the resulting range is nonempty, then the binding is valid

and we recurse; otherwise we just set 𝑐 := 𝑐𝑥 + 1 and restart the

search. The case of triple patterns formed by three occurrences of

the same variable is analogous. However, this algorithm does not

run in 𝑂 (log𝑈 ) time, and would affect the optimality of LTJ.

To support leap in 𝑂 (log𝑈 ) time, we can split 𝑇 into five texts

of total length 3𝑛 (plus the terminators $): 𝑇𝑥𝑦𝑧 contains the triples

(𝑠, 𝑝, 𝑜) where 𝑠 , 𝑝 , and 𝑜 are all different, 𝑇𝑥𝑥𝑦 , 𝑇𝑥𝑦𝑥 , and 𝑇𝑦𝑥𝑥
contain the triples where 𝑠 = 𝑝 , 𝑠 = 𝑜 , and 𝑝 = 𝑜 , respectively,

and the other component is different, and 𝑇𝑥𝑥𝑥 contains the triples

where 𝑠 = 𝑝 = 𝑜 . We then create five bended BWTs, one per text.

At query time, the occurrences of each partially bound triple

pattern 𝑡 ′
𝑖
span five intervals 𝐴[𝑠𝑖 . . 𝑒𝑖 ], one per BWT. However,

triple patterns 𝑡𝑖 containing two copies of the same variable have

two intervals only: one in the BWTof𝑇𝑥𝑥𝑥 and the other in the BWT

of 𝑇𝑥𝑥𝑦 , 𝑇𝑥𝑦𝑥 , or 𝑇𝑦𝑥𝑥 , depending on where the variable appears.

Finally, a triple pattern 𝑡𝑖 with three copies of the same variable

has an interval in the BWT of𝑇𝑥𝑥𝑥 only. This arrangement ensures

that the aforementioned algorithm handling multiple occurrences

of a variable, every match 𝑥 := 𝑐𝑥 we find is valid.

Triples that span several intervals 𝐴[𝑠𝑖 . . 𝑒𝑖 ] implement leap by

searching in all of the intervals and taking the minimum 𝑐𝑥 ≥ 𝑐

found. This introduces a constant-time overhead factor but retains

worst-case optimality. Furthermore, the space of the data structure

is asymptotically the same, even in compressed space. On graphs

where the edge labels are disjoint from the node labels, we need

only consider 𝑇𝑥𝑦𝑧 and 𝑇𝑥𝑦𝑥 , and if they have no self-loops then

no triple-pattern with a variable appearing twice can match.

C Experimental setup
In the following we give further details on the experimental setup.

Materials including scripts, code, queries and data can be found on

the webpage to facilitate reproducibility of our experiments [1].

C.1 The Wikidata graphs
We take the same Wikidata graphs as proposed for the Wikidata

Graph Pattern Benchmark (WGPB) [7], which can be downloaded

from https://zenodo.org/record/4035223. The graph is based on

the 2018/11/18 truthy version of Wikidata, where the raw dump

contains 3,303,288,386 triples. Multilingual labels, aliases and de-

scriptions were removed, leaving only English labels. The result

is a graph of 969,496,651 triples with 5,419 unique predicates; this

was the graph used in our paper for the Wikidata real-world exper-

iments. In the graph recommended for the WGPB experiments [7],

triples whose predicates appear in fewer than 1,000 triples or more

than 1,000,000 triples were also removed.

C.2 System details
In the following we provide additional details about the alternative

indexes and systems that we compare with Ring and C-Ring.

EmptyHeaded: We obtained the code from https://github.com/

HazyResearch/EmptyHeaded. Data were indexed in memory.

Graphflow: Weobtained the code fromhttps://github.com/queryproc/

optimizing-subgraph-queries-combining-binary-and-worst-

case-optimal-joins/. Data were indexed in memory.

Qdag: We choose the version that uses BFS enumeration of the

graph nodes. We obtained the code from the authors.

Jena: We use Jena TDB version 3.10.0, from https://github.com/

apache/jena. We use the HTTP interface.

Jena LTJ: We obtained it from https://github.com/cirojas/jena-

leapfrog and used in the same way as Jena. It is based on

Jena TDB version 3.10.0.

RDF-3X: We use version 0.3.7 with the command-line interface (to

the best of our knowledge, HTTP is not supported), obtaining

the code from https://code.google.com/archive/p/rdf3x/.

Blazegraph: We use version 2.1.6 with the HTTP interface, obtain-

ing the code from https://github.com/wikimedia/wikidata-

query-rdf/blob/master/docs/getting-started.md.

Virtuoso: We use version 7.2.5.1 with the HTTP interface. The

code was downloaded from https://github.com/openlink/

virtuoso-opensource.

In the case of the systems with HTTP interfaces we also tried

running queries using command-line interfaces to eliminate HTTP

overhead, but found that the HTTP interfaces in general offered

better performance (particularly in the case of Jena and Jena-LTJ).

The systems were configured per vendor recommendations for the

machine used. We refer to the webpage for further details on how

we configured and ran these systems [1].

https://zenodo.org/record/4035223
https://github.com/HazyResearch/EmptyHeaded
https://github.com/HazyResearch/EmptyHeaded
https://github.com/queryproc/optimizing-subgraph-queries-combining-binary-and-worst-case-optimal-joins/
https://github.com/queryproc/optimizing-subgraph-queries-combining-binary-and-worst-case-optimal-joins/
https://github.com/queryproc/optimizing-subgraph-queries-combining-binary-and-worst-case-optimal-joins/
https://github.com/apache/jena
https://github.com/apache/jena
https://github.com/cirojas/jena-leapfrog
https://github.com/cirojas/jena-leapfrog
https://code.google.com/archive/p/rdf3x/
https://github.com/wikimedia/wikidata-query-rdf/blob/master/docs/getting-started.md
https://github.com/wikimedia/wikidata-query-rdf/blob/master/docs/getting-started.md
https://github.com/openlink/virtuoso-opensource
https://github.com/openlink/virtuoso-opensource


Worst-Case Optimal Graph Joins in Almost No Space:
Additional Material SIGMOD ’21, June 20–25, 2021, Xi’an, Shaanxi, China

SELECT * WHERE {
?v1 wdt:P21 ?v3 . # sex or gender
?v1 wdt:P31 wd:Q5 . # instance of human
?v1 wdt:P570 ?v2 . # date of death
?v1 wdt:P734 ?v0 . # family name
?v4 wdt:P21 ?v3 . # sex or gender
?v4 wdt:P31 wd:Q5 . # instance of human
?v4 wd:P570 ?v2 . # date of death
?v4 wd:P734 ?v0 . # family name

} LIMIT 1000

Figure 2: A difficult real-world query in SPARQL syntax

0 5 10 15 20 25

Triple patterns

Variables

Figure 3: Box-plots of number of variables and triple pat-
terns in real-world queries

C.3 Query sets
We use the standard WGPB queries – which consist of 50 instances

of 17 abstract query patterns, each generating at least one result and

limited to 1000 results – without modification. We refer to Hogan

et al. [7] for further details on the generation of these queries; we

downloaded them from https://zenodo.org/record/4035223.

For real-world experiments, in search of challenging queries, we

download the 122,980 queries that gave timeouts from the Wikidata

query logs [9] spanning from June 2017 to March 2018. We remove

Wikidata-specific features(e.g., SERVICE clauses for labels) and ex-

tract basic graph patterns from queries with precisely one basic

graph pattern. We subsequently filter the patterns to ensure that

they are weakly connected (avoiding Cartesian products), that they

have at least one variable, and that their constants appear in the

dataset. We chose not to filter queries with empty results as these

often occur in practice. We also canonically label the variables of

the patterns and de-duplicate them modulo isomorphism [12]. We

project all variables and limit the results to 1000 (per WGPB). This

process yielded 1,315 queries for testing. We provide an example

of one of the more challenging cases in Figure 2, which looks for

information about people who died on the same date. The average

number of triple patterns and variables per query was 2.43 and 2.55,

respectively; in Figure 3 we present box-plots for these numbers

where although most queries have only 1 or 2 triple patterns and

variables, more complex queries have up to 22 triple patterns and

16 variables. In Table 1 we show the most common types of triple

patterns; we find all possible types (aside from all constants), where

432 triple patterns (9.0%) have variable predicates.

C.4 String identifiers
As aforementioned, we work directly on datasets and queries where

the identifiers are already mapped to integers. This can be seen as

unfair with the database systems managing strings as reporting

strings may induce additional time overhead and their space can

be significant compared to the integer triples. In our dataset, for

example, the strings occupy 1,427 MB, nearly 150% of the 932 MB

Table 1: Most common types of triple patterns where ? indi-
cates a variable and s, p, o indicate constants

Type Count

?p? 2,460

?po 1,829

??? 318

s?? 58

sp? 55

??o 54

s?o 2

Total 4,776

used by the integer triples in plain form. Blazegraph, Jena, Jena-LTJ,

RDF-3X, and Virtuoso include this overhead, while Ring, C-Ring,

EmptyHeaded and Qdag do not.

We can largely diminish the impact of the strings by storing them

in succinct dictionaries [10], which map from strings to integers (to

translate the queries) and back (to translate the solutions) in a few

microseconds per string. For example, using the variant HTFC-rp
with sampling 64 [10], the strings are compressed to 17%, or 235 MB

(3 additional bytes per triple) and an identifier is translated to its

string in about 3 microseconds. The total impact of translating the

identifiers back to strings adds just 0.35 milliseconds to the times

in Table 1, and at most 0.003 seconds in Figure 8.

D Indexing higher dimensions
The ring index can be extended to handle relations of higher arity.

Relations of dimension 𝑑 = 4 are called quads, which are commonly

used to store graph databases [4–6], and higher dimensions arise in

relational databases. We first describe how our machinery can be

extended to deal with arbitrary dimensions, assuming we always

have a ring where the bounded parts of the tuple patterns are con-

tiguous. We then analyse how many rings we must build depending

on 𝑑 . It turns out that the space cost incurred by ring indexes is an

order of magnitude lower than with classical indexes.

D.1 LTJ in higher dimensions (Theorem 6.1)
The Leapfrog TrieJoin algorithm, its analysis, and our implemen-

tation in Section 3, can be extended with essentially no changes

from triples (𝑑 = 3) to tuples of any dimension 𝑑 . At query time,

if a contiguous part of the tuple pattern 𝑡 ′
𝑖
is partially bound, we

know the range 𝐴[𝑠𝑖 . . 𝑒𝑖 ] corresponding to its bound component

preceded by an unbound one. Bounding an additional tuple element

backwards is then done as described for triples.

Bounding an element in forward direction, however, is different

than as described in Section 3, because the position to bound may

not immediately follow the position corresponding to the range

𝐴[𝑠𝑖 . . 𝑒𝑖 ]. Let 𝐵 = 𝛽1 · · · 𝛽𝑘 be the sequence of bounded constants

in 𝑡 ′
𝑖
. To implement leap(𝑡 ′

𝑖
𝑥, 𝑐) in forward direction, we backward

search for 𝐵 starting from the interval BWT[𝐶 [𝑐] +1 . .]. If there are
no results, then we return ⊥. Otherwise, let [𝑠 ′

𝑖
. . 𝑒 ′

𝑖
] the resulting

interval (a subrange of [𝑠𝑖 . . 𝑒𝑖 ]; in fact 𝑒 ′
𝑖
= 𝑒𝑖 and we only need 𝑠

′
𝑖
).

Then, 𝑇 [𝐴[𝑠 ′
𝑖
] . .] is the lexicographically first suffix starting with

https://zenodo.org/record/4035223


SIGMOD ’21, June 20–25, 2021, Xi’an, Shaanxi, China Anon.

𝐵 · 𝑐𝑥 for some 𝑐𝑥 ≥ 𝑐 . To find out 𝑐𝑥 , we start from 𝑞0 = 𝑠 ′
𝑖
and do

𝑞𝑖 := select𝛽𝑖 (BWT, 𝑞𝑖−1−𝐶 [𝛽𝑖 ]) for 𝑖 := 1 to𝑘 . The value𝑞𝑘 then

corresponds to 𝑞 in Section 3.2.2, from which we compute 𝑐𝑥 in the

same way. The total cost of this process is𝑂 (𝑘 log𝑈 ) = 𝑂 (𝑑 log𝑈 ).
Since there are𝑚𝑑 positions in the𝑚 tuple patterns, and each

might have to be solved in time𝑂 (𝑑 log𝑈 ), the time that multiplies

𝐴𝐺𝑀 is now𝑂 (𝑑2𝑚 log𝑈 ). On the other hand, if we extend the idea
of Section B we incur an additional 𝑂 (𝐵𝑑 ) penalty factor, where

𝐵𝑑 indicates the 𝑑th Bell number, so we prefer not to relax wco

guarantees for multiple occurrences of a variable in the same tuple

pattern. We then obtain Theorem 6.1.

D.2 On the number of orders to index
A key aspect of our ring index for triples is that, because it can

extend the range of bounded variables forwards and backwards,

and because the triples are cyclic, it suffices to index a single order

instead of the 6 orders needed in classical wco indexes. But how

many indexes are needed to support leapfrog in relations of higher

dimensions? We answer this question in three parts. First, we dis-

cuss the number needed when using traditional indexes supporting

prefix-lookups, which we denote as flat indexes. We then turn to

cyclic indexes, starting with the unidirectional version of Brisaboa

et al. [2], and continuing with our own ring index.

D.2.1 Flat indexes and trie switching, variants W and TW. A clas-

sical (flat) index on 𝑑 columns needs to store, in principle, all the

𝑤 (𝑑) = 𝑑! possible orders to support wco algorithms. In our discus-

sion, we refer to these indexes as class W (for Worst-case-optimal).

However, for 𝑑 ≥ 4, we can reduce the number of classic in-

dexes by adding inter-trie pointers that allow us to reorder the vari-

ables we have already bound. For example, when indexing quads

(𝑠, 𝑝, 𝑜, 𝑔), this avoids storing a trie with the order 𝑔𝑠𝑝𝑜 if we have

tries for 𝑔𝑠𝑜𝑝 and 𝑠𝑔𝑝𝑜 with pointers between the corresponding

nodes of 𝑔𝑠 and 𝑠𝑔: we process 𝑔𝑠 with the first index and then use

the pointer to 𝑠𝑔 in the second index so as to continue with 𝑝𝑜 .

We call TW the class of indexes supporting trie switching. TW

indexes need to store at least (𝑑 − 𝑙)
(𝑑
𝑙

)
orders for any 0 ≤ 𝑙 < 𝑑 ,

because we may have any subset of 𝑙 constants defined and need

to intersect using any of the (𝑑 − 𝑙) remaining variables. Each

such arrangement requires storing a different order. This formula

is maximised for 𝑙 = ⌊𝑑/2⌋, yielding a lower bound of 𝑡𝑤 (𝑑) =

⌈𝑑
2
⌉
( 𝑑
⌊𝑑/2⌋

)
orders. We now prove that 𝑡𝑤 (𝑑) is also an upper bound

by building a sufficient set of 𝑡𝑤 (𝑑) orders.

Lemma D.1. Let a set of strings 𝑆 [1 . . 𝑙 + 1] be (𝑙, 𝑑)-complete if,
for every 0 ≤ 𝑚 < 𝑙 , every possible subset of 𝑚 values in [1 . . 𝑑],
in some order, followed by any other final number in [1 . . 𝑑], is a
prefix 𝑆 [1 . .𝑚 + 1] of some string 𝑆 in the set. Then there exists a
(𝑑 − 1, 𝑑)-complete set of 𝑡𝑤 (𝑑) strings.

Proof. We proceed by induction on 𝑙 , building for every 0 ≤ 𝑙 <

𝑑 an (𝑙, 𝑑)-complete set. For 𝑙 ≤ 𝑑/2, this set will have (𝑑 − 𝑙)
(𝑑
𝑙

)
≤

𝑡𝑤 (𝑑) strings, and 𝑡𝑤 (𝑑) strings will suffice for larger 𝑙 .

For 𝑙 = 0, we just have the 𝑑 distinct strings of length 1, one per

final number. Now, assume we have an (𝑙, 𝑑)-complete set of size

(𝑑 − 𝑙)
(𝑑
𝑙

)
. Those strings list all the possible

( 𝑑
𝑙+1

)
subsets of 𝑙 + 1

values, each appearing by symmetry (𝑑 − 𝑙)
(𝑑
𝑙

)
/
( 𝑑
𝑙+1

)
= 𝑙 + 1 times.

To produce an (𝑙 + 1, 𝑑)-complete set, we extend each of the

( 𝑑
𝑙+1

)
different subsets by each of the 𝑑 − 𝑙 − 1 possible final numbers.

Since we already have 𝑙 + 1 strings for each such subset, we can

extend those with 𝑙 + 1 of the 𝑑 − 𝑙 − 1 possible final numbers. If

𝑑 − 𝑙 −1 > 𝑙 +1, however, we will have to create new copies of some

of those 𝑙 + 1 strings to extend them with the remaining possible

final numbers. At the end, we have a set of (𝑑 − 𝑙 − 1)
( 𝑑
𝑙+1

)
strings

𝑆 [1 . . 𝑙 + 2]. This set is (𝑙 + 1, 𝑑)-complete because it satisfies the

definition for𝑚 = 𝑙 − 1 and was built by extending a set of prefixes

that was already (𝑙, 𝑑)-complete.

Note that, as soon as as 𝑑 − 𝑙 − 1 ≤ 𝑙 + 1, that is, 𝑙 + 1 ≥ 𝑑/2, we
will need to create no new strings, because there will be sufficiently

many ones of length 𝑙 + 1 to extend them to length 𝑙 + 2 in all the

possible ways. The maximum size then occurs when 𝑙 = ⌈𝑑/2⌉ − 1

and our set has (𝑑 − ⌈𝑑/2⌉ + 1)
( 𝑑
⌈𝑑/2⌉−1

)
= 𝑡𝑤 (𝑑) strings. □

The trie-switching technique can be used with our indexes as

well, without storing any extra space: if we have found a range for

some contiguous bounded variables in one index, we can search

another index for the same variable values in another desired order

using backward search, as long as they are contiguous too. Each

such change of index costs𝑂 (𝑑 log𝑈 ) time, which is within the time

complexity given in Theorem 6.1. Thus, in the following discussion

we analyse both versions of each new index scheme: with and

without trie-switching.

D.2.2 Cyclic indexes, variants CW and CTW. On indexes support-

ing cyclic tuples but not trie switching (which we call CW in-

dexes), exactly 𝑐𝑤 (𝑑) = (𝑑 − 1)! indexes are needed. This is be-

cause the 𝑑! permutations can be divided into (𝑑 − 1)! equivalence
classes of size 𝑑 , where two permutations 𝜋 and 𝜋 ′

are equivalent

if they are the same when regarded as cyclic, that is, 𝜋 [1 . . 𝑑] =

𝜋 ′[𝑖 . . 𝑑] · 𝜋 ′[1 . . 𝑖 − 1] for some 𝑖 . Exactly one index per equiva-

lence class is then needed. Equivalently we note that (𝑑 − 1)! is the
number of Hamiltonian cycles in the complete directed graph of 𝑑

nodes, where each directed cycle corresponds to a CW index, and

we need (𝑑 − 1)! indexes to traverse the 𝑑 nodes in any order.

As explained, we can enable trie switching on cyclic indexes,

leading to what we call CTW indexes. Seen as a lower bound for trie

switching, 𝑡𝑤 (𝑑) is the number of prefixes of length ⌊𝑑/2⌋ + 1 that

cover every possible subset of ⌊𝑑/2⌋ positions followed by any other
position. Since each starting point in the cycle yields a sequence

of ⌊𝑑/2⌋ + 1 elements, we need 𝑐𝑡𝑤 (𝑑) ≥ ⌈𝑡𝑤 (𝑑)/𝑑⌉ orders. For
example, with 𝑠𝑝𝑜𝑔 we obtain {𝑠, 𝑝} with variable 𝑜 , {𝑝, 𝑜} with
variable 𝑔, {𝑜, 𝑔} with variable 𝑠 , and {𝑔, 𝑠} with variable 𝑜 .

We now prove two upper bounds for 𝑐𝑡𝑤 (𝑑). The first one, useful
for small 𝑑 values, shows that CTW cuts the number of indexes

required for TW at least by half, because 𝑡𝑤 (𝑑 − 1) ≤ 𝑡𝑤 (𝑑)/2.

Lemma D.2. It holds that 𝑐𝑡𝑤 (𝑑) ≤ 𝑡𝑤 (𝑑 − 1) = ⌊𝑑
2
⌋
( 𝑑−1
⌊𝑑/2⌋

)
.

Proof. Consider a (𝑑 − 2, 𝑑 − 1)-complete set of strings 𝑇𝑊

(Lemma D.1) forming a TW index for the positions [1 . . 𝑑 − 1]. Let
dom(𝑆) be the set of symbols in string 𝑆 , and let 𝑇𝑊𝑆 be the set of

strings of 𝑇𝑊 prefixed with any 𝑆 ′ such that dom(𝑆 ′) = dom(𝑆).
We build a CTW index for the positions [1 . . 𝑑] by simply ap-

pending 𝑑 to each of the strings in 𝑇𝑊 . To see that this index



Worst-Case Optimal Graph Joins in Almost No Space:
Additional Material SIGMOD ’21, June 20–25, 2021, Xi’an, Shaanxi, China

is valid, consider an instantiation order 𝑋 · 𝑑 · 𝑌 (i.e., a permu-

tation of the dimensions), with 𝑥 = |𝑋 | and 𝑦 = |𝑌 |. Processing
the partial queries 𝑋 (resp. 𝑌 ) on the set 𝑇𝑊 yields some string

𝑆𝑋 ∈ 𝑇𝑊𝑋 (resp. 𝑆𝑌 ∈ 𝑇𝑊𝑌 ) such that dom(𝑆𝑋 [1 . . 𝑥]) = dom(𝑋 )
(resp. dom(𝑆𝑌 [1 . . 𝑦]) = dom(𝑌 )). Thus, we can process 𝑋 in the

CWT index in the same way, ending on (𝑆𝑋 · 𝑑) [1 . . 𝑥]. Since
dom(𝑆𝑌 [1 . . 𝑦]) = dom(𝑌 ), it follows that dom(𝑆𝑌 [𝑦 + 1, 𝑑 − 1]) =
dom(𝑋 ). In the CWT index, we can then, after processing𝑋 , switch

from (𝑆𝑋 · 𝑑) [1 . . 𝑥] to (𝑆𝑌 · 𝑑) [𝑦 + 1 . . 𝑑 − 1]. We can now extend

that match with variable 𝑑 = (𝑆𝑌 · 𝑑) [𝑑] and finally, by circularity,

process 𝑌 at (𝑆𝑌 · 𝑑) [1 . . 𝑦]. □

We now derive an upper bound for 𝑐𝑡𝑤 (𝑑) that, though weaker

than the preceding one for 𝑑 ≤ 13, is asymptotically stronger.

Lemma D.3. Let a set of strings 𝑆 [1 . . 𝑙] be (𝑙, 𝑑)-sufficient if, for
every 0 ≤ 𝑚 ≤ 𝑙 , every possible subset of𝑚 values in [1 . . 𝑑], in some
order, is a suffix 𝑆 [𝑙 −𝑚 + 1 . . 𝑙] of some string 𝑆 in the set. Then there
exists a (𝑑, 𝑑)-sufficient set of 𝑠𝑤 (𝑑) =

( 𝑑
⌊𝑑/2⌋

)
strings.

Proof. We proceed by induction on 𝑙 , building for every 0 ≤ 𝑙 ≤
𝑑 an (𝑙, 𝑑)-sufficient set. For 𝑙 ≤ 𝑑/2, this set will have

(𝑑
𝑙

)
≤ 𝑠𝑤 (𝑑)

strings, and 𝑠𝑤 (𝑑) strings will suffice for larger 𝑙 .

For 𝑙 = 0, we just have the empty string. Now, assume we have

an (𝑙, 𝑑)-sufficient set of size

(𝑑
𝑙

)
. To produce an (𝑙 + 1, 𝑑)-sufficient

set, we need to create

( 𝑑
𝑙+1

)
strings, which is more than those we

have as long as 𝑑 − 𝑙 > 𝑙 + 1. Each string of our (𝑙, 𝑑)-sufficient set

is extended by prepending some element it does not contain, and

the remaining

( 𝑑
𝑙+1

)
−
(𝑑
𝑙

)
subsets are obtained by extending some

string of the (𝑙, 𝑑)-sufficient set and adding a new initial element to

it. When 𝑙 = ⌊𝑑/2⌋, our set stops growing because we always have

enough strings in our (𝑙, 𝑑)-sufficient set to extend it into all the

possible strings of an (𝑙 + 1, 𝑑)-sufficient set. □

Lemma D.4. It holds that 𝑐𝑡𝑤 (𝑑) ≤ 2 · 𝑠𝑤 (⌊𝑑/2⌋) · 𝑡𝑤 (⌈𝑑/2⌉).

Proof. Let 𝑐 = ⌊𝑑/2⌋, 𝑆𝑊𝑠 (resp.𝑇𝑊𝑠 ) be a (𝑐, 𝑐)-sufficient (resp.

(𝑑 − 𝑐 − 1, 𝑑 − 𝑐)-complete) set of strings, and 𝑆𝑊𝑙 (resp. 𝑇𝑊𝑙 ) be
a (𝑐, 𝑐)-sufficient (resp. (𝑑 − 𝑐 − 1, 𝑑 − 𝑐)-complete) set of strings

where we have summed 𝑐 to every symbol (the subscripts 𝑠 and 𝑙

stand for small and large symbols). We then build a CTW index by

concatenating every string in 𝑆𝑊𝑙 with every string in 𝑇𝑊𝑠 , and

every string in 𝑆𝑊𝑠 with every string in 𝑇𝑊𝑙 . The size of the CTW

index is then 2 · 𝑠𝑤 (𝑐) · 𝑡𝑤 (𝑑 − 𝑐).
To see this is a valid index, consider any instantiation order

𝑋 [1 . . 𝑑] (i.e., a permutation in [𝑑]) we process left to right. Let

𝑋𝑠 (𝑝) (resp. 𝑋𝑙 (𝑝)) be the subsequence of 𝑋 [1 . . 𝑝] formed by sym-

bols in [1 . . 𝑐] (resp. [𝑐 + 1 . . 𝑑]). Let dom(𝑆) be the set of symbols

in 𝑆 . A consequence of 𝑆𝑊𝑠 being (𝑐, 𝑐)-sufficient and 𝑆𝑊𝑙 being

analogously obtained from a (𝑐, 𝑐)-sufficient set is that, if we have

processed 𝑋 [1 . . 𝑝], we always have some string 𝑆𝑠 ∈ 𝑆𝑊𝑠 such

that dom(𝑆𝑠 [𝑐 − |𝑋𝑠 (𝑝) | + 1 . . 𝑐]) = dom(𝑋𝑠 (𝑝)), and some string

𝑆𝑙 ∈ 𝑆𝑊𝑙 such that dom(𝑆𝑙 [𝑐 − |𝑋𝑙 (𝑝) | + 1 . . 𝑐]) = dom(𝑋𝑙 (𝑝)).
We start, for 𝑝 = 0, with any 𝑆𝑠 ∈ 𝑆𝑊𝑠 and 𝑆𝑙 ∈ 𝑆𝑊𝑙 . After

processing 𝑋 [1 . . 𝑝], we consider 𝑋 [𝑝 + 1]. If 𝑋 [𝑝 + 1] ∈ [1 . . 𝑐],
then, because 𝑇𝑊𝑠 is (𝑑 − 𝑐 − 1, 𝑑 − 𝑐)-complete, there is a string

𝑆 ∈ 𝑇𝑊𝑠 such that dom(𝑆 [1 . . |𝑋𝑠 (𝑝) |]) = dom(𝑋𝑠 (𝑝)) and 𝑆 [𝑝 +
1] = 𝑋 [𝑝 + 1]. Further, by construction, 𝑆𝑙 · 𝑆 is in our CWT index.

If, instead, 𝑋 [𝑝 + 1] ∈ [𝑐 + 1 . . 𝑑], then, because𝑇𝑊𝑙 is built from a

(𝑑 − 𝑐 − 1, 𝑑 − 𝑐)-complete set, there is a string 𝑆 ∈ 𝑇𝑊𝑙 such that

dom(𝑆 [1 . . |𝑋𝑙 (𝑝) |]) = dom(𝑋𝑙 (𝑝)) and 𝑆 [𝑝 + 1] = 𝑋 [𝑝 + 1], and
by construction 𝑆𝑠 · 𝑆 is in the CWT index. Thus, we can always

maintain a contiguous range for 𝑋 [1 . . 𝑝 + 1] in some of the CWT

strings by using trie switching and circularity. □

Note that, by Stirling’s approximation, 𝑠𝑤 (𝑑) = 2
𝑑+1/2/

√
𝜋𝑑 (1+

𝑂 (𝑑−1/2)) and 𝑡𝑤 (𝑑) = 2
𝑑−1/2√𝑑/𝜋 (1+𝑂 (𝑑−1/2)); thus 𝑐𝑤𝑡 (𝑑) ≤

2
𝑑/𝜋 (1 +𝑂 (𝑑−1/2)) = 𝑂 (2𝑑 ).
D.2.3 Bidirectional indexes, variants CBW and CBTW. Consider
a cyclic index with no trie switching, which we call CBW. In the

unidirectional case (CW), recall that 𝑐𝑤 (𝑑) = (𝑑 − 1)!. In the bidi-

rectional case, we can remove CW indexes that are duplicated but

“reversed” (e.g., 𝑠𝑝𝑜𝑔, 𝑔𝑜𝑝𝑠), where each index and its reverse are in

CW; put another way, recalling that 𝑐𝑤 (𝑑) is the number of Hamil-

tonian cycles in the complete directed graph, then 𝑐𝑡𝑤 (𝑑) is the
number of Hamiltonian cycles in the complete undirected graph,

which is (𝑑 − 1)!/2, or 𝑐𝑤 (𝑑)/2. We thus have the upper bound

𝑐𝑏𝑤 (𝑑) ≤ ⌈𝑐𝑤 (𝑑)/2⌉, that is, bidirectionality cuts the number of

indexes by at least half (for 𝑑 > 2) if trie switching is not enabled. In

fact, we may be able to cut the number of indexes further. From the

starting point in the cycle, under CBW we can extend the range of

bound values left or right, in any of the 2
𝑑−2

sequences of choices,

until a single position is left. The sequence of values included in the

range, for each combination, covers a new permutation. For exam-

ple, if from 𝑠𝑝𝑜𝑔 we start at position 1, we obtain 𝑠𝑔𝑜𝑝 with left-left,

𝑠𝑔𝑝𝑜 with left-right, 𝑠𝑝𝑔𝑜 with right-left, and 𝑠𝑝𝑜𝑔 with right-right.

Thus, each index can, at best, cover 𝑑2𝑑−2 different permutations,

so a lower bound is 𝑐𝑏𝑤 (𝑑) ≥ ⌈(𝑑 − 1)!/2𝑑−2⌉ orders.
If we add bidirectionality to a cyclic index that supports trie

switching (we call CBTW the result), the order in which we extend

the initial position does not matter, only the number of different

cycle segments of length ⌊𝑑/2⌋ we can produce, which is the same

𝑑 as without bidirectionality. We can still, however, have two dif-

ferent intersection variables, at the two extremes of the range of

⌊𝑑/2⌋ positions. For example, with 𝑠𝑝𝑜𝑔 we obtain {𝑠, 𝑝} with vari-

ables 𝑜 or 𝑔, {𝑝, 𝑜} with variables 𝑔 or 𝑠 , {𝑜, 𝑔} with variables 𝑠

or 𝑝 , and {𝑔, 𝑠} with variables 𝑜 or 𝑝 . This yields a lower bound

of 𝑐𝑏𝑡𝑤 (𝑑) ≥ ⌈𝑡𝑤 (𝑑)/(2𝑑)⌉ orders. More generally, it holds that

𝑐𝑏𝑡𝑤 (𝑑) ≥ ⌈𝑐𝑡𝑤 (𝑑)/2⌉, because any CBTW index storing 𝑟 orders

can be converted into a CTW index storing 2𝑟 orders, by storing

each order and its reverse.With trie switchingwe can always switch

to the reverse order whenever the CBTW index extends the range

backwards, so that the CTW index always extends it forwards.

The upper bounds for 𝑐𝑡𝑤 (𝑑) imply that 𝑐𝑏𝑡𝑤 (𝑑) = 𝑂 (2𝑑 ). By
our lower bounds, both are also Ω(2𝑑𝑑−1/2). Both are then asymp-

totically smaller than 𝑡𝑤 (𝑑) = Θ(2𝑑𝑑1/2). This concludes the proof
of Theorem 6.2.

D.2.4 Finding the right index. With nearly 2
𝑑
orders indexed, how

to find the proper index to instantiate the next variable is an issue.

We can do this in constant time by building a table of 2
𝑑 · 𝑑 cells

which, given a subset of tuple positions already instantiated and a

new position to instantiate, gives the indexed order that must be

used next. To build this table for CBTW, for example, we take every

indexed order 𝑆 and, for every 𝑆 [𝑖 . . 𝑗] with 𝑖 ≠ 𝑗 (regarded as cyclic,



SIGMOD ’21, June 20–25, 2021, Xi’an, Shaanxi, China Anon.

i.e., 𝑖 can be larger than 𝑗 ), makes the table point to 𝑆 [𝑖 . . 𝑗] at the
cells with subset dom(𝑆 [𝑖 . . 𝑗]) and next positions to instantiate

𝑆 [𝑖 − 1] or 𝑆 [ 𝑗 + 1]. The space of this structure is at most 𝑂 (𝑑3/2)
per order indexed (because 𝑐𝑏𝑡𝑤 (𝑑) = Ω(2𝑑𝑑−1/2)) and is built in

time 𝑂 (𝑑2) per order indexed, that is, at most 𝑂 (𝑑22𝑑 ).

References
[1] D. Arroyuelo, A. Hogan, G. Navarro, J.L. Reutter, J. Rojas-Ledesma, and A. Soto.

2020. Online appendix and material. https://github.com/darroyue/Ring.

[2] N. Brisaboa, A. Cerdeira, A. Fariña, and G. Navarro. 2015. A compact RDF store

using suffix arrays. In Proc. International Symposium on String Processing and
Information Retrieval (SPIRE). 103–115.

[3] F. Claude, G. Navarro, and A. Ordóñez. 2015. The wavelet matrix: An efficient

wavelet tree for large alphabets. Information Systems 47 (2015), 15–32.
[4] O. Erling. 2012. Virtuoso, a hybrid RDBMS/graph column store. Data Engineering

Bulletin 35, 1 (2012), 3–8.

[5] S. Harris, A. Seaborne, and E. Prud’hommeaux. 2013. SPARQL 1.1 Query Language.

W3C Recommendation. https://www.w3.org/TR/sparql11-query/.

[6] A. Harth and S. Decker. 2005. Optimized index structures for querying RDF from

the web. In Proc. Latin American Web Congress (LA-Web). 71–80.
[7] A. Hogan, C. Riveros, C. Rojas, and A. Soto. 2019. A worst-case optimal join

algorithm for SPARQL. In Proc. International Semantic Web Conference (ISWC).
258–275.

[8] V. Mäkinen and G. Navarro. 2008. Dynamic entropy-compressed sequences and

full-text indexes. ACM Transactions on Algorithms 4, 3, Article 32 (2008).
[9] S. Malyshev, M. Krötzsch, L. González, J. Gonsior, and A. Bielefeldt. 2018. Getting

the most out of Wikidata: Semantic technology usage in Wikipedia’s knowledge

graph. In Proc. International Semantic Web Conference (ISWC). 376–394.
[10] M. A. Martínez-Prieto, N. Brisaboa, R. Cánovas, F. Claude, and G. Navarro. 2016.

Practical compressed string dictionaries. Information Systems 56 (2016), 73–108.
[11] R. Raman, V. Raman, and S. S. Rao. 2007. Succinct indexable dictionaries with

applications to encoding k-ary trees, prefix sums and multisets. ACM Transactions
on Algorithms 3, 4, Article 43 (2007).

[12] J. Salas and A. Hogan. 2018. Canonicalisation of Monotone SPARQL Queries. In

Proc. International Semantic Web Conference (ISWC). 600–616.

https://github.com/darroyue/Ring
https://www.w3.org/TR/sparql11-query/

	A Omitted theory
	A.1 Proof of Lemma 3.3
	A.2 Proof of Lemma 3.6
	A.3 Rings in compressed space

	B Variables appearing more than once in a triple pattern
	C Experimental setup
	C.1 The Wikidata graphs
	C.2 System details
	C.3 Query sets
	C.4 String identifiers

	D Indexing higher dimensions
	D.1 LTJ in higher dimensions (Theorem 6.1)
	D.2 On the number of orders to index

	References

