
A Language for Queries on Structureand Contents of Textual Databases�Gonzalo Navarro Ricardo Baeza-YatesDept. of Computer ScienceUniversity of ChileBlanco Encalada 2120,Santiago, Chilefgnavarro,rbaezag@dcc.uchile.clAbstractWe present a model for querying textual databases by boththe structure and contents of the text. Our goal is to ob-tain a query language which is expressive enough in practicewhile being e�ciently implementable, features not presentat the same time in previous work. We evaluate our modelregarding expressivity and e�ciency. The key idea of themodel is that a set-oriented query language based on oper-ations on nearby structure elements of one or more hierar-chies is quite expressive and e�ciently implementable, beinga good tradeo� between both goals.1 IntroductionTextual databases are deserving more and more attention,due to their multiple applications: libraries, o�ce automa-tion, software engineering, automated dictionaries and en-cyclopedias, and in general any problem based on keepingand retrieving textual information [11].The purpose of a textual database is to store textual doc-uments, structured or not. A textual database is composedby two parts: contents and structure (if present). The con-tent is the text itself, while the structure relates di�erentparts of the database by some criterion.Any information model for a text database should com-prise three parts: text, structure, and query language. Itmust specify how is the text seen (i.e. character set, syn-onyms, stopwords, hidden portions, etc.), the structuringmechanism (i.e. markup, index structure, type of structur-ing, etc.), and the query language (i.e. what things can beasked, what the answers are, etc.).The purpose of any system related to information re-trieval is to help the users of a database to �nd what theyneed. Textual database are not as relational databases [8],in which the information is already formatted and meant tobe retrieved by a \key". The information is there, but thereis no easy way to extract it. The user must specify whathe/she wants, see the results, then reformulate the query,�This work has been supported in part by grants FONDECYT(Chile) 1940271 and 1950622.

and so on, until is satis�ed with the answer. Anything wecan do to help users to �nd what they want is worth con-sidering.Traditionally, textual databases have allowed their usersto search their contents (words, phrases, etc.) or their struc-ture (e.g. by looking at a table of contents). These are twomechanisms by which users can �nd what they need.Another interesting fact is that human beings have \visu-al memory", e.g. they may remember that what they wantwas typed in italics, short before a �gure that said some-thing about \earth". Searching for the word \earth" maynot be a good idea, as well as searching all �gures or allthe text in italics. What really would help to exploit visualmemory would be a language in which we can say \I wanta text on italics, near a �gure containing the word `earth' ".This query mixes content and structure of the database.Mixing contents and structure in queries allows us topose very powerful queries, being much more expressive thaneach mechanism by itself. By using a query language thatintegrates both types of queries, we can potentiate the re-trieval quality of textual databases.The aim of this paper is to present a model to structureand query textual databases, which is expressive enough ande�ciently implementable. There is not at this time, to thebest of our knowledge, any approach satisfying both goals.A more complete presentation of this work can be found in[19].The query language we present is not necessarily intend-ed for �nal users, rather it is an operational algebra ontowhich one can map a more user-oriented query language.This paper is organized as follows. In section 2, relatedwork is reviewed. In section 3, our model is presented, interms of a data model and the operations allowed for queries.In section 4, we evaluate the model regarding expressivityand e�ciency. Finally, in section 5, our conclusions andfuture work directions are outlined.2 Related WorkIn this section we brie
y review previous approaches to theproblem of querying a textual database. We �rst mentionthe traditional ones, and then cover novel ideas.2.1 Traditional ApproachesThere are many classical approaches to the problem ofquerying a textual database. Some of them are: attemptsto adapt the relational model [8] to include text manage-ment [24, 9]; the many traditional models of information re-

trieval (e.g. the boolean model, the probabilistic model, thebit-vector model, the full-text model, etc.) [23, 11]; hyper-text [5] and semantic networks [13, 25]; and object-orienteddatabases adapted to manage text [16, 3].None of these approaches satisfy our goals of mixingstructure and contents in queries. Some of them do not allowto express rich enough structures, others are too oriented tocontents, and others to structure. Finally, although object-oriented database can be extended to successfully combineboth areas, they are too general and do not exploit the se-mantics involved in structuring. They represent the struc-ture merely as a network and have a query language orientedto those graphs, making very ine�cient queries that wouldbe simple if we knew the inclusion semantics involved in thestructure (e.g. costly path-expressions on part-of hierarchiescan be expressed as simple segment inclusion in many cases).See [6] for an excellent work on this topic.Although these models are not powerful enough to ex-tract the information we want from textual databases, theyaddress di�erent problems that pure textual database mod-els oriented to structure do not address in general (e.g. tu-ples and joins, attributes, etc.). We do not compare ourmodel to these, because they address di�erent goals.In [21] it is argued that is better to put a layer integratinga traditional database system with a textual one, than tryingto design a language comprising all the features. Hence,each subsystem focuses on the part of the query in whichspecializes (e.g. [6] integrates an object-oriented databasewith a structured text engine).We rely on this approach. We design a language whichis focused on exploiting structure- and text-related features.Other features, such as tuples and joins, should be added byintegrating this language with another one oriented to thatkind of operations, e.g. a relational database.On the other hand, we do not address the issue of merg-ing structural queries with those involving operations suchas relevance ranking (e.g. the sections or titles where theword \computer" is relevant). See [21] for some ideas onthis problem.2.2 Novel ApproachesThese approaches are characterized by generally imposinga hierarchical structure on the database, and by mixingqueries on contents and structure. Although this structuringis simpler than, for example, hypertext, even in this simplercase the problem of mixing contents and structure is notsatisfactorily solved.We present a sample of novel models, which cover manydi�erent approaches to solve this problem under the statedconditions. See [17] for another survey.The Hybrid Model [1]: modelizes a textual database as a setof documents, which may have �elds. Those �elds neednot to cover all the text of the document, and can nestand overlap. The query language is an algebra overpairs (D;M), where D is a set of documents and Mis a set of match points in those documents. Thereis a number of operations for obtaining match points:pre�x search, proximity, etc. There are operations forset manipulation of both documents and match points;for restricting matches to only some �elds; and for re-trieving �elds owning some match point. Inclusion re-lationships can only be queried with respect to a �eldand a match point, thus the language is
at and notfully compositional. This model can be implementedvery e�ciently.

PAT Expressions [22, 10]: sees only match points, which areused to de�ne regions. Regions are de�ned by matchexpressions that specify how their endpoints are. Eachregion represents a set of disjoint segments. This al-lows dynamic de�nition of regions, and to match allqueries on regions to queries on matches. The need toavoid overlapping regions cause a lot of troubles andlack of orthogonality in the language. This languageachieves high e�ciency at the cost of some restrictions,which for some applications are reasonable.Overlapped Lists [4]: solves the problem of PAT expressionsin an elegant way, by allowing overlaps, but not nest-ing. Each region is a list of (possibly overlapping) seg-ments, originated by textual searches or by named re-gions (like chapters, for example). The idea is to unifyboth searches by using an extension of inverted lists,where regions and words are indexed the same way.The implementation of this model can be as e�cientas that of PAT expressions.Lists of References [18]: is a general model to structure andquery textual databases, including also hypertext-likelinkages, attribute management and external proce-dures. The structure of documents can be hierarchical(no overlaps), but answers to queries are
at (only thetop-level elements qualify), and all elements must befrom the same type (e.g. only sections, or only para-graphs). Answers to queries are seen as lists of refer-ences (i.e. pointers to the database). This allows tointegrate in an elegant way answers to queries to hy-pertext links, since all are seen as lists of references.This model is very powerful, and because of this, hardto implement e�ciently. To make the model suitablefor comparison, we consider only the portion relatedto querying structures. Even this portion is quite pow-erful.Parsed Strings [12]: is in fact a data manipulation language.To express database schemas a context-free grammaris used, that is, the database is structured by givinga grammar to parse its text. The fundamental da-ta structure is the p-string, or parsed string, which iscomposed of a derivation tree plus the underlying text.The manipulation is carried out via a number of pow-erful operations to transform trees. This approach isextremely powerful, and it is shown to be relationallycomplete. However, it is hard to implement e�ciently[2].Tree Matching [15]: is a query model relying on a singleprimitive: tree inclusion. The idea is to model, boththe structure of the database and the query (a patternon structure), as trees, to �nd an embedding of the pat-tern into the database which respects the hierarchicalrelationships between nodes of the pattern. The lan-guage is enriched by Prolog-like variables, which can beused to express requirements on equality between part-s of the matched substructure, and to retrieve anotherpart of the match, not only the root. The complexityof the algorithms is studied, showing that the only casein which the problem is of polynomial time is when nological variables are used and if the matches have tosatisfy the left-to-right ordering in the pattern. Evenin the polynomial case, the operations have to traversethe whole database structure to �nd the matches.

3 A New Model for Querying Structured TextIn this section we give an informal description of our model.A formal presentation can be found in [19].3.1 Main ConceptsIn this section we expose our general ideas on how a struc-turing model and a query language can be de�ned to achievethe goals of e�ciency and expressivity simultaneously. Lat-er, we draw the model following these lines.Our main goal is to de�ne powerful operations that al-low matching on the structure of the database, but avoidingalgorithms that match \all-against-all" searching what wewant across the whole tree of the structure (e.g. [14]),.Since we want to de�ne a fully compositional query lan-guage, we can consider query expressions as syntax trees,where the nodes represent operations to perform and thesubtrees their operands.A �rst point is that we want a set-oriented language,because they have been found successful in other areas (suchas the relational model), and because if we have to extractthe whole set of answers, it is possible to �nd algorithmsthat retrieve the elements at a very low cost per element.To obtain the set of answers we want to avoid a \top-down" approach, where the answers are searched in the w-hole tree. We rather prefer a \bottom-up" strategy. Theidea is that we should be able to quickly �nd a small setof candidates for our answers, and then eliminate those notmeeting the search criterion.Our solution is an algebra over sets of nodes (each nodeis a structural element of the database, e.g. a particularchapter or �gure). That means that the operations take setsof nodes and return a set of nodes. These sets of nodes aresubsets of the set of all nodes of the tree of the database. Theonly place in which we pose a text matching query or namea structural component should be at the leaves of the syntaxtree of queries. These leaves must be solved with some sortof index, and converted to a set of nodes. Thereafter, alloperators deal with these sets of nodes and produce newsets. Figure 1 shows the main concepts, which are re�nedlater, to detail the query language and to draw a generalsoftware architecture comprising this model.
Structure index

Operators

Composition

Basic Text

OperatorsOperators

Basic Structure

Query
Language

Text indexFigure 1: Initial diagram of how our model operates.

With this approach, we use indices to retrieve the nodesthat satisfy a text matching query, or the nodes correspond-ing to a given structural component, also called \construc-tor" (e.g. chapters). These nodes must be obtained withouttraversing the whole database.Once we have converted the leaves of the query syntaxtree into sets, all the other operations take the sets of nodesand operate them. Normally, one set will hold the candi-dates for the result of the operation. Note that we neverhave to traverse the structure when searching.We need still another piece to complete the picture, sinceat this point the operations between sets can be as time-consuming as matching against the database.This piece is the coupling between nodes and segments.The segments are pairs of numbers representing contiguousportions of the text (e.g. the segment of a chapter includesall its text). This coupling allows us to use e�cient datastructures to arrange the nodes by looking at their segments(for example, forming a tree). In other approaches [15, 12],there is a weak binding between nodes and the segment theyown in the text, and thus they need to search in the wholetree to �nd what they need.In order for this arrangement to be e�cient, the opera-tions should be de�ned in such a way that they only needto match nodes from both operands that are more or lessproximal. When this happens, we can easily apply divide-and-conquer techniques to drastically limit the area in whichwe must search for matching nodes.If we can e�ciently convert text matching and namedstructural components into well-arranged sets of nodes, andall operators can e�ciently work with the arranged sets andproduce arranged sets, then we will have an e�cient imple-mentation.This schema allows us to have more than one structurehierarchy, if they are independent.On the other hand, we must show that many interestingoperators are in fact of the kind we need, i.e. they operateon nearby nodes and all what they need to operate is theidentity of the nodes and their corresponding segment.Our point is then twofold: �rst, we must show that alanguage in which all operations work on nearby nodes canbe e�ciently implemented; and second, we must show thatit is possible to obtain a quite expressive query language byusing only that kind of operations.3.2 Data ModelA text database is composed of two parts:� Text, which is seen as a (long) sequence of symbols.Whether this text is stored as it is seen, or it is �lteredto hide markup or uninteresting components, is notimportant for the model, since we use the logical viewof the text. Additionally, symbols may be characters,words, etc.� Structure, which is organized as a set of independent(orthogonal) hierarchies. Each hierarchy has its owntypes of nodes, and the areas covered by the nodes ofdi�erent hierarchies can overlap, although this cannothappen inside the same hierarchy. They do not needto cover the whole text.Removing the markup from the document is important,though. The user should not be aware of details about howthe structure of the document is internally represented, orif it is obtained by parsing, etc. He/she should be able to

query the document as it is seen in the display device. If twowords are contiguous in the logical view, the user should notbe aware about that there may be markup between them if,for example, is asking for proximity. It may be argued thatincluding the markup in the text allows the user to queryon the markup by text matching. However, we believe thatthis work must be carried out by the implementation. Anyquery about markup is probably a query about structure,and we have a query language for that. The user shouldnot query the structure in such a low-level fashion, he/sheshould use the content query language to query on contentsand the structure query language to query on structure.The text is considered as static, and the structure builton it quite static also. That is, although we allow to buildnew hierarchies, delete and modify them, our aim is notto make heavy and continued use of those operations. Weare not striving for e�ciency in those aspects, our model ofusage is: the text is static, the hierarchies are built on itonce (or sparingly), and querying is frequent.Each hierarchy (or tree) is called a view, which as itsname suggests, is an independent way to see the text (e.g.chapters / sections / paragraphs and pages / lines). Theroot of each view is a special node considered to comprisethe whole database.Each view has a set of constructors, which denote typesof nodes of the corresponding tree. Examples of constructorsare page, chapter and section. The sets of constructors ofdi�erent views are disjoint.Each node of the tree corresponding to a view has anassociated constructor, and a segment, which is a pair ofnumbers representing a contiguous portion of the underlyingtext. The segment of a node must include the segments ofits children in the tree (this inclusion does not need to bestrict).Any set of disjoint segments can be seen as belongingto a special text view, where the nodes belong to a text con-structor and have
at structure (all nodes at the second levelof the tree). Thus, the text view has one node for each pos-sible segment of the text. The idea is to use that view tomodel pattern-matching queries, which we impose to have
at structure. This restriction is not essential, since thosepattern-matching expressions could perfectly well generate anested structure. However, we assume that the structure is
at for some operations on pattern-matching queries, whichwould not be applicable if the structure was not
at.3.3 Query LanguageIn this section, we de�ne a query language to operate onthe structure de�ned previously, including also queries oncontents.We do not intend to de�ne a monolithic, comprehensive,query language, since the requirements vary greatly for eachapplication. Including all alternatives in a single query lan-guage would make it too complex. Instead, we point out anumber of operations that follow our lines (and hence canbe e�ciently implementable).Each set produced by evaluating a query is a subset ofsome view. Each element of this set is a single node, repre-senting a single segment.We decided not to merge nodes from di�erent views ina single result for two reasons: �rst, it is not clear, viewsbeing di�erent and independent ways to see the same text,whether this could make sense (e.g. pages or chapters witha �gure); second, the implementation is much more e�cientif every set is a strict hierarchy. In the approach of [4], the

other choice is selected, i.e. overlaps are allowed in answers,but not nested components.Although it is not possible to retrieve subtrees (only n-odes), the algebra allows to select nodes on the basis of theircontext in the view tree, or the trees of the operands, muchlike in [15].This language is an operational algebra, not necessarilyintended to be accessed by the �nal user, as the relationalalgebra is not seen by the users of a relational database. Itserves as an intermediate representation of the operations.3.3.1 OperationsWe list now the operations we consider are enough for alarge set of applications, and suitable to be e�ciently im-plemented. As we said before, this set is not exclusive noressential.In Figure 2 we outline the schema of the operations.There are basic extraction operations (forming the basis ofquerying on structure and on contents), and operations tocombine results from others, which are classi�ed in a numberof groups: those which operate by considering included ele-ments, including elements, nearby elements, to manipulatesets and by direct structural relationships.Matching sublanguage: Is the only one which accesses thetext contents of the database, and is orthogonal to therest of the language.Matches: The matching language generates a set ofnon-overlapping segments, which are introducedin the model as belonging to the text view, as ex-plained before. For example, "computer" gener-ates the
at tree of all segments where that wordappears in the text. Note that the matching lan-guage could allow much more complex expression-s.Operations on matches: Are applicable only to subset-s of the text view, and make transformations tothe segments. We see this point and the previ-ous one as the mechanism for generating matchqueries, and we do not restrict our language toany sublanguage for this. See [19] for some alter-natives. As an example, we propose M collapseM 0, which superimposes both sets of matches,merging them when an overlap results, orM sub-tract M 0, which deletes from M the points fromsegments present in M 0.Basic structure operators: Are the other kind of leaves of thesyntax tree, which refer to basic structural compo-nents.Name of constructor: (\Constr" queries). Is the set ofall nodes of the given constructor. For example,chapter retrieves all chapters in a book.Name of view: (\View" queries). Is the set of all n-odes of the given view. For example, Formattingretrieves the whole view related to formatting as-pects. The same e�ect can be obtained by sum-ming up (\+" operator) all the constructors ofthe view.Included-In operators: Select elements from the �rst operandwhich are in some sense included in one of the second.Free inclusion: Select any included element.

Positional
By including
elements

Free

Positional

endin

beginin

in

Content
Basis

expr.
Match

matches
Basis
Structure

Constructor

View

[s] endin

[s] beginin

[s] in

By included elements

on matches
Opers

with(k)

withbegin(k)

withend(k)

after, after(k)

before, before(k)

Direct structural

parent(k)

Set manipulation

Composition
Operations

Same hierarchy

Distinct

hierarchies

+, -, is

same

[s] child

collapse, subtract...Figure 2: The operations of our model, classi�ed by type.P in Q: Is the set of nodes of P which are includedin a node of Q. For example, citation intable selects all citations made from inside atable.P beginin/endin Q: Is the set of nodes of P whoseinitial/�nal position is included in a node ofQ. For example, chapter beginin italicsare the chapters that begin when the italicfont is active.Positional inclusion: Select only those elements includ-ed at a given position. In order to de�ne position,only the top-level included elements for each in-cluding node are considered.[s] P in Q: The same as in, but only qualifyingthe nodes which descend from a Q-node ina position (from left to right) considered ins. In order to linearize the position, for eachnode of Q only the top-level nodes of P notdisjoint with the Q-node are considered, andthose which overlap are discarded, along withtheir descendants. The language for express-ing positions (i.e. values for s) is also inde-pendent. We consider that expressing �niteunions of i..j, last� i..last� j, and i..last� jwould su�ce for most purposes. The rangeof possible values is 1..last. For example,[3..5] paragraph in page retrieves the 3rd,4th and 5th paragraphs from all pages. Ifparagraphs include other paragraphs, onlythe top-level ones are considered, and thosepartially included in a page are discarded.[s] P beginin/endin Q: The same as beginin/endin, but using s as above. For exam-ple, [last] page beginin chapter selects

the last pages of all chapters (which normallyare not wholly included in the chapter).Including operators: Select from the �rst operand the ele-ments including in some sense elements from the sec-ond one.P with(k) Q: Is the set of nodes of P which include atleast k nodes ofQ. If (k) is not present, we assume1. For example, section with(5) "computer" s-elects the sections in which the word \computer"appears �ve times or more.P withbegin/withend(k) Q: Is the set of nodes of Pwhich include at least k start/end points of n-odes of Q. If (k) is not present, we assume 1.For example, chapter withbegin(10) page se-lects chapters with a length of ten pages or more(assuming each chapter begins at a new page).Direct structure operators: Select elements from the �rstoperand based on direct structural criteria, i.e. by re-lationships of direct parentship in the tree of the view.Both operands must be from the same view, whichcannot be the text view.[s] P child Q: Is the set of nodes of P which are chil-dren (in the view tree) of some node of Q, ata position considered in s (that is, the s-th chil-dren). If [s] is not present, we assume 1::last. Forexample, title child chapter retrieves the titlesof all chapters (and not titles of sections insidechapters). Note that child is not essential, since[s] P child Q = P is ([s] View in Q), but thisalternative is much more expensive.

P parent(k) Q: Is the set of nodes of P which are par-ents (in the view tree) of at least k nodes of Q.If (k) is not present, we assume 1. For example,chapterparent(3) section selects chapters withthree or more top-level sections.Positional operators: Select from the �rst operand elementswhich are at a given distance of some element of thesecond operand, under certain additional conditions.P after/before Q (C): Is the set of nodes of Pwhose segments begin/end after/before theend/beginning of a segment in Q. If there is morethan one P -candidate for a node of Q, the near-est one to the Q-node is considered (if they are atthe same distance, then one of them includes theother and we select the higher one). In order fora node of P to be considered a candidate for a Q-node, the minimal node of C that contains it mustbe the same than that of the Q-node, or must notexist in both cases. For example, table afterfigure (chapter) retrieves tables which are n-earest to a �gure preceding them, inside the samechapter.P after/before(k) Q (C): Is the set of all nodes ofP whose segments begin/end after/before theend/beginning of a segment in Q, at a distanceof at most k text symbols (not only nearestones). C plays the same role as above. For ex-ample, "computer" before(10) "architecture"(paragraph) selects the words \computer" thatare followed by \architecture" at a distance of atmost 10 characters (or words, depending on theview that we have on the text), inside the sameparagraph. Recall that this distance is measuredin the �ltered �le (e.g. with markup removed).Set manipulation operators: Manipulate both operands assets, implementing union, di�erence, and intersec-tion under di�erent criteria. Except for same, bothoperands must be from the same view (which mustnot be the text view).P + Q: Is the union of P and Q. For example, small+ medium + large is the set of all size-changingcommands. To make a union on text segments,use collapse.P � Q: Is the set di�erence of P and Q. For example,chapter � (chapter with figure) are the chap-ters with no �gures. To subtract text segments,use P subtract (P same Q).P is Q: Is the intersection of P and Q. For example,([1] section in chapter) is ([3] section in page)selects the sections which are �rst (top-level) sec-tions of a chapter and at the same time third(top-level) section of a page. To intersect textsegments use same.P same Q: Is the set of nodes of P whose segment isthe same segment of a node in Q. P and Q can befrom di�erent views. For example, title same"Introduction" gets the titles that say (exactly)\Introduction".Observe that all operations related with beginnings andendings make sense only if the operands are from di�erent

views, since otherwise they are the same as their full segmentcounterparts.Except for child and View, the operators are not redun-dant. One can consider that there are too many operands,but recall that we do not propose a speci�c query language,rather we point out a number of operators that are e�cientlyimplementable within our approach.3.3.2 ExamplesNow we present some examples of the use of these operators,to give an idea of what kind of queries can we pose with thislanguage.Suppose we have a view V with constructors book,introduction, bibliography,chapter, appendix,section,paragraph and formula. A book has an introduction, anumber of chapters, a bibliography and an appendix thathas sections. chapters also have sections and sectionshave more sections inside them, and paragraphs. Wealso have figure and table, which can be children of asection or a chapter. A table is divided in rows, and thesein columns. The following elements have always a title:book, chapter, section, figure and table. Finally, wehave citations which references other books, listed underbibliography.We have another view V 0 with volume, page and line.We have still another view VP for presentation aspects, e.g.underline, emphasize, font, etc.Suppose also that we have a simple matching language,in which it is only possible to �nd a given word.� italics before(100) (figure with "graphs")(page) is the query we wanted in the Introduction.� chapter parent (title same "Architecture"), isthe set of all chapters of all books titled \Architec-ture". Here, "Architecture" is an expression of thepattern-matching sublanguage.� [last] figure in (chapter with (section with(title with "early"))), is the last �gure of chap-ters in which some section (or subsection, use parentif you want top-level sections) has a title which in-cludes the word \early". This query is illustrated inFigure 3.� paragraph before (paragraph with ("Computer"before(10) "Science" (paragraph))) (page), isthe paragraph preceding another paragraph where theword \Computer" appears before (at 10 symbols orless) the word \Science". Both paragraphs must be inthe same page.� [3] column in ([2] row in (table with (titlesame "Results"))), extracts the text in position(2; 3) of tables titled \Results".� (citations in ([2..4] chapter in book)) with"Knu*", selects references to Knuth's books in chap-ters 2-4.� (section with formula)�(section in appendix),selects sections with mathematical formulas that arenot appendices.� introduction + (chapter parent (title with"Conclusions")) + bibliography, can be a goodabstract of books.

Early results Solve early....

Text

book

chapter chapter chapter

section section figure

. . . .

. . . .

title figure figure

title title section

title section

title figure

title title

title

title

.
Structure

.

Figure 3: Illustration of the e�ect of the query [last]figure in (chapter with (section with (title with"early"))). The circles indicate selected nodes.3.4 A Software ArchitectureIn this section we outline a possible software architecture fora system based on our model.Users should interact with our system via an interface,in which they de�ne what they want in a friendly language(see [15] for an example of a friendly language oriented toquerying structured databases). That interface should thenconvert that query into a query syntax tree, i.e. the languagewe present here. This tree is then submitted to the queryengine.The query engine optimizes the query and generates asmart query plan to evaluate it (i.e. linearizes the tree intoa sequence of operations to perform). The leaves of thequery tree involve extracting components of the hierarchyby name (constructors), and text matching subexpressions.The �rst ones are solved by accessing the index on structureto extract the whole set of nodes from that constructor (i.e.a set of node ids and their segments). The second onesare submitted to the text search engine, which returns alist of segments corresponding to matched portions of thetext. Thereafter, the rest of the operations are performedinternally, until the �nal result (a set of nodes) is deliveredto the interface.The interface is in charge of providing visualization ofresults. To accomplish that, it must access the contentsof the database, at the portions dictated by the retrievedsegments. This is also done via a request to the text engine,since only it knows how to access the text.The text engine is in charge of o�ering a text pattern-matching language, in which it accepts queries and returnsthe corresponding list of segments; to keep the indices itneeds for searching; and to present a �ltered version of thetext �le to upper layers, in order to retrieve the contents ofa submitted text segment.If the text engine is a completely separate subsystem, twoseparate indexing processes can exist. One of them indexesthe text to answer text pattern-matching queries (this in-dexing is performed by the text engine). The other extractsthe structure in some way from the text (parsing, recogniz-ing markup, etc.), and creates the structure index, which islater accessed by the query engine. This is the only time

when the text can be accessed directly from outside the textengine.Indeed, both indexers must collaborate, since themarkup used by the structure indexer should be �ltered outby the text indexer when presenting the text to upper layers.See Figure 4 for a diagram of how a complete systembased on this schema should be. The \document layer" isintended to support more sophisticated document manage-ment, such as collections of documents, etc.
Text

Text
index

contents

Structure
index

segments

Textual

query

List of

Query
Visualization

of results

T
ex

t
co

n
te

n
ts

Nodes

Name

Search

S
eg

m
en

t

Matches

Query

tree segments
Set of

Text engine

Parse

Write

Filter

Write

A
d

d
 d

o
cu

m
en

ts

User

documents

Add

Text

indexer
TextText

retrieval

Structure
indexer

engine
Query

Interface

Document layer

Figure 4: The architecture of a system following our model.4 EvaluationIn this section we brie
y present the results of evaluatingthis model, both in expressivity and e�ciency. The readeris referred to [19] for details.4.1 ExpressivityWe have compared our model against the novel models wesurveyed here. We de�ned formally the semantics of ouroperations and compared our model against each other, todetermine which features from ours can be represented inothers and vice versa. Later, we de�ned an informal frame-work to situate similar models [19, 20].We present in Figure 5 a graphical version of this com-parison. We identify the main points about expressivity,and represented each model as a set containing the points itreasonably supports. The p-strings model is not included,because is a data manipulation language.From the �gure, we can see that the main features lack-ing in our model are tuples, semijoin by contents and thepossibility of having overlaps and combined nodes in the re-sult set of a query. We believe that none of them can beincluded without degrading the performance. The set we

PAT expressions
Hybrid model
Lists of references

Text is first-
class object

Overlaps
in resultsCompositional

language

Positional
inclusion

Direct
ancestorship

Distances

Semijoin

by contentsand join

Tuples

Set
manipulation

structure

Inclusion
relations

Tree
matching

Our
model

Combination
of nodes

lists
Overlapped

Overlaps in

Hierarchy
on results

structures
Recursive

Figure 5: A graphical representation of the comparisonmade between models.include is enough for a large class of applications. Some ofthe lacking features are better included by integrating thismodel with another one (e.g. an object-oriented database).4.2 E�ciencyWe have de�ned algorithms and data structures to imple-ment our model, and analyzed their worst-case behavior.We also have implemented these algorithms in a prototype,which we used to obtain average times running the modelwith real data.The sets of nodes to operate are arranged as trees, bylooking at their embedding in the hierarchy of the view theybelong to. Several versions of the algorithms have been s-tudied, being the best a merge-like approach that traversesboth trees in synchronization.Two implementations are analyzed here: a full evaluationversion computes the whole set of answers at once; while alazy evaluation version computes only the result, and nodesfrom inner operands of the query syntax tree are obtainedonly if they are necessary to compute the �nal result.While the lazy version forces an order of evaluation thatis not always optimal and hence has higher complexity, itcan compute only part of the result, so which one is betterhas to be experimentally determined.The results are summarized in table 1.The performance of View and Constr queries dependon the indexing scheme, being normally linear in the size ofthe result.We conducted a set of tests on a Sun SparcClassic, with16 Mb of RAM, running SunOS 4.1.3 U1. The CPU speedof this machine is approximately 26 SpecMark.From these results we conclude that, in the full version,the time to process a query is proportional to the total num-ber of nodes of all internal results, being the constant near50.000 nodes per second for that machine. A rough approx-imation to this is (2q � 1)� average operand size, where qis the number of nodes of the query syntax tree. The lazyversion is normally better than the full one, especially forcomplex queries, although its running times are very unsta-ble. The running times are between 25% and 90% of the

Operation Full Lazy+,� n nmin(d; h)is/same n nin min(n; d2h) min(n; d2h)beginin/endin min(n; d2h) min(n+ dh; d2h)[s]*in nmin(d; h) nmin(d; h)with*(k) n nmin(n; k + dh)[s]child n nparent(k) n nmin(d; h)after/before nmin(n; dh) nmin(n; dh)Table 1: Time complexities of the algorithms. n is the sizeof the operands, h the maximum height of their tree repre-sentation and d the maximum arity of those trees.full version, and between 40% and 100% of the nodes areexpanded.These good complexity results are possible thanks to ourapproach of coupling nodes with segments, which allows usto readily apply divide-and-conquer techniques for obtain-ing the whole set of solutions to a query. The ideas of aset-oriented query language, a data structure in which wecan easily separate ranges of segments, and the reductionof all queries to operations on proximal nodes lead us toan implementation where the amortized cost per retrievedelement is, in many cases, constant.5 Conclusions and Future WorkThe problem of querying a textual database on both itscontents and structure has been analyzed. We found theexisting approaches to be either not expressive enough orine�cient.Then, we have de�ned a model for structuring and query-ing textual databases that is expressive enough and e�cient-ly implementable. This language is not meant to be accessedby �nal users, but to constitute the operational algebra.Finally, we have evaluated our model in terms of expres-sivity and e�ciency. The model has been shown to be com-petitive in expressivity, getting close to others that do nothave an e�cient implementation. On the other hand thealgorithms show good performance, both in their analysisand in the tests, what situates this model close in e�ciencyto those which have much less expressivity.See Figure 6 for a graphical (and informal) comparisonof similar models when taking into account both e�ciencyand expressivity. Note that we have included p-strings inthis drawing, assuming an expressivity superior to all thelanguages we have analyzed. Note also that only a part ofthe lists-of-references model is considered (and the e�ciencyto implement only that part is considered). Note that, asany quantization of concepts, this comparison is subjective.Nevertheless, it does give an idea of where our model is.There are a number of research directions related withthe model:� Exploration of the possibilities o�ered by our model inorder to �nd more interesting operators which lie intoour philosophy (being thus e�ciently implementable).� De�nition of a query language suitable for end users,possibly visual, to map onto our operational algebra.

Our model

model

Hybrid

lists

PAT
expressions

Overlapped

Lists of references

Expressivity

Tree matching

p-strings

E
ff

ic
ie

nc
y

Figure 6: A comparison between similar models, regardingboth e�ciency and expressivity.� Integration between this kind of model and others,such as the relational or the traditional ones of infor-mation retrieval. This issue has not been consideredhere, since we focus on the structure problem. See [21]for some ideas on this area.� Generalization of the problem to manage non-hierarchical structures, such as a hypertext network,while keeping the desirable properties obtained for thissimpler case.� A formal framework in which to compare expressivityis needed. The long-term goal should be a formal andsound hierarchy like what can be found in the area offormal languages (see [20, 7] for some examples).References[1] R. Baeza-Yates. An hybrid query model for full textretrieval systems. Technical Report DCC-1994-2, Dept.of Computer Science, Univ. of Chile, 1994.[2] G. Blake, T. Bray, and F. Tompa. Shortening the OED:Experience with a grammar-de�ned database. ACMTIS, 10(3):213{232, July 1992.[3] V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl.From structured documents to novel query facilities. InProc. ACM SIGMOD'94, pages 313{324, 1994.[4] C. Clarke, G. Cormack, and F. Burkowski. An algebrafor structured text search and a framework for its im-plementation. The Computer Journal, 1995. To appear.[5] J. Conklin. Hypertext: An introduction and survey.IEEE Computer, 20(9):17{41, Sept. 1987.[6] M. Consens and T. Milo. Optimizing queries on �les.In Proc. ACM SIGMOD'94, pages 301{312, 1994.[7] M. Consens and T. Milo. Algebras for querying textregions. In Proc. PODS'95, 1995. California.[8] C. Date. An Introduction to Database Systems.Addison-Wesley, Reading, Massachusetts, 6th edition,1995.

[9] B. Desai, P. Goyal, and S. Sadri. A data model foruse with formatted and textual data. Journal of ASIS,37(3):158{165, 1986.[10] H. Fawcett. PAT 3.3 User's Guide. UW Centre for theNew OED and Text Research, Univ. of Waterloo, 1989.[11] W. Frakes and R. Baeza-Yates, editors. InformationRetrieval: Data Structures and Algorithms. Prentice-Hall, Englewood Cli�s, New Jersey 07632, 1992.[12] G. Gonnet and F. Tompa. Mind Your Grammar: a newapproach to modelling text. In Proc. VLDB'87, pages339{346, 1987.[13] R. Hull and R. King. Semantic database modelling:Survey, applications and research issues. ACM Com-puting Surveys, 19(3):201{260, 1987.[14] P. Kilpel�ainen and H. Mannila. Grammatical treematching. In Proc. CPM'92, pages 162{174, 1992.[15] P. Kilpel�ainen and H. Mannila. Retrieval from hier-archical texts by partial patterns. In Proc. ACM SI-GIR'93, pages 214{222, 1993.[16] W. Kim and F. Lochovski, editors. Object-OrientedConcepts, Databases and Applications. Addison-Wesley, Reading, Massachusetts, 1989.[17] A. Loe�en. Text databases: A survey of text modelsand systems. ACM SIGMOD Conference. ACM SIG-MOD RECORD, 23(1):97{106, Mar. 1994.[18] I. MacLeod. A query language for retrieving informa-tion from hierarchic text structures. The ComputerJournal, 34(3):254{264, 1991.[19] G. Navarro. A language for queries on structure andcontents of textual databases. Master's thesis, Dept. ofComputer Science, Univ. of Chile, Apr. 1995.[20] G. Navarro and R. Baeza-Yates. Expressive power ofa new model for structured text databases. In Proc.PANEL'95, Aug. 1995. Canela, Brazil.[21] R. Sacks-Davis, T. Arnold-Moore, and J. Zobel.Database systems for structured documents. In Proc.ADTI'94, pages 272{283, 1994.[22] A. Salminen and F. Tompa. PAT expressions: an alge-bra for text search. In COMPLEX'92, pages 309{332,1992.[23] G. Salton and M. McGill. Introduction to Modern In-formation Retrieval. McGraw-Hill, New York, 1983.[24] M. Stonebraker, H. Stettner, N. Lynn, J. Kalash, andA. Guttman. Document processing in a relationaldatabase system. ACM TOIS, 1(2):143{158, Apr. 1983.[25] J. Tague, A. Salminen, and C. McClellan. Completeformal model for information retrieval systems. In Proc.ACM SIGIR'91, pages 14{20, 1991.

