A Language for Queries on Structure
and Contents of Textual Databases®

Gonzalo Navarro Ricardo Baeza-Yates

Dept. of Computer Science
University of Chile
Blanco Encalada 2120,
Santiago, Chile
{gnavarro,rbaeza}@dcc.uchile.cl

Abstract

We present a model for querying textual databases by both
the structure and contents of the text. Our goal is to ob-
tain a query language which is expressive enough in practice
while being efficiently implementable, features not present
at the same time in previous work. We evaluate our model
regarding expressivity and efficiency. The key idea of the
model is that a set-oriented query language based on oper-
ations on nearby structure elements of one or more hierar-
chies i1s quite expressive and efficiently implementable, being
a good tradeoff between both goals.

1 Introduction

Textual databases are deserving more and more attention,
due to their multiple applications: libraries, office automa-
tion, software engineering, automated dictionaries and en-
cyclopedias, and in general any problem based on keeping
and retrieving textual information [11].

The purpose of a textual database is to store textual doc-
uments, structured or not. A textual database is composed
by two parts: contents and structure (if present). The con-
tent is the text itself, while the structure relates different
parts of the database by some criterion.

Any information model for a text database should com-
prise three parts: text, structure, and query language. It
must specify how is the text seen (i.e. character set, syn-
onyms, stopwords, hidden portions, etc.), the structuring
mechanism (i.e. markup, index structure, type of structur-
ing, etc.), and the query language (i.e. what things can be
asked, what the answers are, etc.).

The purpose of any system related to information re-
trieval is to help the users of a database to find what they
need. Textual database are not as relational databases [8],
in which the information is already formatted and meant to
be retrieved by a “key”. The information is there, but there
is no easy way to extract it. The user must specify what
he/she wants, see the results, then reformulate the query,
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and so on, until is satisfied with the answer. Anything we
can do to help users to find what they want is worth con-
sidering.

Traditionally, textual databases have allowed their users
to search their contents (words, phrases, etc.) or their struc-
ture (e.g. by looking at a table of contents). These are two
mechanisms by which users can find what they need.

Another interesting fact is that human beings have “visu-
al memory”, e.g. they may remember that what they want
was typed in italics, short before a figure that said some-
thing about “earth”. Searching for the word “earth” may
not be a good idea, as well as searching all figures or all
the text in italics. What really would help to exploit visual
memory would be a language in which we can say “I want
a text on italics, near a figure containing the word ‘earth’ ”.
This query mixes content and structure of the database.

Mixing contents and structure in queries allows us to
pose very powerful queries; being much more expressive than
each mechanism by itself. By using a query language that
integrates both types of queries, we can potentiate the re-
trieval quality of textual databases.

The aim of this paper i1s to present a model to structure
and query textual databases, which is expressive enough and
efficiently implementable. There is not at this time, to the
best of our knowledge, any approach satisfying both goals.
A more complete presentation of this work can be found in
[19].

The query language we present is not necessarily intend-
ed for final users, rather it is an operational algebra onto
which one can map a more user-oriented query language.

This paper is organized as follows. In section 2, related
work is reviewed. In section 3, our model is presented, in
terms of a data model and the operations allowed for queries.
In section 4, we evaluate the model regarding expressivity
and efficiency. Finally, in section 5, our conclusions and
future work directions are outlined.

2 Related Work

In this section we briefly review previous approaches to the
problem of querying a textual database. We first mention
the traditional ones, and then cover novel ideas.

2.1 Traditional Approaches

There are many classical approaches to the problem of
querying a textual database. Some of them are: attempts
to adapt the relational model [8] to include text manage-
ment [24, 9]; the many traditional models of information re-



trieval (e.g. the boolean model, the probabilistic model, the
bit-vector model, the full-text model, etc.) [23, 11]; hyper-
text [5] and semantic networks [13, 25]; and object-oriented
databases adapted to manage text [16, 3].

None of these approaches satisfy our goals of mixing
structure and contents in queries. Some of them do not allow
to express rich enough structures, others are too oriented to
contents, and others to structure. Finally, although object-
oriented database can be extended to successfully combine
both areas, they are too general and do not exploit the se-
mantics involved in structuring. They represent the struc-
ture merely as a network and have a query language oriented
to those graphs, making very inefficient queries that would
be simple if we knew the inclusion semantics involved in the
structure (e.g. costly path-expressions on part-of hierarchies
can be expressed as simple segment inclusion in many cases).
See [6] for an excellent work on this topic.

Although these models are not powerful enough to ex-
tract the information we want from textual databases, they
address different problems that pure textual database mod-
els oriented to structure do not address in general (e.g. tu-
ples and joins, attributes, etc.). We do not compare our
model to these, because they address different goals.

In [21] it is argued that is better to put a layer integrating
a traditional database system with a textual one, than trying
to design a language comprising all the features. Hence,
each subsystem focuses on the part of the query in which
specializes (e.g. [6] integrates an object-oriented database
with a structured text engine).

We rely on this approach. We design a language which
is focused on exploiting structure- and text-related features.
Other features, such as tuples and joins, should be added by
integrating this language with another one oriented to that
kind of operations, e.g. a relational database.

On the other hand, we do not address the issue of merg-
ing structural queries with those involving operations such
as relevance ranking (e.g. the sections or titles where the
word “computer” is relevant). See [21] for some ideas on
this problem.

2.2 Novel Approaches

These approaches are characterized by generally imposing
a hierarchical structure on the database, and by mixing
queries on contents and structure. Although this structuring
is simpler than, for example, hypertext, even in this simpler
case the problem of mixing contents and structure is not
satisfactorily solved.

We present a sample of novel models, which cover many
different approaches to solve this problem under the stated
conditions. See [17] for another survey.

The Hybrid Model [1]: modelizes a textual database as a set
of documents, which may have fields. Those fields need
not to cover all the text of the document, and can nest
and overlap. The query language is an algebra over
pairs (D, M), where D is a set of documents and M
is a set of match points in those documents. There
is a number of operations for obtaining match points:
prefix search, proximity, etc. There are operations for
set manipulation of both documents and match points;
for restricting matches to only some fields; and for re-
trieving fields owning some match point. Inclusion re-
lationships can only be queried with respect to a field
and a match point, thus the language is flat and not
fully compositional. This model can be implemented
very efficiently.

PAT Expressions [22, 10]: sees only match points, which are
used to define regions. Regions are defined by match
expressions that specify how their endpoints are. Each
region represents a set of disjoint segments. This al-
lows dynamic definition of regions, and to match all
queries on regions to queries on matches. The need to
avoid overlapping regions cause a lot of troubles and
lack of orthogonality in the language. This language
achieves high efficiency at the cost of some restrictions,
which for some applications are reasonable.

Overlapped Lists [4]: solves the problem of PAT expressions
in an elegant way, by allowing overlaps, but not nest-
ing. Each region is a list of (possibly overlapping) seg-
ments, originated by textual searches or by named re-
gions (like chapters, for example). The idea is to unify
both searches by using an extension of inverted lists,
where regions and words are indexed the same way.
The implementation of this model can be as efficient
as that of PAT expressions.

Lists of References [18]: is a general model to structure and
query textual databases, including also hypertext-like
linkages, attribute management and external proce-
dures. The structure of documents can be hierarchical
(no overlaps), but answers to queries are flat (only the
top-level elements qualify), and all elements must be
from the same type (e.g. only sections, or only para-
graphs). Answers to queries are seen as lists of refer-
ences (i.e. pointers to the database). This allows to
integrate in an elegant way answers to queries to hy-
pertext links, since all are seen as lists of references.
This model is very powerful, and because of this, hard
to implement efficiently. To make the model suitable
for comparison, we consider only the portion related
to querying structures. Even this portion is quite pow-
erful.

Parsed Strings [12]: is in fact a data manipulation language.
To express database schemas a context-free grammar
is used, that is, the database is structured by giving
a grammar to parse its text. The fundamental da-
ta structure is the p-string, or parsed string, which is
composed of a derivation tree plus the underlying text.
The manipulation is carried out via a number of pow-
erful operations to transform trees. This approach is
extremely powerful, and it is shown to be relationally
complete. However, it is hard to implement efficiently

[2].

Tree Matching [15]: is a query model relying on a single
primitive: tree inclusion. The idea is to model, both
the structure of the database and the query (a pattern
on structure), as trees, to find an embedding of the pat-
tern into the database which respects the hierarchical
relationships between nodes of the pattern. The lan-
guage is enriched by Prolog-like variables, which can be
used to express requirements on equality between part-
s of the matched substructure, and to retrieve another
part of the match, not only the root. The complexity
of the algorithms is studied, showing that the only case
in which the problem is of polynomial time is when no
logical variables are used and if the matches have to
satisfy the left-to-right ordering in the pattern. Even
in the polynomial case, the operations have to traverse
the whole database structure to find the matches.



3 A New Model for Querying Structured Text

In this section we give an informal description of our model.
A formal presentation can be found in [19].

3.1 Main Concepts

In this section we expose our general ideas on how a struc-
turing model and a query language can be defined to achieve
the goals of efficiency and expressivity simultaneously. Lat-
er, we draw the model following these lines.

Our main goal is to define powerful operations that al-
low matching on the structure of the database, but avoiding
algorithms that match “all-against-all” searching what we
want across the whole tree of the structure (e.g. [14]),.

Since we want to define a fully compositional query lan-
guage, we can consider query expressions as syntax trees,
where the nodes represent operations to perform and the
subtrees their operands.

A first point is that we want a set-oriented language,
because they have been found successful in other areas (such
as the relational model), and because if we have to extract
the whole set of answers, it is possible to find algorithms
that retrieve the elements at a very low cost per element.

To obtain the set of answers we want to avoid a “top-
down” approach, where the answers are searched in the w-
hole tree. We rather prefer a “bottom-up” strategy. The
idea is that we should be able to quickly find a small set
of candidates for our answers, and then eliminate those not
meeting the search criterion.

Our solution is an algebra over sets of nodes (each node
is a structural element of the database, e.g. a particular
chapter or figure). That means that the operations take sets
of nodes and return a set of nodes. These sets of nodes are
subsets of the set of all nodes of the tree of the database. The
only place in which we pose a text matching query or name
a structural component should be at the leaves of the syntax
tree of queries. These leaves must be solved with some sort
of index, and converted to a set of nodes. Thereafter, all
operators deal with these sets of nodes and produce new
sets. Figure 1 shows the main concepts, which are refined
later, to detail the query language and to draw a general
software architecture comprising this model.

Query
Language

Composition
Operators

Basic Text
Operators

Basic Structure
Operators

Structure index

Figure 1: Imitial diagram of how our model operates.

Text index

With this approach, we use indices to retrieve the nodes
that satisfy a text matching query, or the nodes correspond-
ing to a given structural component, also called “construc-
tor” (e.g. chapters). These nodes must be obtained without
traversing the whole database.

Once we have converted the leaves of the query syntax
tree into sets, all the other operations take the sets of nodes
and operate them. Normally, one set will hold the candi-
dates for the result of the operation. Note that we never
have to traverse the structure when searching.

We need still another piece to complete the picture, since
at this point the operations between sets can be as time-
consuming as matching against the database.

This piece is the coupling between nodes and segments.
The segments are pairs of numbers representing contiguous
portions of the text (e.g. the segment of a chapter includes
all its text). This coupling allows us to use efficient data
structures to arrange the nodes by looking at their segments
(for example, forming a tree). In other approaches [15, 12],
there is a weak binding between nodes and the segment they
own in the text, and thus they need to search in the whole
tree to find what they need.

In order for this arrangement to be efficient, the opera-
tions should be defined in such a way that they only need
to match nodes from both operands that are more or less
proximal. When this happens, we can easily apply divide-
and-conquer techniques to drastically limit the area in which
we must search for matching nodes.

If we can efficiently convert text matching and named
structural components into well-arranged sets of nodes, and
all operators can efficiently work with the arranged sets and
produce arranged sets, then we will have an efficient imple-
mentation.

This schema allows us to have more than one structure
hierarchy, if they are independent.

On the other hand, we must show that many interesting
operators are in fact of the kind we need, i.e. they operate
on nearby nodes and all what they need to operate is the
identity of the nodes and their corresponding segment.

Our point is then twofold: first, we must show that a
language in which all operations work on nearby nodes can
be efficiently implemented; and second, we must show that
it is possible to obtain a quite expressive query language by
using only that kind of operations.

3.2 Data Model

A text database is composed of two parts:

o Text, which is seen as a (long) sequence of symbols.
Whether this text is stored as it is seen, or it is filtered
to hide markup or uninteresting components, is not
important for the model, since we use the logical view
of the text. Additionally, symbols may be characters,
words, etc.

e Structure, which is organized as a set of independent
(orthogonal) hierarchies. Each hierarchy has its own
types of nodes, and the areas covered by the nodes of
different hierarchies can overlap, although this cannot
happen inside the same hierarchy. They do not need
to cover the whole text.

Removing the markup from the document is important,
though. The user should not be aware of details about how
the structure of the document is internally represented, or
if it is obtained by parsing, etc. He/she should be able to



query the document as it is seen in the display device. If two
words are contiguous in the logical view, the user should not
be aware about that there may be markup between them if,
for example, is asking for proximity. It may be argued that
including the markup in the text allows the user to query
on the markup by text matching. However, we believe that
this work must be carried out by the implementation. Any
query about markup is probably a query about structure,
and we have a query language for that. The user should
not query the structure in such a low-level fashion, he/she
should use the content query language to query on contents
and the structure query language to query on structure.

The text is considered as static, and the structure built
on it quite static also. That is, although we allow to build
new hierarchies, delete and modify them, our aim is not
to make heavy and continued use of those operations. We
are not striving for efficiency in those aspects, our model of
usage is: the text is static, the hierarchies are built on it
once (or sparingly), and querying is frequent.

Each hierarchy (or tree) is called a view, which as its
name suggests, is an independent way to see the text (e.g.
chapters / sections / paragraphs and pages / lines). The
root of each view is a special node considered to comprise
the whole database.

Each view has a set of constructors, which denote types
of nodes of the corresponding tree. Examples of constructors
are page, chapter and section. The sets of constructors of
different views are disjoint.

Each node of the tree corresponding to a view has an
associated constructor, and a segment, which is a pair of
numbers representing a contiguous portion of the underlying
text. The segment of a node must include the segments of
its children in the tree (this inclusion does not need to be
strict).

Any set of disjoint segments can be seen as belonging
to a special text view, where the nodes belong to a text con-
structor and have flat structure (all nodes at the second level
of the tree). Thus, the text view has one node for each pos-
sible segment of the text. The idea is to use that view to
model pattern-matching queries, which we impose to have
flat structure. This restriction is not essential, since those
pattern-matching expressions could perfectly well generate a
nested structure. However, we assume that the structure is
flat for some operations on pattern-matching queries, which
would not be applicable if the structure was not flat.

3.3 Query Language

In this section, we define a query language to operate on
the structure defined previously, including also queries on
contents.

We do not intend to define a monolithic, comprehensive,
query language, since the requirements vary greatly for each
application. Including all alternatives in a single query lan-
guage would make it too complex. Instead, we point out a
number of operations that follow our lines (and hence can
be efficiently implementable).

Each set produced by evaluating a query is a subset of
some view. Fach element of this set is a single node, repre-
senting a single segment.

We decided not to merge nodes from different views in
a single result for two reasons: first, it is not clear, views
being different and independent ways to see the same text,
whether this could make sense (e.g. pages or chapters with
a figure); second, the implementation is much more efficient
if every set is a strict hierarchy. In the approach of [4], the

other choice is selected, 1.e. overlaps are allowed in answers,
but not nested components.

Although it is not possible to retrieve subtrees (only n-
odes), the algebra allows to select nodes on the basis of their
context in the view tree, or the trees of the operands, much
like in [15].

This language is an operational algebra, not necessarily
intended to be accessed by the final user, as the relational
algebra is not seen by the users of a relational database. It
serves as an intermediate representation of the operations.

3.3.1 Operations

We list now the operations we consider are enough for a
large set of applications, and suitable to be efficiently im-
plemented. As we said before, this set is not exclusive nor
essential.

In Figure 2 we outline the schema of the operations.
There are basic extraction operations (forming the basis of
querying on structure and on contents), and operations to
combine results from others, which are classified in a number
of groups: those which operate by considering included ele-
ments, including elements, nearby elements, to manipulate
sets and by direct structural relationships.

Matching sublanguage: Is the only one which accesses the
text contents of the database, and is orthogonal to the
rest of the language.

Matches: The matching language generates a set of
non-overlapping segments, which are introduced
in the model as belonging to the text view, as ex-
plained before. For example, "computer" gener-
ates the flat tree of all segments where that word
appears in the text. Note that the matching lan-
guage could allow much more complex expression-
s.

Operations on matches: Are applicable only to subset-
s of the text view, and make transformations to
the segments. We see this point and the previ-
ous one as the mechanism for generating match
queries, and we do not restrict our language to
any sublanguage for this. See [19] for some alter-
natives. As an example, we propose M collapse
M', which superimposes both sets of matches,
merging them when an overlap results, or M sub-
tract M’, which deletes from M the points from
segments present in M.

Basic structure operators: Are the other kind of leaves of the
syntax tree, which refer to basic structural compo-
nents.

Name of constructor: (“Constr” queries). Is the set of
all nodes of the given constructor. For example,
chapter retrieves all chapters in a book.

Name of view: (“View” queries). Is the set of all n-
odes of the given view. For example, Formatting
retrieves the whole view related to formatting as-
pects. The same effect can be obtained by sum-
ming up (“4” operator) all the constructors of
the view.

Included-In operators: Select elements from the first operand
which are in some sense included in one of the second.

Free inclusion: Select any included element.
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Figure 2: The operations of our model, classified by type.

P in Q: Isthe set of nodes of P which are included
in a node of . For example, citation in
table selects all citations made from inside a
table.

P beginin/endin Q: Is the set of nodes of P whose
initial /final position is included in a node of
Q. For example, chapter beginin italics
are the chapters that begin when the italic
font is active.

Positional inclusion: Select only those elements includ-
ed at a given position. In order to define position,
only the top-level included elements for each in-
cluding node are considered.

[s] Pin Q: The same as in, but only qualifying
the nodes which descend from a (}-node in
a position (from left to right) considered in
s. In order to linearize the position, for each
node of @ only the top-level nodes of P not
disjoint with the ¢J-node are considered, and
those which overlap are discarded, along with
their descendants. The language for express-
ing positions (i.e. values for s) is also inde-
pendent. We consider that expressing finite
unions of ¢..5, last —s..last — 3, and s..last — y
would suffice for most purposes. The range
of possible values is 1..last. For example,
[3..5] paragraph in page retrieves the 3rd,
4th and 5th paragraphs from all pages. If
paragraphs include other paragraphs, only
the top-level ones are considered, and those
partially included in a page are discarded.

[s] P beginin/endin Q: The same as beginin/
endin, but using s as above. For exam-
ple, [last] page beginin chapter selects

the last pages of all chapters (which normally
are not wholly included in the chapter).

Including operators: Select from the first operand the ele-

ments including in some sense elements from the sec-
ond one.

P with(k) Q: Is the set of nodes of P which include at
least k nodes of Q. If (k) is not present, we assume
1. For example, section with(5) "computer" s-
elects the sections in which the word “computer”
appears five times or more.

P withbegin/withend(k) Q: Is the set of nodes of P
which include at least k start/end points of n-
odes of Q. If (k) is not present, we assume 1.
For example, chapter withbegin(10) page se-
lects chapters with a length of ten pages or more
(assuming each chapter begins at a new page).

Direct structure operators: Select elements from the first

operand based on direct structural criteria, i.e. by re-
lationships of direct parentship in the tree of the view.
Both operands must be from the same view, which
cannot be the text view.

[s] P child Q: Ts the set of nodes of P which are chil-
dren (in the view tree) of some node of @, at
a position considered in s (that is, the s-th chil-
dren). If [s] is not present, we assume 1..last. For
example, title child chapter retrieves the titles
of all chapters (and not titles of sections inside
chapters). Note that child is not essential, since
[s] P child @ = P is ([s] View in @), but this

alternative is much more expensive.



P parent(k) Q: Is the set of nodes of P which are par-
ents (in the view tree) of at least k& nodes of Q.
If (k) is not present, we assume 1. For example,
chapter parent(3) section selects chapters with
three or more top-level sections.

Positional operators: Select from the first operand elements
which are at a given distance of some element of the
second operand, under certain additional conditions.

P after/before Q (C): Is the set of nodes of P
whose segments begin/end after/before the
end/beginning of a segment in Q. If there is more
than one P-candidate for a node of @, the near-
est one to the @-node is considered (if they are at
the same distance, then one of them includes the
other and we select the higher one). In order for
a node of P to be considered a candidate for a Q-
node, the minimal node of C that contains it must
be the same than that of the J-node, or must not
exist in both cases. For example, table after
figure (chapter) retrieves tables which are n-
earest to a figure preceding them, inside the same
chapter.

P after/before(k) Q (C): Is the set of all nodes of
whose segments begin/end after/before the
end/beginning of a segment in @, at a distance
of at most k text symbols (not only nearest
ones). C plays the same role as above. For ex-
ample, "computer" before(10) "architecture"
(paragraph) selects the words “computer” that
are followed by “architecture” at a distance of at
most 10 characters (or words, depending on the
view that we have on the text), inside the same
paragraph. Recall that this distance is measured
in the filtered file (e.g. with markup removed).

Set manipulation operators: Manipulate both operands as
sets, implementing union, difference, and intersec-
tion under different criteria. Except for same, both
operands must be from the same view (which must
not be the text view).

P + Q: Is the union of P and Q. For example, small
+ medium + large is the set of all size-changing
commands. To make a union on text segments,
use collapse.

P — Q: Is the set difference of P and Q. For example,
chapter — (chapter with figure) are the chap-
ters with no figures. To subtract text segments,
use P subtract (P same Q).

P is Q: Is the intersection of P and Q. For example,
([1] sectionin chapter) is ([3] sectionin page)
selects the sections which are first (top-level) sec-
tions of a chapter and at the same time third
(top-level) section of a page. To intersect text
segments use same.

P same Q: Is the set of nodes of P whose segment is
the same segment of a node in Q. P and @ can be
from different views. For example, title same
"Introduction' gets the titles that say (exactly)
“Introduction”.

Observe that all operations related with beginnings and
endings make sense only if the operands are from different

views, since otherwise they are the same as their full segment
counterparts.

Except for child and View, the operators are not redun-
dant. One can consider that there are too many operands,
but recall that we do not propose a specific query language,
rather we point out a number of operators that are efficiently
implementable within our approach.

3.3.2 Examples

Now we present some examples of the use of these operators,
to give an idea of what kind of queries can we pose with this
language.

Suppose we have a view V with constructors book,
introduction, bibliography, chapter, appendix, section,
paragraph and formula. A book has an introduction, a
number of chapters, a bibliography and an appendix that
has sections. chapters also have sections and sections
have more sections inside them, and paragraphs. We
also have figure and table, which can be children of a
gsection or a chapter. A table is divided in rows, and these
in columns. The following elements have always a title:
book, chapter, section, figure and table. Finally, we
have citations which references other books, listed under
bibliography.

We have another view V' with volume, page and line.
We have still another view VP for presentation aspects, e.g.
underline, emphasize, font, etc.

Suppose also that we have a simple matching language,
in which it is only possible to find a given word.

e italics before(100) (figure with "graphs'")
(page) is the query we wanted in the Introduction.

e chapter parent (title same "Architecture"), is
the set of all chapters of all books titled “Architec-
ture”. Here, "Architecture'" is an expression of the
pattern-matching sublanguage.

e [last] figure in (chapter with (section with
(title with "early"))), is the last figure of chap-
ters in which some section (or subsection, use parent
if you want top-level sections) has a title which in-
cludes the word “early”. This query is illustrated in
Figure 3.

¢ paragraph before (paragraph with ("Computer"
before(10) "Science" (paragraph))) (page), is
the paragraph preceding another paragraph where the
word “Computer” appears before (at 10 symbols or
less) the word “Science”. Both paragraphs must be in
the same page.

e [3] column in ([2] row in (table with (title
same "Results"))), extracts the text in position
(2, 3) of tables titled “Results”.

e (citations in ([2..4] chapter in book)) with
"Knu*'", selects references to Knuth’s books in chap-
ters 2-4.

e (section with formula)—(section in appendix),
selects sections with mathematical formulas that are
not appendices.

e introduction + (chapter parent (title with
"Conclusions")) + bibliography, can be a good
abstract of books.
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Figure 3: Illustration of the effect of the query [last]
figure in (chapter with (section with (title with
"early"))). The circles indicate selected nodes.

3.4 A Software Architecture

In this section we outline a possible software architecture for
a system based on our model.

Users should interact with our system via an interface,
in which they define what they want in a friendly language
(see [15] for an example of a friendly language oriented to
querying structured databases). That interface should then
convert that query into a query syntax tree, i.e. the language
we present here. This tree is then submitted to the query
engine.

The query engine optimizes the query and generates a
smart query plan to evaluate it (i.e. linearizes the tree into
a sequence of operations to perform). The leaves of the
query tree involve extracting components of the hierarchy
by name (constructors), and text matching subexpressions.
The first ones are solved by accessing the index on structure
to extract the whole set of nodes from that constructor (i.e.
a set of node ids and their segments). The second ones
are submitted to the text search engine, which returns a
list of segments corresponding to matched portions of the
text. Thereafter, the rest of the operations are performed
internally, until the final result (a set of nodes) is delivered
to the interface.

The interface is in charge of providing visualization of
results. To accomplish that, it must access the contents
of the database, at the portions dictated by the retrieved
segments. This is also done via a request to the text engine,
since only it knows how to access the text.

The text engine is in charge of offering a text pattern-
matching language, in which it accepts queries and returns
the corresponding list of segments; to keep the indices it
needs for searching; and to present a filtered version of the
text file to upper layers, in order to retrieve the contents of
a submitted text segment.

If the text engine is a completely separate subsystem, two
separate indexing processes can exist. One of them indexes
the text to answer text pattern-matching queries (this in-
dexing is performed by the text engine). The other extracts
the structure in some way from the text (parsing, recogniz-
ing markup, etc.), and creates the structure index, which is
later accessed by the query engine. This is the only time

when the text can be accessed directly from outside the text
engine.

Indeed, both indexers must collaborate, since the
markup used by the structure indexer should be filtered out
by the text indexer when presenting the text to upper layers.

See Figure 4 for a diagram of how a complete system
based on this schema should be. The “document layer” is
intended to support more sophisticated document manage-
ment, such as collections of documents, etc.
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Figure 4: The architecture of a system following our model.

4 Evaluation

In this section we briefly present the results of evaluating
this model, both in expressivity and efficiency. The reader
is referred to [19] for details.

4.1 Expressivity

We have compared our model against the novel models we
surveyed here. We defined formally the semantics of our
operations and compared our model against each other, to
determine which features from ours can be represented in
others and vice versa. Later, we defined an informal frame-
work to situate similar models [19, 20].

We present in Figure 5 a graphical version of this com-
parison. We identify the main points about expressivity,
and represented each model as a set containing the points it
reasonably supports. The p-strings model is not included,
because is a data manipulation language.

From the figure, we can see that the main features lack-
ing in our model are tuples, semijoin by contents and the
possibility of having overlaps and combined nodes in the re-
sult set of a query. We believe that none of them can be
included without degrading the performance. The set we
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Figure 5: A graphical representation of the comparison
made between models.

include is enough for a large class of applications. Some of
the lacking features are better included by integrating this
model with another one (e.g. an object-oriented database).

4.2 Efficiency

We have defined algorithms and data structures to imple-
ment our model, and analyzed their worst-case behavior.
We also have implemented these algorithms in a prototype,
which we used to obtain average times running the model
with real data.

The sets of nodes to operate are arranged as trees, by
looking at their embedding in the hierarchy of the view they
belong to. Several versions of the algorithms have been s-
tudied, being the best a merge-like approach that traverses
both trees in synchronization.

Two implementations are analyzed here: a full evaluation
version computes the whole set of answers at once; while a
lazy evaluation version computes only the result, and nodes
from inner operands of the query syntax tree are obtained
only if they are necessary to compute the final result.

While the lazy version forces an order of evaluation that
is not always optimal and hence has higher complexity, it
can compute only part of the result, so which one is better
has to be experimentally determined.

The results are summarized in table 1.

The performance of View and Constr queries depend
on the indexing scheme, being normally linear in the size of
the result.

We conducted a set of tests on a Sun SparcClassic, with
16 Mb of RAM, running SunOS 4.1.3_.U1. The CPU speed
of this machine i1s approximately 26 SpecMark.

From these results we conclude that, in the full version,
the time to process a query is proportional to the total num-
ber of nodes of all internal results, being the constant near
50.000 nodes per second for that machine. A rough approx-
imation to this is (2¢ — 1) X average operand size, where ¢
is the number of nodes of the query syntax tree. The lazy
version is normally better than the full one, especially for
complex queries, although its running times are very unsta-
ble. The running times are between 25% and 90% of the

[ Operation | Full | Lazy |
+,— n nmin(d, h)
is/same n n
in min(n, d*k) min(n, d*k)
beginin/endin | min(»,d*k) | min(n + dk,d*h)
[s]*in nmin(d, h) nmin(d, h)
with*(k) n nmin(n, k + dh)
[s]child n n
parent(k) n nmin(d, h)
after/before | nmin(n, dh) nmin(n, dh)

Table 1: Time complexities of the algorithms. n is the size
of the operands, h the maximum height of their tree repre-
sentation and d the maximum arity of those trees.

full version, and between 40% and 100% of the nodes are
expanded.

These good complexity results are possible thanks to our
approach of coupling nodes with segments, which allows us
to readily apply divide-and-conquer techniques for obtain-
ing the whole set of solutions to a query. The ideas of a
set-oriented query language, a data structure in which we
can easily separate ranges of segments, and the reduction
of all queries to operations on proximal nodes lead us to
an implementation where the amortized cost per retrieved
element is, in many cases, constant.

5 Conclusions and Future Work

The problem of querying a textual database on both its
contents and structure has been analyzed. We found the
existing approaches to be either not expressive enough or
inefficient.

Then, we have defined a model for structuring and query-
ing textual databases that is expressive enough and efficient-
ly implementable. This language is not meant to be accessed
by final users, but to constitute the operational algebra.

Finally, we have evaluated our model in terms of expres-
sivity and efficiency. The model has been shown to be com-
petitive in expressivity, getting close to others that do not
have an efficient implementation. On the other hand the
algorithms show good performance, both in their analysis
and in the tests, what situates this model close in efficiency
to those which have much less expressivity.

See Figure 6 for a graphical (and informal) comparison
of similar models when taking into account both efficiency
and expressivity. Note that we have included p-strings in
this drawing, assuming an expressivity superior to all the
languages we have analyzed. Note also that only a part of
the lists-of-references model is considered (and the efficiency
to implement only that part is considered). Note that, as
any quantization of concepts, this comparison is subjective.
Nevertheless, it does give an idea of where our model is.

There are a number of research directions related with
the model:

e Exploration of the possibilities offered by our model in
order to find more interesting operators which lie into
our philosophy (being thus efficiently implementable).

o Definition of a query language suitable for end users,
possibly visual, to map onto our operational algebra.
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Figure 6: A comparison between similar models, regarding
both efficiency and expressivity.

o Integration between this kind of model and others,
such as the relational or the traditional ones of infor-
mation retrieval. This issue has not been considered
here, since we focus on the structure problem. See [21]
for some ideas on this area.

o Generalization of the problem to manage non-
hierarchical structures, such as a hypertext network,
while keeping the desirable properties obtained for this
simpler case.

e A formal framework in which to compare expressivity
is needed. The long-term goal should be a formal and
sound hierarchy like what can be found in the area of
formal languages (see [20, 7] for some examples).
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