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ABSTRACT
We introduce a new representation of the inverted index
that performs faster ranked unions and intersections while
using less space. Our index is based on the treap data struc-
ture, which allows us to intersect/merge the document iden-
tifiers while simultaneously thresholding by frequency, in-
stead of the costlier two-step classical processing methods.
To achieve compression we represent the treap topology us-
ing compact data structures. Further, the treap invariants
allow us to elegantly encode differentially both document
identifiers and frequencies. Results show that the space con-
sumption is below 10% of the size of the corpus and the index
performs queries up to twice as fast than previous compact
representations, which in addition require more space. Mod-
ern two-stage (massive filtering / detailed ranking) informa-
tion retrieval systems would benefit from this boosting of the
filtration stage of the query resolution process, which would
free more resources for the ranking stage, thus enabling more
precise results within a given time budget.

1. INTRODUCTION
Modern Web search engines, and other information re-

trieval systems, face two competing challenges. On the one
hand, they have to manage huge amounts of data. On the
other hand, they have to provide very precise results in re-
sponse to user queries, often identifying a few relevant docu-
ments among increasingly larger collections. These require-
ments can be addressed via a two-stage ranking process [39,
17]. In the first stage, a fast and simple filtration proce-
dure extracts a subset of a few hundreds or thousands of
candidates from the possibly billions of documents forming
the collection. In the second stage, more complex learned
ranking algorithms are applied to the reduced candidate set
in order to obtain a handful of high-quality results. In this
paper, we focus on improving the efficiency of the first stage,
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freeing more resources for the second stage and increasing
the overall performance. In contexts where traditional rank-
ing methods are sufficient, the goal of the first stage is to
directly convey a few top-quality results to the final user.

The first stage aims to return either a set of the highest
ranked documents containing all the query terms (a ranked
intersection) or some of the most important query terms (a
ranked union). In most cases, ranked intersections are solved
via a Boolean intersection, followed by the computation of
scores for the resulting documents. Ranked unions are gen-
erally solved only in approximate form, avoiding a costly
Boolean union. However, Ding and Suel [22] showed that
ranked intersections can be processed faster than Boolean in-
tersections. They also obtained the best known performance
for ranked unions, giving exact, rather than approximate re-
sults, and demonstrating the feasibility of their approach.

In this paper, we introduce a new compressed representa-
tion for posting lists that performs ranked intersections and
(exact) unions directly. This representation is based on the
treap data structure [36], a binary tree that simultaneously
represents a left-to-right and a top-to-bottom ordering. We
use the left-to-right ordering for document identifiers (which
supports fast Boolean intersections) and the top-to-bottom
ordering for term weights (which supports the thresholding
of results simultaneously with the intersection process). Us-
ing this data structure, we can obtain the top-k results for
a ranked intersection/union without having to first produce
the full Boolean intersection/union.

Additionally, the treap representation allows us to dif-
ferentially encode both document identifiers and weights,
which is crucial for the space-efficient representation of in-
verted indexes. Posting lists have been compressed for decades
[40] to handle very large collections within minimal space.
With a few exceptions, using other data structures we must
choose one ordering for differential encoding, and cannot
differentially encode the other ordering. Our doubly dif-
ferential scheme achieves noticeable space reductions with
respect to competing representations.

Our experiments show that the space usage of our treap-
based inverted index representation is below 10% of the size
of the corpus, and below that of the best previous represen-
tations. For example, our representation requires 18% less
space than the Block-Max representation [22] and 13% less
space than the Dual-Sorted [26] representation. As for the
time, treaps outperform previous techniques for k up to 20
on intersections, and up to 100 on unions, being up to twice
as fast as the alternatives in some cases. Those ranges of k
values make this result of particular interest both in appli-



cations where a limited result set is of interest, and in large-
scale distributed systems in which each node contributes a
limited set to the global result.

2. BASIC CONCEPTS
The inverted index plays a central role in the efficient pro-

cessing of ranked and Boolean queries [40, 43, 19, 17, 5].
It can be seen as an array of lists or postings, where each
entry of the array corresponds to a different term or word in
the collection, and the lists contain one element per distinct
document where the term appears. For each document, the
index stores the document identifier (docid) and the weight
of the term in the document. The set of terms is called the
vocabulary of the collection, which is comparatively small in
most cases [25].

In the first stage of query processing, a simple metric is
used to assign a score to a document with respect to a query.
In the classical bag-of-words model, the query Q is seen as
a set of q terms t ∈ Q, and the score of a document d is
computed as score(Q, d) =

∑
t∈Q w(t, d), where w(t, d) is

the weight of term t in document d. For example, in the
well-known tf-idf scoring scheme, this weight is computed
as w(t, d) = tf t,d · idft. Here, tf t,d is the term frequency of t
in d, that is, the number of times t occurs in d. The second
term is idft = log D

dft
, where dft is the document frequency,

that is, the number of documents where the term t appears,
and D is the total number of documents. Since idft (or
dft) depend only on t, an efficient way to store w(t, d) in
an inverted index is to store idft or dft together with each
distinct vocabulary term, and store the values tf t,d in the
posting list of term t, together with each docid d. In this
paper we will assume that term frequencies are stored in the
posting lists, but any other integer measure, such as impacts
[2] could be used.

In the bag-of-words model we are given Q and k, and asked
to retrieve k documents d with the highest score(Q, d) val-
ues. In the two-stage model, typical values of k are hundreds
to thousands, as discussed earlier. In simpler one-stage sys-
tems, typical values of k are below 20. Note that it is not
necessary for all the terms of Q to appear in a returned doc-
ument d; a missing term t simply implies that w(t, d) = 0.
This problem is frequently called ranked union. A more
recent variant of the problem, popularized by Web search
engines to favor precision over recall, is the ranked inter-
section, where only documents containing all the terms are
returned. Nowadays, ranked intersections are more common
than unions.

The Boolean intersection problem, without ranking, aims
at retrieving all the documents d where all the terms of
Q appear. A typical way to solve a ranked intersection is
to first compute a Boolean intersection, then compute the
scores of all the resulting documents, and finally keep the
documents with the k highest scores. This approach has
triggered much research on the Boolean intersection problem
[21, 6, 34, 8, 26]. This approach is, of course, suboptimal,
since in principle one could use weight information to filter
out documents that belong to the intersection but one can
ensure will not make it to the top-k list. Only recently some
schemes specifically aimed at solving ranked intersections
have appeared [22]. All these schemes store the posting lists
in increasing docid order, which is convenient for skipping
documents during intersections.

Ranked unions, instead, cannot be efficiently solved through

a Boolean union, as this returns too many results. In this
case, most research has aimed at returning an approximate
answer within good time bounds [32, 2]. Most of these tech-
niques order the posting lists by by decreasing weight val-
ues, not by docids. Recently, it has been shown that ranked
unions can be solved in exact form within reasonable time
[16, 37, 22] by using increasing docid order for the posting
lists in the best solution [22].

Traditionally, the posting lists were stored on disk. With
the availability of large amounts of main memory, this trend
has changed to use the main memory of a cluster of ma-
chines, and many intersection algorithms have been designed
for random access [21, 6, 34, 20, 35, 37, 8, 26]. In distributed
main-memory systems, usually documents are distributed
across independent inverted indexes, and each index con-
tributes with a few results to the final top-k list. Therefore,
it is most interesting that an individual inverted index solves
top-k queries efficiently for k values in the range 10–100 [17].

Both when stored on disk and in main memory, reducing
the size of the inverted index representation is crucial. On
disk, it reduces transfer time. In main memory, it increases
the size of the collections that can be managed within a given
RAM budget, or alternatively reduces the amount of servers
that must be allocated in a cluster to hold the index, the
energy they consume, and the amount of communication.
Compression of inverted indexes is possibly the oldest and
most successful application of compressed data structures
(e.g., see [40]). The main idea to achieve compression is to
differentially encode either the document identifers or the
weights (depending on how the lists are sorted), whereas the
other value (weight or docid, respectively) becomes harder
to compress. The problem of this duality in the sorting, and
how it affects compression and query algorithms, has been
discussed in past work [40, 4, 26].

In this context, our contribution is a new in-memory post-
ing list representation that, on the one hand, achieves im-
proved compression because it allows differential encoding
of both docids and frequencies, and on the other hand, per-
forms exact ranked intersections and unions directly and na-
tively without having to first intersect/merge and then rank.

3. RELATED WORK

3.1 Query Processing Strategies
Two kinds of approaches are used for unions and inter-

sections (ranked or Boolean): Term-at-a-time (TAAT) and
Document-at-a-time (DAAT) [17].

TAAT processes one posting list after the other. The lists
are considered from shortest to longest, starting with the
first one as a candidate answer set, and refining it as we
consider the next lists. TAAT is especially popular for pro-
cessing ranked unions [32, 2, 37], as the successive lists have
decreasing idft value and thus a decreasing impact on the
result, not only for the tf-idf model, but also for BM25 and
other models. The documents in each list are also sorted by
decreasing weight. Thus heuristic thresholds can be used to
obtain an approximate ranked union efficiently, by pruning
the processing of lists earlier, or avoiding lists completely,
as we reach less relevant documents and our candidate set
becomes stronger [32, 2]. A more sophisticated approach
based on similar ideas can be used to guarantee that the
answer is exact [37].

DAAT processing is more popular for Boolean intersec-



tions and unions. Here the q lists are processed in parallel,
looking for the same document in all of them. Posting lists
must be sorted by increasing docid, and we keep a pointer to
the current position in each of the q lists. Once a document
is processed, the pointers move forward. Much research has
been carried out on Boolean intersections [21, 6, 34, 20, 8].
While a DAAT processing is always used to intersect two
lists, experimental results suggest that the most efficient
way to handle more lists is to intersect the two shortest
ones, then the result with the third, and so on. This can be
seen as a TAAT strategy.

Many ranked intersection strategies employ a full Boolean
intersection followed by a postprocessing step for ranking.
However, recent work has shown that it is possible to do bet-
ter [22]. The advantage of DAAT processing is that, once we
have processed a document, we have complete information
about its score, and thus we can maintain a current set of
top-k candidates whose final scores are known. This set can
be used to set a threshold on the scores other documents
need to surpass to become relevant for the current query.
Thus the emphasis on ranked DAAT is not on terminating
early but on skipping documents. This same idea has been
successfully used to solve exact (not approximate) ranked
unions [16, 22].

The strategies we use to solve ranked union and intersec-
tion queries in this paper are best classified as DAAT. We
use sophisticated mechanisms to skip documents using the
current threshold given by the current top-k candidate set.

3.2 Compressed Posting List Representations
A list 〈p1, p2, p3, . . . pi〉 is usually represented as a sequence

of d-gaps 〈p1, p2 − p1, p3 − p2, . . . , pl − pl−i〉, and uses a
variable-length encoding for these differences, for example
δ-codes, γ-codes or Rice/Golomb codes [40], the latter usu-
ally giving the best compression. Recent proposals make
use of byte-aligned [35, 20] or word-aligned [41, 1] codes,
which are faster at decoding at a small loss in compression.
Extracting a single list or merging lists is done optimally
by traversing the lists from the beginning, but intersections
can be done much faster if random access to the sequences
is possible. A typical solution to provide random access is
to perform a sampling of the sequences, cutting them into
blocks that are differentially encoded, while storing in a sep-
arate sequence the absolute values of the block headers and
pointers to the encoded blocks. Different sampling strate-
gies have been used [20, 34] and the intersection algorithms
have been tailored to them.

When lists are sorted by decreasing weight (for approxi-
mate ranked unions), the differential compression of docids
is not possible, in principle. Instead, term weights can be
stored differentially. When storing tf values, one can take
advantage of the fact that long runs of equal tf values (typ-
ically low ones) are frequent, and sort the corresponding
docids increasingly, to encode them differentially [4, 43].

3.3 State of the Art for Exact Ranked Queries
The following two approaches have recently displayed the

best performance for exact ranked intersections and unions.

3.3.1 Block-Max
Block-Max [22] is a special-purpose structure for ranked

intersections and unions. It sorts the lists by increasing
docid, cuts the lists into blocks, and stores the maximum

weight for each block. This enables them to skip large parts
of the lists whose maximum possible contribution is very low,
by comparing the contribution of a block with a threshold
given by the current candidate set. This solution produces
considerable performance gains over the best previous tech-
niques for exact ranked unions [16, 37], and also over the
techniques that perform ranked intersections via a Boolean
preprocessing.

The basic concept is as follows: Suppose the next docu-
ment of interest belongs to blocks b1, . . . , bq in the q lists.
Compute an upper bound to score(Q, d) using the block
maxima instead of the weights w(t, d). If even this upper
bound does not surpass the kth best score known up to
now, no document inside the current blocks can make it to
the top-k list. So we can safely skip some blocks of the list.

Our technique can be seen as a generalization of the Block-
Max idea, in which we use the treap concept to naturally
define a hierarchical blocking scheme. The generalization is
algorithmically nontrivial, but we demonstrate its practical-
ity over the flat Block-Max scheme. In addition, the treap
structure allows us to differentially encode both docids and
weights, which translates into space savings with respect to
Block-Max.

3.3.2 Dual-sorted inverted lists
Dual-Sorted inverted lists [30, 26] represent the posting

lists sorted by decreasing frequency, using a wavelet tree
data structure [24, 29]. The wavelet tree efficiently simulates
ordering by increasing docids. TAAT processing is used for
approximate ranked unions and DAAT-like processing for
(exact) ranked intersections. The latter, although building
on Boolean intersections, is implemented in native form on
wavelet trees, which makes it particularly fast, even faster
than Block-Max. Basically, the wavelet tree can recursively
subdivide the universe of docids and efficiently determine
that some list has no documents in the current interval.

Our technique shares with Dual-Sorted the ability to main-
tain the lists sorted by both docids and weights simultane-
ously, and is able to perform a similar kind of native inter-
section, that is, determine that in an interval of documents
there is a list with no elements. In contrast, Dual-Sorted
does not know the frequencies until reaching the individual
documents, whereas our treaps give an upper bound to the
frequencies in the current interval. This allows us to perform
ranked intersections faster than the Boolean intersections of
Dual-Sorted. In addition, the treap uses less space, since
Dual-Sorted cannot use differential encoding on docids.

4. DIFFERENTIALLY ENCODED TREAPS
We describe our data structure in this section. First, we

survey the treap data structure and show it can be used to
represent a posting list. Then we describe how we represent
the resulting data structure using little space. In addition,
we describe some practical improvements on the basic idea.
Finally we describe how query processing is carried out on
the final representation.

4.1 The Treap Data Structure
A treap [36] is a binary tree where nodes have two at-

tributes: a key and a priority. The treap satisfies the invari-
ants of a binary search tree with respect to the keys: the
root key is larger than those of its left subtree and smaller
than those of its right subtree. Furthermore, the treap sat-
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Figure 1: An example posting list (with docids and
frequencies) and the corresponding treap represen-
tation in our scheme. Note that docids (inside the
nodes) are sorted inorder and frequencies (outside
the nodes) are sorted top to bottom.

isfies the invariants of a binary heap with respect to the
priority: the priority of the parent is larger than those of its
descendants.

Given its invariants, a treap can be searched for a key just
as a binary search tree, and it can be simultaneously used
as a binary heap. While in the literature it has mostly been
used with randomly assigned priorities [36, 27, 14] to ensure
logarithmic expected height independently of the order of
insertions, a treap can also be seen as the Cartesian tree
[38] of the sequence of priorities once the values are sorted
by keys. Such Cartesian tree can be built in O(n) time
from a sequence of n elements already sorted by key, even
in compressed form [10, 9, 23].

We note that treaps are a particular case of priority search
trees [28], which can guarantee balancedness but are unlikely
to be as compressible as Cartesian trees. There has been
some work on using priority search trees for returning top-k
elements from suffix trees and geometric range searches [12,
11] but, as far as we know, our usage of treaps for ranked
queries on inverted indexes, plus their differential compres-
sion, is novel.

4.2 Inverted Index Representation
We consider the posting list of each term as a sequence

sorted by docids (which act as keys), each with its own term
frequency (which act as priorities). Term impacts, or any
other term weights, may also be used as priorities. We then
use a treap to represent this sequence. Therefore the treap
will be binary searchable by docid, whereas it will satisfy a
heap ordering on the frequencies. This means, in particular,
that if a given treap node has a frequency below a desired
threshold, all the docids below it in the treap can be dis-
carded as well.

Figure 1 illustrates a treap representation of a posting list.
This treap will be used as a running example.

4.3 Compressing the Treap
In order to compete with existing compressed representa-

tions of posting lists, we represent the treap data (topology,

docids, and frequencies) in compact form. The key issue is
that we choose a representation where all the treap opera-
tions can be carried out efficiently, so as to exploit the treap
properties at query time.

4.3.1 Compact topology representation
Given a posting list of n documents, the treap will be a

binary tree of n nodes. We represent it as a general tree
using a well-known isomorphism: First, a fake root node
vr is created. The children of vr become the nodes in the
rightmost path of the treap, from the root to the leaf. Then
each of those nodes are converted recursively.

With this transformation, the treap root is the first child
of vr. The left child of a treap node v is its first child in the
general tree. The right child of v is its next sibling in the
general tree. An inorder traversal of the treap corresponds
to a postorder traversal of the general tree.

There are Θ(4n/n3/2) general trees of n nodes, and thus

one needs log2(4n/n3/2) = 2n − Θ(logn) bits to represent
any such tree. There exist various compact tree representa-
tions using 2n+o(n) bits that can in addition carry out many
tree operations efficiently, including taking the first child,
next sibling, computing postorder of a node, and so on. We
will use a recent representation that has proven to be effi-
cient in practice [33, 3]. It is based on a balanced parentheses
representation of the tree, obtained by a preorder traversal
where we append an opening parenthesis when reaching a
node and a closing parenthesis when leaving it.

4.3.2 Differentially encoded trees
In addition to the tree topology, we must represent docids

and term frequencies. Our plan is not to access the posting
lists in sequential form as in classical schemes, thus differ-
entially encoding each docid with respect to the previous
one is not directly applicable. Instead, we make use of the
invariants of the treap data structure.

Let id(v) be the docid of a treap node v, and f(v) its
frequency. We represent id(v) and f(v) for the root in plain
form, and then represent those of its left and right children
recursively. For each node v that is the left child of its
parent u, we represent id(u) − id(v) instead of id(v). If,
on the other hand, v is the right child of its parent u, we
represent id(v) − id(u) [18]. In both cases, we represent
f(u) − f(v) instead of f(v). Those numbers get smaller as
we move downwards in the treap.

The sequence of differentially encoded id(v) and f(v) val-
ues is represented according to an inorder traversal of the
treap. As we move down the treap, we can easily maintain
the correct id(v) and f(v) values for any node arrived at, and
use it to compute the values of the children as we descend.

For this sake we need to be able to randomly access a dif-
ferential value in the sequence, given the inorder of a node.
While we can compute the inorder of any node from our
topology representation, we need a storage mechanism for
the differences that: i) can access any value in the sequence,
while ii) using fewer bits to represent smaller numbers. We
use Direct Addressable Codes (DACs) [15], which are de-
signed precisely with this aim.

DACs encode a sequence of numbers x1, . . . , xn as fol-
lows. The dlog2(max{xi}+ 1)e bits needed to represent any
xi are divided into chunks of varying size. Then the first
chunk of lowest bits of all the numbers are represented in
a first sequence, the second chunks in a second sequence,
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Figure 2: The compressed representation of the ex-
ample treap. The original binary tree edges (light
color) are replaced by a general tree, whose topol-
ogy is represented with parentheses. Docids and
frequencies are sorted inorder and represented in
differential form with respect to their parent.

and so on. Some numbers xi will only participate in the
first sequences because they are smaller than others. Com-
pact bitmap representations are used to drive the extraction
process for any xi through the different sequences where its
chunks are represented. DACs can tune the block sizes so
as to use minimum space, given the sequence of xi values.

Figure 2 illustrates our compressed treap representation.

4.4 Practical Improvements
The scheme detailed above would not be so successful

without two important improvements. First, because many
posting lists are very short, it turns out to be more efficient
to store two single DAC sequences, with all the differential
docids and all the differential frequencies for all the lists to-
gether, even if using individual DACs would have allowed us
to optimize their space for each sequence separately. This
is because the overhead of storing the chunk lengths and
other administrative data overweights the benefits for short
sequences.

The second, and more important, improvement is to omit
from the treap representation all the elements of the lists
where the frequency is below some threshold f0. According
to Zipf’s law [42, 19, 17, 5], a large number of elements will
have low frequencies, and thus using a separate posting list
for each frequency below f0 will save us from storing those
frequencies wherever those elements would have appeared
in the treap. Further, the docids of each list can be differ-
entially encoded in classical sequential form, which is more
efficient than in treap order.

It turns out that many terms do not have to be stored in
a treap at all, as they never occur more than f0 times in any
document. We represent the gap-encoded lists using Rice
codes and taking an absolute sample every 128 values (which
form a block). Samples are stored separately and explicitly
in an array, with pointers to the block [20]. Searches in these
lists will ask for consecutively larger values, so we remember
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the last element found and exponentially search for the next
query starting from there. Figure 3 illustrates the separation
of low-frequency elements from our example treap.

4.5 Query Processing

4.5.1 General procedure
Let Q be a query composed of q terms t ∈ Q. To ob-

tain the top-k documents from the intersection or union of
q posting lists we proceed in DAAT fashion: We traverse
the q posting lists in synchronization, identifying the docu-
ments that appear in all or some of them, and accumulating
their weights w(t, d) into a final score(Q, d) =

∑
t w(t, d) =∑

t tf t,f · idft. Those documents are inserted in a min-
priority queue limited to k elements, where the priority is
the score. Each time we insert a new element and the queue
size reaches k + 1, we extract and remove the minimum.
At the end of the process, the priority queue contains the
top-k results. Furthermore, at any stage of the process, if
the queue has reached size k, then its minimum score L is
a lower bound to the scores we are interested in for the rest
of the documents.

4.5.2 Intersections
Let d be the smallest docid not yet considered (initially

d = 1). All the treaps t maintain a stack of nodes (initially
holding just a sentinel value element ut with id(ut) = +∞
and f(ut) = +∞), and a cursor vt (initially the treap root).
The stack will contain the nodes in the path from the root
to vt where we descend by the left child. We will always call
ut the top of the stack; ut is an ancestor of vt and it holds
id(ut) > id(vt).

We advance in all the treaps simultaneously towards a
node v with docid id(v) = d, while skipping nodes using the
current lower bound L. In all the treaps t we maintain the
invariant that, if v is in the treap, it must appear in the
subtree rooted at vt. In particular, this implies d < id(ut).

Because of the decreasing frequency property of treaps,
if d is in a node v within the subtree rooted at vt, then
f(v) ≤ f(vt). Therefore, we can compute an upper bound U



to the score of document d by using values f(vt) instead of
f(v), for example U =

∑
t∈Q f(vt) · idft for a tf-idf scoring1.

If this upper bound is U ≤ L, then there is a valid top-
k answer where d does not participate, so we can discard
d. Further, no node that is below all the current vt nodes
can qualify. Therefore, we can safely compute a new target
d ← mint(id(ut)). Each time the value of d changes (it
always increases), we must update the stack of all the treaps
t to restore the invariants: We assign vt ← ut and remove
ut from the stack until id(ut) > d. We then resume the
global intersection process with this new target d. The upper
bound U is recomputed incrementally each time any vt value
changes (U may increase or decrease).

When U > L, it is still feasible to find d with sufficiently
high score. In this case we have to advance towards the node
containing d in some treap. We use a round-robin scheme
to choose the treap t (more complex ideas, like choosing
the treap with maximum contribution to the value of U ,
did not make a noticeable difference). We must choose a
treap where we have not yet reached d; if we have reached
d in all the treaps then we can output d as an element of
the intersection, with a known score (the current U value is
the actual score of d), insert it in the priority queue of top-k
results as explained (which may increase the lower bound L),
and resume the global intersection process with d ← d + 1
(we must update stacks, as d has changed).

Once we have decided to move towards d 6= id(vt) in some
treap t, we proceed as follows. If d < id(vt), we move to the
left child of vt, lt, push vt in the stack, and make vt ← lt.
Instead, if d > id(vt), we move to the right child of vt, rt,
and make vt ← rt. We then recompute U with the new vt
value.

If we have to move to the left and there is no left child of
vt, then d does not belong to the intersection. We stay at
node vt and redefine a new target d ← id(vt). If we have
to move to the right and there is no right child of vt, then
again d is not in the intersection. We make vt ← ut, remove
ut from the stack, and redefine d ← id(ut). In both cases
we adjust the stacks of the other treaps to the new value of
d, as before, and resume the intersection process.

Algorithm 1 gives pseudocode for the intersection.

4.5.3 Handling low-frequency lists
We have not yet considered the lists of documents with

frequencies up to f0, which are stored separately, one per
frequency, outside the treap. While a general solution is
feasible (but complicated), we describe a simple strategy for
the case f0 = 1, which is the case we implemented.

Recall that we store the posting lists in gap-encoded blocks.
Together with the treap cursor, we will maintain a list cur-
sor, which points inside some block that has been previously
decompressed. Each time there is no left or right child in the
treap, we must search the list for potential elements omit-
ted in the treap. More precisely, for elements in the range
[d, id(vt)−1] if we cannot go left, or in the range [d, id(ut)−1]
if we cannot go right. Those elements must be processed as
if they belonged to the treap before proceeding in the actual
treap. Finding this new range [l, r] in the list may imply
seeking and decompressing a new block.

1Replacing f(v) by f(vt) will yield an upper bound when-
ever the scoring function is monotonic with the frequencies.
This is a reasonable assumption and holds for all the formu-
las we use.

Algorithm 1 Top-k of intersection using treaps.

Intersect(Q, k)

results← ∅ // priority queue of pairs (key, priority)
for t ∈ Q do
stackt ← 〈⊥〉 // stack of treap t, id(⊥) = f(⊥) = +∞
vt ← root of treap t

end for
compute score U using f(vt) values, e.g.

∑
t∈Q f(vt) · idft

d← 1
L← −∞
while d < +∞ do

while U ≤ L do
changed(mint∈Q id(top(stackt)))

end while
if ∀t ∈ Q, d = id(vt) then

report(d, U)
changed(d+ 1)

else
t← choose where to advance, d 6= id(vt)
if d < id(vt) then
lt ← left child of vt
if lt is not null then

push(stackt,vt)
changev(t, lt)

else
changed(id(vt))

end if
else
rt ← right child of vt
if rt is not null then

changev(t, rt)
else

changev(t,pop(stackt))
changed(id(vt))

end if
end if

end if
end while
return results

changed(newd)

d← newd
for t ∈ Q do
v ← vt
while d ≥ id(top(stackt)) do
v ← top(stackt)
pop(stackt)

end while
changev(t, v)

end for

report(d, s)

results← results ∪ (d, s)
if |results| > k then

remove minimum from results
L← minimum priority in results

end if

changev(t, v)

remove contribution of f(vt) from U , e.g. U − f(vt) · idft
vt ← v
add contribution of f(vt) to U , e.g. U + f(vt) · idft



The best way to process range [l, r] is to search as if it
formed a subtree fully skewed to the right, descending from
vt. If we descended to the left of vt towards the range, we
push vt into the stack. Since all the elements in the list
have the same frequency, when we are required to advance
towards (a new) d we simply scan the interval until reaching
or exceeding d, and the docid found acts as our new id(vt)
value. When the interval [l, r] is exhausted, we return to the
treap. Note that the interval [l, r] may span several physical
list blocks, which may be subsequently decompressed.

4.5.4 Unions
The algorithm for ranked unions requires a few changes

on the algorithm for intersections. First, in the two lines
that call changed(id(vt)), we do not change the d for all
the treaps when the current treap does not find it. Rather,
we keep values nextdt where each treap stores the minimum
d′ ≥ d it contains, thus those lines are changed by nextdt ←
id(vt). Second, we will choose the treap t to advance only
among those where id(vt) 6= d and nextdt = d, as if nextdt >
d we cannot find d in treap t. Third, when all the treaps t
where id(vt) 6= d satisfy nextdt > d, we have found exactly
the treaps where d appears. We add up score(Q, d) over
those treaps where id(vt) = d, report d, and advance to d+1.
If, however, this happens but no treap t satisfies id(vt) = d,
we know that d is not in the union and we can advance
d with changed(mint∈Q nextdt). Finally, changed(newd)
should not only update d but also update, for all the treaps
t, nextdt to max(nextdt, newd).

5. EXPERIMENTS AND RESULTS

5.1 Experimental Setup
We use the TREC GOV2 collection, containig about 25.2

million documents and about 32.8 million terms in the vo-
cabulary. We parsed the collection using Porter’s stem-
ming algorithm. We used the TREC2006 Efficiency Queries
dataset using distinct amounts of terms, from |q| = 2 to 5.

We compare our results with two baselines: (1) Block-
Max [22], using their implementation and modifying it to
use tf-idf scoring, and (2) Dual-Sorted [26], using their im-
plementation. As additional baselines, we implemented (3)
our own version of a traditional docid-sorted inverted index
using Rice encoding of the gaps, sampling values every 128
values to support random access via exponential search, and
(4) our own version of a traditional frequency-sorted inverted
index, using gap-encoding for the frequencies. An interest-
ing question for our treap, and its particular way of stor-
ing both differential docids and frequencies, is how far it is
from an idealized “optimal” ordering in which one could sort
docids and represent them differentially, and also sort fre-
quencies and represent them differentially. This is of course
unfeasible since both orders are incompatible, but treaps of-
fer some intermediate combination. We implemented this
“optimal” (and unfeasible) space using Rice codes.

Our experiments were performed on an Intel(r) Xeon(r)
model E5620 running at 2.40 GHz with 96GB of RAM and
12,288KB of cache, running version 2.6.31-41 64 bits of the
Linux kernel. All solutions were implemented in C++, com-
piled with g++ version 4.4.3 and -O3 optimization.

5.2 Space Usage
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Figure 5: Fraction of space usage of the structures.

Figure 4 shows the space usage of the compared struc-
tures for increasing subsets of GOV2. Our docid-sorted
index uses almost the same space as Block-Max, and our
frequency-sorted index takes somewhat more space, so they
are omitted for clarity. It can be seen that our compressed
treap structures offer a space gain of 18% over Block-Max
(which differentially encodes docids but not frequencies) and
of 13% over Dual-Sorted (which differentially encodes fre-
quencies but not docids), while using about 40% more space
than the “optimal” (unfeasible) representation.

Figure 5 shows how the space distributes across our struc-
tures. Almost half of the space is used for the treap differ-
ential encodings, the docids using about twice the space of
the frequencies. The docids for frequency f0 = 1, differ-
entially encoded, use 41% of the space, which shows how
relevant it is to avoid explicitly representing their frequency.
Finally, the compressed treap topologies require only 11%
of the total space.

5.3 Ranked Intersection
Figure 6 gives ranked intersection times for varying k,

averaging over all the queries, and for k = 10 and k = 20,
separating the queries by number of words (q). As noted in
previous work [26], Dual-Sorted is unique in that it improves
for longer queries, taking over for queries of 4–5 words or



more. Averaged over all the queries, it performs similarly to
Block-Max, and both are superior to a Boolean intersection
followed by a ranking (labeled “Intersection”) implemented
over our docid-sorted inverted index. None of these methods
is much affected by k (which is expected for Dual-Sorted and
Intersection since they always produce the full intersection
and then rank the resulting documents).

Our treaps are more affected by the value of k, and as a
consequence they are competitive only for k up to 20. For
k = 10, treaps are indeed the fastest choice by a wide margin
(up twice as fast as Block-Max, the closest competitor) for
queries up to 4 words. For longer queries, as described, Dual-
Sorted takes over. Treaps are still the fastest when averaging
over all the queries in our benchmark. For k = 20, they are
still the fastest choice for queries formed by 2 and 3 words,
losing to Dual-Sorted for more words.

5.4 Ranked Union
Figure 7 shows the results for ranked union queries. Using

a Boolean union as a filter for these queries is ineffective, so
we use our frequency-sorted inverted index to implement
an approximate ranked union, Persin et al.’s [32] (labeled
“Persin” in the plots). Dual-Sorted also implements Persin
et al.’s algorithm, so both report only approximate results.
Only Block-Max and our treaps give exact results.

It can be seen that all the times worsen as k and q increase,
more than linearly on q and sublinearly on k. Our treaps
outperform Block-Max and Dual-Sorted for all k values up
to 100. They are up to twice as fast as them, for example for
3-word queries. Treaps are only outperformed by the native
Persin implementation, which however is not exact.

6. EXTENSIONS
In this section, we explore some more complex scenar-

ios our treap-based representation of inverted indexes could
handle, often more conveniently than current representa-
tions.

6.1 Beyond Exact Ranked Boolean Queries
It is not hard to adapt our algorithm for unions to the

ranked version of the more general thresholded queries [7],
which in addition to Q give a value q′ < q, so that at least
q′ of the q query terms must appear in the reported docu-
ments. In this more general view, ranked unions correspond
to q′ = 1 and ranked intersections to q′ = q. The more gen-
eral Weak-AND operator [16] can also be easily supported.
When the subset of the treaps t reaches value id(vt) = d,
we can evaluate document d and determine whether or not
it qualifies.

On the other hand, approximate answers for ranked union
queries have been the norm for decades, and our treap data
structures can efficiently implement those as well. For ex-
ample, we could easily implement Persin et al.’s [32] TAAT
processing, even better than classical frequency-sorted lists.
We could maintain the candidate set as a list sorted by docid.
Each new treap that is processed is traversed in docid order,
stopping at nodes where the threshold for considering docu-
ments is reached. As we produce the qualifying documents
in docid order, we can simply merge them with the candi-
date set, without the need of more sophisticated structures.
Furthermore, for subtrees of treap nodes whose frequency
is below the threshold for inserting new documents in the
candidate set, we can switch to a mode where the subtree
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Figure 6: Time performance for ranked intersec-
tions. On top, for all the queries and increasing
k. The other two discriminate by number of words
in the query and use fixed k = 10 and k = 20.

is intersected with the candidates, using the next candidate
docid to skip treap nodes.

6.2 Dynamic Representations
Our treap data structures can support insertions and dele-

tions, so that the inverted index can be made dynamic. Such
updates on treaps require logarithmic expected time [36],
assuming that term frequencies are independent of docids.
A deeper analysis [13, 11] gives somewhat stronger guar-
antees. Dynamic representations of trees and gap-encoded
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Figure 7: Time performance for ranked unions. On
top, for all the queries and increasing k. The other
two discriminate by number of words in the query
and use fixed k = 10 and k = 20.

values [31] allow us to update those treaps in compressed
form. However, more research on algorithm engineering is
required to make those compressed dynamic structures effi-
cient enough compared to their classical counterparts.

A well-known intermediate solution is to maintain the re-
cently inserted documents in an uncompressed data struc-
ture, which is merged with the compressed body of the index
when it reaches some threshold size. Queries are carried out
on both the compressed and the new parts and the results
are merged. Deletions are managed by marking the deleted

documents, which are excluded from the answers, and peri-
odically purguing the inverted index.

6.3 Range Restricted Queries
Cartesian trees are useful for range maximum query (RMQ)

operations [10, 9, 23]. Given an array of values, an RMQ
gives two endpoints and asks for the maximum value in the
range. If we build the Cartesian tree of the array values, the
RMQ reduces to a lowest common ancestor (LCA) query on
the tree, which asks for the lowest node that is an ancestor
of the two nodes that represent the extremes of the range.
Furthermore, if we use the described isomorphism with gen-
eral trees (as we actually do for representing the treaps) the
LCA can be computed in constant time and without access-
ing the array of values [23].

This allows for another interesting use of the treaps. Imag-
ine we wish to carry out a ranked query only on a range of
docids. This restriction makes sense, for example, if docu-
ments have a timestamp (e.g., in versioned collections, pe-
riodic publications, etc.) and we wish to retrieve only doc-
uments within a range of times. Or the documents may be
Web pages in lexicographic URL order and ranges of docids
may correspond to domains, sites, or subdirectories. Our
explicit treap spans all the documents, but we can simulate
a treap on the range of documents [d1, d2]: the root of the
simulated treap is document dr = RMQ(d1, d2). The left
child of that root is RMQ(d1, dr − 1) and the right child is
RMQ(dr + 1, d2), and so on.

As LCA operations are carried out in constant time and
efficiently in current compact tree implementations [3], this
gives an efficient technique to carry out range-restricted ranked
unions and intersections. One problem is that our differen-
tial encoding of docids and frequencies does not work any-
more, as we do not traverse the treap in top-down form but
jump across nodes.

7. CONCLUSIONS AND FUTURE WORK
We have introduced a new inverted index representation

based on the treap data structure. Treaps turn out to be
an elegant and flexible tool to represent simultaneously the
docid and the weight ordering of a posting list. We use
them to design efficient ranked intersection and union algo-
rithms that simultaneously filter out document by docid and
frequency. The treap also allows us to represent both do-
cids and frequencies in differential form, thus enabling better
compression of the posting lists. Our experiments show sig-
nificant gains in space and time compared to the state of the
art: not only our structure uses 13%–18% less space than
previous ones, but also it is faster (sometimes as much as
twice as fast) for up to k = 20 on ranked intersections, and
up to k = 100 on ranked unions.

In addition, we have described various other problems
treaps could naturally solve. Many other questions remain
unanswered and are subject of future work:

• How would the scheme perform with other scoring
schemes? We used tf-idf for simplicity, but we could
use BM25, impacts, etc. Some require to adapt the
way we compute the upper bound U , such as the con-
sideration of document sizes in BM25 (but this has
been solved already [16, 22]).

• What would be the impact of rearranging docids in
a convenient form? There is much recent research on



this topic (see, e.g., [22]) that shows that rearrange-
ment can significantly improve both space and pro-
cessing time. How much would treaps improve with
such schemes? Can we optimize the rearrangement for
a treap layout?

• How could we efficiently separate lists with frequencies
higher than f0 = 1? How would the space and time
performance be affected?
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