
Reorganizing Compressed Text ∗

Nieves R. Brisaboa
Fac. de Informática,

Univ. da Coruña,
A Coruña, Spain.

brisaboa@udc.es

Antonio Fariña
Fac. de Informática,

Univ. da Coruña,
A Coruña, Spain.
fari@udc.es

Susana Ladra
Fac. de Informática,

Univ. da Coruña,
A Coruña, Spain.
sladra@udc.es

Gonzalo Navarro
Dept. of Computer Science,

Univ. of Chile,
Santiago, Chile.

gnavarro@dcc.uchile.cl

ABSTRACT
Recent research has demonstrated beyond doubts the bene-
fits of compressing natural language texts using word-based
statistical semistatic compression. Not only it achieves ex-
tremely competitive compression rates, but also direct search
on the compressed text can be carried out faster than on the
original text; indexing based on inverted lists benefits from
compression as well.

Such compression methods assign a variable-length code-
word to each different text word. Some coding methods
(Plain Huffman and Restricted Prefix Byte Codes) do not
clearly mark codeword boundaries, and hence cannot be ac-
cessed at random positions nor searched with the fastest text
search algorithms. Other coding methods (Tagged Huffman,
End-Tagged Dense Code, or (s, c)-Dense Code) do mark
codeword boundaries, achieving a self-synchronization prop-
erty that enables fast search and random access, in exchange
for some loss in compression effectiveness.

In this paper, we show that by just performing a sim-
ple reordering of the target symbols in the compressed text
(more precisely, reorganizing the bytes into a wavelet-tree-
like shape) and using little additional space, searching ca-
pabilities are greatly improved without a drastic impact in
compression and decompression times. With this approach,
all the codes achieve synchronism and can be searched fast
and accessed at arbitrary points. Moreover, the reordered
compressed text becomes an implicitly indexed representa-
tion of the text, which can be searched for words in time
independent of the text length. That is, we achieve not only
fast sequential search time, but indexed search time, for al-
most no extra space cost.

We experiment with three well-known word-based com-
pression techniques with different characteristics (Plain Huff-
man, End-Tagged Dense Code and Restricted Prefix Byte

∗Funded in part (for the Spanish group) by MEC grant
(TIN2006-15071-C03-03) and AECI grant (A/8065/07), and
(for the fourth author) by Yahoo! Research grant “Compact
Data Structures” and also AECI grant (A/8065/07).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’08, July 20–24, 2008, Singapore.
Copyright 2008 ACM 978-1-60558-164-4/08/07 ...$5.00.

Codes), and show the searching capabilities achieved by re-
ordering the compressed representation on several corpora.
We show that the reordered versions are not only much more
efficient than their classical counterparts, but also more ef-
ficient than explicit inverted indexes built on the collection,
when using the same amount of space.

Categories and Subject Descriptors
E.4 [Coding and Information Theory]: Data Compaction
and Compression; H.3.3 [Information Storage and Re-
trieval]: Information Search and Retrieval—search process

General Terms
Algorithms

Keywords
Word-based compression, searching compressed text, com-
pressed indexing.

1. INTRODUCTION
Text compression is useful not only to save disk space, but

more importantly, to save processing, transmission and disk
transfer time. Compression techniques especially designed
for natural language texts permit searching the compressed
text much faster (up to 8 times) than the original text [17,
10], in addition to their proven effectiveness (with compres-
sion ratios around 25%-35%).

Those ratios are obtained using a word-based model [9],
where words are encoded instead of characters. Words present
a more biased distribution of frequencies than characters,
following a Zipf Law [18, 1]. Thus the text (regarded as a
sequence of words) is highly compressible with a zero-order
encoder such as Huffman code [8]. With the optimal Huff-
man coding, compression ratios approach 25%.

Although necessarily inferior to Huffman code in compres-
sion effectiveness, different coding methods, such as Plain
Huffman [11] or Restricted Prefix Byte Codes [4], try to ap-
proach the performance of classical Huffman while encoding
the source symbols as sequences of bytes instead of bits.
This degrades compression ratios to around 30%, yet allows
much faster decompression.

Still other encoding methods, such as Tagged Huffman
codes [11], End-Tagged Dense Codes, and (s, c)-Dense Codes
[3], worsen the compression ratios a bit more (up to 35%) in
exchange for being self-synchronized. This means that code-
word boundaries can be distinguished starting from any-
where in the encoded sequence, which enables random access

to the compressed text, as well as very fast Boyer-Moore-like
direct search of the compressed text.

In this paper, we propose a reordering of the bytes in the
codewords of the compressed text following a wavelet-tree-
like strategy. We show that this simple variation obtains
a compressed text that is always self-synchronized, despite
building on encodings which are not. That is, the reorga-
nized compressed text can be accessed at any point, even if
Plain Huffman coding is used, for example. This encourages
using the most efficient bytewise encodings with no penalty.

What is even more striking is that the reorganized text
turns out to have some implicit indexing properties. That
is, with very little extra space, it is possible to search it
in time that is not proportional to the text length (as any
sequential search method) but logarithmic on it (as typical
indexed techniques). Indeed, we compare our reorganized
codes against the original techniques armed with an explicit
inverted index, and show that the former are more efficient
when using the same amount of space. Within that little al-
lowed space, block-addressing compressed inverted indexes
are the best choice as far as we know [14, 19]. We imple-
ment such a compressed block-addressing index following
the most recent algorithms for list intersections [5]. Our
results demonstrate that it is more convenient to use reor-
ganized codes than trying to use very space-efficient inverted
indexes; only if one is willing to pay a significant extra space
do inverted indexes pay off.

We note that our technique is tailored to main memory
due to its random access pattern. Therefore, it can only
compete with inverted indexes in main memory. There has
been a lot of recent interest on inverted indexes that oper-
ate in main memory [15, 16, 5], mainly motivated by the
possibility of distributing a large collection among the main
memories of several interconnected processors. By using less
space for those in-memory indexes (as our technique allows)
more text could be cached in the main memory of each pro-
cessor and fewer processors (and less communication) would
be required.

The paper is organized as follows. The next section de-
scribes the coding schemes used as the basis for our research.
Section 3 describes wavelet trees and how they can be used.
Section 4 presents our reorganizing strategy in detail. Fi-
nally, Sections 5 and 6 present our empirical results, conclu-
sions and future work.

2. BYTEWISE ENCODERS
We cover the byte-oriented encoding methods we will use

in this paper; many others exist, e.g. [11, 3].
The basic byte-oriented variant of the original Huffman

code is called Plain Huffman (PH) [11]. Plain Huffman does
not modify the basic Huffman code except by using bytes
as the symbols of the target alphabet. This worsens the
compression ratios to 30%, compared to the 25% achieved
by the original Huffman coding on natural language and
using words as symbols [9]. In exchange, decompression and
searching are much faster with Plain Huffman code because
no bit manipulations are necessary.

End-Tagged Dense Code (ETDC) [3] is also a word-based
byte-oriented compression technique where the first bit of
each byte is reserved to flag whether the byte is the last one
of its codeword. The flag bit is enough to ensure that the
code is a prefix code regardless of the content of the other 7
bits of each byte, so there is no need at all to use Huffman

coding in order to maintain a prefix code. Therefore, all pos-
sible combinations are used over the remaining 7 bits of each
byte, producing a dense encoding. ETDC is easier to build
and faster in both compression and decompression. While
searching Plain Huffman compressed text requires inspect-
ing all its bytes from the beginning, the tag bit in ETDC
permits Boyer-Moore-type searching [2] (that is, skipping
bytes) by simply compressing the pattern and then running
the string matching algorithm. On Plain Huffman this does
not work, as the pattern could occur in the text not aligned
to any codeword [11]. Moreover, it is possible to start de-
compression at any point of the compressed text, because
the 7th bit gives ETDC the self-synchronization property:
one can easily determine the codeword boundaries.

In general, ETDC can be defined over symbols of b bits,
although in this paper we focus on the byte-oriented ver-
sion where b = 8. Given source symbols with decreasing
probabilities {pi}0≤i<n the corresponding codeword using
the ETDC is formed by a sequence of symbols of b bits, all
of them representing digits in base 2b−1 (that is, from 0 to
2b−1 − 1), except the last one which has a value between
2b−1 and 2b − 1, and the assignment is done sequentially.

Note that the code depends on the rank of the words, not
on their actual frequency. As a result, only the sorted vo-
cabulary must be stored with the compressed text for the
decompressor to rebuild the model. Therefore, the vocab-
ulary will be slightly smaller than in the case of Huffman
codes, where some information about the shape of the Huff-
man tree must be stored (even for canonical Huffman trees).

As it can be seen, the computation of codes is extremely
simple: It is only necessary to sort the source symbols by
decreasing frequency and then sequentially assign the code-
words. But not only the sequential procedure is available
to assign codewords to the words. There are simple en-
code and decode procedures that can be efficiently imple-
mented, because the codeword corresponding to symbol i
is obtained as the number x written in base 2b−1, where

x = i− 2
(b−1)k−2

b−1

2b−1−1
, and adding 2b−1 to the last digit.

In Restricted Prefix Byte Codes (RPBC) [4] the first byte
of each codeword completely specifies its length. The en-
coding scheme is determined by a 4-tuple (v1, v2, v3, v4) sat-
isfying v1 + v2 + v3 + v4 ≤ R. The code has v1 one-byte
codewords, Rv2 two-byte codewords, R2v3 three-byte code-
words and R3v4 four-byte ones. They require v1 + v2R +
v3R

2 + v4R
3 ≥ n where R is the radix, typically 256. This

method improves the compression ratio of ETDC as it adds
more flexibility to the codeword lengths, it maintains the ef-
ficiency with simple encode and decode procedures (it is also
a dense code) but it loses the self-synchronization property.
If we seek to a random position in the text, it is not possi-
ble to determine the beginning of the current codeword. It
is possible to adapt Boyer-Moore searching over text com-
pressed with this technique, but it is slower than searching
over text compressed with ETDC.

3. WAVELET TREES
A wavelet tree is a succint data structure. It was proposed

in [7] for solving rank and select queries over sequences on
large alphabets. Given a sequence of symbols B, rankb(B, i) =
y if the symbol b appears y times in the prefix B1,i, and
selectb(B, j) = x if the jth occurrence of the symbol b in the
sequence B appears at position x.

The original wavelet tree is a balanced binary tree that
divides the alphabet into two halves at each node, and stores
bitmaps in the nodes to mark which side was chosen by each
symbol in the sequence. Each child handles recursively the
part of the sequence formed by its symbols. Solving rank and
select queries over bit sequences in constant time is well-
known [12, 13]. The wavelet tree reduces rank and select
operations on a sequence S to rank and select operations
over the bitmaps stored at the nodes. For rank, the tree is
traversed top-down, and bottom-up for select.

Multi-ary wavelet trees are introduced in [6], where sym-
bol rank and select operations are needed within the nodes.
Huffman shaped wavelet trees have also been considered [7,
13]. Our wavelet trees in this paper are in some sense in-
spired by these.

4. REORGANIZATION OF CODEWORDS
Our method can be applied to any word-based, byte-oriented

semistatic statistical prefix-free compression technique (as
all those mentioned in Section 2). Basically the idea is to re-
organize the different bytes of each codeword, placing them
in different nodes of a tree that we call wavelet tree for its
similarity with the wavelet trees used in [7]. That is, instead
of representing the compressed text as a concatenated se-
quence of codewords (composed of one or more bytes), each
one replacing the original word at that position in the text,
we represent the compressed text as a wavelet tree where
the different bytes of each codeword are placed at different
nodes.

The root of the wavelet tree contains the first byte of all
the codewords, following the same order as the words in the
original text. That is, at position i in the root we place
the first byte of the codeword that encodes the ith word in
the source text. The root has as many children as different
bytes can be the first byte of a codeword. For instance, in
ETDC the root has always 128 children and in RPBC it
will typically have 256− v1. The node x in the second level
(taking the root as the first level) stores the second byte
of those codewords whose first byte is x. Hence each node
handles a subset of the text words, in the same order they
have in the original text. That is, the byte at position i
in node x is the second byte of the ith text codeword that
starts with byte x. The same arrangement is done to create
the lower levels of the tree. That is, node x has as many
children as different second bytes exist in codewords with
more than 2 bytes having x as their first byte.

Formally, let us represent the text words1 as 〈w1, w2 . . . wn〉.
Lets call cwi the codeword representing word wi. Notice
that two codewords cwi and cwj can be the same if the ith

and jth words in the text coincide. The bytes of codeword
cwi are denoted as 〈c1

i ...c
m
i 〉 were m is the size of codeword

cwi. The root node of the tree is formed by the following
sequence of bytes 〈c1

1, c
1

2, c
1

3...c
1

n〉. Notice that the root has
as many bytes as words has the text. As explained, the root
has a child for each byte value that can be the first in a
codeword. Assume there are r words in the source text en-
coded by codewords (longer than 1 byte) starting with the
byte x: cwi1 ...cwir

. Then the node x will store the sequence
〈c2

i1
, c2

i2
, c2

i3
...c2

ir
〉. Some of those will be the last byte of their

1We speak of words to simplify the discussion. In practice
both words and separators are encoded as atomic entities in
word-based compression.

codeword, yet others would correspond to codewords with
more than two bytes.

Therefore, node x would have in turn children as explained
before. Assume node xy is a child of node x. It stores
the byte sequence 〈c3

j1
, c3

j2
, c3

j3
...c3

jk
〉 of all the third bytes

of codewords cwj1 ...cwjk
starting with xy, in their original

text order. Our wavelet tree is not balanced because some
codewords are longer than others. The number of levels will
be equal to the number of bytes of the longer codewords.

Figure 1 shows an example of a wavelet tree2, built from
the text LONG TIME AGO IN A GALAXY FAR FAR AWAY, and
the alphabet Σ = {A, AGO, AWAY, FAR, GALAXY, IN, LONG, TIME}.
After obtaining the codewords for all the words in the text,
using a known compressor, we reorganize their bytes in the
wavelet tree following the arrangement explained. The first
byte of each codeword is in the root node. The next bytes
are contained in the corresponding child nodes. For exam-
ple, the second byte of the word ’AWAY’ is the third byte
of node B2, because it is the third word in the root node
having b2 as first byte. Its third byte is in node B2B4 as its
two first codeword bytes are b2 and b4.

Assume we want to know which is the 6th word in the text.
Starting at the root node in Figure 1, we read the byte at po-
sition 6 of the root node: Root[6] = b4. The encoding scheme
indicates that the codeword is not complete yet, so we move
to the second level of the tree. The second byte is contained
in the node B4, which is the child node of the root where the
second bytes of all codewords starting by byte b4 are stored.
Using a byte rank operation we obtain rankb4(Root, 6) = 2.
This means that the second byte of the codeword starting
in the byte at position 6 in the root node will be the 2nd

byte in the node B4. In the next level, B4[2] = b5, therefore
b5 is the second byte of the codeword we are looking for.
Again the encoding scheme indicates that the codeword is
still not complete, and rankb5(B4, 1) = 1 tells us that the
3rd byte of that word will be in the node B4B5 at position
1. One level down, we obtain B4B5[1] = b2, and now the
obtained sequence b4b5b2 is a complete codeword according
to the encoding scheme. It corresponds to ’GALAXY’, which
therefore is the 6th word in the source text.

This process can be used to recover any word. Notice
that this mechanism gives direct access and random decom-
pression capabilities to encoding methods that do not mark
boundaries in the codewords. With the proposed arrange-
ment, those boundaries become automatically defined (each
byte in the root corresponds to a new codeword).

If we want to search for the first occurrence of ’AWAY’ in
the example of Figure 1, we start by finding out its code-
word, which is b2b4b3. Therefore the search will start at
the node B2B4, which holds all the codewords starting with
b2b4. In this leaf node we find out where the first byte b3

occurs, because b3 is the third byte of the codeword sought.
Operation selectb3(B2B4, 1) = 1 tell us that the first occur-
rence of our codeword is the first of all codewords starting
with b2b4, thus in the node B2 the first occurrence of byte b4

is the one encoding the first occurrence of the word ’AWAY’

in the text. Again, to know where in the node B2 is the first
byte b4 we perform selectb4(B2, 1) = 3. Now we know that
in the root node the 3rd byte b2 will be the one corresponding
to the first byte of our codeword. To know where in the root
node is that 3rd byte b2 we compute selectb2(Root, 3) = 9.

2Note that only the shaded byte sequences are stored in the
nodes; the text is shown only for clarity.

Figure 1: Example

Word:

Position:

b1b3 b4

b5 b1

b1b2

b5

b3b4 b2

b1

b2

b2

b4

b3

B4 B5B2 B4

B2 B3 B4

TEXT: “LONG TIME AGO IN A GALAXY FAR FAR AWAY”

SYMBOL FREQ CODE

FAR 2 b1

IN 1 b2 b5

A 1 b3 b1

LONG 1 b3 b5

AGO 1 b4 b3

TIME 1 b2 b1

AWAY 1 b2 b4 b3

GALAXY 1 b4 b5 b2

LONG TIME AGO IN A GALAXY FAR FAR AWAY

1 2 3 4 5 6 7 8 9

TIME IN AWAY

1 2 3

LONG A

1 2

AGO GALAXY

1 2

b5

GALAXY

1

AWAY

1

b3

Finally the result is that the word ’AWAY’ appears for the
first time as the 9th word of the text. Notice that it would
be easy to obtain a snippet of an arbitrary number of words
around this occurrence, just by using the explained decom-
pression mechanism, on any encoding.

The sum of the space needed for the byte sequences stored
at all nodes of the tree is exactly the same as the size of the
compressed text. Just a reordering has taken place. Yet, a
minimum of extra space is necessary in order to maintain
the tree shape information with a few pointers. Actually,
the shape of the tree is determined by the compression tech-
nique, so it is not necessary to store those pointers, but only
the length of the sequence at each node.

4.1 Algorithms
We now detail the algorithms for compression, decompres-

sion, and searching.

4.1.1 Compression
The compression algorithm makes two passes on the source

text. In the first pass we obtain the vocabulary and the
model (frequencies), and then assign codewords using any
prefix-free semistatic encoding scheme. In the second pass
the source text is processed again and each word is trans-
lated into its codeword. Instead of storing those codewords
sequentially, as a classical compressor, the codeword bytes
are spread along the different nodes in the wavelet tree. The
node where a byte of a codeword is stored depends on the
previous bytes of that codeword, as explained.

It is possible to precalculate how many nodes will form
the tree and the sizes of each node before the second pass
starts, so they can be allocated and filled with the codeword
bytes as the second pass takes place. We maintain an array
of markers that point to the current writing position at each
node, so that they can be filled sequentially following the
order of the words in the text.

Finally, we generate the compressed text as the concate-
nation of the sequences of all the nodes in the wavelet tree,
and add a header with the words ↔ codewords assignment,
plus the length of the sequence at each tree node.

4.1.2 Random decompression
To decompress from a random text word j, we access the

j-th byte of the root node sequence to obtain the first byte of

Algorithm 1 Construction of WTDC

//input: t, source text
//output: compressed text with shape of wavelet tree
voc← first-pass(t)
sort(voc)
totalNodes← calculateNumberNodes()
for all node ∈ totalNodes do

length[node]← calculateSeqLength(node)
wt[node]← allocate(length[node])
marker[node]← 0

end for
for all word ∈ t do

cw ← code(word)
currentnode← rootnode
for i← 1 to |cw| do

j ← marker[currentnode]
wt[currentnode][j]← cwi

marker[currentnode]← j + 1
currentnode← child(currentnode, cwi)

end for
end for
return concatenation of node sequences, vocabulary, and
length of node sequences

the codeword. If the codeword has just one byte, we finish
at this point. If the byte read bi is not the last one of a
codeword, we have to go down in the tree to obtain the rest
of the bytes. As explained, the next byte of the codeword is
stored in the child node Bi, the one reached from the first
byte bi. All the codewords starting with that byte bi are
stored in Bi, so we have to count the number of occurrences
of the byte bi in the root node before position j by using the
rank operation, rankbi

(root, j) = k. Thus k is the position
in the child node Bi of the second byte of the codeword.
We repeat this procedure as many times as the length of the
codeword.

If we need to decompress the previous or the next word
we follow the same algorithm starting with the previous or
the next entry of the root node.

The complexity of this algorithm is (l− 1) times the com-
plexity of rank operation, where l is the length of the code-
word. Therefore, its performance depends on the implemen-

Algorithm 2 Display x

//input: x, position in the compressed text
//output: p, word at position x in the compressed text
currentnode← rootnode
c← wt[currentnode][x]
cw ← [c]
while cw is not completed do

x← rankc(currentnode, x)
currentnode← child(currentnode, c)
c← wt[currentnode][x]
cw ← cw||c

end while
p← decode(cw)
return p

tation of the rank operation.

4.1.3 Full decompression
After loading the vocabulary and rebuilding the wavelet

tree, the full decompression of the compressed text consists
of decoding sequentially each entry of the root. All the nodes
of the tree will be also processed sequentially, so to gain effi-
ciency we maintain pointers to the current first unprocessed
entry of each node. Once we obtain the child node where the
codeword of the current word continues, we can avoid un-
necessary rank operations because that byte will be the next
one to process in the corresponding node. Except for this
improvement, the algorithm is the same as that explained
in Section 4.1.2.

4.1.4 Searching
To count the occurrences of a given word, we compute

how many times the last byte of the codeword assigned to
that word appears in the corresponding leaf node. That leaf
node is the one identified by all the bytes of the codeword
except the last one. The pseudocode is presented in Algo-
rithm 3.

Algorithm 3 Count operation

//input: w, a word
//output: n, number of occurrences of w
cw ← code(w)
Let cw = cw′||c, being c the last byte
currentnode← node corresponding to code cw′

n← rankc(currentnode, length[currentnode])
return n

To locate all the occurrences of a given word, we start
looking for the last byte of the corresponding codeword cw
in the associated leaf node using operation select. If the
last symbol of the codeword, cw|cw|, occurs at position j
in the leaf node, then the previous byte cw|cw|−1 of that
codeword will be the jth one occurring in the parent node.
We proceded in the same way up in the tree until reaching
the position x of the first byte cw1 in the root. Thus x is
the position of the first occurrence of the word searched for.
To find all the occurrences of a word we proceed in the same
way, yet we can use pointers to the already found positions
in the nodes to speed up the select operations (this might
be relevant depending on the select algorithm used).

It is also possible to search a phrase pattern. We locate
all the occurrences of the least frequent word in the root

Algorithm 4 Locate jth occurrence of word w operation

//input: w, word
//input: j, integer
//output: position of the j-th occurrence of w
cw← code(w)
Let cw = cw′||c, being c the last byte
currentnode← node corresponding to code cw′

for i← |cw| to 1 do
j ← selectcwi(currentnode, j)
currentnode← parent(currentnode)

end for
return j

node, and then check if all the first bytes of each codeword
of the pattern match with the previous and next entries
of the root node. If those first bytes match, we verify their
complete codewords around the candidate occurrence found.
As shown in the experiments, this is a very efficient method
in practice.

4.2 Rank and select over bytes
As it was mentioned before, the efficiency of the search

and random decompression algorithms depends on the im-
plementation of rank and select operations.

A baseline solution is to carry out those operations by
brute force, that is, by sequentially counting all the occur-
rences of the byte we are interested in, from the beginning
of the node sequence. This simple option does not require
any extra structure. Interestingly enough, it already allows
that operations count and locate are carried out more effi-
ciently than in classically compressed files. In both cases we
do sequential searches, but in the reorganized version these
searches are done over a reduced portion of the file. Like-
wise, it is possible to access the compressed text at random,
even using non-synchronized codes such as PH and RPBC,
faster than scanning the file from the beginning.

However, it is possible to drastically improve the perfor-
mance of rank and select operations at a very moderate extra
space cost, by adapting well-known theoretical techniques
[6]. Given a sequence of bytes B[1, n], we use a two-level di-
rectory structure, dividing the sequence into sb superblocks
and each superblock into b blocks of size n/(sb∗b). The first
level stores the number of occurrences of each byte from the
beginning of the sequence to the start of each superblock.
The second level stores the number of occurrences of each
byte up to the start of each block from the beginning of the
superblock it belongs to. The second-level values cannot be
larger than sb ∗ b, and hence can be represented with fewer
bits.

With this approach, rankbi
(B, j) is obtained by counting

the number of occurrences of bi from the beginning of the
last block before j up to the position j, and adding to that
the values stored in the corresponding block and superblock
for byte bi. Instead of O(n), this structure answers rank
in time O(n/(sb ∗ b)). To compute selectbi

(B, j) we binary
search for the first value x such that rankbi

(B, x) = j. We
first binary search the stored values in the superblocks, then
those in the blocks inside the right superblock, and finally
complete the search with a sequential scanning in the right
block. The time is O(log sb + log b + n/(sb ∗ b)).

An interesting property is that this structure is parame-
terizable. That is, there is a space/time tradeoff associated

Table 1: Description of the corpora used.
CORPUS size (bytes) num words voc. size
CR 51,085,545 10,113,143 117,713
ZIFF 185,220,211 40,627,131 237,622
ALL 1,080,720,303 228,707,250 885,630

Table 2: Compression ratio (in %).
PH ETDC RPBC WPH WTDC WRPBC

CR 31.06 31.94 31.06 31.06 31.95 31.07
ZIFF 32.88 33.77 32.88 32.88 33.77 32.89
ALL 32.83 33.66 32.85 32.83 33.66 32.85

to parameters sb and b. The shorter the blocks, the faster
the sequential counting of occurrences of byte bi.

5. EXPERIMENTAL RESULTS
We used some large text collections from trec-2: AP

Newswire 1988 (AP) and Ziff Data 1989-1990 (ZIFF), as
well as trec-4, namely Congressional Record 1993 (CR)
and Financial Times 1991 to 1994 (FT91 to FT94) to create
a large corpora (ALL) by aggregating them all. We also
used CR and ZIFF corpus individually. Table 5 presents the
main characteristics of the corpora used. The first column
indicates the name of the corpus, the second its size (in
bytes). The third column in that table indicates the number
of words that compose the corpus and finally the fourth
column shows the number of different words in the text.

We used the spaceless word model [10] to create the vo-
cabulary, that is, if a word was followed by a space, we just
encoded the word, otherwise both the word and the separa-
tor were encoded.

An isolated Intel R©
Pentium

R©
-IV 3.00 GHz system (16Kb

L1 + 1024Kb L2 cache), with 4 GB dual-channel DDR-
400Mhz RAM was used in our tests. It ran Debian GNU/Linux
(kernel version 2.4.27). The compiler used was gcc version
3.3.5 and -O9 compiler optimizations were set. Time results
measure cpu user time in seconds.

5.1 Compression properties
We measure how our reorganization of codeword bytes af-

fects the main compression parameters, such as compression
ratio and compression and decompression times.

We use our reorganization method over the compressed
texts obtained using three well-known compression tech-
niques explained in Section 2. We call WPH, WTDC, and
WRPBC to the wavelet-tree reorganization applied over Plain
Huffman, End-Tagged Dense Code, and Restricted Prefix
Byte Codes, respectively.

Table 2 shows that compression ratio is essentially not
affected. There is a very slight loss of compression (close to
0.01%), due to the storage of the tree shape.

Tables 3 and 4 show the compression and decompression
time obtained using the wavelet trees. Whereas the com-
pression time is almost the same (2%-4% worse), there are
larger differences in decompression time (20%-25% slower).
With the wavelet tree, decompression is not just a sequen-
tial process. For each word of the text, a top-down traver-
sal is carried out on the tree, so the benefits of cache and
spatial locality disappear. This is more noticeable than at
compression, where the overhead of parsing the source text

Table 3: Compression time.
PH ETDC RPBC WPH WTDC WRPBC

CR 2.886 2.870 2.905 3.025 2.954 2.985
ZIFF 11.033 10.968 11.020 11.469 11.197 11.387
ALL 71.317 71.452 71.614 74.631 73.392 74.811

blurs those time differences.

Table 4: Decompression time.
PH ETDC RPBC WPH WTDC WRPBC

CR 0.574 0.582 0.583 0.692 0.697 0.702
ZIFF 2.309 2.254 2.289 2.661 2.692 2.840
ALL 14.191 13.943 14.131 16.978 17.484 17.576

5.2 Searching and displaying
We show now the efficiency achieved by the reordering

technique for pattern searching and random decompression.
Table 6 summarizes the performance, measuring user time,

of the main search operations: count all the occurrences of
a pattern (in milliseconds), locate the position of the first
occurrence (in milliseconds), locate all (in seconds) and ex-
tract all the snippets around the occurrences of a pattern
(in seconds). We run our experiments over the largest cor-
pus, ALL, and show the average time of searching for 100
randomly chosen words of low and medium frequency (to
avoid the stopwords). We present the result obtained by
the compression methods PH, ETDC, and RPBC; by the
wavelet trees implemented without blocks and superblocks
(WPH, WTDC, and WRPBC); and also wavelet trees using
those structures (covering 21,000 bytes per block, and 10
blocks per superblock) with a waste of 1% of extra space,
to speed up rank and select operations (WPH+, WTDC+,
and WRPBC+). Table 5 shows the loading time, so that the
compressed text becomes ready for querying, and the inter-
nal memory usage to solve queries needed for each method.
In the case of rank structures, it takes more than 1 second to
create the two-level directory. This time is not as important
as search times, because this loading is performed only once.

Even without using the extra space for the blocks and
superblock structures, wavelet trees improve all searching
capabilities except for extracting all the snippets, as shown
in Table 6. This is because snippets require decompress-
ing several codewords around each occurrence, and random
decompression is very slow in the wavelet trees if one has
no extra support for the rank operations that track random
codewords down.

By just spending 1% extra space in block and superblock
data structures, rank operations are dramatically improved,
including extracting all the snippets. Only the self-synchro-
nized ETDC is still faster than its corresponding wavelet tree
(WTDC+) for extracting snippets. This is because extract-
ing a snippet around a word in a non self-synchronized code
implies extra operations to permit the decompression of the
previous words, while ETDC can easily move backwards in
the compressed text.

By raising the extra space allocated to blocks and su-
perblocks to 5%, WTDC+ finally takes over ETDC in ex-
tracting snippets as well. It is important to remark that our
proposal improves all searching capabilities when a compres-

Table 5: Load time (in seconds) and memory usage (% of corpus size).
PH ETDC RPBC WPH WTDC WRPBC WTPH+ WTDC+ WRPBC+

Load time (s) 0.37 0.39 0.36 0.38 0.35 0.37 1.57 1.6 1.57
Memory usage 35.13% 35.95% 35.14% 35.13% 35.96% 35.14% 36.11% 36.95% 36.09%

Table 6: Searching capabilities
Count First Locate snippet

(ms) (ms) (s) (s)
PH 2605.600 48.861 2.648 7.955
ETDC 1027.400 22.933 0.940 1.144
RPBC 1996.300 41.660 2.009 7.283
WPH 238.500 17.173 0.754 72.068
WTDC 221.900 17.882 0.762 77.845
WRPBC 238.700 17.143 0.773 75.435
WPH+ 0.015 0.017 0.123 5.339
WTDC+ 0.015 0.014 0.129 6.130
WRPBC+ 0.015 0.018 0.125 5.036

sion technique is not self-synchronized.

5.3 Implicit indexing versus classical indexes
As explained, our reorganization brings some (implicit)

indexed search capabilities into the compressed file. In this
section we compare the search performance of WTDC+ against
a block-addressing compressed inverted index (in the style
of [14]) over text compressed with ETDC (II), which works
completely in main memory. Basically, II is a block-grained
inverted index: It assumes that the indexed text is parti-
tioned into blocks of size b, and for each term it keeps a
list of occurrences that stores all the block-ids in which that
term occurs. To reduce its size, the lists of occurrences were
compacted using the index+bc strategy in [5]; that is, an ab-
solute sample is kept every s values, and the remaining val-
ues are kept with a d-gap strategy combined with byte-codes
(bc). Moreover, the text is compressed with ETDC. There-
fore, the list of occurrences of a term t points actually to the
blocks that contain the beginning of the codeword ETDC(t)
associated by ETDC to t. Searches for a word t are done by
obtaining the block-ids of the blocks in which t appears and
then searching for ETDC(t) (using Horspool’s algorithm)
in the pointed blocks. Searches for a phrase t1 . . . tm imply
intersecting the lists of occurrences of all the terms t1 . . . tm

and finally applying Horspool’s algorithm to search for the
sequence of their codewords p = ETDC(t1) . . . ETDC(tm)
in such blocks. The intersection of lists is done using set-vs-
set3 approach, as recommended in [5], combined with binary
search on the largest set.

II is parameterizable by two parameters: the block size (b)
measured in kilobytes, and the sample value (s), such that
given a posting list of size n, ⌈n/s⌉ absolute samples will
be chosen at regular intervals of size s. Different space-time
trade-offs are obtained depending on such parameters. To
make a fair comparison between II and WTDC+ we chose
two different configurations for II (IIs8,b16 and IIs32,b256) by
setting b = 16, s = 32 and b = 256, s = 32, respectively.
Then, we chose two settings of WTDC+ (WT1 and WT2)
that required almost the same amount of memory. More

3Set-vs-set begins with the shortest set as a pivot and inter-
sects it against the others in increasing order of size.

precisely, WT1 uses one block per each 2,000 bytes in the
compressed text, and 1 superblock per each 8 blocks. In
WT2, we used 1 superblock per each 20 blocks and 1 block
per 7,000 bytes. The sizes of the resulting four structures,
as well as their compression ratios, are shown in Table 7.

Table 7: Sizes of the compared WTDC+ and II
structures.

Index Wavelet trees Block-add Inv Indexes
type WT1 WT2 IIs8,b16 IIs32,b256

size(MB) 457.32 397.97 469.38 402.66
C. ratio(%) 44.37 38.61 45.54 39.07

Table 8 shows the time (in seconds) needed to locate all
the text occurrences of 100 randomly-chosen single-word
patterns and to extract all the snippets around such oc-
currences. We show results for 4 groups of words depend-
ing on their number of frequencies (f): i) f ≤ 100, ii)
100 < f ≤ 1000, iii) 1000 < f ≤ 10000 , and iv) f > 10000.
The snippets were obtained by decompressing 20 words,
starting in an offset 10 words before an occurrence. Both
locate and the extraction of snippets are faster in WTDC+
than in II. Only when we are extracting the snippets of very
frequent words can IIs8,b16 beat WT1.

Table 8: Searching for words: WTDC+ Vs Block-
addressing Inverted Index. Times in seconds.

Freq. WT1 IIs8,b16 WT2 IIs32,b256

1-100 0.005 0.020 0.008 0.270
Locate 101-1000 0.134 0.580 1.343 7.260

1001-10000 0.478 5.820 1.715 42.130
>10000 3.702 31.240 6.748 66.450

1-100 0.028 0.030 0.064 0.280
Snippet 101-1000 0.771 0.640 2.845 7.300

1001-10000 5.456 6.130 13.251 42.440
>10000 44.115 33.700 102.722 68.870

Table 9 shows the time (in seconds) needed for perform-
ing locate and extract-snippet operations over 100 phrase
patterns randomly chosen from the text. Results are given
depending on the number of words (2, 4, 6, 8) in the phrase
pattern. In practice, when we aim at using the smallest
index configuration, WTDC+ behaves much better than II
and WT2 clearly overcomes the results of IIs32,b256. Only
when II is allowed to use more memory, IIs8,b16, it can com-
pete with WT1 in snippet-extraction time. Gaps between
both approaches are reduced because the extraction process
is slower in WT than in II once an occurrence has been lo-
cated. However, the locate operation is still much faster on
WT1.

We remark that our good results essentially owe to the
fact that we are not sequentially scanning any significant
portion of the file, whereas a block addressing inverted index
must sequentially scan (sometimes a significant number of)

Table 9: Searching for phrases: WTDC+ Vs Block-
addressing Inverted Index. Times in seconds.

#words WT1 IIs8,b16 WT2 IIs32,b256

2 1.920 5.570 4.250 22.880
4 2.020 4.980 4.090 16.500

Locate 6 1.300 2.020 3.050 10.990
8 0.940 1.250 2.630 8.470
2 5.070 5.750 11.730 23.050
4 2.100 4.990 4.230 16.500

Snippet 6 1.300 2.020 3.060 11.000
8 0.950 1.250 2.630 8.460

blocks. Inverted indexes that directly point to occurrences
instead of blocks require much more space and hence are not
competitive for this comparison.

6. CONCLUSIONS AND FUTURE WORK
It has been long established that semistatic word-based

byte-oriented compressors such as those considered in this
paper are useful not only to save space and time, but also to
speed up sequential search for words and phrases. However,
the more efficient compressors such as PH and RPBC are
not that fast at searching or random decompression, because
they are not self-synchronizing. In this paper we have shown
how a simple reorganization of the bytes of the codewords
obtained when a text is being compressed, can produce clear
codewords boundaries for those compressors. This gives
better search capabilities and random access than all the
byte-oriented compressors, even those that pay some com-
pression degradation to mark codeword boundaries (Tagged
Huffman, ETDC).

As our reorganization permits carrying out all those op-
erations efficiently over PH, the most space-efficient byte-
oriented compressor, the usefulness of looking for coding
variants that sacrifice compression ratio for search or decod-
ing performance is questioned: A reorganized Plain Huffman
(WPH) will do better in almost all aspects.

This reorganization has also surprising consequences re-
lated to implicit indexing of the compressed text. Block-
addressing indexes over compressed text have been long con-
sidered the best low-space structure to index a text for ef-
ficient word and phrase searches. They can trade space
for speed by varying the block size. We have shown that
the reorganized codewords provide a powerful alternative to
these inverted indexes. By adding a small extra structure to
the wavelet trees, the search operations are speeded up so
sharply that the structure competes successfully with block-
addressing inverted indexes that take the same space on top
of the compressed text. Especially, our structure is supe-
rior when little extra space on top of the compressed text is
permitted. More experiments are required to compare more
exhaustively our wavelet trees against not only inverted in-
dexes but also other reduced-space structures.

7. REFERENCES
[1] R. A. Baeza-Yates and B. Ribeiro-Neto. Modern

Information Retrieval. Addison-Wesley Longman, May
1999.

[2] R. S. Boyer and J. S. Moore. A fast string searching
algorithm. Communications of the ACM,
20(10):762–772, Oct. 1977.

[3] N. Brisaboa, A. Fariña, G. Navarro, and J. Paramá.
Lightweight natural language text compression.
Information Retrieval, 10(1):1–33, 2007.

[4] J. S. Culpepper and A. Moffat. Enhanced byte codes
with restricted prefix properties. In M. P. Consens and
G. Navarro, editors, SPIRE, volume 3772 of Lecture
Notes in Computer Science, pages 1–12. Springer,
2005.

[5] J. S. Culpepper and A. Moffat. Compact set
representation for information retrieval. In SPIRE,
volume 4726 of Lecture Notes in Computer Science,
pages 137–148. Springer, 2007.

[6] P. Ferragina, G. Manzini, V. Mäkinen, and
G. Navarro. Compressed representations of sequences
and full-text indexes. ACM Transactions on
Algorithms (TALG), 3(2):article 20, 2007.

[7] R. Grossi, A. Gupta, and J. Vitter. High-order
entropy-compressed text indexes. In Proceedings of
14th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 03), pages 841–850, 2003.

[8] D. A. Huffman. A method for the construction of
minimum-redundancy codes. In Proc. Inst. Radio
Eng., pages 1098–1101, Sept. 1952. Published as Proc.
Inst. Radio Eng., volume 40, number 9.

[9] A. Moffat. Word-based text compression. Softw.
Pract. Exper., 19(2):185–198, 1989.

[10] E. Moura, G. Navarro, N. Ziviani, and
R. Baeza-Yates. Fast searching on compressed text
allowing errors. In B. Croft, A. Moffat, C. Rijsbergen,
R. Wilkinson, and J. Zobel, editors, Proceedings of the
21th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval
(SIGIR’98), pages 298–306. York Press, 1998.

[11] E. Moura, G. Navarro, N. Ziviani, and
R. Baeza-Yates. Fast and flexible word searching on
compressed text. ACM Transactions on Information
Systems (TOIS), 18(2):113–139, 2000.

[12] I. Munro. Tables. In Proc. 16th Conference on
Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), LNCS v. 1180, pages
37–42, 1996.

[13] G. Navarro and V. Mäkinen. Compressed full-text
indexes. ACM Computing Surveys, 39(1):article 2,
2007.

[14] G. Navarro, E. Moura, M. Neubert, N. Ziviani, and
R. Baeza-Yates. Adding compression to block
addressing inverted indexes. Information Retrieval,
3(1):49–77, 2000.

[15] P. Sanders and F. Transier. Intersection in integer
inverted indices. In Proc. 9th Workshop on Algorithm
Engineering and Experiments (ALENEX), 2007.

[16] T. Strohman and B. Croft. Efficient document
retrieval in main memory. In Proc. 30th Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR),
pages 175–182. ACM Press, 2007.

[17] A. Turpin and A. Moffat. Fast file search using text
compression. In Proc. 20th Australian Comp. Sci.
Conf, pages 1–8, 1997.

[18] G. K. Zipf. Human Behavior and the Principle of
Least Effort. Addison-Wesley (Reading MA), 1949.

[19] J. Zobel, A. Moffat, and K. Ramamohanarao. Inverted
files versus signature files for text indexing. ACM
Transactions on Database Systems (TODS),
23(4):453–490, 1998.

