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ABSTRACT
We address the problem of adaptive compression of natural
language text, focusing on the case where low bandwidth
is available and the receiver has little processing power, as
in mobile applications. Our technique achieves compression
ratios around 32% and requires very little effort from the re-
ceiver. This tradeoff, not previously achieved with alterna-
tive techniques, is obtained by breaking the usual symmetry
between sender and receiver present in statistical adaptive
compression. Moreover, we show that our technique can be
adapted to avoid decompression at all in cases where the re-
ceiver only wants to detect the presence of some keywords in
the document, which is useful in scenarios such as selective
dissemination of information, news clipping, alert systems,
text categorization, and clustering. We show that, thanks to
the same asymmetry, the receiver can search the compressed
text much faster than the plain text. This was previously
achieved only in semistatic compression scenarios.

1. INTRODUCTION
Text compression [2] permits representing a document us-

ing less space. This is useful not only to save disk space, but
more importantly, to save disk transfer and network trans-
mission time. In recent years, compression techniques es-
pecially designed for natural language texts have not only
proven extremely effective (with compression ratios around
25%-30%), but also permitted searching the compressed text
much faster (up to 8 times) than the original text [20, 9, 10].
The integration of compression and indexing techniques [21,
17, 25] opened the door to compressed text databases, where
texts and indexes are manipulated directly in compressed
form, and both time and space are simultaneously saved.
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The key to the success of natural language text compres-
sion is the use of a word-based model [15], so that the text
is regarded as a sequence of words. This poses the over-
head of managing a large source alphabet, but in large text
collections the vocabulary size is relatively insignificant be-
cause of Heaps Law [12]. Since the distribution of words is
rather biased, following a Zipf Law [22, 1], the sequence of
words is highly compressible with a zero-order encoder such
as Huffman code [14]. In order to be searchable, semistatic
models have been used in compressed text databases, to en-
sure that the codeword assigned to a word does not change
across the text. Thus, a pattern can be compressed and
directly searched for in the compressed text without decom-
pressing it. This is also essential to permit local decompres-
sion of text passages in order to present them to the final
users. Different searchable, word-based, semistatic statisti-
cal compressors with different merits have been used, such as
bit-oriented Huffman [20], byte-oriented Huffman and vari-
ants [10], and the more recent End-Tagged Dense Codes and
(s, c)-Dense Codes [6, 4].

As explained, documents are decompressed only in order
to present them. A problem not addressed with the current
schemes is how to transmit individual documents in com-
pressed form. This is very interesting when the text server
must transfer the documents through a low-bandwidth net-
work. Note that it is not feasible to directly transfer the doc-
ument as it is compressed in the database, because the re-
ceiver does not know the semistatic model used by the sender
(which includes the vocabulary of the whole collection), and
the overhead of transmitting it would be prohibitive, as the
collection vocabulary is large when compared to the size of
individual documents.

Adaptive or dynamic,compression methods do not need to
transmit the model because the receiver can learn it as it re-
ceives the compressed text. They have the additional advan-
tage over semistatic methods that the sender does not need
to perform a first pass over the text to build the model, but
it can start the compression and transmission immediately,
while the receiver can start reception and decompression si-
multaneously. A way to transmit individual documents in a
compressed text database scenario is that the server uncom-
presses them and then recompresses them with an adaptive
method.

Note that transmitting an individual document with an
adaptive scheme might not be very effective because there
is not much time to converge to a good model. This is es-
pecially valid in word-based models because even the local



vocabulary of the document (which is transmitted as new
symbols as they appear) is relatively large for small docu-
ments, again by Heaps Law [12]. Yet, this works well when
the client establishes a longer session with the text server
and several documents are transmitted along time. This
can be precisely the case of a user session in a compressed
text database, when browsing a digital library or a Web site,
or in a chat or email service.

There are some scenarios where the receiver can be in-
terested not in uncompressing the arriving text, but just in
searching it for some specific words, for classification or re-
trieval purposes. This has applications in selective dissem-
ination of information, news clipping, altert systems and
others. In all those cases, documents gathered from dif-
ferent sources are received and pointed out to users when
keywords are found that denote topics of interest. Another
application is text categorization and clustering, where doc-
uments gathered from text servers are classified according to
the presence of certain keywords, without need to ever hav-
ing the text at the categorization machine. For example, a
language classification system might look for a small set of
common words of each language and use it to classify the
incoming compressed text, forwarding it to a specific direc-
tory or computer depending of its language, to be indexed,
stored, or even automatically translated.

Therefore it would be useful to have a dynamic compres-
sion method with direct search capabilities, that is, per-
mitting direct search of the compressed text without de-
compressing it. However, direct search of text compressed
with an adaptive technique is far more difficult than with
a semistatic technique, as a given pattern looks different
throughout the compressed document. Although there ex-
ist direct search techniques for adaptive compression that
are more efficient than uncompressing and searching [19],
semistatic compression permits much faster searching, faster
than just searching the uncompressed text (without count-
ing the time to uncompress) [10].

The best known adaptive compression methods are the
Ziv-Lempel family [23, 24] and dynamic arithmetic coding
[16]. The former obtains reasonable but not spectacular
compression ratios (around 40%). The latter compresses
much better (around 25%), but it requires significant com-
putational effort both from the sender and from the receiver.
This is especially unfortunate in cases where the receiver has
limited computational power, such as in mobile applications.
This symmetry in the sender and receiver efforts is at the
essence of statistical adaptive compression, as both have to
update their models in synchronization. It is also central
to the difficulty of direct searching text compressed with
adaptive methods.

In [5, 11], adaptive versions of both word-based byte-
oriented Huffman and End-Tagged Dense Code (ETDC)
were presented. The latter turns out to be especially inter-
esting, achieving around 30% compression ratio and a com-
pression speed close to the fastest Ziv-Lempel compressors
(which achieve only 40% compression ratio) and 2.5 times
faster than word-based arithmetic coding. Decompression
is 3.5 times faster than with word-based arithmetic coding,
but still twice as slow as the Ziv-Lempel compressors.

In this paper we improve the existing results on word-
based adaptive compression, focusing on reducing the effort
of the receiver in order to either uncompress or search the
compressed text. We present a variant of the previous Dy-

namic End Tagged Dense Code (DETDC), that we call Dy-
namic Lightweight End Tagged Dense Code (DLETDC).
DLETDC has almost exactly the same compression ratio of
ETDC and DETDC, but it requires much less processing
effort from the receiver than DETDC. As a result, decom-
pression time is now similar to that of Ziv-Lempel methods
in short files and better in longer files. The key idea is to
relief the receiver from maintaining the model as it receives
the text, but letting the sender inform of the changes when
necessary. For this to be useful, we designed DLETDC so
as to maintain its compression ratio while minimizing the
required updates to the model. This breaks the usual sym-
metric model of statistical adaptive compression.

Our second contribution focuses on the case where the re-
ceiver does not need to recover the original text, but just to
detect the presence of some keywords in it. We show how
DLETDC compressed text can be searched without decom-
pressing it. The search algorithm is even lighter than the un-
compression algorithm. It needs very little memory and can
perform efficient Boyer-Moore-type searching on the com-
pressed text. We show that searching the compressed text
for a set of keywords is much faster (up to 5 times) over our
compressed text than over the uncompressed text.

This breaks another long-standing assumption that states
that only semistatic models permit efficient Boyer-Moore
searching on the compressed text. In particular, this is the
first adaptive compression scheme that permits searching
the compressed text faster than the uncompressed text.

2. RELATED WORK

2.1 Word-based Huffman codes
Huffman code is the optimal (shortest total length) statis-

tical prefix code for a given text. However traditional imple-
mentations of the Huffman code are character-based, (they
use characters as source symbols) and therefore they obtain
poor (around 65%) compression ratios. The brilliant word-
based approach, proposed by Moffat [15], yields much better
compression ratios, close to 25%, using a binary target al-
phabet, that is, each word in the source text is encoded as a
sequence of bits. In [10] two byte oriented word-based Huff-
man codes were proposed, called Plain Huffman and Tagged
Huffman respectively.

Plain Huffman does not modify the basic Huffman code
except by using bytes as the symbols of the target alpha-
bet. It obtains compression ratios close to 30% on natural
language text. The loss in compression is due to the use
of bytes instead of bits as in [15]. In exchange, decompres-
sion and searching are much faster with Plain Huffman code
because no bit manipulations are necessary.

In Tagged Huffman [10], the first bit of each byte is re-
served to flag whether the byte is the first of its codeword.
Hence, only 7 bits of each byte are used for the Huffman
code. Note that the use of a Huffman code over the remain-
ing 7 bits is mandatory, as the flag is not useful by itself to
make the code a prefix code. While searching Plain Huff-
man compressed text requires inspecting all its bytes from
the beginning, the tag bit in Tagged Huffman permits Boyer-
Moore-type searching (that is, skipping bytes) [3] by simply
compressing the pattern and then running the string match-
ing algorithm. On Plain Huffman this does not work, as the
pattern could occur in the text not aligned to any codeword
[10]. The problem is that the concatenation of two code-



words may contain the codeword of another source symbol.
This cannot happen in Tagged Huffman code thanks to the
tag bit that distinguishes initial codeword bytes.

On the other hand, Tagged Huffman code pays a price in
terms of compression performance of approximately 11%, as
it stores full bytes but uses only 7 bits for coding.

2.2 End Tagged Dense Codes
End-Tagged Dense Code (ETDC) [6] is obtained by a

seemingly dull change to the Tagged Huffman Code [10].
Instead of using a flag bit to signal the beginning of a code-
word, the end of a codeword is signaled. That is, the highest
bit of any codeword byte is 0 except for the last byte, where
it is 1.

This change has surprising consequences. Now the flag bit
is enough to ensure that the code is a prefix code regardless
of the contents of the other 7 bits of each byte. To see this,
consider two codewords X and Y , being X shorter than Y
(|X| < |Y |). X cannot be a prefix of Y because the last byte
of X has its flag bit in 1, while the |X|-th byte of Y has its
flag bit in 0. Thanks to this change, there is no need at all
to use Huffman coding in order to maintain a prefix code.
Therefore, all possible combinations of bits can be used over
the remaining 7 bits of each byte, producing a dense en-
coding. This yields a better compression ratio than Tagged
Huffman while keeping all its good searching and decom-
pression capabilities. On the other hand, ETDC is easier to
build and faster in both compression and decompression.

In general, ETDC can be defined over symbols of b bits,
although in this paper we focus on the byte-oriented version
where b = 8. ETDC is formally defined as follows.

Definition 1. Given source symbols with decreasing prob-
abilities {pi}0≤i<n the corresponding codeword using the
End-Tagged Dense Code is formed by a sequence of sym-
bols of b bits, all of them representing digits in base 2b−1

(that is, from 0 to 2b−1 −1), except the last one which has a
value between 2b−1 and 2b − 1, and the assignment is done
in a sequential fashion.

That is, the first word is encoded as 1
¯
0000000, the second

as 1
¯
0000001, until the 128th as 1

¯
1111111. The 129th word

is coded as 0
¯
0000000:1

¯
0000000, 130th as 0

¯
0000000:1

¯
0000001

and so on until the (1282 +128)th word 0
¯
1111111:1

¯
1111111.

Note that the code depends on the rank of the words, not
on their actual frequency. As a result, only the sorted vo-
cabulary must be stored with the compressed text for the
decompressor to rebuild the model. Therefore, the vocab-
ulary will be slightly smaller than in the case of Huffman
codes, where some information about the shape of the Huff-
man tree must be stored (even when a canonical Huffman
tree is used).

It is clear that the number of words encoded with 1, 2,
3 etc, bytes is fixed (specifically 128, 1282, 1283 and so on)
and does not depend on the word frequency distribution.
Generalizing, being k the number of bytes in each codeword
(k ≥ 1) then words at positions:

2b−1 2(b−1)k−1 − 1

2b−1 − 1
≤ i < 2b−1 2(b−1)k − 1

2b−1 − 1

will be encoded with k bytes. These clear limits mark the
change points in the codeword lengths and will be relevant
in the adaptive version of ETDC that we present in this
paper.

As it can be seen, the computation of codes is extremely
simple: It is only necessary to sort the source symbols by
decreasing frequency and then sequentially assign the code-
words. But not only the sequential procedure is available
to assign codewords to the words. There are simple en-
code and decode procedures that can be efficiently imple-
mented, because the codeword corresponding to symbol i
is obtained as the number x written in base 2b−1, where

x = i − 2(b−1)k−2b−1

2b−1−1
, and adding 2b−1 to the last digit.

Function encode obtains the codeword Ci = encode(i) for
a word at the i-th position in the ranked vocabulary.Function
decode gets the position i = decode(Ci) in the rank for a
codeword Ci. Both functions take just O(l) time, where
l = O(log(i)/b) is the length in digits of codeword Ci. Those
functions are very efficient, because they can be implemented
through just bit shifts and masking.

End-Tagged Dense Code is simpler, faster, and compresses
7% better than Tagged Huffman codes. In fact ETDC only
produces an overhead of about 2% over Plain Huffman. On
the other hand, since the last bytes of codewords are dis-
tinguished, ETDC has all the search capabilities of Tagged
Huffman code. Empirical results comparing ETDC against
Plain and Tagged Huffman can be found in [6].

In [4] a generalization of ETDC, called (s,c)-Dense Code
((s,c)-DC) was presented. In (s,c)-DC a dense codification
is also used, but instead of using 128 values (from 0 to 127)
as non final bytes of codewords (continuers) and other 128
values (from 128 to 255) as final bytes of codewords (stop-
pers), a different number of stoppers (s) and continuers (c)
are used (s+ c = 2b) in order to obtain an optimal compres-
sion. Of course, the s and c values depend on the model and
are computed during the first pass over the text.

2.3 Dynamic End-Tagged Dense Codes
Dynamic techniques start compressing and transmitting

the text as soon as the first source symbol is processed. In
[5] a dynamic version of End-Tagged Dense Code (DETDC)
was presented. As any one-pass technique, DETDC collects
word frequencies as the text is read and, consequently, the
model is updated as compression progresses. Both sender
(compressor) and receiver (decompressor) increment the fre-
quency of each new input word, and maintain the vocabu-
lary ordered by frecuency. Therefore, the sender does not
transmit the model, since the receiver can figure it out by
itself from the received codewords. The sender informs the
receiver of new source symbols appearing in the text, us-
ing a special codeword Cnew−Symbol. The sender transmits
Cnew−Symbol followed by the source word in ASCII. The re-
ceiver inserts it in its vocabulary setting its frequency to
one. In DETDC, Cnew−Symbol was always the first unused
codeword, that is, the codeword that follows that of the
last word in the vocabulary. When a word arrives, and it
is already in the vocabulary, the sender transmits its code-
word, increments its frequency and reorders the vocabulary
if necessary. When the receiver gets a codeword other than
Cnew−Symbol, it decodes the codeword so as to obtain the
corresponding vocabulary position, recovers the codeword
and increments its frequency. Finally it also reorders the
vocabulary if necessary.

In DETDC the encode and decode procedures permit to
efficiently produce a codeword from the word rank in the
compressor, and to efficiently obtain the vocabulary word
position, from an arriving codeword, in the receiver. Both



the sender and the receiver are in charge of maintaining the
sorted vocabulary, carrying out two symmetric processes.
That is, a word position in the ranked vocabulary is the only
necessary data to encode a word, because the mathematical
correspondence rank-codeword explained in section 2.2 is
used to compute the words-codewords mapping. Details can
be found in [5].

3. DYNAMIC LIGHTWEIGHT
END TAGGED DENSE CODE

Dynamic Lightweight End Tagged Dense Code (DLETDC)
is the new dynamic compression technique we introduce in
this paper. It is based on DETDC, but it avoids the over-
head of keeping the model up to date in the side of the
receiver. This makes it extremely convenient in scenarios
where the bandwidth is low and the receiver has little pro-
cessing power, such as in mobile applications. The price is a
very slight increase in the processing cost of the sender and
in the compression ratio.

In DLETDC, only the sender keeps the frequency of each
symbol and maintains the vocabulary sorted by frequency.
The receiver, instead, only stores an array of words indexed
by their codewords, with no frequency information. When a
codeword arrives, the receiver decodes it using the standard
decode procedure and obtains the corresponding word posi-
tion. The receiver does not update the model at all. There-
fore, the sender should inform the receiver of any change
in the codewords-words mapping. Note that changes in the
codeword assignments upon frequency changes are necessary
to maintain good compression ratios. However, the number
of exchanges in the vocabulary is large enough to affect the
compression ratio if all of them have to be informed to the
receiver, where they also require some effort to be processed.
Hence, we seek at minimizing the number of exchanges with-
out affecting the original compression ratio.

Our basic idea is that only when the increment in fre-
quency of a word si makes necessary to encode it with a
codeword shorter than its current codeword Ci, a change
in the codewords-words mapping is performed. Basically
this change simply involves a codewords swapping among
words si and sj , where sj has codeword Cj and |Ci| > |Cj |.
As we explain later, sj is the first word (at the top) in
the group of words with the same frequency of si. Thus,
DLETDC needs two special codewords, Cnew−Symbol and
Cswap. Cnew−Symbol works as was explained for DETDC.
Cswap specifies that the receiver should swap the words
at the positions pointed by the two codewords that follow
Cswap. That is, Cswap,Ci,Cj indicates that now si is rep-
resented by Cj , and sj by Ci. This is implemented by a
simple swap of words at positions i and j of the vocabulary
array in the receiver.

The key idea of this approach is that now there is no corre-
spondence between the word rank (position in the frequency-
sorted vocabulary of the sender) and its codeword, because
words change their positions without changing their code-
words. That is, changes in the rank of a word do not produce
changes in its codeword except when the codeword must be
shorter. Therefore, the sender must maintain an explicit
words-codewords mapping, and use it to encode words.

Codewords Cnew−Symbol and Cswap can be the first two
unused codewords, or the two last codewords of n bytes, be-
ing n the codeword size of the last word in the vocabulary

in a specific moment of the process. Another possibility is
to give them fixed values across the whole process. In our
implementation, we used the last two codewords of 3 bytes,
since all our experimental corpora can be encoded with code-
words of 3 bytes or less. These decisions involve a tradeoff
between compression ratio on one hand and decompression
and scanning speed on the other, as we will explain later.

Example 1. Figure 1 shows an example of the process carried
out by the sender. Assume that, after compressing a portion of a
text, word "the" is in the 127th position of the sorted vocabulary,
"is" is at the 128th position, and "beautiful" is at the 129th

position, all of them with frequency 19.
Assume that the text to be compressed next is "the rose

rose beautiful beautiful". After reading "the", the compres-
sor checks that "the" is already in the vocabulary and increases
its frequency by 1. Next, the compressor recomputes the sorted
vocabulary. We assume that "the" remains at position 127. Then
the compressor sends codeword C127. The next word ("rose") is
not in the vocabulary, thus the compressor adds it to the vocab-
ulary at the last position (last = 130) and gives it the codeword
corresponding to that position, C130. In order to inform the re-
ceiver of this addition, the encoder sends Cnew−Symbol and the
word "rose" in plain form.

The first occurrence of "beautiful" increases its frequency to
20 and then, after the reorganization, "beautiful" is relocated at
the 128th position, swapping it with "is". However, since C128

(the codeword representing "is") and C129 (the one that repre-
sents "beautiful") have the same size (two bytes), the encoder
continues using C128 to represent "is" and C129 to represent
"beautiful".

The next occurrence of "beautiful" places it at the 127th po-

sition, which has an associated codeword of one byte. Then, since

in this case C127 and C129 have different sizes, the encoder swaps

those codewords, associating "the" with C129 and "beautiful"

with C127. Hence, the receiver should be informed of this change.

The encoder sends the tuple Cswap, C129, C127: Cswap warns the

receiver to expect two codewords that should be exchanged. In

addition, the receiver also understands that the second codeword

(after the swap) is the word that was actually read. 2

The example also illustrates how the position of a word
in the sorted vocabulary of the sender is not used to encode
a word, thus an explicit mapping must be maintained.

3.1 Data structures and algorithms
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Figure 1: Example of compression.

The sender maintains a hash table that permits fast search-
ing for any source word si to obtain its current position p
in the rank, as well as its current frequency and codeword.
Essentially, we must be able to identify groups of words with
the same frequency, and be able of fast promoting a word
to the next group when its frequency increases.

Sender ( )
(1) Initialize vocabulary structures, last ← 0;
(2) for i ∈ 1 . . . m do
(3) readsi from the text;
(4) p ← hash(si);
(5) if word(p) = empty (word not in vocabulary) then
(6) send Cnew−Symbol;
(7) send si in plain form;
(8) word[p] ← si;
(9) posInV oc[p] ← last;
(10) freq[p] ← 1;
(11) codeword[p] ← Clast;
(12) posInHT [last] ← p;
(13) last ← last + 1;
(14) else

(15) Ci ← codeword[p];
(16) j ← top[freq[p]];
(17) Ifsize(codeword[posInHT [j]]) < size(Ci) then

(18) send {Cswap, Ci, codeword[posInHT [j]]};
(19) swap(codeword[p], codeword[posInHT [j]]);
(20) else
(21) send Ci;
(22) swap(posInHT [posInV oc[p]], posInHT [j]);
(23) swap(posInV oc[p], posInV oc[posInHT [j]]);
(24) top[freq[p]] ← top[freq[p]] + 1;
(25) freq[p] ← freq[p] + 1;

Figure 3: Sender processes in DLETDC

The data structures used by the sender and their func-
tionality are shown in Figure 2. The hash table of words
keeps in word the source word, in posInVoc the position of
the word in the rank, in freq its frequency and in codeword
its codeword. In the vocabulary array (posInHT) words are
not explicitly represented, but a pointer to the word slot in
the hash table is stored. Finally the array top stores, for
each possible frequency, the position in the rank (that is, in
array posInHT) of the first word with that frequency. That
is, top[13] = 7 means that the word in position 7 has fre-
quency 13, but the word in position 6 has a higher frequency.
If no words of frequency f exist, then top[f ] = −1. A vari-
able last storing the first unused position of the vocabulary
array is also needed.

When the sender reads a word si, it uses the hash function
to obtain its position p in the hash table, so that hash(si) =
p and therefore word[p] = si. The position of si in the
rank is obtained as i = posInV oc[p] and its codeword as
Ci = codeword[p]. In the same way f = freq[p]. Now,

word si must be promoted to the next block of frequencies.
The sender finds the head of its block as j = top[f ] and,
therefore, the slot of the first word with frequency f in the
hash table is h = posInHT [j] and the codeword of that
word is Cj = codeword[h].

To promote si to the next frequency group, it is necessary
to swap positions i and j in vector posInHT and in the hash
table. The swapping requires exchanging posInHT [j] = h
with posInHT [i] = p, and exchanging also posInV oc[p] =
i and posInV oc[h] = j. Once the swapping is done, we
promote j to the next block by setting top[f ] = j + 1. Now
we can increase the frequency of si, freq[p] = freq[p] + 1.

If the codeword Cj has the same length of Ci, then Ci is
sent because it remains as the codeword of si, but if Cj is
shorter than Ci then codeword[h] = Cj and codeword[p] =
Ci are swapped and the sequence Cswap, Ci, Cj is sent. The
receiver will understand that words at positions i and j in its
vocabulary array must be swapped and that word si, which
from now on will be encoded as Cj , has been sent.

If si is a new word, the algorithm sets word[p] = si,
freq[p] = 1, posInV oc[p] = last, codeword[p] = Clast and
posInHT [last] = p. Then, variable last is incremented and
finally codeword Cnew−Symbol is sent followed by the word in
plain ASCII. Figure 3 shows the pseudocode of the sender.

Receiver ( )
(1) Initialize V ocarray; last ← 0;
(2) for p ∈ 1 . . . m, do

(3) receive Cp;
(4) if Cp = Cnew-Symbol then

(5) receive sp in plain form;
(6) V ocarray[last] ← sp;
(7) last ← last + 1;
(8) else

(9) if Cp = Cswap then

(10) receive Ci,Cj ;
(11) swap (V ocarray[decode(Ci)], V ocarray[decode(Cj)]);
(12) output V ocarray[decode(Cj)];
(13) else
(14) output V ocarray[decode(Cp)];

Figure 5: Receiver processes in DLETDC

In the receiver, a simple words array Vocarray and a vari-
able last are the only necessary structures, as explained.
Words are introduced in the vocabulary array as they arrive,
always at the last position. Therefore, there is a implicit
mapping among word position and codewords, as in ETDC.
This fact permits using the same decode procedure used for
ETDC. The difference is that, in DLETDC, the receiver does
not take account of the frequency of the words and does not
update their position in the vocabulary accordingly to their
frequency. Words in Vocarray are, in fact, sorted by code-
word, and two words are swaped, always following sender
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Figure 4: (a)Swaps of 1 and 2 bytes codewords, (b) Swaps of 2 and 3 bytes codewords and (c) Number of new words.

instructions, when an exchange in their codeword lengths
is needed to keep the original DETDC compression ratio.
Figure 5 shows the pseudocode for the receiver process. Ob-
serve that the receiver only has to follow the instructions of
the sender, that is, insert new symbols in the words vector
(sorted by codewords) when Cnew−symbol arrives, and swap
two words in the vector when Cswap arrives.

4. EXPERIMENTAL RESULTS
We used some large text collections from trec-2, namely

AP Newswire 1988 (AP) and Ziff Data 1989-1990 (ZIFF),
as well as trec-4, namely Congressional Record 1993 (CR)
and Financial Times 1991 to 1994 (FT91 to FT94). We
created two larger corpora ALLFT and ALL by aggregating
all texts from FT and of all corpora respectively. As a small
collection we use the Calgary corpus. We used the spaceless
word model [9] to create the vocabulary, that is, if a word
was followed by a space, we just encoded the word, otherwise
both the word and the separator were encoded.

A dual Intel r©Pentium r©-III 800 Mhz system, with 768
MB SDRAM-100Mhz was used in our tests. It ran Debian
GNU/Linux (kernel version 2.2.19). The compiler used was
gcc version 3.3.3 20040429 and -O9 compiler optimizations
were used. Time results measure cpu user time in seconds.

4.1 Swaps and evolution of new words
Remember that using bytes as target symbols and an

ETDC approach, words from position 0 to position 127
are encoded with one byte, words in positions form 128 to
128 + 1282 are encoded with two bytes and so on. With
3 bytes, it is possible to encode more than two millions of
words (and vocabularies very rarely will be so huge given
Heaps law [12]). Therefore there are two very clear limits
in the sorted vocabulary, 128 and 128 + 1282. These two
limits set three intervals. Only when a word changes its
position in a way that it changes its ranking interval, the
corresponding codeword is modified. Therefore, and this is
the key idea, very few changes will occur in the mapping
codewords-words. That is, very few swaps will be needed.

We compressed collection ZIFF to show how the number
of swaps evolves as the text is compressed. The file has
40,627,132 words, and a vocabulary of 237,622 (different)
words. In the compression process, 31,772 swaps were pro-
duced. This means that only the 0.078% of the frequency
changes implied a swap. In addition, most of these swaps
were produced in the first stages of the compression, as it
can be seen in Figure 4.

Note that most of the changes (30,971) are between code-
words of size 2 and 3. This is expected since the shape of
the Zipf distribution signals a bigger difference in frequency
between words 127th and 128th than between words in po-

sitions 128 + 1282 − 1 and 128 + 1282. Notice that if the
word in a position 128 + 1282 − 1 has frequency 1, just one
occurrence of any word at position lower than 128 + 1282

will produce a swap.
Observe in Figure 4(a) that most of the swaps involving

codewords of 1 and 2 bytes take place during the processing
of the first 5% of the file. After processing 20% of the file,
there are almost no further swaps of this type.

Many (about 30%) of the swaps between codewords of
2 and 3 bytes also take place during the compression of
the first 5% of the file (see Figure 4(b)). The number of
swaps decreases as the compression progresses, showing that
the model gets closer to the real distribution as the sam-
ple grows. However, the convergence is slower. Figure4(c))
shows that the distribution of new words, as expected, fol-
lows a Heaps’ law.

4.2 Compression ratio and efficiency
Our implementation of DLETDC uses fixed three-byte

values for Cnew−Symbol and Cswap, producing a small lose
in compression. If we uses the first two free codewords, we
would have saved 2 bytes for Cnew−Symbol in the 127 first
new words and one byte in the 1282 = 16, 384 next words.
That is, we would have saved 16, 640 bytes for codeword
Cnew−Symbol. The same reasoning can be done for Cswap.
We have lost exactly 534 bytes by using a fixed three-byte
Cswap in the compression of the ZIFF collection shown in
Figure 4. These 17, 174 bytes are insignificant in the com-
pressed text size. Table 1 shows the compression ratio we
obtained in the different corpora using the two alternatives.
Column “Variable” shows the compression ratio reached us-
ing the first two free codewords, while “Fixed” refers to using
the last two codewords of three bytes. Notice that the loss
in compression ratio is insignificant, especially on large files.

Corpus Size Variable Fixed
CALGARY 2,131,045 49.36% 50.16%
FT91 14,749,355 36.16% 36.28%
CR 51,085,545 32.21% 32.24%
FT92 175,449,235 32.93% 32.94%
ZIFF 185,220,215 33.87% 33.88%
FT93 197,586,294 32.97% 32.98%
FT94 203,783,923 32.92% 32.93%
AP 250,714,271 33.17% 33.18%
FTALL 591,568,807 32.57% 32.57%
ALL 1,080,719,883 33.69% 33.69%

Table 1: Comparing compression ratios.

The computationally most significant work at the receiver
is to process the swap, and as we have shown, the number of
swaps occurred is insignificant with respect to the number of
words processed. In addition, the number of swaps drops as



Corpus Gzip DETDC DETDC Arith Bzip2
CALG. 36,95% 50,16% 47,73% 34,68% 28,92%
FT91 36,42% 36,28% 35,64% 28,33% 27,06%
CR 33,29% 32,24% 31,98% 26,30% 24,14%
FT92 36,47% 32,94% 32,84% 29,82% 27,09%
ZIFF 33,06% 33,88% 33,79% 26,36% 25,11%
FT93 34,21% 32,98% 32,89% 27,89% 25,32%
FT94 34,21% 32,93% 32,84% 27,86% 25,26%
AP 37,31% 33,18% 33,11% 28,00% 27,21%
FTALL 34,94% 32,57% 32,54% 27,85% 25,86%
ALL 35,09% 33,69% 33,66% 27,98% 25,98%

Table 2: Compression Ratio.

Corpus Gzip DLETDC DETDC Arith Bzip2
CALG. 0.933 0.470 0.384 1.030 2.660
FT91 6.303 2.990 2.488 6.347 18.200
CR 19.767 10.010 8.418 21.930 65.170
FT92 76.313 36.983 31.440 80.390 221.460
ZIFF 71.293 39.370 33.394 82.720 233.250
FT93 77.560 41.823 36.306 91.057 237.750
FT94 73.290 43.703 36.718 93.467 255.220
AP 114.570 54.647 47.048 116.983 310.620
FTALL 234.703 127.745 111.068 274.310 718.250
ALL 431.470 254.910 213.905 509.710 1.342.430

Table 3: Compression time.

the model converges, and therefore, since the receiver does
very little computation, it is very fast.

We empirically compare the compression ratio and com-
pression/decompression speed of DLETDC, against Gzip (a
Ziv-Lempel compressor) [23, 24], Bzip2 (a block sorting
compressor) [7], an arithmetic encoder [8] and DETDC [5].

Table 2 shows the results on compression ratio. As ex-
pected Bzip2 compresses the most and Gzip the least. DLETDC
achieves better compression ratios than Gzip except in small
collections (Calgary). DLETDC compresses slightly less
than DETDC, since the compressed data has to carry in-
formation about the swaps.

Table 3 shows compression time. Now it is clear that
DETDC and DLETDC are by far the best anternatives. No-
tice that due to the swap management, DLETDC is slightly
worse than the DETDC. Table 4 shows decompression times.
Remember that Gzip is considered a very efficient technique
for decoding, and in fact this is its strength when compared
to DETDC and the others. However, DLETDC is never
much slower than Gzip and it is clearly faster than Gzip as
soon as the collection has a medium size.

Hence, DLETDC is easier to program, compresses more,
and compresses and decompresses faster Gzip. This is enough
by itself to make DLETDC an interesting choice for dynamic
compression of natural language texts. However, it has other
relevant features, as we show next.

5. KEYWORD FILTERING

Gzip DLETDC DETDC Arith Bzip2
CALGARY 0.067 0.097 0.240 0.973 0.830
FT91 0.673 0.600 1.545 5.527 5.890
CR 2.123 2.013 5.265 18.053 19.890
FT92 7.703 7.850 19.415 65.680 71.050
ZIFF 7.577 7.947 20.690 67.120 72.340
FT93 9.120 8.610 21.935 71.233 77.860
FT94 9.160 8.933 22.213 75.925 80.370
AP 13.057 11.650 27.233 88.823 103.010
FTALL 28.823 25.735 66.238 214.180 235.370
ALL 59.790 49.530 126.938 394.067 432.390

Table 4: Decompression time.

The problem to perform direct search over text compressed
with previous dynamic methods is that the codeword, used
to encode a specific word, changes many times along the
process. Following those changes requires an effort close to
that of just decompressing the text and then searching it.

Since, as we showed, there are very few swaps, the code-
word of each word changes with much less frequency than
in the case of previous adaptive techniques. This makes it
possible to scan the arriving text looking for some specific
patterns. Of course the codewords for those patterns may
change along the process. At the beginning of the process,
a searched word will appear in ASCII form, preceded by the
Cnew−Symbol codeword. At that point the Clast codeword
becomes the pattern we must look for to find that word.
Latter, that codeword may change again but the Cswap

codeword marks each change and, therefore, the scanning
algorithm can easily follow the evolution of all the search
patterns in the compressed text.

Since we have few changes in the codeword-word mapping
as we show in Section 4.1, we can apply a Boyer-Moore fam-
ily search algorithm, which in our experiments has been the
set Horspool algorithm [13, 18]. However, we have to con-
sider several special issues when searching DLETDC com-
pressed text. Let us suppose that we are searching for pat-
terns p1, p2, . . . , pn. We use P (pi), 1 ≤ 1 ≤ n to denote
the plain version of the pattern and C(pi) to denote the
codeword representing pi in a certain moment.

We represented the patterns, both ASCII versions of the
words and codewords, using a trie. Initially all the P (pi) are
represented in the trie, but as soon as any P (pi) appears for
the first time in the text, the trie is updated by deleting
P (pi) and inserting the corresponding C(pi) pattern (which
initially is always the current Clast value). Codeword Cswap

is also represented in the trie, since the codeword of a search
pattern can be changed by the sender using Cswap as the
escape codeword. Upon finding Cswap, the algorithm has to
read the next two codewords and check if one (or both) of
them is in the trie. If it is, the algorithm updates the trie
in order to replace the current C(pi) codeword of a search
pattern by its new codeword.

Remember that, although we lose some compression, we
preferred to use for Cnew−Symbol and Cswap the last three-
byte codewords, because this improves the search speed.
Both Cnew−Symbol and Cswap must be explicitly represented
in the trie, so if we used the first two free codewords to rep-
resent them, we would have to update the trie each time a
new word arrived, which would be too expensive.

On the other hand, a Booyer-Moore pattern matching al-
gorithm takes advantage of longer patterns because it per-
mits skipping more bytes. The use of variable values for
Cnew−Symbol and Cswap would yield too short codewords to
look for at the beginning of the process. The fixed alter-
native of three-byte codewords permits longer shifts (unless
we search for a frequent word coded with one or two bytes).

5.1 Empirical results on searching
We searched, in both the compressed and the uncom-

pressed versions of the text, the same set of patterns cho-
sen at random from the text. We averaged the results over
100 searches, each with different patterns. Patterns that oc-
curred only once in the test were not chosen, to avoid strange
elements such as long arrays of separator characters.

Table 5 compares search times over corpora of different



Patterns CR AP ALL
# len. PlainDLETDC (%) PlainDLETDC (%) PlainDLETDC (%)
5 6 0.47 0.20 42.55 2.40 0.92 38.3310.14 3.52 34.74
5 1 0.51 0.20 38.83 2.62 0.92 35.3011.76 3.36 28.61
10 6 0.62 0.21 33.87 3.14 0.98 31.3213.80 3.46 25.06
10 1 0.73 0.21 28.76 3.60 0.97 26.9017.12 4.17 24.35
15 6 0.73 0.21 28.76 3.68 1.02 27.7115.84 4.38 27.64
15 1 0.89 0.22 24.71 4.31 1.01 23.4019.18 4.33 22.57
20 6 0.80 0.22 27.50 4.09 1.06 25.9117.61 4.49 25.49
20 1 0.99 0.23 23.23 5.18 1.06 20.5620.47 4.49 21.93
25 6 0.88 0.35 39.77 4.35 1.26 29.0818.70 5.01 26.81
25 1 1.12 0.23 20.53 5.57 1.21 21.7223.14 4.63 20.03

Table 5: Searching in CR, AP and ALL corpora.

sizes. The first column gives the number and minimum
ASCII length of the search patterns. For each corpus we
give the time to search the plain and the uncompressed text,
as well as the compressed/uncompressed time fraction.

The use of longer patterns obviously improves the search
speed in the uncompressed text. However, this has little
effect in the search time over the compressed text, as in this
case we always search for codes of two or three bytes (rarely
shorter, as only 128 words are encoded with just one byte).

A more surprising result is that a larger number of pat-
terns favors the search of the compressed over the uncom-
pressed text. Note that handling more patterns does not
affect much the search speed in DLETDC compressed text.
The main reason is that Horspool algorithm benefits from a
lower probability of two characters (from the text and the
pattern) being equal. The lower this probability, the more
patterns can be handled efficiently. In DLETDC compressed
text this probability is close to 1/256 ≈ 0.004, while in plain
English text it is known to be around 0.067.

6. CONCLUSIONS
We have presented Dynamic Lightweight End Tagged Dense

Code (DLETDC), a new word-based byte oriented statisti-
cal compressor that, as ETDC [6], (sc)-DC [4] and DETDC
[5], belongs to the family of dense compressors. DLETDC,
as other statistical word-oriented compressors, obtains com-
pression ratios around 32-34% but, being a member of the
“dense” family, it is easier to implement and, at the same
time, compresses more efficiently.

We show that, as soon as the compressed text collection
reaches a significative size, DLETDC becomes an interest-
ing alternative because it is more efficient and obtains bet-
ter compression ratios than DETDC and Gzip. At the same
time DLETDC offers an interesting space/time tradeoff that
no other dynamic compressor, such as bzip2 or arithmetic
encoders, can reach. A very interesting feature of this com-
pressor is that it breaks the usual symmetry between sender
and receiver processes, which is common to most adaptive
compressors. Two interesting consequences of this asymme-
try are: the low computing power required by the receiver,
where decompression is remarkably fast, and the possibility
of searching the compressed text without decompressing it,
uncommon on adaptive scenarios.

This second property opens the possibility of scanning the
compressed text as it arrives and filtering it by the words
it contains to perform classification or retrieval tasks. The
possibility of scanning a dynamic compressed text as it is
arriving opens a new horizon of possibilities for new appli-
cations and environments, such as mobile computing when
a source continuously broadcasts information.
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