
XQL and Proximal NodesRicardo Baeza-Yates Gonzalo NavarroDepto. de Ciencias de la Computaci�onUniversidad de ChileBlanco Encalada 2120Santiago 6511224, ChileE-mail: frbaeza,gnavarrog@dcc.uchile.cl �AbstractWe consider the recently proposed XQL language, which is designed to query XML docu-ments by content and structure. We show that an already existing model, namely \ProximalNodes", is the only one that addresses all the complex querying operations de�ned by XQL andthat suggests an e�cient implementation for them.1 IntroductionSearching on structured text is becoming more important with the increased use of XML. AlthoughSGML existed for a long time, its complexity was the main limitation for a wider use. By takingadvantage of the structure, content queries can be made more precise. Also, XML data can be seenas the meeting point between the database community (in particular the work on semi-structureddata and query languages for XML) with the information retrieval community (structured textmodels). Our main goal in this paper is to show the similarity of both approaches.In 1995 we published a survey on structured text models [BYN96] where we envisioned theimportance of this area. Today, XML makes these models even more important, because as theavailability of textual data increases, structure and metadata can help in coping with volumeexplosion. Most structured text models are based on hierarchies, typically based on trees. XMLnaturally adapts to that type of models. More over, existing structured text models can be used toimplement e�ciently the proposed query languages for handling XML based data. In particular, weshow how the Proximal Nodes (PN) model [NBY95b, NBY97] can be used to e�ciently implementthe XQL query language[LRS98].Section 2 briey introduces the reader to XML and its query languages, as well as knownstructured text models. Section 4 presents the PN model and the operations that supports. Section5 shows how XQL matches the PN model and we conclude with some work in progress.�This work was supported by Fondecyt Project 1-990627.1

2 Basic ConceptsXML stands for eXtensible Markup Language[GP98] and is a simpli�ed subset of SGML [Int86], ametalanguage for tagging structured text. That is, XML is not a markup language, as HTML is,but a meta-language that is capable of containing markup languages in the same way as SGML.XML allows to have human-readable semantic markup, which is also machine-readable. As a result,XML makes it easier to develop and deploy new speci�c markup, enabling automatic authoring,parsing, and processing of networked data.XML does not have many of the restrictions imposed by HTML and on the other hand, imposesa more rigid syntax on the markup, which becomes important at processing time. In XML, endingtags cannot be omitted. Also, tags for elements that do not have any content, like BR and IMG,are specially marked by a slash before the closing angle bracket. XML also distinguishes upper andlower case, so img and IMG are di�erent tags (this is not true in HTML). In addition, all attributevalues must be between quotes. That implies that parsing XML without knowledge on the tagsis easier. In particular, using a DTD is optional. If there is no DTD, the tags are obtained whilethe parsing is done. With respect to SGML, there are a few syntactic di�erences, and many morerestrictions.Recently, the WWW Consortium requested proposals for a standard query language for XML.XML query languages include XQL [LRS98], XML-QL [DFF+98], XGL [CCD+99], Lorel [Wid99],Ozone [LAW98], and Squeal [SS00]. Also, there are query languages for XML which are morepowerful than XQL, as well as, for the Web as a database. Recently, another important issue isthe integration of these languages with information retrieval approaches (for example see [Wid99,FMK00]).Before XML appeared, several models to query structured text were proposed. These ap-proaches are characterized by generally imposing a hierarchical structure on the database, and bymixing queries on content and structure. Although this structuring is simpler than, for example,hypertext, even in this simpler case the problem of mixing content and structure is not satisfactorilysolved.The models include (in increasing expressiveness order) the Hybrid Model [BY96], PAT Ex-pressions [ST92], Overlapped Lists [CCB95], Lists of References [Mac91], Proximal Nodes [Nav95,NBY95b, NBY97], Parsed Strings [GT87], and Tree Matching [KM93]. In most cases, the timecomplexity of queries has a trade-o� with the expressiveness of the model.The characteristics of these models are summarized in Table 1, and in this work we focus onthe PN model, which has a good balance between expressiveness and time e�ciency.3 Operations Supported by the Proximal Nodes ModelThe Proximal Nodes Model [Nav95, NBY95b, NBY97] presents a good compromise between ex-pressiveness and e�ciency. It does not de�ne a speci�c language, but a model in which it is shownthat a number of useful operators can be included, while achieving good e�ciency. Many indepen-dent structures can be de�ned on the same text, each one being a strict hierarchy, but allowingoverlaps between areas delimited by di�erent hierarchies (e.g. chapters/sections/paragraphs andpages/lines). A query can relate di�erent hierarchies, but returns a subset of the nodes of one of2

Model Structuring Contents Structuralmechanism query language query languageIR-like documents Query = matches + Only to restrict match+ �elds + text. documents. Almost all the points to be in aFields can nest and language is oriented to given �eld or to selectHybrid Model overlap, but this matches, which are seen �elds including match[BY94] cannot be later as their start point. Ex- points (selectedqueried. It is a presses distances. Has sep- �elds are then seen asat model. arate set manipulation tools match points).for matches and documents. Very simple in general.Dynamic de�nition Powerful matching lang- Simple, since structuresof regions, by pattern uage. Handles points are at. Can expressPAT Expressions matching. Each region and regions. Has set inclusion, set manip-[ST92] is a at list of manipulation operations. ulation and some verydisjoint segments. Expresses distances. specialized operations.A set of regions, Not speci�ed. Words and Results can overlap,Overlapped Lists each one a at regions are seen in a but not nest. Can[CCB95] list of possibly uniform way, by an inverted express inclusion, unionoverlapping segments. list metaphor. and combinations.A single hierarchy Text queries can only be Results are at and fromLists of References with attributes in used to restrict other the same constructor. Can[Mac91] nodes and hypertext queries. express inclusions,links. complex context conditionsand set manipulation.A set of disjoint Text is a special view. Can express inclusion,strict trees (views), Text queries are leaves positions, direct andViews can overlap. of query syntax trees. transitive relations,Nodes cannot be Text content is accessed and set manipulation.Proximal Nodes dissociated from only in matching sub- Can express complex[NBY95b] segments. queries, thereafter it is context conditions ifseen just as segments. they involve proximalThere are powerful dis- nodes.tance operators, andspecial set operators fortext.A single tree, with Not speci�ed, orthogonal Powerful tree patternstrict hierarchy. to the model. It can matching language. CanNo more only be used to restrict distinguish order butrestrictions. sets of nodes of the tree not positions nor dir-Tree Matching (leaves of patterns). ect relationships. Can[KM93] Weak link between express equality betweencontent and structure. di�erent parts of astructure, by usinglogical variables. Setmanipulation featuresvia logical connectives.Table 1: Features of structured models.3

them only (i.e. nested elements are allowed in the answers, but not overlaps). Each node has anassociated segment, the area of the text it comprises. The segment of a node includes that of itsdescendants. Text matching queries are modeled as returning nodes from a special \text hierarchy".The model speci�es a fully compositional language with three types of operators: (1) textpattern-matching; (2) to retrieve structural components by name (e.g. all chapters); and (3) tocombine other results. The main idea behind the e�cient evaluation of these operations is a bottom-up approach, by �rst searching the queries on contents and then going up the structural part. Twoindices are used, for text and for structure, meant to e�ciently solve queries of type 1 and 2 withouttraversing the whole database. To make operations of type 3 e�cient, only operations that relate\nearby" nodes are allowed. Nearby nodes are those whose segments are more or less proximal.This way, the answer is built by traversing both operands in synchronization, leading in most casesto a constant amortized cost per processed element.As we show next, many useful operators �t into this model. There is a separate text matchingsublanguage, which is independent of the model. In [NBY95a, Nav95], the expressiveness of thismodel is compared against others and found competitive or superior to most of them. This modelcan be e�ciently implemented, being linear for most operations and in all practical cases (this issupported by analysis and experimental results). The time to solve a query is proportional to thesum of the sizes of the intermediate results (and not the size of the database). A lazy version isalso studied, which behaves better in some situations. This model is as e�cient as many otherswhich are less expressive.The Proximal Nodes model permits any operation in which the fact that a node belongs or notto the �nal result can be determined by the identity and text position of itself and of nodes in theoperands which are \proximal" to it, as explained.Figure 1 shows the schema of a possible set of operations. There are basic extraction operators(forming the basis of querying on structure and on contents), and operators to combine resultsfrom others, which are classi�ed in a number of groups: those which operate by considering in-cluded elements, including elements, nearby elements, by manipulating sets and by direct structuralrelationships.We explain in some detail those that are relevant for the case of a single hierarchy, whichincludes the XML model.� Matching sublanguage: Is the only one which accesses the text content of the database, andis orthogonal to the rest of the language.{ Matches: The matching language generates a set of disjoint segments, which are intro-duced in the model as belonging to a special \text hierarchy". All the text answersgenerate at lists. For example, "computer" generates the at set of all segments ofeight letters where that word appears in the text. Note that the matching languagecould allow much more complex expressions (e.g. regular expressions).{ Operations on matches: Are applicable only to subsets of the text hierarchy, and maketransformations to the segments. We see this point and the previous one as the mech-anism for generating match queries, and we do not restrict our language to any sub-language for this. As an example, M collapse M 0, superimposes both sets of matches,merging them when an overlap results.4

By including

elements

Free

Positional

endin

beginin

in

Content
Basis

expr.
Match

matchesBasis
Structure

Constructor

View

[s] endin

[s] beginin

[s] in

By included elements

on matches

Opers

with(k)

withbegin(k)

withend(k)

after, after(k)

before, before(k)

Direct structural

parent(k)

Set manipulation

Composition
Operations

+, -, is

same

[s] child

collapse, subtract...

Distances

Figure 1: Possible operations for our model, classi�ed by type.� Basic structure operators: Are the other kind of leaves of the query syntax tree, which refer tobasic structural components.{ Name of structural component: (\Struct" queries). Is the set of all nodes of the giventype. For example, chapter retrieves all chapters in a book.{ Name of hierarchy: (\Hierarchy" queries). Is the set of all nodes of the given hierarchy.The same e�ect can be obtained by summing up (\+" operator) all the node types ofthe hierarchy.� Included-In operators: Select elements from the �rst operand which are in some sense includedin one of the second.{ Free inclusion: Select any included element. \P in Q" is the set of nodes of P whichare included in a node of Q. For example, citation in table selects all citations madefrom inside a table.{ Positional inclusion: Select only those elements included at a given position. In order tode�ne position, only the top-level included elements for each including node are consid-ered. \[s] P in Q" is the same as in, but only qualifying the nodes which descend froma Q-node in a position (from left to right) considered in s. In order to linearize the po-sition, for each node of Q only the top-level nodes of P not disjoint with the Q-node are5

considered, and those which overlap are discarded, along with their descendants. Thelanguage for expressing positions (i.e. values for s) is also independent. We consider that�nite unions of i..j, last� i..last�j, and i..last�j would su�ce for most purposes. Therange of possible values is 1..last. For example, [3..5] paragraph in page retrieves the3rd, 4th and 5th paragraphs from all pages. If paragraphs included other paragraphs,only the top-level ones would be considered, and those partially included in a page wouldbe discarded (along with their subparagraphs).� Including operators: Select from the �rst operand the elements including in some sense elementsfrom the second one. \P with(k) Q" is the set of nodes of P which include at least k nodesof Q. If (k) is not present, we assume 1. For example, section with(5) "computer" selectsthe sections in which the word \computer" appears �ve or more times.� Direct structure operators: Select elements from the �rst operand based on direct structuralcriteria, i.e. by direct parentship in the structure tree corresponding to its hierarchy.{ \[s] P child Q" is the set of nodes of P which are children (in the hierarchy) of somenode of Q, at a position considered in s (that is, the s-th children). If [s] is not present,we assume 1::last. For example, title child chapter retrieves the titles of all chapters(and not titles of sections inside chapters).{ \P parent(k) Q" is the set of nodes of P which are parents (in the hierarchy) of atleast k nodes of Q. If (k) is not present, we assume 1. For example, chapter parent(3)section selects chapters with three or more top-level sections.� Distance operators: Select from the �rst operand elements which are at a given distance ofsome element of the second operand, under certain additional conditions.{ \P after/before Q (C)" is the set of nodes of P whose segments begin/end after/beforethe end/beginning of a segment in Q. If there is more than one P -candidate for a nodeof Q, the nearest one to the Q-node is considered (if they are at the same distance, thenone of them includes the other and we select the including one). In order for a P -node tobe considered a candidate for a Q-node, the minimal node of C containing them must bethe same, or must not exist in both cases. For example, table after figure (chapter)retrieves the nearest tables following �gures, inside the same chapter.{ \P after/before(k) Q (C)" is the set of all nodes of P whose segments begin/end af-ter/before the end/beginning of a segment in Q, at a distance of at most k text symbols(not only nearest ones). C plays the same role as above. For example, "computer" be-fore (10) "architecture" (paragraph) selects the words \computer" that are followedby \architecture" at a distance of at most 10 symbols, inside the same paragraph. Recallthat this distance is measured in the �ltered �le (e.g. with markup removed).� Set manipulation operators: Manipulate both operands as sets, implementing union, di�erence,and intersection under di�erent criteria.{ \P + Q" is the union of P and Q. For example, small + medium + large is the set ofall size-changing commands. To make a union on text segments, use collapse.6

{ \P � Q" is the set di�erence of P and Q. For example, chapter � (chapter withfigure) are the chapters with no �gures. To subtract text segments, we resort tooperations on matches.{ \P is Q" is the intersection of P and Q. For example, ([1] section in chapter) is ([3]section in page) selects the sections which are �rst (top-level) sections of a chapterand at the same time third (top-level) section of a page. To intersect text segments usesame.{ \P same Q" is the set of nodes of P whose segments are the same segment of a nodein Q. For example, title same "Introduction" gets the titles that say (exactly)\Introduction".Clearly inclusion can be determined by the text area covered by a node and the fact that anelement in A quali�es or not depends only on elements of B that include it or are included in it.Direct ancestorship can be determined by the identity of the nodes and appropriate informationon the hierarchical relations between nodes. Note that just the information on text areas coveredis not enough to discern between direct and general inclusion. Distance operations can be carriedout by just considering the areas covered and by examining nearby elements of the three operands.Finally, set manipulation needs nothing more than the identity of the nodes and depend on nearbynodes of the other operands.The Proximal Nodes model suggests an implementation where an index is built on the structureof the text separated from the normal index for the text content. The structural index is basicallythe hierarchy tree with pointers to know the parent, �rst child and next sibling of each node. Inaddition, implicit lists for each di�erent structural element are maintained, so that one can traversethe complete tree or the subtree of all the nodes of a given type.At query time, each node of the query syntax tree is converted into an intermediate resultfrom the leaves to the root (other evaluation orders are considered but we explain this one forclarity). The intermediate results are trees that are subsets of the whole hierarchy. Leaves whichare structural elements are solved by using the structure index directly; those which correspond topure queries on content are solved with the classical index on content (e.g. an inverted �le) andtranslated into a list of text segments that match the query. This list is a particular case of a treeof answers.Finally, internal query nodes correspond to operations that are carried out once their operandshave been solved into trees of nodes. As de�ned by the model, all the allowed operations can besolved by a synchronized linear traversal over the operands, so that the total time to solve a queryis proportional to the total size of the intermediate results.4 Implementing XQL Operations4.1 Path ExpressionsAt a �rst sight, the XQL query language looks rather di�erent from the presented query language.Typical XQL expressions are of the formchapter=section=paragraph7

where the \/" represents direct inclusion. However, the above expression is translated directly intoa Proximal Nodes query paragraph child section child chapterthat is, the lowest level elements are selected. Despite that they look as a navigational operation(i.e. enter into chapters, then move to sections, then to paragraphs), we can regard it as a searchoperation for nodes of a certain type and certain ancestors.The \/" operation is the most basic one in XQL, and it immediately outrules many alternativemodels to query structured text based on positional information only, since they cannot query bydirect ancestorship. Transitive inclusion can also be expressed using a double bar \//", and it canbe translated into the in operation in Proximal Nodes.The most navigational-looking feature of XQL is its ability to express absolute paths, i.e. pathsthat are evaluated from the root of the structure tree. This can be simulated by adding an extrasingle root R node to the hierarchy and adding \child R" to the queries.The use of wild cards for structural names is permitted in XQL, so one can write "book/*/section"to mean sections directly descending from something that descends directly from a book. The wildcard can be replaced by the Proximal Nodes feature that permits using All as a node name, whoseresult is the whole hierarchy.XQL permits queries of the type X=Y [3], meaning the third Y contained in each X . Thiscorresponds exactly to the positional inclusion feature of Proximal Nodes, which cannot be foundin any other existing model. In both models this can be extended to arbitrary ranges of values,and to indices relative to the �rst or to the last included element.4.2 FiltersIt is also possible to express that one wants the top level instead of the bottom level nodes. Thisis done by using �lters \[]", e.g. chapter[section=paragraph]which selects chapters that contain a paragraph contained in a section. This is easily translatedinto chapter with (paragraph child section)Similarly, one can express "book[author[0] = John Silver]", where the condition is on the�rst \author" element that descends from the book. This can be translated into positional inclusion.XQL permits boolean operations inside the �lters, and this requires more care. First, \X [Y or Z]"(which selects the X elements that contain some Y or some Z element) can be converted intoX [Y S Z]. On the other hand, \X [Y and Z]" requires that X contains both some Y and some Z,which can be converted into (X [Y])[Z]. Finally X [not Y], which selects the X elements containingno Y element, can be rewritten asX�X [Y], although Proximal Nodes permits the negated variantsof the containment operations (e.g. not with).An XQL extension permits to say any or all inside the condition. While any maintains thenormal semantics, all requires extra care. For example, "book[all author!=Bob]" requires thatno author �eld inside the book be equal to \Bob". This cannot be directly expressed in ProximalNodes but it can be converted using double negation: X [all Y] = X �X [not Y].8

4.3 AttributesAnother widely used feature of XQL are the attributes of the nodes. This seems to deviate signi�-cantly from simplifying models. Each structural node can have a number of attributes, which havea name and a value; and it is possible to restrict the matches to those having some attribute andeven to those where some attribute has some property. For examplebook[@publisher = Addison� Wesley]selects the books whose attribute \publisher" is Addison-Wesley. A lot of attention is given toattributes. The key observation is that an attribute appears in the text inside the text region of itsnode and clearly identi�ed by its name. Hence, it is not hard for the indexer to identify it and totreat it just as any other descendant of the node. The most distinguishing feature of attributes isindeed a restriction: an attribute cannot have internal structure. The previous query can be thustranslated into book with (publisher = "Addison� Wesley")where "Addison-Wesley" is a content query that will return all the text segments where that stringappears, and publisher will return all the text areas that correspond to \publisher" attributes.Their intersection yields precisely the desired result. Note that we have treated the attribute asa normal �eld. In this sense the Proximal Nodes model is indeed more general than XQL sinceit does not need to make such distinctions. For example, XQL treats as a di�erent operation thequery for structural elements whose text value is equal to some constant, while in Proximal Nodesthis is exactly the same query we have just considered.4.4 SemijoinsA somewhat special feature permitted by XQL is to permit taking as constants the content ofabsolute paths. For example "book[@author = @me]", where "@me" is an attribute that descendsdirectly from the root. This is not contemplated in the Proximal Nodes model, but can be easily�xed at the query processing phase, by detecting such cases, getting the text directly from the �le,and replacing the reference by the text constant.The key issue is that this can be done only for absolute paths, so that the reference can havejust one value. The generalized feature is called a \semijoin" and is not supported neither by XQLnor by Proximal Nodes. The semijoin would allow selecting chapters whose title is mentioned inthe bibliography section of a given book. Note that this violates the condition of Proximal Nodesmodel: the fact that a book quali�es or not cannot be determined considering the text areas ofthe titles of the books, but one needs to compare the content of the titles with those found in thebibliography of the other book. This is hard to implement e�ciently.4.5 MethodsXQL is designed to be embedded in Perl, and as such it imports many of the Perl's functions. Ofcourse this is not general and cannot be expected to be supported by an abstract model such asProximal Nodes. However, the most used methods are indeed supported. First, text() correspondsto the textual content of a node, which is a basic method for Proximal Nodes. Second, value(),9

which is similar to text() but it can be casted to other types such as integer or oat. Thispermits putting, say, numerical conditions on the content of a given attribute. Despite that thiscannot be solved by a text index, the Proximal Nodes model can coexist with many independentcontext indexes, and therefore a di�erent index able to answer such questions could be built onthe numerical values found in the text and it could gracefully coexist with the rest of the system.This index should receive a condition, say \� 30", and return all the text areas containing numberssmaller than 30.Proximal Nodes permits some conditions on aggregate functions as well, such as selecting ele-ments including (directly or transitively) at least n elements of some kind.4.6 Set OperationsFinally, XQL permits set operations, which are directly translated into Proximal Nodes operations.It is interesting to mention that XQL requires the answer to be the set of structural nodes thatsatisfy the query. This also matches with the Proximal Nodes semantics, while some other modelsreturn only top-level or bottom-level elements.4.7 Followed ByDespite that the standard XQL does not permit it, some implementations allow a kind of \followedby" operation. Unfortunately their description is not very clear, and this is not a coincidence. Asshown in [CM95], the semantics of a \followed by" operation is problematic for many models.In Proximal Nodes this has been carefully designed so that either the element preceding theother or the element following the other are selected. However, it is not possible later to operatethe result to know, say, which is the smallestX containing Y followed by Z. Once we have selectedthe Y 's that are followed by Z, we loose information on which was the Z that made each Y tobe selected, and therefore we cannot guarantee that the smallest X that contains the selected Ywill also contain the corresponding Z. The Proximal Nodes model tries to �x the problem bypermitting, at the moment of executing the operation, to specify X , so that we force that thesmallest X that contains Y must contain Z. This, however, does not totally solve the problem.An alternative solution is to return a \supernode" that has the necessary extension to containY and Z. However, this node is fake and does not �t well in the hierarchy, which yields consistencyproblems for later operations. The models that are able to handle this well [CCB95] do not rely ona strict hierarchy of nodes but permit their overlapping. Those models, for example, cannot copewith direct inclusion.As shown in [CM95], it is quite di�cult to �nd a satisfactory and consistent de�nition of a\followed by" operation in a hierarchical model.5 ConclusionsWe have presented work in progress for e�ciently implementing XQL. Further work on this topicwill be jointly carried out with Tatiana Coello, Berthier Ribeiro-Neto, and Altigran da Silva fromthe Federal Univ. of Minas Gerais at Belo Horizonte, Brazil. For example, several issues aboutalgebraic query optimization and design of e�cient access plans given the query tree are open.10

We believe that other XML query languages can also be implemented e�ciently following thesame ideas of this paper, including languages that have more expressiveness than XQL.References[BY94] R. Baeza-Yates. An hybrid query model for full text retrieval systems. Techni-cal Report DCC-1994-2, Dept. of Computer Science, Univ. of Chile, 1994. ftp://-sunsite.dcc.uchile.cl/pub/users/rbaeza/hybridmodel.ps.gz.[BY96] R. Baeza-Yates. An extended model for full-text databases. Journal of Brazilian CSSociety, 3(2):57{64, April 1996.[BYN96] R. Baeza-Yates and G. Navarro. Integrating contents and structure in text retrieval.ACM SIGMOD Record, 25(1):67{79, March 1996. ftp://sunsite.dcc.uchile.cl/-pub/users/gnavarro/sigmod96.ps.gz.[CCB95] C. Clarke, G. Cormack, and F. Burkowski. An algebra for structured text search and aframework for its implementation. The Computer Journal, 1995.[CCD+99] S. Ceri, A. Comai, E. Damiani, P. Fraternali, S. Paraboschi, and T. Letizia. XML-GL:a graphical language for querying and restructuring XML documents. In WWW8, 1999.[CM95] M. Consens and T. Milo. Algebras for querying text regions. In Proc. PODS'95, 1995.[DFF+98] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. XML-QL: A query language for XML. Technical report, W3C, August 1998.http://www.w3.org/TR/1998/NOTE-xml-ql-19980819.[FMK00] D. Florescu, I. Manolescu, and D. Kossmann. Integrating keyword search into XMLquery processing. In WWW9, Amsterdam, May 2000.[GP98] C. Goldfarb and P. Prescod. The XML Handbook. Prentice-Hall, Oxford, 1998.[GT87] G. Gonnet and F. Tompa. Mind Your Grammar: a new approach to modelling text. InProc. VLDB'87, pages 339{346, 1987.[Int86] International Standards Organization. Information Processing | Text and O�ce Sys-tems | Standard Generalized Markup Language (SGML), 1986. ISO 8879-1986.[KM93] P. Kilpel�ainen and H. Mannila. Retrieval from hierarchical texts by partial patterns. InProc. ACM SIGIR'93, pages 214{222, 1993.[LAW98] T. Lahiri, S. Abiteboul, and J. Widom. Ozone: Integrating structured and semistruc-tured data. Technical report, 1998.[LRS98] J. Lapp, J. Ro-bie, and D. Schac. XML query language (XQL). In QL'98 - The Query LanguagesWorkshop, December 1998. http://www.w3.org/TandS/QL/QL98/pp/xql.html.11

[Mac91] I. MacLeod. A query language for retrieving information from hierarchic text structures.The Computer Journal, 34(3):254{264, 1991.[Nav95] G. Navarro. A language for queries on structure and contents of textual data-bases. Master's thesis. Dept. of Computer Science, Univ. of Chile. ftp://-sunsite.dcc.uchile.cl/pub/users/gnavarro/thesis95.ps.gz, 1995.[NBY95a] G. Navarro and R. Baeza-Yates. Expressive power of a new model for struc-tured text databases. In Proc. PANEL'95, pages 1151{1162, 1995. ftp://-sunsite.dcc.uchile.cl/pub/users/gnavarro/clei95.ps.gz.[NBY95b] G. Navarro and R. Baeza-Yates. A language for queries on structure and con-tents of textual databases. In Proc. ACM SIGIR'95, pages 93{101, 1995. ftp://-sunsite.dcc.uchile.cl/pub/users/gnavarro/sigir95.ps.gz.[NBY97] G. Navarro and R. Baeza-Yates. Proximal Nodes: a model to query document databasesby content and structure. ACM TOIS, 15(4):401{435, Oct 1997.[SS00] E. Spertus and L.A. Stein. Squeal: A structured query language for the Web. InWWW9, Amsterdam, May 2000.[ST92] A. Salminen and F. Tompa. PAT expressions: an algebra for text search. In COM-PLEX'92, pages 309{332, 1992.[Wid99] J. Widom. Data management for XML: Research directions. IEEE Data EngineeringBulletin, 22(3):44{52, 1999.

12

