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Abstract

Let D be a collection of D documents, which are strings over an alphabet of size o, of
total length n. We describe a data structure that uses linear space and and reports k most
relevant documents that contain a query pattern P, which is a string of length p packed in
p/ log, n words, in time O(p/log, n+ k). This is optimal in the RAM model in the general case
where log D = O(logn), and involves a novel RAM-optimal suffix tree search. Our construction
supports an ample set of important relevance measures, such as the number of times P appears
in a document (called term frequency), a fixed document importance, and the minimal distance
between two occurrences of P in a document.

When log D = o(logn), we show how to reduce the space of the data structure from O(nlogn)
to O(n(log o +1log D +1loglogn)) bits, and to O(n(log o +log D)) bits in the case of the popular
term frequency measure of relevance, at the price of an additive term O(logf n) in the query
time, for any constant € > 0.

We also consider the dynamic scenario, where documents can be inserted and deleted from
the collection. We obtain linear space and query time O(p(loglogn)?/log, n+logn+kloglog k),
whereas insertions and deletions require O(logHE n) time per symbol, for any constant € > 0.

Finally, we consider an extended static scenario where an extra parameter par(P,d) is de-
fined, and the query must retrieve only documents d such that par(P,d) € [r1, 72], where this
range is specified at query time. We solve these queries using linear space and O(p/log, n +
log' t¢ n + klog® n) time, for any constant & > 0.

Our technique is to translate these top-k problems into multidimensional geometric search
problems. As a bonus, we describe some improvements to those problems.

1 Introduction

The design of efficient data structures for document (i.e., string) collections that can report those
containing a query pattern P is an important problem studied in the information retrieval and
pattern matching communities (see, e.g., a recent survey [52]). Due to the steadily increasing
volumes of data, it is often necessary to generate a list L(P) of the documents containing a string
pattern P in decreasing order of relevance. Since the list L(P) can be very large, in most cases we
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are interested in answering top-k queries, that is, reporting only the first & documents from L(P)
for a parameter k given at query time.

Inverted files [15, 43, 9] that store lists of documents containing certain keywords are frequently
used in practical implementations of information retrieval methods. However, inverted files only
work when query patterns belong to a fixed pre-defined set of strings (keywords). The suffix
tree [71], a handbook data structure known since 1973, uses linear space (i.e., O(n) words, where
n is the total length of all the documents) and finds all the occ occurrences of a pattern P in
O(p + occ) time, where p = |P|. Surprisingly, the general document listing problem, that is,
the problem of reporting all the documents that contain an arbitrary query pattern P, was not
studied until the end of the 90s. Suffix trees and other data structures for standard pattern
matching queries do not provide a satisfactory solution for the document listing problem because
the same document may contain many occurrences of P. Matias et al. [47] described the first data
structure for document listing queries; their structure uses O(n) words of space and reports all doce
documents that contain P in O(plog D + docc) time, where D is the total number of documents
in the collection. Muthukrishnan [51] presented a data structure that uses O(n) words of space
and answers document listing queries in O(p + docc) time. Muthukrishnan [51] also initiated the
study of more sophisticated problems in which only documents that contain P and satisfy some
further criteria are reported. In the K-mining problem, we must report documents in which P
occurs at least K times; in the K-repeats problem, we must report documents in which at least
two occurrences of P are within a distance K. He described O(n)- and an O(nlogn)-word data
structures that answer K-mine and K-repeats queries, respectively, both in O(p+ occ) time, where
occ is the number of reported documents.

A problem not addressed by Muthukrishnan, and arguably the most important one for infor-
mation retrieval, is the top-k document retrieval problem: report £ most highly ranked documents
for a query pattern P in decreasing order of their ranks. The ranking is measured with respect to
the so-called relevance of a string P for a document d. A basic relevance measure is tf (P, d), the
number of times P occurs in d. Two other important examples are mindist(P,d), the minimum
distance between two occurrences of P in d, and docrank(d), an arbitrary static rank assigned to a
document d. Some more complex measures have also been proposed. Hon et al. [37] presented a so-
lution for the top-k document retrieval problem for the case when the relevance measure is tf (P, d).
Their data structure uses O(nlogn) words of space and answers queries in O(p+ k + log n loglog n)
time. Later, Hon, Shah and Vitter [41] presented a general solution for a wide class of relevance
measures. Their data structure uses linear space and needs O(p + klogk) time to answer a top-k
query. A recent O(n) space data structure [42] enables us to answer top-k queries in O(p + k) time
when the relevance measure is docrank(d). However, that result cannot be extended to other more
important relevance measures.

Our Results. Hon et al.’s results [41] are an important achievement, but their time is not yet
optimal. In this paper we describe a linear space data structure that answers top-k document
queries in O(p/log, n+ k) time, where o is the alphabet size of the collection and P comes packed
in p/log, n words. This is optimal in the ©(logn)-word RAM model we use, unless the collection
has very few documents, that is, log D = o(logn) (i.e., D = o(n®) for any constant ¢ > 0). We
support the same relevance measures as Hon et al. [41].



Theorem 1 Let D be a collection of strings (called documents) of total length n over an integer
alphabet [1, 0], and let w(S,d) be a function that assigns a numeric weight to string S in document
d, so that w(S,d) depends only on the set of starting positions of occurrences of S in d. Then
there exists an O(n)-word space data structure that, given a string P of length p and an integer k,
reports k documents d containing P with highest w(P,d) values, in decreasing order of w(P,d), in
O(p/log, n + k) time. The time is online in k.

Note that the weighting function is general enough to encompass measures tf (P, d), mindist(P, d)
and docrank(d). As stated, our solution is online in k: It is not necessary to specify k beforehand;
our data structure can simply report documents in decreasing relevance order until all the docu-
ments are reported or the query processing is terminated by a user.

An online top-k solution using the tf measure solves the K-mining problem in optimal time
and linear space. An online top-k solution using mindist measure solves the K-repeats problem
in optimal time and linear space. We remind that Muthukrishnan [51] had solved the K-repeats
problem using O(nlogn)-word space; later Hon et al. [41] reduced the space to linear. Now all
these results appear as a natural corollary of our optimal top-k retrieval solution. Our results also
subsume those on more recent variants of the problem [42], for example when the rank docrank(d)
depends only on d (we just use w(P,d) = docrank(d)), or where in addition we exclude those d
where P appears less than K times for a fixed pre-defined K (we just use w(P,d) = docrank(d) if
tf (P,d) > K, or 0 otherwise).

Moreover, we can also answer queries for some relevance metrics not included in Theorem 1.
For instance, we might be interested in reporting all the documents d with tf(P,d) x idf (P) > T,
where idf (P) = log(N/df (P)) and df (P) is the number of documents where P appears [9]. Using
the O(n)-bit structure of Sadakane [63], we can compute idf (P) in O(1) time from the suffix tree
locus of P. To answer the query, we use our data structure of Theorem 1 in online mode on
measure tf: For every reported document d we find ¢f(P,d) and compute tf(P,d) x idf (P); the
procedure is terminated when a document d; with tf (P, d;) x idf (P) < 7 is encountered. Thus we
need O(p/ log, n + occ) time to report all occ documents with ¢f x idf scores above a threshold.

When log D = o(logn), it is not clear that our time is RAM-optimal. Instead, we show that
in this case the space of our data structures can be reduced from O(nlogn) bits to O(n(logo +
log D + loglogn)). This is o(nlogn) bits unless logo = O(logn) (in which case the linear-space
data structure is already asymptotically optimal). For the most important ¢f relevance measure,
where we report documents in which P occurs most frequently, we obtain a data structure that uses
O(n(logo + log D)) bits of space. The price of the space reduction is an additive term O(log: n)
in the query time, for any constant ¢ > 0.

We also consider the dynamic framework, where collection D admits insertions of new documents
and deletions of existing documents. Those updates are supported in slightly superlogarithmic time
per character, whereas the query times are only slightly slowed down. We note that measure C,, is
just O(1) for the typical relevance measures tf and docrank, and O(logn) for mindist.

Theorem 2 Let D be a collection of documents of total length n over an integer alphabet [1,0],
and let w(S,d) be a function that assigns a numeric weight to string S in document d, so that
w(S, d) depends only on the set of starting positions of occurrences of S in d, and can be computed



in O(Cy|d|) time for all the nodes of the suffix tree of document d. Then there exists an O(n)-
word space data structure that, given a string P of length p and an integer k, reports k documents d
containing P with highest w(P, d) values, in decreasing order of w(P,d), in O(p(loglogn)?/log, n+
logn + kloglog k) time, online in k. The structure can insert new documents and delete existing
documents in O(C,, + log!™¢ n) time per inserted character and O(log'™ n) per deleted character,
for any constant € > 0.

We note that a direct dynamic implementation of the solution of Hon et al. [41] would require
at least performing p + k dynamic RMQs, which cost Q(logn/loglogn) time [2]. Thus modeling
the original problem as a geometric one pays off in the dynamic scenario as well.

Furthermore, we can extend the top-k ranked retrieval problem by allowing a further parameter
par(P,d) to be associated with any pattern P and document d, so that only documents with
par(P,d) € [r1,m] are considered. Some applications are selecting a range of creation dates,
lengths, or PageRank values for the documents (these do not depend on P), bounding the allowed
number of occurrences of P in d, or the minimum distance between two occurrences of P in d, etc.

Theorem 3 Let D be a collection of documents of total length n over an integer alphabet [1, 0], let
w(S,d) be a function that assigns a numeric weight to string S in document d, and let par(S,d) be
another parameter, so that w and par depend only on the set of starting positions of occurrences
of S in d. Then there exists an O(n)-word space data structure that, given a string P of length p,
an integer k, and a range [11, 2], reports k documents d containing P and with par(P,d) € [, T2],
with highest w(P,d) values, in decreasing order of w(P,d), in O(p/ log, n+log*™¢ n+klog® n) time,
online in k, for any constant € > 0.

Our solutions map these document retrieval problems into range search problems on multi-
dimensional spaces, where points in the grids have associated weights. We improve some of the
existing solutions for those problems.

An early partial version of this article appeared in Proc. SODA 2012 [53]. It included basically
the O(p + k)-time solution for the static case. This extended version includes, apart from more
precise explanations and fixes, the improvement of the static result to achieve RAM-optimality on
the suffix tree traversal, and the new results on the dynamic scenario. The paper is organized as
follows. In Section 2 we review the top-k framework of Hon et al. [41] and reinterpret it as the
combination of a suffix tree search plus a geometric search problem. We introduce a RAM-optimal
suffix tree traversal technique that is of independent interest, and state our results on geometric
grids, each of which is related to the results we achieve on document retrieval. Those can also be
of independent interest. Sections 3 and 4 describe our basic static solution. Section 5 describes our
dynamic solution. In Section 6 we show how the static solution can be modified to reduce its space
requirements, and in Section 7 we show how it can be extended to support an additional restriction
on the documents sought. Finally, Section 8 concludes and gives future work directions.

2 Top-k Framework

In this section we overview the framework of Hon, Shah, and Vitter [41]. Then, we describe a
geometric interpretation of their structure and show how top-k queries can be reduced to a special
case of range reporting queries on a grid.



Let T be the generalized suffix tree [71, 48, 69] for a collection of documents dy,...,dp, each
ending with the special terminator symbol “$”. T is a compact trie, such that all suffixes of all
documents are stored in the leaves of T. We denote by path(v) the string obtained by concatenating
the labels of all the edges on the path from the root to v. The locus of a string P is the highest
node v such that P is a prefix of path(v). Every occurrence of P corresponds to a unique leaf
that descends from its locus. We refer the reader to classical books and surveys [7, 36, 20] for an
extensive description of this data structure.

We say that a leaf [ is marked with document d if the suffix stored in [ belongs to d. An internal
node v is marked with d if at least two children of v contain leaves marked with d. While a leaf
is marked with only one value d (equal suffixes of distinct documents are distinguished by taking
all the string terminators as different from each other and ordering them arbitrarily), an internal
node can be marked with many values d.

In every node v of T' marked with d, we store a pointer ptr(v,d) to its lowest ancestor u such
that u is also marked with d. If no ancestor u of v is marked with d, then ptr(v,d) points to a
dummy node v such that v is the parent of the root of T'. We also assign a weight to every pointer
ptr(v,d). This weight is the relevance score of the document d with respect to the string path(v).

It is not hard to see that the nodes of T' marked with d correspond precisely to the suffix tree T
of document d, with the pointers ptr(v,d) playing the role of parent pointers in T,. All the nodes
of Ty in T are lowest common ancestors of consecutive leaves v; and v;;1 of leaves marked with d
in T, lca(v;, vi11). The following statements hold; we reprove them for completeness.

Lemma 1 ([41, Lem. 4]|) The total number of pointers ptr(-,-) in T is bounded by O(n).

Proof: The total number of pointers ptr(v,d), for all v € T', does not exceed the number of nodes
marked with d. The total number of internal nodes marked with d is smaller than the number of
leaves marked with d. Since there are O(|d|) leaves marked with d, the total number of pointers
ptr(v, d) for a fixed document d is bounded by O(|d|), and those |d| add up to n. O

Lemma 2 ([41, Lem. 2]) Assume that document d contains a pattern P and v is the locus of P.
Then there exists a unique pointer ptr(u,d), such that u is in the subtree of v (which includes v)
and ptr(u, d) points to an ancestor of v.

Proof: If d contains P then there is at least one leaf u marked d below the locus of P, with a
pointer ptr(u,d). If there are two maximal (in the sense of ancestorship) nodes u and u’' below v
with pointers ptr(u,d) and ptr(u’, d), then their lowest common ancestor v’ is also marked. Since v
is an ancestor of u and v/, v is v’ or an ancestor of v" and then ptr(u, d) and ptr(u/, d) must point
to v/, not to an ancestor of v. Therefore, there is a unique maximal node u marked d below v (note
that u might be v). Thus, the pointer ptr(u,d) must point to an ancestor of v. O

Moreover, in terms of Lemma 2, it turns out that path(u) occurs in d at the same positions as
path(v). Note that the starting positions of P and of path(v) in d are the same, since v is the locus
of P, and those are the same as the starting positions of path(u) in d. Thus w(P,d) = w(path(u), d)
for any measure w(-,-) considered in Theorem 1.



RAM-optimal suffix tree traversal. To achieve time O(p) for the locus search in the suffix
tree while retaining linear space, one needs to organize the children of each node in a perfect hash
function (phf) [29]. In order to reduce this time to the RAM-optimal O(p/log, n) when P comes
packed in p/log, n words, we proceed as follows. Let I(u,v) be the concatenation of string labels
from node u to its descendant v. We collect in a phf H(u), for the suffix tree root u, all the
highest descendants v such that |l(u,v)| > ¢ = log, n. Those nodes v are indexed with a key built
from the first ¢ symbols of I(u,v) interpreted as a number of lgn bits (lg stands for log,). We
build recursively phfs for all the identified descendants v. Since each suffix tree node is included
in at most one hash table, the total size is O(n) and the total deterministic construction time is
O(nloglogn) [62].

Now P is searched for as follows. We take its first chunk of ¢ characters, interpret it as a
number, and query the phf of the root. If no node v is found for that prefix of P, then P is not in
the collection. Otherwise, the string depth of v is > ¢. We check explicitly the extra |l(u,v)| — ¢
symbols in the text, by comparing chunks of ¢ symbols. If there is a mismatch, then P does not
appear in the collection. If the |l(u,v)| — ¢ symbols are sufficient to match all the rest of P, then
the locus is v. Otherwise, we continue the search from v with the next £ unread symbols of P, and
so on, until there are less than ¢ symbols to match from a node v in the remaining suffix P’ of P.

At this point we switch to using a weak prefiz search (wps) data structure [10]: For each node
u holding a phf, we also store this wps data structure with all the nodes v that descend from u
where |l(u,v)| < ¢, using l(u,v) as their key. We must also include the children z of those nodes
v, as well as the children z of w, with [I(u, z)| > ¢, using the first £ — 1 symbols of I(u, z) as their
key (note that these nodes z are also stored in the phf structure of v). The wps data structure
will return the lexicographic range of the nodes x where P’ is a prefix of I(u, ). The first in that
range is the locus of P. One detail is that, if there is no such node (i.e., P has no locus), the wps
structure returns an arbitrary value, but this can be easily checked in optimal time in the text.

The wps structure requires, for our length |P’| < ¢ and in the RAM model, O(1) query time.
For the strings of length < ¢ we store, the structure uses O(y/log n loglogn) bits, or o(1) words, per
stored node [10, Thm. 6]. Once again, each node is stored only in one wps structure, so the overall
extra space is linear. The wps construction takes O(nlog®n) randomized time. It can be made
deterministic O(n polylog(n)) time by using a phf inside the construction [1]. By replacing the wps
structure by layered phfs for (log, n)/2¢ symbols, we would have an additive term O(loglog, n) in
the query time.

Geometric interpretation. We index the nodes of T in the following way: The nodes are
visited in pre-order; we also initialize an index ¢ +— 0. When a node v is visited, if v is marked with
documents dy,, ..., d,;, we assign indexes i +1,...,7+ j to v and set i <= i+ j. We will denote
by [ly, 7] the integer interval bounded by the minimal and maximal indexes assigned to v or its
descendants. Values [, and r, are stored in node v of T'. Furthermore, for every d,,, 1 <t < j,
there is a pointer ptr(v, d,,) that points to some ancestor u; of v. We encode ptr(v, d,,) as a point
(i +t,depth(uy)), where depth denotes the depth of a node; depth(v) = 0. Thus every pointer in T’
is encoded as a two-dimensional point on an integer O(n) x O(n) grid. The weight of a point p is
that of the pointer it encodes. We observe that all the points have different x-coordinates. Thus
we obtain a set S of weighted points with different xz-coordinates, and each point corresponds to a



unique pointer.
For the final answers we will need to convert the z-coordinates of points found on this grid into
document numbers. We store a global array of size O(n) to do this mapping.

Answering queries. Assume that top-k documents containing a pattern P must be reported.
We find the locus v of P in O(p/log, n) time. By Lemma 2, there is a unique pointer ptr(u,d),
such that u is a descendant of v (or v itself) and ptr(u,d) points to an ancestor of v, for every
document d that contains P. Moreover the weight of that point is w(P,d). Hence, there is a
unique point (z,y) with x € [l,,r,] and y € [0, depth(v) — 1] for every document d that contains P.
Therefore, reporting top-k£ documents is equivalent to the following query: among all the points in
the three-sided range [l,, 7] X [0, depth(v)), report k points with highest weights. We will call such
queries three-sided top-k queries. In Sections 3 and 4 we prove the following result. Theorem 1 is
an immediate corollary of it, as h = depth(v) — 1 and depth(v) < p, and we can choose ¢ > 1.

Theorem 4 A set of n weighted points on an n X n grid can be stored in a data structure using
O(n) words of space, built in O(nlogn) time, so that for any 1 < k,h <nmandl1 <a<b<n,k
most highly weighted points in the range [a,b] x [0,h] can be reported in decreasing order of their
weights in O(h/logn + k) time, for any constant c.

Top-k queries on dynamic collections. The static suffix tree is replaced by a dynamic one,
with search time O(p(loglogn)?/log, n + logn) and update time O(logn) per symbol. We must
also update the grid, for which we must carry out lowest common ancestor queries on the dynamic
suffix tree and also insert/delete points (and columns) in the grid. We split the grid of Theorem 4
into horizontal stripes of height m = polylog n to obtain improved performance, and query the
highest [p/m] of those grids. In the most general case (i.e., the last grid) we carry out a three-sided
top-k query. We address this in Section 5, where in particular we prove the following result on
dynamic grids. Theorem 2 is then obtained by combining those results.

Theorem 5 A set of n points, one per column with y-coordinates in [1,n|, and with weights in
[1,0(n)], can be stored in O(n) words of space, so that for any 1 < k < n, 1 < h < n and
1 <a <b<n, k most highly weighted points in the range [a,b] x [0, h] can be reported in decreasing
order of their weights in O(h/logn + logn + kloglogk) time, online in k, for any constant c.
Points (and their columns) can be inserted and deleted in O(log! ™ n) time, for any constant & > 0.

Parameterized top-k queries. We use the same geometric interpretation as described above,
but now each pointer ptr(v,d) is also associated with the parameter value par(path(v),d). We
encode a pointer ptr(v,d,,) as a three-dimensional point (i + ¢, depth(u;), par(path(v), d,,)), where
1, t, and u; are defined as in the case of nonparameterized top-k queries. All the documents that
contain a pattern P (with locus v) and satisfy 71 < par(P,d) < 7o correspond to unique points in
the range [ly, ] X [0, depth(v)) X [11, T2]. Hence, reporting top-k documents with par(P,d) € [r1, 2]
is equivalent to reporting top-k points in a three-dimensional range. The following result is proved
in Section 7, and Theorem 3 is an immediate corollary of it, choosing any ¢ > 1.



Theorem 6 A set of n weighted points on an n xn x n grid can be stored in O(n) words of space,
so that for any 1 < k,h <n,1 <a<b<n,andl <711 <71 < n, k most highly weighted
points in the range [a,b] x [0,h] X [11,72] can be reported in decreasing order of their weights in
O(h/log® n + log'™ n + klog® n) time, for any constants ¢ and € > 0.

3 An O(m‘+ k) Time Data Structure

In this section we give a first data structure for three-sided top-k queries [a, b] x [0, h] on a set S of
n two-dimensional weighted points. It does not yet achieve the desired O(h/logn+ k) time, but its
time depends on the width m of the grid. This will be used in Section 4 to handle vertical stripes
of the global grid, in order to achieve the final result.

We assume that a global array gives access to the points of S in constant time: if we know the
x-coordinate p.x of a point p € S, we can obtain the y-coordinate p.y of p in O(1) time. Both
p.x and p.y are in [1,0(n)], thus the global array requires O(n) words of space. We consider the
question of how much additional space our data structure uses if this global array is available.

The result of this section is summed up in the following lemma, where we consider tall grids
of m columns and n rows. The idea is to partition the points by weights, where the weights are
disregarded inside each partition. Those partitions are further refined, forming a multi-ary range
tree. Then we solve the problem by traversing the appropriate partitions and collecting all the
points using classical range queries on unweighted points. A tree of arity m®(®) yields constant
height and thus constant space per point.

Note, however, that this is not just a standard multi-ary range tree. Range trees and similar
geometric data structures can provide a solution for the threshold variant of the problem, where we
must report all points in a three-sided range with weight exceeding a threshold. We can probably
modify these methods and find a solution for the unsorted top-k problem, where k points with
highest weights are reported in an arbitrary order. However, in this case we consider the sorted
top-k problem, where points must be returned sorted by decreasing weight. It is not clear how this
variant can be solved in optimal time and linear space using standard techniques.

Lemma 3 Assume that m < n and let 0 < € < 1 be a constant. There exists a data structure
that uses O(mlogm) additional bits of space and construction time. It answers three-sided top-k
queries for a set of m points on an m x n grid in O(m* + k) time.

Proof: We partition S into classes Si,..., Sy, where r = m¢ for a constant 0 < ¢ < e. For any
1 <4 < j <r, the weight of any point p; € S; is larger than the weight of any point p; € S;. For
1 <i<r,S;contains m!'~¢ points. Each class S; that contains more than one element is recursively
divided into min(|.S;|, ) subclasses in the same manner. This subdivision can be represented as a
tree: If S; is divided into subclasses S;,,...,5;,, we will say that S; is the parent of S;,...,S5;,.
This tree has constant height O(1/¢).

For every class S; we store data structures that support three-sided range counting queries
and three-sided range reporting queries, in O(logm) and O(logm + occ) time respectively. These
structures will be described in Section 3.1 and require O(ml_el log m) construction time; note they
do not involve weights. This adds up to O((1/€')mlogm) construction time.



We will report & most highly weighted points in a three-sided query range Q = [a,b] x [0, h]
using a two-stage procedure. During the first stage we produce an unsorted list L of k most highly
weighted points. During the second stage the list L is sorted by weight.

Let QF denote the set of k& most highly weighted points in S N Q. Then Q* can be formed as
the union of the result of the three-sided query over certain classes, at most O(mel) clases per level
over a constant number of levels. More precisely, there are O(mel) classes S,, such that p € QF if
and only if p € S. N @ for some S.. During the first stage, we identify the classes S. and report
all the points in S, N @ using the following procedure. Initially, we set our current tree node to
S = S and its child number to ¢ = 1. We count the number of points inside () in the i-th child
Si of S. If k; = [S; N Q| < k, we report all the points from S; N Q and set k = k — k;. If k =0,
the procedure is completed; otherwise we set ¢ = ¢ + 1 and proceed to the next child S; of S. If
ki > k, instead, we set S = S;, ¢ = 1, and report k most highly weighted points in the children
of S using the same procedure. During the first stage we examine O(mel) classes S; and spend
O(m€ logm + k) = O(m€ + k) time in total.

When the list L is completed, we can sort it in O(m¢ + k) time. If L contains k < m¢ points,
L can be sorted in O(klogk) = O(m¢) time. If L contains k > m¢ points, then we can sort it in
O(k) time using radix sort: As the set S contains at most m distinct weights, we store their ranks
in an array ordered by z-coordinate, and thus can sort the result using the ranks instead of the
original values. By sorting €' lgm bits per pass the radix sort runs in time O(k).

As for the space, the structures in Lemmas 4 and 5 require O(log m) bits per point. Each point
of S belongs to O(1/€') classes S;. Hence, the total number of points in all classes is O(m), giving
O(mlogm) bits of total space. The local array of weight ranks also uses O(mlogm) bits. O

3.1 Counting and Reporting Points

It remains to describe the data structures that answer three-sided counting and reporting queries,
with no weights involved. These are variants of standard geometric data structures [49, 18] that
we adapt to the case of narrow grids, so as to use O(logm) bits per point instead of O(logn).
We exploit the fact that we can obtain p.y from p.x for any point p € S, and use compact data
structures to reduce space.

Lemma 4 Let v < m < n. There exists a data structure that uses O(vlogm) additional bits and
answers three-sided range counting queries for a set of v points on an m x n grid in O(logv) time.
It can be built in O(vlogv) time.

Proof: We use the classic rank space technique [30] to reduce the problem of counting on an m x n
grid to the problem of counting on a v x n grid. We apply ranking only on the z-coordinates,
spending O(logv) additional query time and vlgm bits of space to perform and to store the
mapping, respectively.

We store the mapped points on a variant of the Wavelet Tree data structure [34, 18]. Each
node of this tree W covers all the points within a range of y-coordinates. The root covers all the
nodes, and the two children of each internal node cover half of the points covered by their parent.
The leaves cover one point. The y-coordinate limits of the nodes are not stored explicitly, to save
space. Instead, we store the z-coordinate of the point holding the maximum y-coordinate in the



node. With the global array we can recover the y-coordinate in constant time. Each internal node
v covering r points stores a bitmap B,[1..r], so that B,[i] = 0 iff the i-th point, in z-coordinate
order, belongs to the left child (otherwise it belongs to the right child). Those bitmaps are equipped
with data structures answering operation ranky(B,, 1) in constant time and r + o(r) bits of space
[50], where ranky(B,,) is the number of occurrences of bit b in B, [1..i]. Since W has O(v) nodes
and height O(logv), its bitmaps require O(vlogv) bits and its pointers and x-coordinates need
O(vlogm) bits. The construction time is O(vlogv).

We can easily answer range counting queries [a,b] X [0,h] on W [46]. After mapping [a,b] to
[a', '] in rank-space, the procedure starts at the root node of W, with the range [da’, b'] on its bitmap
B. This range will become [a, b)) = [ranko(B,a’ — 1)+ 1, rank(B, V)] on the left child of the root,
and [a,,b,] = [ranki(B,a’ — 1) + 1,rank,(B,V’)] on the right child. If the maximal y-coordinate of
the left child is smaller than or equal to h, we count the number of points p with p.z € [a, b] stored
in the left child, which is simply b; — a; + 1, and then visit the right child. Otherwise, the maximal
y-coordinate in the left child is larger than h, and we just visit the left child. The time is O(1) per
tree level. g

Lemma 5 Let v < m < n. There exists a data structure that uses O(vlogm) additional bits and
answers three-sided range reporting queries for a set S of v points on an mxn grid in O(logv+occ)
time, to report the occ results. It can be built in O(vlogwv) time.

Proof: We again reduce the problem of reporting on an m x n grid to the problem of reporting
on a v X n grid, using the rank space technique [30]. The query time is increased by O(logwv),
and the space usage increases by vlgm bits. To solve this problem we sort the v points in z-
coordinate order, build the sequence Y[1..v] of their y-coordinates, and build a Range Minimum
Query (RMQ) data structure on Y [27]. This structure requires only O(v) bits of space, does not
need to access Y after construction (so we do not store Y'), and answers in constant time the query
r = rmq(x1,x2) = arg ming <z<g, Y [x] for any 1, z2. We then compute p.y for the point p such
that the rank-mapped value of p.x is r. If p.y > h we can stop since there are no points to report.
Otherwise we report p and continue recursively on the intervals [a/,r — 1] and [r + 1,b']. It is well
known that this procedure retrieves all the occ points in the three-sided range [a’, '] x [0,h] in
O(occ) time; see, for example, Muthukrishnan [51]. The construction time is dominated by the
sorting of the points. O

4 An Optimal Time Data Structure

The data structure of Lemma 3 gives us an O(m* + k) time solution for top-k queries on the three-
sided range [a, b] x [0, k], for any constant e, where m is the grid width. In this section we use it to
obtain O(h/logn+ k) time, where n is the number of points. The idea is to partition the space into
vertical stripes, for different stripe widths, and index each stripe with Lemma 3. Then the query is
run on the partition of width m so that the O(m¢) time complexity is dominated by O(h/logn+k).
The many partitions take total linear space because the size per point in Lemma 3 is O(logm), and
our widths decrease doubly exponentially. As a query may span several stripes, a structure similar
to the one used in the classical RMQ solution [14] is used: we precompute answers for sequences of
doubling numbers of stripes, so that any query is covered by two overlapped precomputed answers;
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the answers can then be merged. This doubling scheme uses linear space for stripes of width up to
Q(log2 n). Smaller stripes are solved with a smaller-scale replica of the main idea, and then using
universal tables. The hierarchical structure of stripes is described in Section 4.1, and the way to
query it in Section 4.2. Since the solution to smaller grids replicates the main idea at a smaller
scale, it is postponed to Section 4.3.

In addition to the global array storing p.y for each p.x, we use another array storing the weight
corresponding to each p.x. As there are overall O(n) different weights, those can be mapped to the
interval [1,O(n)] and still solve correctly any top-k reporting problem. Thus the new global array
also requires O(n) words of space.

4.1 Structure

Let g; = 1/27 for j = 0,1,...,7. We choose r so that n9 = O(1), thus = O(loglogn). The z-axis
is split into intervals of size A; = n9% lg?n and j = 1,...,r. For convenience, we also define Ag = n
and A’ = A;/lg?n =nY%. For every 1 < j < r and for every interval I;; = [(t — 1)A;,tA; — 1], we
store all the points p with p.x € I;; in a data structure Ej;; implemented as described in Lemma 3.
Then E;; supports three-sided top-k queries in O((A;)¢+ k) time for any constant 0 < e < 1/4. We
also construct a data structure Ey that contains all the points of S and supports three-sided top-k
queries in O(n'/* + k) time. To simplify the description, we also assume that I_; = Iy = [0,n — 1]
and E_1 = Eo.

The data structures E;; for a fixed j contain O(n) points overall, hence by Lemma 3 all E;; use
O(nlog A;) = O(nlog(n% log?n)) = (1/27)O(nlog n)+0O(nlog log n) additional bits of space. Thus
all Ej; for 0 < j <r use Z;;é[(l/Qj)O(n logn) + O(nloglogn)] = O(nlogn) bits, or O(n) words.
They also require O(nlogn) total construction time. Since € < 1/4, a data structure E;; supports
top-k queries in time O((A;)*+k) = O((n% log? n)*+k) = O(n%+2/logn+k) = O(A', 5/ logn+Fk)
time. For each of the smallest intervals I,; we store data structures Ent that use o(log2 n) words
of space (adding up to o(n)) and support three-sided top-k queries in O(h/logn + k) time. This
structure will be described in Section 4.3.

Note that our choice of writing (n% lg?n)¢ = O(n%+2/logn) was arbitrary, because € is strictly
less than 1/4. We could have written (n9% 1gZn)¢ = O(n9%+2/logn) for any constant c, and this
would yield O(h/log®n + k) query time. We have chosen to favor simplicity in the exposition, but
will return to this point at the end of Section 4.3.

We also store structures to answer top-k queries on selected ranges of intervals. For 1 < j <r,
we consider the endpoints of intervals I;;. Let top; (a,b,c, k) denote the list of top-k points in the
range [a-Aj, b-A;—1]x [0, c] in descending weight order. We store the values of top, (¢, 142", ¢, A} ;)
for any t € [0,n/A], any 0 < v <lg(n/A;), and any 0 < ¢ < A;-H. All the lists top,(-,-,, ) use
space O((n/Aj)(A}H)2 logn) = O(n/logn) words. Hence the total word space usage of all lists
top;(+,+,+,+) for 2 < j < 7 is O(nloglogn/logn) = o(n). It can also be built in o(n) time using
dynamic programming.

4.2 Queries

We can carry out the query using a range of intervals I;; of any width A;. The key idea is to
use a j value according to the height of the three-sided query, so that the search time in I;; gives
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the desired O(h/logn) time. More precisely, assume we want to report top-k points in the range
[a,b] x [0, h]. First, we find the index j such that A’ ; > max(h,k) > A’ 5. The index j can be
found in O(loglog(h + k)) time by linear search’. If [a, b] is contained in some interval I; ¢, then we
can answer a query in O(A’,,/logn + k) = O(h/logn + k) time using Ej;;. If [a,b] is contained
in two adjacent intervals I;; and Iy, we generate the lists of top-k points in ([a,b] N 1) x [0, h]
and ([a,b] N Ij¢41) % [0,h] in O(h/logn + k) time, and merge them in O(k) time.

To deal with the case when [a,b] spans one or more intervals I;;, we use the pre-computed
solutions for ranges of intervals. Assume that [a,b] spans intervals I, 11,...,1j,—1; [a,b] also
intersects with intervals I;, and I;,. Let a’A; and V’A; denote the left endpoints of ;4 41 and
I;+,, respectively. The list Ly, of top-k points in [a’Aj,b'A; — 1] x [0,h] can be generated as
follows. Intervals [a’Aj, (a/ +2Y)A; — 1] and [()) — 2V)A;,b'A; — 1] for v = |Ig(t/ — a’)| cover
[a’Aj,b'Aj —1]. Let L, and Ly, denote the lists of the first & points in top;(a’,a’ + 2%, h, A% ;)
and top;(b' — 2", b', h, A’ ;) (we have k results because k < A’ ; similarly we have the results for
¢ = h because h < A;- +1)- We merge both lists (possibly removing duplicates) according to the
weights of the points, and store in L,, the set of the first k£ points from the merged list. Let L, and
L,, denote the sets of top-k points in [a,a’A; — 1] x [0, h] and [D'A;,b] x [0, h]. We can obtain L,
and L, in O(h/logn + k) time using data structures E;;, and Ej;, as explained above. Finally,
we can merge L, Ly, and L, in O(k) time; the first & points in the resulting list are the top-k
points in [a, b] x [0, h].

4.3 A Data Structure for an O(log>n) x n Grid.

The data structures Er,t for an interval I, ; use the same general approach as the data structures £} ¢,
at a smaller scale. Note that these structures will be consulted only when max(h,k) < C' =Al | =
O(1). Each interval I, ; is subdivided into 1g7/* n intervals I, I, . .. of width 1g"/*n. Let S denote
the set that contains the endpoints of fl,fg, .... For every = € §, each 1 <wv < 2lglgn and each
h < C, we store the lists top(x, z + 2V, h, C). All such lists use O((n/log? n)C2log™* nloglogn) =
o(n) space in total.

A query on I, is processed as follows. Suppose that [a,b] intersects with intervals fgl, R TQQ
for some g1 < go. We find the top-k points from (I, 41U...UT, 1) x [0, h] in O(k) time using lists
top(-,-, -, ), as before. We also find top-k points from (le N[a,b]) x [0, k] and (TQQ N[a,b]) x [0, h] in
O(k) time using data structures for fgl and fg2, respectively, to be described next. We thus obtain
three lists of points sorted by their weights, and merge them in O(k) time as before.

Finally, we describe how to answer queries in O(k) time in the grids fg, of width lgl/ n. We
apply reduction to rank space [30] on the y-coordinates of points and on their weights. The resulting
sequence X, contains all mapped points in fg and consists of O(logl/ 4nloglog n) bits, so all the
descriptions of all sequences X, require O(nloglogn) bits, or o(n) words. There are O(log'/? n)
queries that can be asked (considering all the sensible values of [a,b], h and k), and the answers
require O(klog(log'/*n)) = O(loglogn) bits. Thus we can store a universal look-up table of size
90(log®/* nloglog " O(loglogn) = o(n) words common to all subintervals fg. This table contains pre-
computed answers for all possible queries and all possible sequences X,. Hence, we can answer a

!This is O(h/logn + k) for sure if max(h, k) = Q(lognloglogn); otherwise a small table can be used to perform
the search in constant time.
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top-k query on X, in O(k) time.

A query on fg can be transformed into a query on X, by reduction to rank space in the y
coordinates. Consider a query range @ = [a,b] x [0, h] on INg. We can find the rank A’ of h among
the y-coordinates of points from fg in O(h) = O(1) time by linear search (remember that we store
only the reordering of the local z-coordinates, and the actual y-coordinates are found in the global
array). Then, we can identify the top-k points in X, N @', where Q" = [a,b] x [0,1], using the
look-up table and report those points in O(k) time.

Thus our data structure uses O(n) words of space and answers queries in O(h/logn + k) time.
It can be built in O(nlogn) time. As mentioned at the end of Section 4.1, we can obtain any query
time of the form O(h/log®n+k), for any constant ¢. This completes the proof of Theorem 4, which
is given in this general form.

4.4 Online Queries

An interesting extension of the above result is that we can deliver the top-k£ documents in online
fashion. That is, after the O(p/log, n) time initialization, we can deliver the highest weighted
result, then the next highest one, and so on. It is possible to interrupt the process at any point
and spend overall time O(p/log, n + k) after having delivered k results. That is, we obtain the
same result without the need of knowing k£ in advance. This is achieved via an online version of
Theorem 4, and is based on a known idea, see e.g. [16, 41]. We describe it for completeness.

Consider an arbitrary data structure that answers top-k queries in O(f(n) + kg(n)) time in the
case when k must be specified in advance. Let k1 = [f(n)/g(n)], ki = 2k;—1, and s; = E;;ll k;
for ¢« > 2. Let S be the set of points stored in the data structure and suppose that we must
report top points from the range ) in the online mode. At the beginning, we identify top-kq
points in O(f(n) + g(n)) time and store them in a list L;. Reporting is divided into stages.
During the i-th stage, we report points from a list L;. L; contains min(k;, |Q N S| — s;) top points
that were not reported during the previous stages. Simultaneously we compute the list L;y; that
contains min(2k; + s;, |Q N S|) < 4k; top points. We identify at most 2k; + s; top points in
O(f(n)+4k;-g(n)) = O(k; - g(n)) time. We also remove the first s; points from L;;1 in O(k;) time.
The resulting list L;11 contains 2k; = k; 1 points that must be reported during the next (i + 1)-th
stage. The task of creating and cutting the list L;4; is executed in such a way that we spend O(1)
time when each point of L; is reported. Thus when all the points from L; are output, the list L;;1
that contains the next k; 11 top points is ready and we can proceed with the (i 4+ 1)-th stage.

This reporting procedure outputs the first & most highly weighted points in O(f(n) + kg(n))
time, and can be interrupted at any time.

5 A Dynamic Structure

We consider now a scenario where insertions and deletions of whole documents are interspersed
with top-k queries. When a document d is inserted, each of its d suffixes must be inserted at the
appropriate positions in the suffix tree. We must also maintain the pointers ptr(v, d) that describe
the topology of the suffix tree Ty of d, and their connection with the grid, where weighted points
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(and columns) are also inserted. All those structures must then support top-k queries. Document
deletions must revert those updates.

Section 5.1 describes our dynamic suffix trees. It differs from the classical maintenance proce-
dures in that we add to some selected nodes accelerator structures, similar to the phfs we used in
the static case to jump by log, n characters of P. Those structures have to be maintained upon
insertions and deletions of suffix tree nodes. We define which nodes hold accelerator structures in
a way that facilitates maintaining them. The procedure to traverse the dynamic suffix tree to find
the locus of the pattern is analogous to the static case, taking O(p(loglogn)?/log, n +logn) time.
Each document d is inserted or deleted in time O(|d|logn).

Section 5.2 describes how to maintain the relation between the suffix tree and the grid. The
y-coordinates, that used to be the tree depth of the target nodes u = ptr(v, d), now become string
depths, as these do not change upon updates in the suffix tree. Maintaining the z-coordinates is
more complicated, as we have to insert and delete x-coordinates in the grid upon insertions and
deletions of suffix tree nodes. We replace the integers of the grid by abstract labels, and use existing
techniques to maintain order in a set of labels while we can insert and delete labels (this is the
order maintenance problem [23, 13]). Then we describe how those labels are created or removed as
we insert or delete each suffix of a document. For simplicity we consider the relevance measure tf
in this section; in Section 5.5 we generalize to others. The additional time needed to maintain this
relation is within O(|d|logn).

We then face the problem of storing those points on a dynamic grid, which can be efficiently
queried. The most complex part is Section 5.3, where we consider grids of very small heights,
O(log® n) for any constant 0 < ¢ < 1. We describe an extension of B-trees where weighted points
(using abstract labels as z-coordinates) can be inserted and deleted. By storing the heaviest point
with each y-coordinate below each B-tree node, we carry out top-k queries in O(logn + k log log k)
time. Insertion and deletion of all the points induced by a document d takes time O(|d|log! ™ n),
which dominates the overall update time. The height limit of the grids is raised to any O(polylogn)
in Section 5.4, by decomposing the grid into successively more refined grids, each of height O(log® n).
This decomposition has constant height, and thus it multiplies spaces and times by a constant only.

Section 5.5 wraps up, showing how a query for P starts on the suffix tree and then is translated
into a query of the form [a, b] X [0,p — 1], where a and b are abstract labels. This query is split into
bands of height O(polylogn), for each of which we have stored a grid, and we obtain the k heaviest
points from all the bands. The total search time is O(p(loglogn)?/log, n +logn + kloglog k). We
also show how to accommodate other types of weighting schemes apart from #f, including those
that yield real numbers.

5.1 Dynamic Suffix Trees

Compared to classical dynamic suffix tree data structures [3, 4], we aim to improve the time to
traverse the suffix tree at query time, and also to support the operations that will maintain the
connection with the grid. We build on a dynamic suffix tree maintenance algorithm where leaves
and unary nodes can be inserted and deleted, and lowest common ancestors can be computed, all
in constant worst-case time [19]. The updates on leaves and unary nodes are the operations we
need to insert and delete all the suffixes of a document in the suffix tree, in time proportional to
the length of the document inserted or deleted, whereas the lowest common ancestor queries are
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necessary to compute the new ptr(-,) pointers to insert in the grid. In any node we will maintain
the up to o children using a linear-space dynamic predecessor data structure that supports queries
and updates in worst-case time o((loglog o)?) [5].

Upon insertion of a new document d of length |d|, we follow McCreight’s procedure to insert a
new string in a generalized suffix tree [48]. We describe it here for completeness. First we search
for the whole document string d in the suffix tree, until we reach the point where it differs from
any other suffix in the tree. If this point is a node v, we add a new leaf child z of v that represents
the suffix dy 4. If, instead, the point is in an edge linking v with its child u, we first split the edge
at the proper point with a new node x, whose two children will be v and the new leaf z.

We must also maintain the suffix links of the tree, that is, the pointers from every node v
representing a string a - X to the node slink(v) representing X, where a is a character and X is a
string. To compute the value slink(z), we go to the node v' = slink(v), and descend from v with
the characters of (v, z) (although there are no nodes between v and z, we may go through several
nodes from v'). We finally reach a situation similar to the one where we created z: we create 2’
and possibly split an edge to create its parent z’. Then we set slink(z) = z’. If we had created a
node x, the path from v' to 2’ is followed in two stages, one with the string /(v,z), and another
with I(z, z). The path [(v,z) from v may lead to an existing node y, or we might have to split
an edge to create y. Then we set slink(z) = y (if we had to create y, it will be that 2/ = y is
the parent of 2’; we never create two internal nodes). The leaf 2’ represents the suffix dy. |- We
continue taking suffix links from v/, ' (if we created it), and 2/, until we insert all the |d| suffixes
d;.ja|- The whole process is known to require O(|d|) operations on the suffix tree. Since we must
update the predecessor structures when creating children, our total time is O(|d|(loglog o)?).

The deletion of a document d is symmetric to insertion. We find its corresponding string,
delete its leaf z and possibly its parent x if it becomes unary, follow the suffix link 2z’ = slink(z),
and repeat the process until removing all the leaves and possibly their parents. This also takes
O(|d|(loglog o)?) time.

Accelerating searches. On this dynamic suffix tree, finding the locus of P takes O(p(loglog c)?)
time. In order to search faster we will use a technique analogous to the one used with the static
suffix tree in Section 2. We define ¢ = log, n, and the level of a node v as lev(v) = ||l(root, v)|/¢].
Note that the level of a node depends on its string depth, and thus it does not change upon
updates. Each suffix tree node v with parent u such that lev(v) > lev(u) will maintain a predecessor
data structure called an accelerator, storing all its highest descendant nodes z such that lev(z) >
lev(v). The key used for the predecessor data structure are the ¢ characters (Ign bits) formed by
l(root, z)[lev(v) - £+ 1, (lev(v) + 1) - £]. Note these keys do not depend precisely on v being the node
holding the accelerator; any other ancestor of z of the same level of v yields the same key. Note
also that the nodes z stored in the accelerator of v are owners of subsequent accelerators.

The predecessor structures hold O(n) nodes, and thus they require o((loglogn)?) time and
linear space [5]. The total extra space is linear because each suffix tree node belongs to at most
one predecessor structure.

Upon searches, we start at the root and use the accelerators of successive nodes, using consecu-
tive chunks of £ symbols in P. In some cases we may arrive at nodes whose string-depth difference
with the previously visited node is more than ¢; in those cases we check the missing symbols di-
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rectly in the text, also in chunks of ¢ characters. When, finally, there are less than ¢ remaining
characters to compare in P, we switch to the character-based search. Thus the total search time is
O(p(loglogn)?/log, n + (log, n)(loglog o)?) = O(p(loglogn)?/ log, n + logn).

Those accelerators must be updated upon insertions and deletions of suffix tree nodes. Note
that we always know [(root,v) when we insert or delete a node v. Upon insertion of a leaf z as
a child of a node z, it may turn out that the leaf must be inserted into an accelerator (because
lev(z) > lev(z)). We can simply find the nearest ancestor holding an accelerator via at most ¢
parent operations from z. We must also initialize an empty accelerator for z. Symmetrically, when
a leaf z is removed, we may have to remove it from its ancestor’s accelerator. When an edge from
v to w is split with a new node z, it may be that lev(v) < lev(z) = lev(u). In this case, = takes the
role of u, “stealing” the accelerator from u (which needs no change, as explained). We must also
replace v by x in the accelerator stored at the proper ancestor of x. Another case that requires
care is when lev(v) < lev(x) < lev(u). In this case u is replaced by z in the proper ancestor of z,
but u retains its accelerator and z creates a new accelerator holding only u. Other cases require
no action. Upon deletions, the obvious reverse actions are necessary. The total update time can
be bounded by O(|d|logn) for both insertions and deletions.

5.2 Relating the Suffix Tree and the Grid

Since grid columns will appear and disappear upon document insertions and deletions, we will not
associate integers to columns, but just abstract labels. The mapping between the suffix tree and
the grid columns will be carried out via a dynamic technique to maintain order in a list X of such
abstract labels [23, 13]. The data structure supports the operations of creating a new label y as
the immediate successor of a given label x € X, deleting a label y € X, and determining which
of two labels comes first in X, all in constant time. In addition, each suffix tree node v will hold
a (classical) doubly-linked list list(v) storing consecutive labels of X, each label corresponding to
a grid column where this node induces points, and will maintain pointers to the first and the last
node in list(v). Finally, v will maintain special labels first(v), last(v) € X that do not represent any
column, but are the predecessor (resp. successor) in X of the first (resp. last) label in its subtree.

Inserting suffixes. As we insert a new leaf z as the child of v, we must create a successor of
last(w) to assign to first(z), where w is the previous sibling of z, and then create a successor of
first(z) to assign to last(z). If z is the first child of v, instead, we create a successor of first(v) to
assign to first(z). The same is done to compute first(z) when we create a new node z that splits
an edge from v to u, but this time last(z) is obtained by creating a new successor of last(u). When
a node z is removed, its labels first(z), last(z) are also removed from X.

As we insert a new document d, we must associate new grid columns to the new and existing
suffix tree nodes traversed. Each newly created pointer ptr(v,d) will require creating a new label
t(v,d) € X as the successor of the last node in list(v) (it will also be stored at the end of list(v)),
or as the successor of first(v) if list(v) is empty. The pointer ptr(v, d) will be stored associated with
the label ¢(v, d).

Computing the new weights. As we insert new leaves in the suffix tree, we collect them in an
array L[1,|d|]. We also create the first label ¢(v, d) of such leaves v. Now we sort L by the labels
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t(v,d), and as a result the new leaves become sorted by their suffix tree preorder. All the internal
suffix tree nodes that must be labeled with d are obtained as u = lca(v,v’) for consecutive leaves
v = L[i] and v' = L[i41]. We create pointers ptr(v, d) and ptr(v’, d) towards node u, associated with
the labels t(v, d) and t(v', d), respectively, and with weights w(v,d) = w(v’,d) =1 (as said, we are
considering term frequency weights for now). For each new internal suffix tree node u = lca(v, v’)
obtained, we create a new label ¢(u, d) for the new grid column that u will originate, and associate
weight w(u,d) = 2 to it (at the end, w(u,d) will be the number of leaves labeled d in the subtree
of u). Each time u is obtained again (which we know because the last element of list(u) is already
t(u,d)), we increase w(u,d) by 1.

The previous procedure already visits all the internal nodes u of T that are labeled with d,
that is, all the nodes of the suffix tree Ty of document d. Now we have to propagate weights and
pointers from those internal nodes to their nearest ancestors labeled with d (i.e., the nodes that
would be their parent in 7). For this sake, the internal nodes u = lca(v, v") obtained are collected
in a new array I, of size up to |d| — 1, and I is sorted by the labels ¢(u,d), so that the nodes
become sorted by preorder. We traverse I left to right, simulating a recursive preorder traversal
of the suffix tree of document d, although the nodes are in the generalized suffix tree. Along this
simulated recursive traversal, each node identifies its parent in Ty, setting the pointer ptr to it and
increasing its weight. Let w = I[i] and v = I[j], initially for ¢ = 1 and j = 2. If lca(u,v) = u,
then w is the parent of v in Ty. Thus we recursively traverse the subtree that starts in v = I[j],
which finishes at a node v' = I[j’] that is not anymore a descendant of v. Now we check whether
lea(u,v') = u (i.e., v’ is the second child of u in Ty), and so on. At some point, it will hold that
I[j'] does not descend from u, and we have finished the traversal of the subtree of u. Then we set
i =j', 7 =1+ 1, and restart the process. Along this recursive traversal we will identify the nearest
ancestor u labeled d of each node v labeled d, that is, the parent u of each v in T;. For each such
pair, and after having processed v and computed w(v, d), we increase w(u,d) = w(u,d) + w(v,d)
and generate the pointer ptr(v,d) pointing to u, associated with label (v, d) and weight w(v, d).

All the labels created when inserting a document d are additionally chained in a (classical) list
list(d), to facilitate deletion of the document.

Creating the grid points. Finally, we will create new columns and points in the grid associated
with all the pointers ptr(v, d) = u created. The label ¢(v, d) will be an identifier for the z-coordinate
of the point (we remark that these are not integers, but just labels that can be compared). The
y-coordinate will be the string depth of the target node, |l(root,u)|. This value is stored in the
suffix tree node when the node is created and, unlike the tree depth, does not change upon suffix
tree updates. The document associated with the new point is the new one, d, and the weight is the
value w(v, d) associated with the source node of the pointer.

The overall time of inserting d is O(|d|log|d|), dominated by the sorting via comparisons of
labels in X.

Deleting documents. Handling the deletion of a document d is simple. After deleting all the
corresponding suffix tree nodes, we follow the chain of labels t(v, d) in list(d), delete them from X
and remove their nodes from the doubly-linked list list(v). This takes O(|d|) additional time. We
also remove the columns in the grid corresponding to the labels deleted, and the associated points.
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Both insertion and deletion times are superseded by those of Section 5.1.

5.3 Slim Grids

To achieve faster searches, the grid will be divided into horizontal slices of small height r. For every
slice, we maintain a structure that reports k£ most highly weighted points from a horizontal range
of labels [a, b) intersected with a vertical range of integers [0,y). We describe here how those slices
are updated and queried for a sublogarithmic value of , and in Section 5.4 we extend the solution
to grids of polylogarithmic height.

Each slice is represented with a B-tree ordered by the labels (i.e., z-coordinates) of the points,
of arity r to 2r — 1, for some r = 1g° n and a constant 0 < ¢ < 1/2 (as usual, the root can have arity
as low as 2). Thus the B-tree has height O(log, n). At each internal node u with a(u) children
V1., Va(u), We will store a(u) arrays W, [0..r —1],..., Wy, [0..r —1]. In these arrays W, Wy[y] is
the point p with maximum weight among all points (1) whose z-coordinates belong to the subtree
of v, (2) with y-coordinate equal to y, and (3) not stored in W,,[y| for ancestors u of v (some W, [y]
cells can be empty, if no point with y-coordinate y exists below v). We will also store a structure
Wioot for the root node. Thus Wit [y] contains the point p, of maximum weight among all points
with y-coordinate y; for a child v of the root, W, [y] contains the point p, of maximum weight among
all points p # p, in the subtree of v with y-coordinate y. In general, all points already stored in
ancestors are excluded from consideration. We store Wy [y] = (2, w, d), where z is the a-coordinate,
w is the weight, and d is the document of the point. Each point is also stored in the corresponding
leaf node of the B-tree. Those points in W, are not used to separate the z-coordinates of the points
in the tree. Instead, new labels z(v1)...%(vy)—1) € X will be created and stored at node u, to
split the points between its a(u) consecutive children. That is, the z-coordinate of any point stored
below v; will be between z(v;—1) and z(v;). The size of the list X stays O(n).

The leaves of the B-tree will store r to 2r — 1 points. Leaves store the actual points, even if they
are also mentioned in some previous W, structure. The points in leaves [ are arranged in an array
W/, which is similar to the arrays W, and lists the points in increasing y-coordinate order, except
that W/ has no empty cells and some y-coordinates can be repeated in the points. Therefore the
W/ cells store the full point data, W/[j] = (z,y, w,d).

To each internal node u with children vy, . .., v,(,) we will also associate structures Y., [0..a(u)r—
1] and Yw,[0..a(u)r — 1], where the child numbers and the y-coordinates of the (up to) r points of
the a(u) arrays W,, are sorted by their z-coordinate label (in Yz,) and by their weight (in Yw,,).
That is, in Yz, and Yw, we store the pair (i,y) for each entry W,, [y, ordered by W, [y].z (in
Yz,) or by W, [y].w (in Yw,). Each value stored in Yz, and Yw, requires lg(2r?) bits, thus all
the values in these two structures add up to at most 472 1g(2r?) bits. Each time we modify a value
in a W,,, array, we rebuild from scratch the Yz, and Yw, structures of the parent u of v;.

We will also maintain structures Yz] and Yw; on the (up to) 2r — 1 points of leaves [, analogous
to the Yz, and Yw, structures of internal nodes. Instead of the pairs (4,y), structures Yz; and
Yw; will just store positions j of the array W, (those positions would coincide with y-coordinates
in internal nodes). Leaves will also store an array Y;[0..r — 1] where Y;[y] = j if j is the last position
where W/[j] < y. Finally, leaves will store bitmaps @; marking in @;[j] whether the point in W/[j]
also appears in the W, array of an ancestor v of [.

Since 4r21g(2r2) = o(logn), universal tables of 247°18(2r*) . O(polylog (2)) = o(n) bits will be
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used to query and update the arrays Yz, and Yw,, in constant time. Similarly, leaves will use
even smaller universal tables of 24718(") . O(polylog (1)) = o(n) bits.

The whole data structure requires linear space, because the leaves contain ©(r) points. The W,
arrays of internal nodes spend O(r) words and can be almost empty (if all the descendants have
the same y-coordinate, say), but there are only O(n/r) internal nodes. If the whole grid contains
less than r points, we just store the space for them in a leaf.

5.3.1 Insertions

Consider the insertion of a new point (x,y,w,d), with label x € X, y-coordinate y € [0, r), weight
w and document d. While following the normal insertion procedure on the B-tree (where we
compare the labels z(v;) of the nodes with z to decide the insertion path), we look for the highest
node v with Wy[yl.w < w or with W,[y] empty. For the first (i.e., highest) such v we find,
we set W,[y] < (x,w,d), and then we continue the classical insertion procedure (not looking at
Wyly] entries anymore) until adding the point (z,y,w,d) in a leaf [. In the leaf we mark in the
corresponding @); entry whether we had updated an entry W,[y| in some ancestor v.

If we updated some W, [y], and it already had a previous value W, [y] = (2/,w’, d"), we perform
a process we call reinsertion of (z/,w’, d'). We restart the process of inserting the point (2/, y, w’, d’)
from node v (note that this point already exists in a leaf; reinsertion will not alter the structure of the
tree, but just rewrite some W and @ values). In the reinsertion path, if we arrive at a node v’ where
Wy lylw < w', we set Wy [y] + (2/,w’,d’). If there was a previous value Wy [y] = (2, w",d"), we
continue the reinsertion process for point (z”,w”,d”) from node v’, and so on until either we find
an empty space in some W, [y] or we reach the leaf [ where the point being reinserted is actually
stored. In this latter case, we clear the corresponding bit in @);, indicating that this point is not
stored anymore in an ancestor structure.

Thus we traverse two paths, one for inserting the point, and another for reinserting the point(s)
possibly displaced from some W, [y] structure. This part of the operation requires, in the worst
case, O(log, n) updates to the structures Yz, and Yw, of the parents u of nodes v where W, is
modified, plus an insertion in a leaf.

Rebuilding structures Yz, and Yw,. Upon an assignment W, [y] < (z,w, d), we must rebuild
the structures Yz, and Yw, of the parent u of v;. We binary search Yz, for x, and binary search
Yw, for w, both in O(log(r?)) = O(logr) time. In these binary searches we obtain the actual
label and weight of each element of Yz, and Yw,, respectively, using its (i, y’) pair, as W, [y/].x
and Wy, [4/].w. These binary searches give the insertion positions 0 < e < 2r? and 0 < g < 272,
respectively, of the pair (i,y) in Yz, and Yw,. Note that the new contents of Yz, and Yw,
depend only on their current contents, on the values e and g, and on the incoming pair (7,y) (the
existing occurrence of (i,y), if any, must be removed). Thus, the new content of Yz, and Yw, for
each (e, g,1,y) can be precomputed in a universal table of o(n) bits, as explained, so that they are
updated in constant time. Therefore the time to update the structures is O(log(r?)) = O(logr),
and the cost of a full reinsertion process is O(log, nlogr) = O(logn).

The process to update Yz, and Yw, upon removal of the value of a cell W,, [y] is analogous:
we find with binary search the positions e and g of the pair (7,y) to remove, and then compute the
new structures Yz, and Yw, in constant time with a universal table.
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When a new internal node of the B-tree is created, or when an internal node is removed, we
have to create a whole new W, array, or remove a whole array W,. We can insert or remove all
such cells one by one in Yz, and Yw,, in time O(rlogr). In those cases, we must rename all the
labels i in the pairs (i,y) stored in those structures, but those updates can also be precomputed in
universal tables of sublinear size.

Insertion in leaves. In leaves [, we must actually insert the point, possibly displacing all the
entries in T/ and also inserting the point data in Y, Yz}, Yw) and Q, all in O(r) time. When a leaf
overflows to 2r points, we must split it into two leaves I’ and I” of r points each. We first remove
the array W; from the parent u of [, clearing the corresponding bits in ;. Now we distribute the
points of W/ into the new arrays W}, and W},, and make !’ and {" children of u, replacing the old
. We create a new label z(I') € X as the successor of the largest z-coordinate in I’, and add it to
u separating [’ and [”.

Next we build new arrays Wy and Wy». Those arrays, as well as the Y, Y2', Yw' and Q
structures of I and {”, are built in O(r) time from W/, Yz;, Yw; and Q;. We also set in Qy and
Q@ the points that have been included in Wy and Wy (we cannot choose any point for Wy and
Wy» that is already marked in @);). Finally, we update the tables Yz, and Yw, according to the
new tables Wy and Wy».

The overall time is O(r), but this is dominated by the O(rlogr) time needed to update the
Yz, and Yw, arrays upon the O(r) changes induced by substituting W; by Wy and Wp».

Overflows in internal nodes. The insertion of a new child in the parent w can trigger an
overflow in this internal node, if its arity reaches 2r. We must split u, with children v, ..., v9., into
two nodes, u/ with children vy, ..., v, and «” with children v,,1,...,vs.. The process is analogous
to the case of leaves, but slightly more complicated. We create a new z-coordinate z(u') € X as
a successor of z(v,), to separate the points of v’ and u”. We create the two nodes v’ and v” with
their corresponding arrays Wy, ,..., W, and W, ., Wa,,, and build the tables Yz and Yw of
v’ and u”, in O(r?) time from Yz, and Yuw,.

Now we must create new arrays W, and W, to replace W, in the parent of u. First, we move
each point in W, [y] to Wy [y] or Wy»[y], according to its z-coordinate. Now we can get rid of
W, but we still have several empty cells in W,/ [y] and W,»[y]. Those are filled with a process
we call uninsertion: To fill some cell Wy, [y] (analogously for u”), we take the maximum weight in
cells Wy, [y], ..., Wy, [y]. The maximum W,, [y].w is found in constant time using a universal table
on Yw, that returns the first pair with y-coordinate equal to y. Then we copy Wy [y] < Wy, [y],
and continue the uninsertion process for W,, [y]. When we finally arrive at uninserting a point
from a leaf [, all we have to do is to clear the corresponding entry in ;. Note that uninsertion
does not alter the structure of the tree; it just rewrites some W and @ values. The cost of one
uninsertion is O(log, nlogr) = O(logn), to rebuild the affected structures Yz and Yw. Thus the
O(r) uninsertions in v’ and u” add up to O(rlogn) time, which subsumes the O(rlogr) cost to
replace W,, by W,» and Wy~ in the parent of u.

1"

Note that the insertion of a single point could produce one split per level of the B-tree, which
would be too costly. To avoid this, we use a deamortization technique by Fleischer [28]. This
allows nodes have from r/2 to 2r children. It maintains a cursor per leaf, which all the time is
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navigating upwards to the root and then returns to the leaf. Each update on the leaf also moves
its cursor one step upwards. The node where the cursor lies is split if it has r children or more
(for leaves, r elements or more). If the leaves are of size log, n (the tree height) or more, then
one can ensure [28] that all the nodes contain r/2 to 2r elements, and only one split per update
is performed. We can easily accommodate this wider freedom for the node arities. The problem
is that our leaves are of size r = 1g°n, too small for the cursor to return to the leaf in time for
the next overflow. We then use a hybrid scheme: the lower nodes of the tree, of height up to
1/e (taking a leaf as of height 1) are organized as weight-balanced B-trees (WBB-trees) [8], which
differ from classical B-trees only in the policy to split nodes. Our WBB-tree leaves contain r to
2r elements, whereas nodes of height h > 1 have arity /4 to 4r and contain /2 to 2r" elements
in their leaves. The nodes in WBB-trees perform the splits as soon as they are needed, whereas
the higher nodes use Fleischer’s scheme. Then an update may trigger O(1/¢) splits at lower nodes,
each of which costs O((1/¢)rlogn), for a total of O(rlogn) time. The lowest nodes of the higher
levels act at the same time as the root of the WBB-trees and as the leaves in Fleischer’s scheme.
They contain at least (lgn)/2 elements in their subtree, and therefore they can only overflow once
every (lgn)/2 insertions due to the WBB-tree splitting policies [8, Lem. 7]. Therefore Fleischer’s
cursors associated with those leaves have time to return to them and carry out the necessary splits.

5.3.2 Deletions

Deletion of a point (x,y) starts by searching the B-tree for the xz-coordinate x. The point will be
found in its leaf, and also possibly in some cell W, [y] of some internal node v. The search takes
O(logn) time because, for internal nodes u, we binary search the coordinates x(v;) stored in w for
the correct child v, in O(logr) time, and then only have to check if W [y].x = x. In leaves [, we
binary search for z in Yz; in O(logr) time.

If the point has to be deleted from some W,[y|, we carry out the uninsertion process already
described, in O(log, nlog(r?)) = O(logn) time. We also remove the point (z,%) itself from leaf
[. When a leaf [ underflows, we merge it with a neighbor leaf and, if necessary, split it again.
The merging process is analogous to the splitting and can be easily carried out in O(r) time, plus
O(rlogr) to update the structures Yz and Yw in the parent.

If an internal node underflows, we also merge it with its neighbor and re-split it if necessary.
The merging of two sibling nodes v and v’ is carried out in O(r) time, including the construction
of the Yz and Yw structures for the merged node, u. The difficult part is, again, to get rid of the
arrays W, and W, at the parent node, replacing them by a new Wy« table for the merged node
v*. For this sake, we choose the maximum weight between each W,[y] and W, [y] and assign it
to Wy+[y]. The point that was not chosen among W,[y] and W, [y] must be reinserted, as before.
Finally, we must rebuild the Yz and Yw structures of the parent of v*. The total cost is O(rlogn),
just as for insertions.

Note that, upon leaf or internal node merges, a separating label z(v) becomes unused, and it is
removed from X. Like Fleischer [28], to avoid excessive merging work, we delay these merges and
use global deamortized rebuilding [59].
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5.3.3 Queries

Identifying the relevant nodes. To solve a top-k query with label restriction [a,b) and y-
coordinate restriction [0,y) on the slice, we first identify the O(log, n) ranges of siblings of the
B-tree tree that exactly cover the interval of labels [a,b); plus up to 2 leaf nodes that partially
overlap the interval. For each node w that is the parent of a range of children vy, ..., v, included
in the cover, we find the maximum weight in W, [0,y — 1],..., W, [0,y — 1] and insert the result
in a max-priority queue Q sorted by the weights of the points. Such maximum across W,, [0,y — 1]
arrays is obtained in constant time using universal tables on Yw, that find the first pair (i,y’)
with s <i << e and 3y < y. For the leaves [ partially or fully overlapping [a,b), the points fall in
the interval W/[0,Y;[y]]. In addition, if the leaf partially overlaps [a,b), we must binary search Yz;
for the range [z, xp] corresponding to the interval [a,b). Furthermore, we can only return points
whose Q; bit is not set, to avoid repeated answers. Knowing the range in Yz}[z,, 2p] and the range
W/[0,Y;[y]], the maximum weight can be obtained from Yzj, Yw; and @; with a universal table,
in constant time. Identifying the cover nodes and finding their O(log, n) maxima takes O(logn)
time, and leaves add only O(logr) time.

Each element inserted in Q coming from a range of siblings will be a tuple (u, s, e, i, z, k), where
u is the parent node of the range of children vy, ..., v in the cover, (i, z) means that the maximum
was found at W, [z] (s < i < e), and k indicates that the point W,,[z] is the kth in the range of
interest for u. All the nodes initially inserted have k = 1.

The elements inserted in Q coming from leaves [ are of the form [I, ], x4, 2, k|, meaning that
the maximum was found in W/[j], that the range of interest is W/[0,Y;[y]] and Yz'[z,, 2], and that
the point is the kth in the range of interest. The first insertions use k = 1.

We also insert in Q a third kind of tuples, namely, the maximum-weight point in W, [0,y — 1]
with z-coordinate in [a,b), for each of the O(log, n) ancestors v of the cover nodes, as they may
also hold relevant points. To find those maxima we consider the parent u of v and binary search
Yz, for a and b, to find a mapped interval Yz, [zq, 23], in O(log(r?)) = O(logr) time. Note that
this area of Yz, corresponds to nodes in W,. Then we use universal tables on Yz, and Yw, to
find the maximum weight of y-coordinate below y and in the range Yz, [z,,zp]. For these nodes
we insert tuples of the form (u,v,z,z,,2p, k) in Q, meaning that the maximum was obtained
from W, [z], the range of interest is Yz, [xq,xp], and the point is the kth in its range of interest.
Since all these ancestors also amount to O(logp n), the initial computation on these nodes requires
O(log, nlogr) = O(logn) time. Recall that the root node of the B-tree will also have a W structure
computed (this is easily treated as a special case).

We implement Q as a Thorup’s priority queue [67] on the universe of weights [1,O(n)]. Note
that we do not need to insert the whole initial set of O(log, n) tuples in Q if this number exceeds
k: if a tuple is not among the first k, it cannot contribute to the answer. Then we use linear-time
selection to find the kth largest weight in the tuples and then insert only the first & tuples in Q. This
structure supports insertions in constant time, thus the initialization of Q takes time O(log, n).

Extracting the top-k points. The first answer to the top-k query is among the O(k) tuples
we have inserted in Q. Therefore, to obtain the first result, we extract the tuple with maximum
weight from Q. If it is of the form [l, j, x4, xp, k], that is, it comes from a leaf I, we report the
point W/[j], compute the (k 4 1)th highest-weight point W} [j'] within W/[0,Y;[y]] and Yzj[z,, zs]
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using universal tables, and reinsert tuple [l, j', 24, xp, k+ 1] in Q. (To these universal tables we give
in addition the latest point reported, and they find the next one in decreasing weight order.) If,
instead, the maximum tuple extracted from Q is of the form (u, v, z, x4, p, k), that is, it becomes
from an ancestor of a cover node, we report the point W,[z], compute the (k + 1)th highest-
weight point W, [2'] with y-coordinate below y and within Yz, [z,, 23] using universal tables, and
reinsert tuple (u,v, 2, x4, Tp, k + 1). Finally, if the maximum tuple extracted from Q is of the form
(u,s,e,i,z,k), we report the point W,,[z], where v; is the ith child of u, compute the (k + 1)th
highest-weight point W, [2'] in W, [0,y —1],..., W, [0,y — 1] using universal tables, and reinsert
tuple (u,s,e,i’,2',k + 1). If the extracted point had k = 1, however, it is possible that the next
highest-weight element comes from the child v;. Therefore, if v; is an internal node, we compute the
highest-weight point in Yw,, with y-coordinate below y. Let it be the pair (i”,z”), then we insert
a new tuple (v, 1,a(v;),i”,2”,1) in Q. If, instead, v; is a leaf | = v; with 7(l) elements, then we
find the maximum-weight point W/[;’] in W}/[0,Y][y]] using Yw;, and insert the tuple [, 5, 1,7(1),1]
in Q. In all cases the cost to compute and insert the new tuples is constant.

If we carry out k extractions from Q, we will also carry out up to 2k insertions, thus the size
of @ will be O(k) and minima extractions will cost O(loglog k) [67]. The cost of this part is then
O(kloglog k), and the total query time is O(log n+logr+logn+log, n+kloglog k). Recalling that
r = 1g® n, the query time is O(logn + kloglog k) and the update time is O(rlogn) = O(log'*¢ n).
Note that the process is not online: We must know k in advance so as to initially limit the size
of Q to k. We use the technique of Section 4.4 to make the process online in k. That is, k is not
specified in advance and the process can be interrupted after having produced any number k of
results, and the total cost paid will be O(logn + log log k).

5.4 Multiresolution Grids

We extend the result of Section 5.3 to grids of polylogarithmic height r¢, for some constant c¢. We
will represent the grid at various resolutions and split it into slim grids for each resolution. Consider
a virtual perfect tree of arity r and n leaves, so that the ith left-ro-right node of height j covers
the rows (i — 1) -7/ + 1 to i - 7. The tree is of height c.

For each node v of this tree we store a slim grid of » rows, one per child. All the points whose
row belongs to the area covered by the ith child of v will be represented as having y-coordinate i
in the slim grid of v.

When a new point (z,y,w, d) is inserted in the grid, we insert it into the ¢ slim grids that cover
it, giving it the appropriate row value in each slim grid, and similarly when a point is deleted. The
x-coordinate labels are shared among all the grids. This arrangement multiplies space and insertion
and deletion times by the constant c.

Now consider a 3-sided top-k query with the restriction [a,b) on the z-coordinates and [0,y)
on the y-coordinates. The range [0,y) is covered with the union of one range in one slim grid per
level of the tree. Let y.,...,y1 be the child numbers of the path from the root to the y-th row of
the grid. Then we take the 3-sided query [a,b) % [0,y;) at the node of height j in the path.

We start the searches in the ¢ slim grids, and extract the first result from each grid. We insert
those local maxima into a new global queue Q. Now we repeat k times the process of extracting
the next result from Q, reporting it, requesting the next result from the grid where the result came
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from, and inserting it in Q. Note that Q can be implemented naively because it contains at most
c elements and c is a constant.

Initializing the searches will then require O(clogn) time, and extracting k results from the
slim grids will require O(kloglogk) time. Managing Q will require O(ck) time even if done
naively. Therefore the total time is still O(logn + kloglogk). The update time per element
stays O(clogl“'6 n). The process is also online. Then we obtain the following lemma.

Lemma 6 A set of n points, one per column on an n X r¢ grid, for r = lg°n and any constant
0 <e<1andc>1, with weights in [1,0(n)], can be stored in O(n) words of space, so that for any
1<k<n, 1<h<r®andl<a<b<n,k most highly weighted points in the range [a,b] x [0, h]
can be reported in decreasing order of their weights in O(log n+kloglogk) time, online in k. Points
(and their columns) can be inserted and deleted in O(log' ™ n) time.

5.5 The Final Result

We find the locus v of P in the suffix tree in time O(p(loglogn)?/log, n + logn). Then the a-
coordinate range of labels to search for in the grid is [a, b), where a is the first label in list(v) and
b = last(v). Since we store string depths in the grid, the y-coordinate range of the query is [0, p).

Our dynamic grid is horizontally split into bands of ¢ rows, for a constant ¢, which are handled
as explained in Section 5.4. Therefore, our 3-sided query is translated into 3-sided queries on the
first [p/r¢] bands. All but the last will query for the whole row interval [0, r¢), whereas the latter
will query for the row interval [0, (p — 1) mod 7¢|.

We start the searches in all the bands, and extract the first result from each. If there are more
than k£ bands, we use linear-time selection to keep only the k£ highest weights. Then we insert the
local maxima into a new global queue Q. Now we repeat k times the process of extracting the first
result from Q, and if it came from the ¢th band, then we request the next result from that band
and insert it in Q (unless it has no more results, in which case we continue with the remaining
bands). Again, Q will be implemented with Thorup’s priority queue [67].

Initializing the searches will then require O([p/r¢|logn) time, and extracting k£ (and inserting
other k) results in Q will take time O(kloglogk). We choose r = 1g°n for some 0 < ¢ < 1/2,
as explained, and rename ¢ as (¢ + 1)/e. Therefore, we obtain a query time of O(p/log‘n +
logn + kloglog k) for the grid. Once again, the scheme can be made online with the technique of
Section 4.4. Updating grid points, including extending the grid downwards, requires O(log!™® n)
time. This yields Theorem 5.

We developed our result for tf as the relevance measure. It is very easy to support others like
docrank, but if the weights are not integer numbers, then Thorup’s priority queues [67] cannot be
used. In this case we insert all the new weights that appear in a data structure for monotonic list
labeling, which assigns them integers in a polynomial universe [1,n°()]. This adds at most O(logn)
time per symbol inserted [22] (deletions can be handled by deamortized periodic rebuildings [59]).
In general we can support any measure that can be computed in time O(|d|C,,) over the suffix tree
T, of the document d to insert: We explicitly build Ty, compute the relevance measure for all the
nodes, and then use them to assign the weights as we insert the nodes in our suffix tree. At the
end we delete T,;. This suffix tree can be built (and deleted) in O(|d|) time on integer alphabets
[24]. Therefore we simply charge O(C),) time per character inserted in our text collection. Note
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that C, is O(1) for measures tf and docrank. Hon et al. [41] show how to compute mindist from
Ty in O(|d|log|d|) time, so C,, = O(logn) in this case.

Our scheme works as long as lgn has a fixed value (plus O(1)). We use standard techniques to
incrementally rebuild the structure for larger or smaller lgn values as more insertions or deletions
are processed [58].

6 A Space-Efficient Data Structure

We now show how the space of our static structure can be reduced to O(n(log o +log D +loglogn))
bits, where o is the alphabet size and D is the number of documents, and retain almost the same
query time. Our approach is to partition the tree into minitrees, which are connected subtrees
containing O(0?Dlogn) nodes, so that their grids can be represented within the given space.
Pointers ptr that cross over minitrees can be safely replaced by shorter ones going from some
minitree leaf to a fake node above the minitree root, without altering the answers to top-k queries.
The minitrees are seen as nodes in a so-called contracted tree T°, which requires only O(n) bits.
Some queries are solved locally within a minitree, while others are solved on 7. To find the locus
in the right minitree or in 7, we use a compressed suffix tree data structure, which uses O(nlog o)
bits. This is the responsible of the slight increase in query times compared to the linear-space
version of Theorem 1. In Section 6.1 we show how to remove the O(nloglogn) term from the space
when the relevance measure is the term frequency, by exploiting particularities of this measure.

Partitioning the suffix tree. We define z = ©(ocDlogn). We say that a suffix tree node v € T
is heavy if the subtree rooted at v has at least z leaves, otherwise it is light. A heavy node is fat if
it has at least two heavy children, otherwise it is thin.

All the non-fat nodes of T are grouped into minitrees as follows. We traverse T" in depth-first
order. If a visited node v has two heavy children, we mark v as fat and proceed. If v has no heavy
children, we mark v as thin or light, and make v the root of a minitree T;, that contains all the
descendants of v (which need not be traversed). Finally, if v has one heavy child v;, we mark v
as thin and make it the root of a minitree T),. The extent of this minitree is computed as follows.
If v;, ¢ > 1, is a thin node with one heavy child v;;1, we visit nodes v1, v2,...vj-1 and include v;
and all the descendants of its other children, until either v;_; has no heavy children or is fat, or
T, contains more than oz nodes after considering v;. Then we continue our tree traversal from v;.
Note that T, contains at the very least the descendants of v by children other than v;.

With the procedure for grouping nodes described above, the leaves of minitrees can be parents
of nodes not in the minitree. Those child nodes can be either fat nodes or roots of other minitrees.
However, at most one leaf of a minitree can have children in T'.

Note that the size of a minitree is at most O(cz). On the other hand, as two heavy children
have disjoint leaves, there are O(n/z) fat nodes in 7. Finally, minitrees can contain as little as
one node (e.g., for leaves that are children of fat nodes). However, note that a minitree root is
either a child of a fat node (and thus there are O(on/z) minitrees of this kind), or a child of a
leaf of another minitree such that the sum of both minitree sizes exceeds oz (otherwise we would
have included the root v; of the child minitree as part of the parent minitree). Moreover, as said,
at most one of the leaves of a minitree can be the parent of another minitree, so these minitrees
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that are “children” of others form chains where two consecutive minitrees cover at least oz nodes
of T. Thus there are O(n/(0z)) minitrees of this second kind. Adding up both cases, there are
O(on/z) = O(n/(Dlogn)) minitrees in 7.

Contracted tree and minitrees. The pointers in a tree T" are defined in the same way as in
Section 2. Since we cannot store T" without violating the desired space bound, we store a contracted
tree T and the minitrees T,,.

The contracted tree T contains all fat nodes of T', plus one node v°¢ for each minitree T;,. Each
pointer ptr(u,d) = «’ of T is mapped to a pointer ptr¢(u¢,d) = (u')¢ of T€ as follows. If u is a fat
node, then u¢ = u. Otherwise, if u belongs to minitree T}, then u¢ = v¢. Similarly, if v’ is a fat
node then (u')¢ = u'; otherwise, if «’ belongs to minitree T, then (u')¢ = (v')¢. In other words,
nodes of a minitree are mapped to the single node that represents that minitree in 7 and pointers
are changed accordingly.

For each minitree T, we store one additional dummy node v that is the parent of v. If a leaf
uy, of T, has a heavy child v/ € T, we store an additional dummy node v/ € T, that is the only
child of uy. Pointers of T, are modified as follows. Each pointer ptr(u,d), u € T, that points to an
ancestor of v is transformed into a pointer ptr(u,d) that points to v. Every pointer ptr(u”,d) that
starts in a descendant u” of uj, and points to a node u € Ty, u # uy, (respectively to an ancestor of
v) is transformed into ptr(¢/, d) that starts in v/ and points to u (respectively to v). By Lemma 2,
there are at most D such pointers ptr(u”, d). We observe that there is no need to store pointers to
the node uy, in the minitree T, because such pointers are only relevant for the descendants of wuy
that do not belong to T,.

Compressed suffix trees. The contracted tree T consists of O(n/(Dlogn)) nodes, and thus
it would require just O(n/D) bits. The minitrees contain O(cz) nodes, but still an edge of a
minitree can be labeled with a string of length ©(n). Instead of representing the contracted tree
and the minitrees separately, we use Sadakane’s compressed suffix tree (CST) [63] to represent the
topology of the whole T in O(n) bits, and a compressed representation [35] of the global suffix
array (SA) of the string collection, which takes O(nlogo) bits. This SA representation finds the
suffix array interval [, 7] of P in time O(p/log, n + log; n) for any constant ¢ > 0, and a lowest-
common-ancestor query for the I-th and r-th leaves of T' finds the locus u of P in O(1) additional
time. A bitmap M1, n] marks which nodes are minitree roots, and another bitmap C[1,n| marks
which nodes are fat or minitree roots. Both are indexed with preorder numbers of T, which
are computed in constant time on the CST. With a simple O(n)-bit structure for constant-time
marked ancestor queries that is compatible with our CST representation [61, Sec. 4.1], we can
find the lowest ancestor v of u marked in M or in C'. With bitmap M we can identify whether u
belongs to a minitree rooted at v (with local preorder preordery, (u) = preordery(u) —preordery(v)
and depth depthr,(u) = depthr(u) — depthr(v); depths are also computed in constant time).
Similarly, with C and M we can identify whether « is a fat node, and find out its preorder in T
as preorderre(u) = ranky(C, preorderr(u)), in constant time. Its depth in T can be stored in an
array indexed by preorderpe in O(n/D) bits.
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Contracted grid. We define the grid of the contracted tree T as in Section 2, considering all
pointers ptr¢. Those are either ptr pointers leaving from fat nodes, or leaving from inside some
minitree 7, and pointing above v. For every fat node and for every minitree T, and for each
document d, there is at most one such pointer by Lemma 2. Thus each node of T contributes at
most D pointers ptr¢. As there are O(n/(D logn)) nodes, there are O(n/logn) pointers ptr® in 7¢.

Therefore, the grid associated with 7 is of width O(n/logn) and height O(n/(Dlogn)). As
there are O(n/logn) distinct weights among the ptr¢ pointers, we only store their ranks. This
change does not alter the result of any top-k query. Therefore the data structure of Theorem 4 on
T* occupies O(n/logn) words, or O(n) bits.

Local grids. The local grid for a minitree T}, collects the pointers ptr local to T},. It also includes
at most D pointers towards its dummy root v, and at most D pointers coming from its node v/, if it
has one. Overall T, contains O(cz) pointers and O(oz) nodes, so its grid is of size O(cz) x O(0z).
The weights are also replaced by their ranks, so they are also in the range [1,0(cz)]. Using
Theorem 4 the minitree requires O(log(oz)) bits per node. Added over all the nodes of T' that can
be inside minitrees, the total space is O(nlog(cz)) = O(n(logo +log D +loglogn)). Note that the
tree topology is already stored in the CST, so information associated with nodes u € T, such as
the intervals [l,,, r,] can be stored in arrays indexed by preorder numbers.

Queries. Given a query pattern P, we find the locus v of P and determine whether w is a fat
node or it belongs to a minitree in O(p/log, n + log; n) time, as explained. If u is fat, we solve
the query on the contracted grid of T¢. Note that this grid does not distinguish among different
nodes in the same minitree. But since w is an ancestor either of all nodes in a minitree or of none
of them, such distinction is not necessary.

If u belongs to a minitree T),, we answer the query using the corresponding local grid. This grid
does not distinguish where exactly the pointers pointing to v lead, nor where exactly the pointers
that originate in v/ come from. Once again, however, this information is not important in the case
where the locus u of P belongs to T,,.

Note that we still need to maintain the global array mapping z-coordinates to document iden-
tifiers. This requires O(nlog D) bits.

Theorem 7 Let D be a collection of D documents over an integer alphabet [1, o] with total length n,
and let w(S, d) be a function that assigns a numeric weight to string S in document d, that depends
only on the set of starting positions of occurrences of S in d. Then there exists an O(n(log D +
log o + loglogn))-bit data structure that, given a string P and an integer k, reports k documents d
containing P with highest w(P,d) values, in decreasing order of w(P,d), in O(p/log, n+log: n+k)
time, for any constant € > 0.

In case p < lg-™¢ n, we can use a different compressed suffix array [11], which gives O(p) search

time, and the overall time becomes O(p + k).

6.1 A Smaller Structure when using Term Frequencies

In this section we show that the space usage can be further improved if w(P, d) = tf, i.e., when the
data structure must report k documents in which P occurs most frequently.
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Our improvement is based on applying the approach of Theorem 7 to each minitree. The nodes
of a minitree are grouped into microtrees; if the structure for a microtree still needs too much space,
we store them in a compact form that will be described below.

Let 2/ = 0D lg m, where m is the number of nodes in a minitree 7. Using the same method as in
Theorem 7, we divide the nodes of T into O(m/z’) minifat nodes and O(m/(D logm)) microtrees,
so that each microtree contains O(cz’) nodes. We construct the contracted minitree and the
contracted grid for 7 as in Theorem 7. Both the contracted minitree and the structure for the
contracted grid use O(m) bits. We can traverse a path in the microtree using the implementation
of the global suffix tree described in the previous section, as well as compute local preorders and
depths, and attach satellite information to microtree nodes.

For every microtree T,, we define the dummy nodes v and v/. Pointers in 7, are transformed
as in the proof of Theorem 7 with regard to v and v/.

Let m’ denote the number of nodes in a microtree. If logm’ = O(log o + log D), we implement
the local grid data structure described in Theorem 7 for a microtree. In this case we can store a
data structure for a microgrid in O(log(m’ + D)) = O(log o + log D) bits per node.

If, instead, logm’ = w(log o + log D), since logm’ = O(log(c2")) = O(log o +log D + log log m),
it follows that logm’ = O(loglogm). Hence, the size of the microtree is m’ = logo(l) m = (logo +
log D + loglogn)?® = (loglogn)®®"). The total number of pointers in the microtree is also
m” =m' + O(D) = (loglogn)°M) (since log D = o(logm/)). Since all the grids in m” x m’, with
one point per x-coordinate, and weights in [1, m”], can be expressed in m” (Igm’ +1gm”) = o(logn)
bits, we can store pre-computed answers for all possible queries on all possible small microtrees.
The only technical difficulty is that weights of some pointers in a microtree can be arbitrarily large.
However, as explained below, it is not necessary to know the exact weights of pointers to answer a
query on a small microtree.

All pointers ptr(u;, d) where u; is a leaf node and u; # v/ have weight 1. The weights of ptr(1/, d)
can be arbitrarily large. The weight of a pointer ptr(u,d) for an internal node u equals to the sum
of weights of all pointers ptr(u’,d) for the same document d that lead to u. Thus the weight of
ptr(u,d) can also be large. We note that there is at most one pointer ptr(v/, d) for each d. Therefore
the weight of each pointer ptr(u, d) can be expressed as the sum wj(u) 4+ wo(u), where wi(u) is the
weight of ptr(v/,d) or 0 and we(u) < m’. In other words, the weight of ptr(u,d) differs from the
weight of ptr(+/,d) by at most m/.

Let the set N contain the weights of all pointers ptr(u;,d) and ptr(v/,d). Let N/ =
{|w/m/|, |lw/m'| + 1|w € N'}. To compare the weights of any two pointers it is sufficient to
know (i) the tree topology (ii) for every leaf u;, the document d whose suffix is stored in v; (iii) for
every ptr(v/,d), the pair (rank(|w/m'|,N"),w mod m') where w is the weight of ptr(+/,d). There
are o(n/logn) possible combinations of tree topologies and possible pairs (rank(|w/m'],N"),w
mod m’). Hence, we can store answers to all possible queries for all microtrees in a global look-up
table of size o(n) bits.

The topology of a microtree can be stored in O(m’) bits. We can specify the index of the
document d stored in a leaf u; with lg D bits. We can specify each pair (rank(|w/m’|,N"),w
mod m') with O(logm’) bits. Since D = O(m//logm’), information from item (iii) can be stored
in O(m’) bits. Thus each microtree can be stored in O(m’log D) bits if logm’ = w(log o + log D).
Summing up, our data for a minitree uses O(m(log o +log D)) bits. Therefore the total space usage
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is O(n(log o + log D)) bits.

A query for a pattern P is answered by locating the locus uw of P. If w is a fat node in T, the
query is answered by a data structure for the contracted grid. If w belongs to a minitree 7 and u
is a minifat node, we answer the query by employing the data structure for the contracted grid of
T. If u belongs to a microtree 7, the query is answered either by a microgrid data structure or by
a table look-up.

Theorem 8 Let D be a collection of strings over an integer alphabet [1, o] with total length n, and
let tf (P,d) denote the number of occurrences of P in d. Then there exists an O(n(log D + logo))
bit data structure that, given a string P and an integer k, reports k documents d containing P with
highest tf (P, d) values, in decreasing order of tf (P,d), in O(p/log, n + logi n + k) time, for any
constant € > 0.

1+e
g

Again, we can obtain O(p + k) query time when p < lg, ™ n.

7 Parameterized Top-k Queries

In this section we consider the extended problem where a parameter par(P,d) is associated with
the documents in relation to the pattern P, and we want to recover only documents d where
par(P,d) € [11,72]. We include this extension in our framework by adding one more dimension to
our slim grids of Section 5.3. Since the grids are slim, one of the dimensions is small, which we
exploit to obtain good query times.

We first show that two-dimensional top-k queries can be solved in linear space and O((k +
logn)log® n) time, for any constant € > 0, on n X n grids with weights in [1, O(n)]. Then we extend
the result (although we do not build on it) to three-dimensional grids where one of the dimensions
has an extension polylogarithmic in n, obtaining the same space and time as in two dimensions.
Finally, in Section 7.3, we show how this geometric structure is used to solve our parameterized
top-k queries by replacing our original two-dimensional grids.

7.1 Faster Two-Dimensional Queries

In this section we improve a recent data structure that supports two-dimensional top-k queries [54,
Sec. 5]. The structure is similar to our wavelet tree W described in the proof of Lemma 4. In
addition, for the points stored at any node of W, it stores an RMQ data structure that gives in
constant time the position of the point with maximum weight within any interval. As explained,
this structure [27] uses O(t) bits if the node of W handles ¢ points, and thus the total space of this
extended wavelet tree W is O(n) words for an O(n) x O(n) grid.

They [54] show how to support top-k queries in a general interval [a, b] X [¢, d] by first identifying
the O(logn) nodes v € W that cover [c, d|, mapping the interval [a, b] to [ay, b,] in all those nodes
v, and setting up a priority queue with the maximum-weight point of each such interval. Now, they
repeat k times the following steps: (i) extract the maximum weight from the queue and report it;
(1) replace the extracted point, say x € [ay, by], by two points corresponding to the maxima in the
ranges [a,, — 1] and [z + 1, b,], prioritized by those maximum weights.

Their total time is O((k + logn)logn) if using linear space. The O(logn) extra factor is due
to the need to traverse W in order to find out the real weights, so as to compare weights from
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different nodes. However, those weights can be computed in time O(log®n) and using O(nlogn)
extra bits [18, 57, 17]. The operations on the priority queue can be carried out in O(loglogn) time
if the weights are integers in [1, O(n)] [67]. Thus we have the following result.

Lemma 7 Given a grid of n x n points, there exists a data structure that uses O(n) words of space
and reports k most highly weighted points in a range Q = [a,b] X [c,d] in O((k +logn)log® n) time,
for any constant € > 0. The structure is built in O(nlogn) time.

Note this technique automatically admits being used in online mode (i.e., without knowing k& in
advance), since we have not made use of k to speed up the priority queue as in previous sections.
We can easily stop the computation at some k£ and resume it later.

7.2 Limited Three-Dimensional Queries

In this section we slightly extend the scenario considered above. We assume that each point has
an additional coordinate, denoted z, and that z < 1g®n for a constant @ > 0. Top-k points in a
three-dimensional range [a, b] X [¢, d] X [B, 7] must be reported sorted by their weights. Such queries
will be further called limited three-dimensional top-k queries. We can obtain the same result as in
Lemma 7 for these queries.

Instead of a binary wavelet tree, we use a multiary one [25], with node degree 1g° n and height
O(logn/loglogn). Now each node v € W has associated a vector B, so that B,[i] contains the
index of the child in which the i-th point of v is stored. Each element in B, needs O(log(log®n)) =
O(loglogn) bits, adding up to O(nloglogn) per wavelet tree level and O(nlogn) bits in total.
Using B, and some auxiliary data structures, we can obtain the weight of any point at any node
in O(log®n) time [57]. These structures also require O(nlogn) bits.

We regard the ¢ points of each node v as lying in a two-dimensional grid of z- and z-coordinates.
Instead of one-dimensional RMQs on the z-coordinates [a,, b, ], we issue two-dimensional RMQs on
[ay,by] X [B,7]. The wavelet tree of the basic two-dimensional RMQ data structure [54] (not our
result of Lemma 7) handles n x m grids in O(nlogm) bits of space and answers RMQs in time
O(log?m). In our case m < lg®n and thus the space is O(nloglogn) bits and the query time is
O((loglogn)?). Thus the space of the two-dimensional data structures is of the same order of that
used for vectors B,, adding up to O(nlogn) bits. As one-dimensional RMQs are built in linear
time, the total construction time is O(nlogn).

Now we carry out a procedure similar to that of the two-dimensional version. The range [a, b] is
covered by O(log!™ n/ loglog n) nodes, since the wavelet tree has O(log n/loglog n) levels and there
can be O(log®n) covering nodes per level. We obtain all their (two-dimensional) range maxima,
insert them in a priority queue, and repeat k times the process of extracting the highest weight
and replacing the extracted point = € [ay, b,] by the next highest weighted point in [a,, b,] (thus
we are running these range maxima queries in online mode).

The two-dimensional RMQ structures at nodes v cannot store the absolute weights within
overall linear space. Instead, when they obtain the z-coordinate of their local grid, this coordinate
x, is mapped to the global z-coordinate in O(log® n) time, using the same technique as above.
Then the global array of weights is used. Hence these structures find a two-dimensional maximum
weight in time O(log® nloglogn), not O((loglogn)?). This is repeated over O(log'™ n/loglogn)
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nodes, and then iterated k times. The overall time is O((k + log'*® n/loglogn)log® nloglogn),
which is of the form O((k + logn)log®n) by adjusting €. The times to handle the priority queue
are negligible [67].

Lemma 8 Given a grid of n x n x1g%n points, for a constant o > 0, there exists a data structure
that uses O(n) words of space and reports k most highly weighted points in a range @Q = [a,b] X
[e,d] x [B,7] in O((k + logn)log® n) time, for any constant € > 0. It is built in O(nlogn) time.

Again, this result holds verbatim in online mode.

7.3 The Final Result

We divide the grid into horizontal stripes of height r = [1g¢T1T¢ n| for any constant ¢, much as in

Section 5.5. We store a data structure for limited three-dimensional top-k queries for each slim grid,
taking y as the limited coordinate. A query [a, b] X [0, h] X [11, T2] is processed just as in Section 5.5,
with the only difference that the queries [a,b] x [r1,72] x [0,7] to the local grids now require
O(log!™ n) initialization time and then O(log® n) time per element retrieved, according to Lemma 8.
Then, we initialize our global query Q in time O([h/r] log!*¢ n) = O(h/log® n+log*™ n), and then
extract each new result in time O(log®n). The time of the priority queue is blurred by adjusting
e. Hence, the total query time is O(h/log®n + (k + logn)log® n), and Theorem 6 is proved.

8 Conclusions

We have presented an optimal-time and linear-space solution to top-k document retrieval, which
can be used on a wide class of relevance measures and subsumes in an elegant and uniform way
various previous solutions to other ranked retrieval problems. We have also presented dynamic
variants, space-reduced indexes, and structures that solve extensions of the basic problem. The
solutions reduce the problem to ranked retrieval on multidimensional grids, where we also present
improved results, some tailored to this particular application, some of more general interest.

After the publication of the conference version of this article [53], Shah et al. [65] showed how to
achieve the optimal O(k) time once the locus of P is known. This is in contrast to our original result,
where we used time O(p + k) after having spent time O(p) to find the locus. Their improvement
allows one to use these techniques in other scenarios where the locus is obtained in some other way,
without the need to search for it directly using P. They also extend the results to the important
case of external memory. The new results we obtain in this article about how to find the locus
in RAM-optimal time O(p/log, n), and how to handle the dynamic scenario, nicely complement
those results and add up to a rather complete solution to the problem.

It is also worth mentioning that the journal version of the original paper of Hon et al. has
recently appeared as well [40]. Here they show how to obtain O(p + k) time if the top-k results
are not to be returned sorted by relevance. Our original [53] and present solutions do obtain the
results in decreasing relevance order.

There are several relevant research directions, on which we comment next.
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RAM optimality. In our previous conference version we had achieved time O(p+ k), which was
optimal only in the comparison model (although we used RAM-based techniques). Now we have
improved this result to O(p/log, n+ k), which is optimal in general in the RAM model (considering
the case log D = ©(logn)), because it is the size in words of the input plus the output of the query.
Achieving O(p/log, n) time on the suffix tree, without any polylogarithmic additive penalty, is an
interesting result by itself, and we have obtained it without altering the topology of the suffix tree
(which is crucial for the invariants of Hon et al. [41] to work). However, we do not know if our
solution is optimal when there are very few distinct documents, log D = o(logn). The question of
whether O(p/log, n + k/logpn) time can be achieved is still open.

Construction time. Without considering the cost to compute weights w(path(u), d) for all point-
ers ptr in the suffix tree, the construction time of Hon et al. [41] (which achieves suboptimal query
time) is O(n). The time to build our grid structure is O(nlogn), to which we must add O(n log® n)
randomized time to achieve RAM-optimal search time in the suffix tree traversal (or O(n polylog n)
deterministic time). Is it possible to achieve linear, or at least O(nlogn), deterministic construction
time for our data structures?

Dynamic optimality. In our dynamic variant, the static RAM-optimal search time in the suffix
tree becomes O(p(loglogn)?/log, n + logn). There are schemes that do better for large o, for
example O(p+ (loglog 0)?) time [26]. Although they do not support deletions yet, this seems to be
possible. On the other hand, we obtained O(log!*¢ n) update time per symbol. A general question
is, which is the best search time we can obtain in the dynamic scenario?

Practical results. Our solutions are not complex to implement and do not make use of imprac-
tical data structures. A common pitfall to practicality, however, is space usage. Even achieving
linear space (i.e., O(nlogn) bits) can be insufficient. We have shown that our structure can use,
instead, O(n(logo + log D)) bits for the ¢f measure (and slightly more for others), but the con-
stants are still large. There is a whole trend of reduced-space representations for general document
retrieval problems with the ¢f measure [64, 70, 41, 21, 32, 38, 12, 31, 68, 39, 56]. The current
situation is as follows [52]: One trend aims at the least space usage. It has managed to use just
Dlg(n/D) + O(D) + o(n) bits on top of a compressed suffix array of the collection, and the best
time complexity it has achieved is O(p 4 klog? klog!*¢n) for any constant € > 0 [56]. Another
trend adds to the space the so-called document array [51], which uses nlg D + o(nlog D) bits and
enables faster solutions. Currently the fastest one achieves time O(p + klog™ k) [56]. This is very
close to optimal, but not yet our O(p/log, n + k) time.

In practice, the most compact implementation in this trend [55] reaches about 1-2 times the
text size (including a representation of the text) and retrieves each of the top-k results within
milliseconds. Implementations of the ideas we propose in this article [44, 33] make use of the fact
that, under very general probabilistic models, the average height of the suffix tree (and hence of
our grids) is O(logn) [66]. This enables simple implementations of our grid-based index that use
up to 2.5-3.0 times the text size (including the text) and, although not reaching optimal query
time, return each answer within microseconds.
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More complex queries. In the long term, the most interesting open questions are related to
extending the one-pattern results to the bag-of-words paradigm of information retrieval. Our model
easily handles single-word searches, and also phrases (which is quite complicated with inverted
indexes [72, 9], particularly if their weights have to be computed). Handling a set of words or
phrases, whose weights within any document d must be combined in some form (for example using
the tf x idf model) is more challenging. Recent results [45] give ©(y/n)-time lower bounds for some
basic and natural queries that combine two patterns, unless there is a breakthrough on the boolean
matrix multiplication problem. Instead, one can aim at complexities related to the results achieved
with inverted lists on the simpler natural language model. It is interesting to note that our online
result allows simulating the left-to-right traversal, in decreasing weight order, of the virtual list
of occurrences of any string pattern P. Therefore, for a bag-of-word queries, we can emulate any
algorithm designed for inverted indexes that stores those lists in explicit form [60, 6], therefore
extending any such technique to the general model of string documents.
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