OPTIMAL DYNAMIC SEQUENCE
REPRESENTATIONS *
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Abstract. We describe a data structure that supports access, rank and select queries, as well
as symbol insertions and deletions, on a string S[1,n] over alphabet [1..c] in time O(lgn/lglgn),
which is optimal even on binary sequences and in the amortized sense. Our time is worst-case for
the queries and amortized for the updates. This complexity is better than the best previous ones
by a ©(1 + 1go/lglgn) factor. We also design a variant where times are worst-case, yet rank and
updates take O(Ign) time. Our structure uses nHg(S) + o(nlgo) + O(olgn) bits, where Hq(S) is
the zero-order entropy of S. Finally, we pursue various extensions and applications of the result.

1. Introduction. String representations supporting rank and select queries are
fundamental in many data structures, including full-text indexes [26, 20, 23], permu-
tations [23, 2], inverted indexes [11, 2], graphs [18], document retrieval indexes [55],
labeled trees [23, 5], XML indexes [28, 19], binary relations [5], and many more. The
problem is to encode a string S[1,n] over alphabet ¥ = [1..0] so as to support the
following queries:

rank,(S,4) = number of occurrences of a € ¥ in S[1,i], for 1 <i < n.
select, (S,4) = position in S of the i-th occurrence of a € X, for 1 <i < ranky(S,n).
access(S, i) = S[i].

There exist various static representations of S (i.e., S cannot change) that support
these operations [26, 23, 20, 2, 7]. The most recent work [7] shows a lower bound of
lgo

Q(lg lg—w) time for operation rank on a RAM machine with w-bit words, using any

space of the form O(n lgo(l) n). It also provides a matching upper bound that in
addition achieves almost constant time for select and access, using compressed space.
Thus the problem for static representations is essentially closed.

However, various applications need dynamism, that is, the ability to update S
via insertions and deletions of symbols. Formally:

insert, (S,7) : inserts a € ¥ between S[i — 1] and STi], for 1 <i < n.
delete(S,4) : deletes S[i] from S, for 1 < i < n.

A lower bound for this case, in order to just support operations rank, insert and
delete, even for bit vectors (o = 2) and in the amortized sense, is Q(1gn/lglgn) [22].
On the other hand the best known upper bound [29, 49] is O((1+1g o/ lglgn)lgn/l1glgn)
that is, a factor ©(lgo/lglgn) away from the lower bound for alphabets larger than
polylogarithmic. Their space is n.Ho(S)+o(nlg o) bits, where Ho(S) = )5 (na/n)1g(n/n4) <Jj
lg o is the zero-order entropy of S, n, being the number of occurrences of a in S.

In this paper we close this gap by providing an optimal-time dynamic representa-
tion of sequences. Our representation takes O(lgn/lglgn) time for all the operations,
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worst-case for the three queries and amortized for updates. We present a second vari-
ant achieving worst-case bounds for all the operations, O(lgn/lglgn) for select and
access and O(lgn) for rank, insert and delete. The space is also nHy(S) + o(nlgo)
bits. Time O(lgn) is still faster than previous work for Igo = Q((Iglgn)?). This gets
much closer to closing this problem under the dynamic scenario as well.

We then show how to handle general alphabets, such as ¥ =R, or ¥ =T'* for a
symbol alphabet I', in optimal time. For example, in the comparison model for ¥ = R,
the time is O(lg o+1g n/lglgn), where o is the number of distinct symbols that appear
in S; in the case > = I'* for general T, the time is O(|a| +1gv+1gn/lglgn), where |a
is the length of the involved symbol (a string) and ~ the number of distinct symbols
of I' that appear in the elements of S. Previous dynamic solutions have assumed
that the alphabet [1..0] was static. An exception for the case ¥ = I'* [27] obtains
O(Jallgy1gn) time for all the operations.

At the end, we describe several applications where our result offers improved
time/space tradeoffs. These include compressed indexes for dynamic text collections,
construction of the Burrows-Wheeler transform [12] and construction of static com-
pressed text indexes within compressed space, among others.

We start with an overview of the state of the art, putting our solution in context,
in Section 2. We review the wavelet tree data structure [26], which is fundamental in
our solution (and in most previous ones) in Section 3. In Section 4 we describe the
core of our amortized solution, deferring to Section 5 the management of deletions and
its relation with a split-find data structure needed for rank and insert. Section 6 en-
capsulates a technical part related to the structure of blocks that handle subsequences
of polylogarithmic size. Section 7 deals with the changes in lgn and how we obtain
times independent of ¢, and concludes with Theorem 7.1, our result on uncompressed
sequences. Then Section 8 shows how to improve the data encoding to obtain com-
pressed space in Theorem 8.1, and Section 9 shows how to obtain worst-case times,
Theorem 9.1. Finally, Section 10 describes some extensions and applications of our
results. We conclude in Section 11.

2. Related Work. With one exception [28], all the previous work on dynamic
sequences build on the wavelet tree structure [26]. The wavelet tree decomposes S
hierarchically. In a first level, it separates larger from smaller symbols, marking in a
bit vector which symbols of S are larger and which are smaller. The two subsequences
of S are recursively separated. The lgo levels of bit vectors describe S, and access,
rank and select operations on S are carried out via lg o rank and select operations on
the bit vectors (see Section 3 for more details).

In the static case, rank and select operations on bit vectors take constant time,
and therefore access, rank and select on S takes O(lg ) time [26]. This can be reduced
to O(1+1go/lglgn) by using multiary wavelet trees [20]. These separate the symbols
into p = ©(Ig° n) ranges, for any constant 0 < € < 1, and instead of bit vectors store
sequences over an alphabet of size p. On an alphabet of that size, rank and select can
still be solved in constant time, and thus the time on the wavelet tree operations is
reduced to O([lgo/1gp]).

Insertions and deletions in S can also be carried out by inserting and deleting
bits from lg o bit vectors. However, the operations on dynamic bit vectors are bound
to be slower. Fredman and Saks [22] show that Q(Ign/lglgn) time is necessary, even
in the amortized sense, to support rank, insert and delete operations on a bit vector.
By using dynamic bit vector solutions [30, 14, 8, 13, 32] on the wavelet tree levels,
one immediately obtains a dynamic sequence representation, where the space and the
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time of the dynamic bit vector solution is multiplied by lg o (the sum of the zero-order
entropies of the bit vectors adds up to nHy(S) [26]). With this combination one can
obtain times as good as O(lg o lgn/lglgn) (using nlgo+o(nlg o) bits) [13], or spaces
as good as O(nHy(S)) bits (with O(lgolgn) time) [8].}

Miékinen and Navarro [38, 39] made the above combination explicit, and obtained
O(lgolgn) time for all the sequence operations coupled with the best compressed
space until then, nHy(S) 4 o(nlg o) bits. They also obtained O((1+1go/lglgn)lgn)
query time, but with an update time of O(lgolgH‘E n), for any constant 0 < ¢ < 1.
This was achieved by replacing binary with multiary wavelet trees, and obtaining
O(lgn) query time for the operations on sequences over a small alphabet of size
o(lgn).

Lee and Park [36, 37] pursued this path further, obtaining O((1+1go/lglgn)lgn)
time for queries and update operations, yet the space was not compressed, nlgo +
o(nlg o) bits, and update times were amortized. Shortly after, Gonzalez and Navarro
[24, 25] obtained the best of both worlds, making all the times worst-case and com-
pressing the space again to nHy(S) + o(nlg o) bits. Both solutions managed to solve
all query and update operations in O(lgn) time on sequences over small alphabets of
size o(lgn).

Finally, almost simultaneously, He and Munro [29] and Navarro and Sadakane [49]
obtained the currently best result, O((1 + lgo/lglgn)lgn/lglgn) time, still within
the same compressed space. They did so by improving the times of the dynamic
sequences on small alphabets to O(lgn/lglgn), which as said is optimal even on bit
vectors and in the amortized sense.

As mentioned, the solution by Gupta et al. [28] deviates from this path and is
a general framework for using any static data structure and periodically rebuilding
it. By using it over a given representation [23], it achieves O(lglgn) query time
and O(n®) amortized update time. It would probably achieve compressed space if
combined with more recent static data structures [2]. This shows that query times
can be significantly smaller if one allows for much higher update times. In this paper,
however, we focus on achieving similar times for all the operations. Table 2.1 gives
more details on previous and our new results.

Wavelet trees can also be used to model n xn grids of points, in which case o = n.
Bose et al. [10] used a wavelet-tree-like structure to solve range counting in optimal
static time O(lgn/lglgn), using operations slightly more complex than rank on the
wavelet tree levels. It is conceivable that this can be turned into an O((lgn/lglgn)?)
time algorithm using dynamic sequences on the wavelet tree levels. On the other hand,
Q((1gn/1glgn)?) is a lower bound for dynamic range counting in two dimensions [52].
This suggests that it is unlikely to obtain better results for dynamic wavelet trees,
and thus that the current path of progress on dynamic wavelet trees has reached its
optimum in O((1 +1go/lglgn)lgn/lglgn) time.

In this paper we show that this dead-end can be broken by abandoning the implicit
assumption that, to provide access, rank and select on S, we must provide rank and
select on the bit vectors (or sequences over [1..p]). We show that all what is needed is
to track positions of S downwards and upwards along the wavelet tree. It turns out
that this tracking can be done in constant time per level, breaking the ©(lgn/lglgn)
per-level barrier.

As a result, we obtain the optimal time complexity O(lgn/lglgn) for all the

IFor simplicity, we are omitting an O(olgn) additive term present in the space complexities,
which is o(nlg o) as long as 0 = o(n). We do write it explicitly in the theorems.
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History of results on managing dynamic sequences S[1,n| over alphabet [1..0], assuming o = o(n/lgn) to simplify. Some results [30, 8, 14] were presented
only for binary sequences and the result we give is obtained by using them in combination with wavelet trees. Column WA tells whether the update times are

(W)orst-case or (A)mortized.

TABLE 2.1

Source Space (bits) Query time | Update time WA
22] Q(lgn/lglgn) for rank + insert + delete A
30, 32] nlgo +O(nlgo(lglgn)?/lgn) O(lgolgn/lglgn) O(lgo(lgn/lglgn)?) A
[14] O(nlgo) O(lgolgn) O(lgolgn) W
8] O(nHo(S) +1gn) O(lgolgn) O(lgolgn) W
[38, 39] nHo(S) + O(nlgo/\/lIgn) O(lgolgn) O(lgolgn) W

nHo(S) 4+ O(nlga/lg'/?== n) O((l—l—%lgo/lglgn)lgn) O(%lgcrlgl+E n) W
[13] O(nlgo) O(lgolgn/lglgn) O(lgolgn/lglgn) W
[28] nlgo +O(nlga/lglgo) O(L1glgn +1glgo) O(Lne) A
(36, 37] nlgo + O(nlgo/V/Ign) + O(n) O((1+1go/lglgn)lgn) O((1+1go/lglgn)lgn) A
(24, 25] nHo(S)+ O(nlgo/1gn) O((1+1go/lglgn)lgn) O((1+1go/lglgn)lgn) W
(29] nHo(S) + O(nlga/Ign) O((1 +1go/lglgn)lgn/lglgn) O((1+1go/lglgn)lgn/lglgn) | W
[49] nHo(S) + O(nlgao/(clgt =% n)) O((1+ L1go/lglgn)ign/lglgn) O((1+ Liga/lglgn)lgn/lglgn) | W
Ours nHo(S) + O(nlgo/1gi=¢n) O(Eizlgn/lglgn) O(E%lgn/lglgn) A
Ours nHo(S) + O(nHo(S)/lglgn) + O(nlga/lg—< n) O(El2 Ilgn/lglgn), O(%lgn) for rank O(lgn) W




queries (worst-case) and update operations (amortized), independently of the alpha-
bet size. This is O(1 4+ 1go/lglgn) times faster than what was believed to be the
“ultimate” solution. Our space is nHy(S) + o(nlgo) bits, similar to previous solu-
tions. We develop, alternatively, a data structure achieving worst-case time for all the
operations, yet this raises to O(Ign) for rank, insert and delete.

Among the many applications of this result, it is worth mentioning that any dy-
namic sequence representation supporting rank and insert in O(¢(n)) amortized time
can be used to compute the Burrows-Wheeler transform (BWT) [12] of a sequence
S[1,n] in worst-case time O(nt(n)). Thus our results allow us to build the BWT
in O(nlgn/lglgn) time and compressed space. The best existing space-time trade-
offs are by Okanohara and Sadakane [51], who achieve optimal O(n) time within
O(nlgolglg, n) bits, Hon et al. [31], who achieve O(nlglgo) time with O(nlgo)
bits, and Kérkkéinen [34], who obtains O(nlgn 4+ nv) time and O(nlgn/\/v) extra
bits for a parameter v. Using less space allows us to improve BWT-based compressors
(like Bz1p2) by allowing them to cut the sequence into larger blocks, given a fixed
amount of main memory for the compressor. Several other results will be mentioned
in Section 10.

3. Basic Notation and Wavelet Trees. Let S be a string over alphabet ¥ =
[1..0]. In this paper we will use a model for strings that, although it would be
more complex than necessary for typical purposes, is adequate for our descriptions.
A string S will be a set of distinct elements S = {s1,82,...,58,}. Each element
s € S will have two components, s.key € N and s.chr € 3. We will write S[i] to
denote the element s € S with the i-th smallest s.key value, thus S[i].chr is what
is usually regarded as the i-th character (or symbol) of S. We denote S[i].str =
S[1].chr o S[2].chr o ... o S[|S]].chr, what is usually regarded as the string itself (an
element of ¥*) where o is the concatenation operator. Sometimes we refer to S as
a sequence of its elements s € S, by taking them in increasing s.key order. Note
that a subset of S corresponds to what is usually called a subsequence. When clear
from context, we will write S instead of S.str. Note that we will not represent any
string S as a set of elements, but rather will use this conceptual model to describe
our algorithms and data structures. Thus a string S can be physically represented
using |S|1lg o bits by writing the symbols of S.str.

We use this model also for binary strings B over alphabet ¥ = {0,1}. To avoid
confusion, elements of binary strings will be called binary elements, or belements for
short. Thus, if b is a belement, b.chr € {0,1} is a bit. We will reserve the term “bit
vector” to describe physical sequences of bits. Thus B.str can be represented as a bit
vector, using | B| bits of space.

Now we describe the wavelet tree data structure [26]. We associate each a € 3
to a leaf v, of a balanced binary tree 7. Each node if 7 is associated to a subset
¥, C X, where ¥, = {a € X, v, descends from v}. In particular, ¥, = {a} for any
a € ¥, and ¥, = X for the root v, of 7. The essential idea of the wavelet tree is the
representation of a string S by binary strings stored in the nodes of 7. We associate a
string S(v) C S with every node v of T, S(v) = {s € S, s.chr € £, }. The wavelet tree
does not store strings S(v) explicitly, but just binary strings B(v) at internal nodes v.
We set B(v)[i].chr = ¢ if S(v)[i] € S(v;), where v; is the t-th child of v (the left child
corresponds to ¢ = 0 and the right to ¢ = 1). This data structure (i.e., 7 and the bit
vectors B(v).str) is called the wavelet tree of S. Note that no bit vectors are stored
for the leaf nodes v,, as the conceptual strings S(v,) do not need to be represented.
Since T has O(o) nodes and [lgo] levels, and the bit vectors at each level add up to
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length n, the wavelet tree requires n[lgo] + O(o lgn) bits of space. If the bit vectors
B(v).str are compressed to |B(v)|Ho(B(v)) + o(| B(v)|) bits, the total size adds up to
nHy(S) + o(nlgo) + O(clgn) bits [26] (we write Hy(S) for Hy(S.str)). There are
various surveys on wavelet trees [48, 40, 47].

For any element S[i] and every internal node v such that S[i].chr € 3,, there is
exactly one element S(v)[j] = S[i]. Then the belement b, = B(v)[j] indicates in which
child of v is the leaf vg(y)[jj.chr = Vs[i].cnr Stored. We will say that such b, encodes
S[i] in B(v), and will write b,.enc = S[i] = S(v)[j]. We will also say that belement
b, € B(v) corresponds to a belement b, € B(u) if b,.enc = b,.enc in two nodes v and
u on a path of 7. Identifying the belements that encode the same element plays a
crucial role in wavelet trees. Other, more complex, operations rely on the ability to
navigate in the tree and keep track of belements that encode the same element.

The wavelet tree encodes S, in the sense that it allows us to extract any S[i].chr.
To implement access(S,i) we traverse a path from the root v, to the leaf vgp;.cny-
In each visited node we read the belement b, that encodes S[i] and proceed to the
corresponding belement in the b,.chr-th child of v. Upon arriving to a leaf v, we
answer access(S, i) = a.

The wavelet tree also implements operations rank and select. To compute select, (.S, 7),Jj
we start at the (conceptual) element S(v,)[¢] and identify the corresponding belement
b, = B(v)[j] in the parent v of v,, that is, b,.enc = B(v)[j].enc = S(v)[j] = S(va)[i].
We continue this process towards the root until reaching a belement B(v,)[j] such
that B(v,)[j].enc = S(v,)[j] = S[j] = S(va)[¢]. Then the answer is select,(S,i) = j.
Finally, to compute rank, (.S, 7), we traverse the wavelet tree from element S(v,)[i] and
b, = B(v;)[i] to some element in the leaf v,. At each node v in the path, we identify
the child v, of v such that a € 3,,, and then find the belement o' with 0'.chr = ¢ and
highest b".key < b,.key. Then we move to the belement b; = B(v;)[j] corresponding
to b’ in v;. Upon arriving at element S(v,)[j], the answer is rank(S,4) = j.

The standard method used in wavelet trees for identifying corresponding bele-
ments is to maintain rank/select data structures on the bit vectors B(v).str. Let
B(v)[i].chr = t, then we can find the offset j of the corresponding belement B(v;)[j]
in the child v; of v as j = ranks(B(v).str,7). Conversely, we can find the offset j
of the belement B(v)[j] corresponding to B(uv:)[i] as j = select;(B(v).str,4). Finally,
the more complicated process of finding the &’ needed for rank,(S,%) is easily solved
using rank on B(v).str: If b, = B(v)[i] and v, is the ¢-th child of v, then without
the need to find o we know that its corresponding belement in v; is B(v)[j], for
j = ranky(B(v).str, 7). This approach leads to O(lg o) query times in the static case
because rank/select queries on a bit vector B(v).str can be answered in constant time
and |B(v)|4+o(]B(v)|) bits of space [46, 17], and even using | B(v)|Ho(B(v))+o(|B(v)|)
bits [53]. However, we need Q(lgn/lglgn) time to support rank/select and updates
on a bit vector [22], which multiplies the operation times in the dynamic case.

An improvement (for both static and dynamic wavelet trees) can be achieved by
increasing the fan-out of the wavelet tree to p = O(Ig°n) for a constant 0 < & < 1:
the strings B(v) are not anymore binary but all the definitions and procedures remain
verbatim. This enables us to reduce the height of the wavelet trees and the query
time by a ©(lglgn) factor, because the rank/select times over alphabet [1..p] are
still constant in the static case [20] and O(Ign/lglgn) in the dynamic case [29, 49].
However, it seems that further improvements that are based on dynamic rank/select
queries in every node are not possible.

In this paper we use a different approach to identifying the corresponding ele-
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ments. We partition sequences B(v) into blocks, which are stored in compact list
structures L(v). Pointers from selected elements in L(v) to the structure L(v;) in
children nodes v; (and vice versa) enable us to navigate between nodes of the wavelet
tree in constant time. We extend the idea to multiary wavelet trees.

Our ideas are related to the general concept of fractional cascading [15, 16], and in
particular to its dynamic variant [43]. Similar techniques have also been used recently
in some geometric data structures [9, 50]. However, applying them on compressed data
structures where the bit budget is severely limited is much more challenging.

4. Basic Structure. We start by describing the main components of our modi-
fied wavelet tree. Then, we show how our structure supports access(.5, 7) and select, (S, %).J]
In the third part of this section we describe additional structures that enable us to
answer rank, (S, 7). Finally, we show how to support updates. Along this and the next
sections we will obtain time O((lg o +1gn)/lglgn) for all the operations; in Section 7
we will obtain times fully independent of o.

In the rest of the paper, we will use the term “elements” both for S(v)[e] and
B(v)le], as no confusion will arise.

4.1. Structure. We assume that the wavelet tree 7 has node degree p = ©(Ig° n).J|
We divide the sequences B(v) into g(v) blocks G1(v),G2(v),...,Gy)(v), and store
those blocks in a doubly-linked list L(v). Each block G;(v) contains |G;(v)| =
O(lg® n/1g p) consecutive elements from B(v), except the last, which can be smaller.
For each G;(v) we maintain a data structure R;(v) that supports access, rank and
select queries on G;(v).str. Since a block contains a poly-logarithmic number of ele-
ments over an alphabet of size p, we can answer those queries in O(1) time (this will
be described later, in Section 6, because the details are rather technical).

The location of an element B(v)[e] consists of two parts: (1) a unique identifier of
the block G;(v) that contains the offset e, and (2) the local index of e within G, (v).
Such a pair gives constant-time access to the element. A pointer to an element will
indicate, precisely, its location.

We maintain pointers between selected corresponding elements in L(v) and the
lists of its parent and children.

o If an element B(v)[e] is stored in a block G;(v) and B(v)[e]l.chr = ¢t #
B(v)[€¢/].chr for all ¢/ < e in G;(v) (i.e., e is the first offset where symbol
t occurs in G;(v).str), then we store a pointer from B(v)[e] to the corre-
sponding element B(vt)[et] in L(v:). Pointers are bidirectional, that is, we
also store a pointer from B(v;)[e:] to B(v)[e].
e In addition, if e is the first offset in its block G;(v) (i.e., the location of
B(v)le] is (G}(v),1)) and B(u)[e'] corresponds to B(v)[e] in the parent u of
v, then we store a pointer from B(v)[e] to B(u)[e’] and, by bidirectionality,
from B(u)[e'] to B(v)le].
All these pointers will be called inter-node pointers. We describe how they are im-
plemented later in this section. Figure 4.1 shows an example (disregard for now the
dashed arrows).

It is easy to see that the number of inter-node pointers from L(v) to L(v;), for
any fixed ¢, is O(g(v)). Hence, the total number of pointers that point downwards
from a node v is O(g(v)p). Additionally, there are O(g(v)) upward pointers to the
parent of v. Thus, the total number of inter-node pointers in the wavelet tree equals
O per9(w)p) =O(nlgo/ 1g°7¢ n 4 o 1g° n), where the term o g n accounts for the
v nodes that have just one block, G1(v). Since the children v; of those nodes must also
have just one block, G (v¢), we avoid storing their pointers, as we know that all point
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Fia. 4.1. An ezample of our data structure with p = 3. Clircles represent wavelet tree nodes.
The parent node v has children vg, vi and va. We emphasize the relation between v and va; the
rest are grayed. Each node shows (part of) its list L, focusing on the relation between Ga(v) and its
children. Each block Gj is a rectangle. Bidirectional pointers are shown with solid arrows, with filled
arrowheads marking their original direction. Thus one pointer leaves Ga(v) from the first occurrence
of each t towards its corresponding element in L(v). Also, the first element of each block in L(vt)
points upward. The dashed arrows illustrate the process of tracking downwards G2 (v)[9], the third 1.
The first step finds the closest previous 1 that has a downward pointer. It is Go(v)[1]. The second
step is to follow the pointer towards G1(vi). The third step is to advance by 2 in G1(v1), because
ranky (G2 (v).str, 9) — ranky (G2 (v).str, 1) = 2.

to the same block G1(v;), and their index inside Gy (v;) can be found with constant-
time rank/select operations inside G (v). Similarly, if the parent u of v also has only
one block, G1(u), we avoid storing explicit pointers between G (v) and G1(u), as they
can be computed in constant time with rank/select inside G1(u). If, instead, u has
more than one block, then we explicitly represent the pointers between L(v) and L(u)
and charge their space to u. This yields the cleaner expression O(nlgo/1g® ¢ n) for
the number of pointers.

The pointers leaving from a block G;(v) are stored in a data structure F}(v).
Using Fj(v) we can find, for any offset e in G;(v) and any 0 < t < p, the last offset
e’ < e in G;(v) such that there is a pointer from B(v)[e/] to an element B(v;)[e}] in
L(v;). We describe in Section 6 how Fj(v) implements the queries and updates in
constant time.

A dynamic partial-sums data structure maintains m nonnegative integers z1, . . ., Zm i
and supports two queries: sum(j) = >.7_, #; and search(v) = max{j, sum(j) < v},
as well as updates to elements x; by £0(lgm), and inserting and deleting elements
x; = 0. Furthermore, we can associate satellite data y; to each x;, so that search(v)
can return y; instead of simply j. The following lemma is useful.

LEMMA 4.1 ([49, Lem. 1], adapted). A dynamic partial-sums data structure over
m elements with satellite data supports operations sum, search, updates by O(lgm),
and insertions/deletions of zero values in O(lgm/lglgm) worst-case time per opera-
tion, using O(mlgm) bits of space.

In addition to the pointers, we store, for the root node v,., a dynamic searchable
partial-sums data structure K (v,) on the blocks of L(v,): the values x; are the sizes
|G (v,)|, the satellite data y; is a reference to block G;(v,.), and lgm = ©(lgn). Using
K (vy), query search(e) returns the block G;(v,) that contains the element S(v,)[e],
and query sum(j — 1) returns the sizes of all the blocks that precede G;(v,). The
same data structures K(v,) are also stored in the leaves v, of 7. Since g(v,) =
O(nlgp/1g’n), and also 3,5 g9(va) = O(nlgp/lg’n), we store O(nlglgn/lg’n)
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TABLE 4.1
Structures inside any node v of the wavelet tree T, or only in the root node v, and the leaves
V. The third column gives the extra space in bits, on top of the data, for the whole structure.

Structure | Meaning Extra space in bits

L(v) List of blocks storing B(v) O(nlgo/lg*n+ olgn)
Gj(v) j-th block of list L(v) O(nlgo(lglgn)?/lgn + olgn)
R;(v) Supports rank/select/access inside G, (v) O(nlgolglgn/lg' < n)
F;(v) Pointers leaving from G, (v) O(nlgolglgn/lg' < n)
H;(v) Pointers arriving at G, (v) O(nlgo/l1g?n)

P (v) Predecessor in L(v) containing symbol ¢ O(nlgo/1g* < n)

K(v) Partial sums on block lengths for v, and v, O(nlglgn/1g®n)

Dj(v) Deleted elements in G;(v), for v, and v, O(n(lglgn)?/1gn)

DEL Global list of deleted elements in .S O(n/lgn +nlgo/lg*n)

elements in the partial sums K (v,) and K (v, ), for an overall size of O(nlglgn/lg®n)
bits.

We recall that we do not store a sequence B(v,) in a leaf node v,, only in internal
nodes. Nevertheless, we divide the (implicit) sequence B(v,) into blocks and store
their sizes in K (v,); we maintain K (v,) only if L(v,) consists of more than one block.
Moreover we store inter-node pointers from the parent of v, to v, and vice versa.
Pointers in a leaf are maintained using the same rules of any other node.

For future reference, we provide the list of secondary data structures in Table 4.1.
They will be described in detail along the next sections.

4.2. Access and Select Queries. Assume the location (G;(v), i,) of an element
B(v)[e] in L(v) is known, and B(v)[e].chr = ¢. Then, the location of the corresponding
element B(v;)[e;] in L(v:) is computed as follows. Using F};(v), we find the local index
i,, of the largest offset ¢’ < e in G;(v) such that there is a pointer from B(v)[e’] to some
B(vt)[e}] in L(v:). Due to our construction, such e’ must exist (it may be e itself),
since the first such e’ in each block has a pointer. Let (Gy(v:),i;) be the location
of B(v)[e}] in L(vt). Due to our rules to define pointers, B(v:)[e:] also belongs to
Go(vy), since if it belonged to another block Gy, (v¢), the upward pointer from the first
offset of G,,(v;) would point between ¢’ and e, and since pointers are bidirectional,
this would contradict the definition of ¢’. Furthermore, let r, = rank,(G;(v).str,i,)
and r, = rank,(G,(v).str,4,). Then the local index of e; is #} + (r, — 7). Thus we can
find the location of B(v¢)[e:] in O(1) time if the location of B(v)[e] is known. The
dashed arrows in Figure 4.1 show an example.

Analogously, assume we know the location (G;(vt),i;) of B(v)[e;] and want to
find the location of the corresponding element B(v)[e] in its parent node v. Using
F;(vy) we find the last offset e} < e; in G(v¢) such that there is an upward pointer
from B(wv)[e}]. Offset e} exists by construction (it can be the upward pointer from
the first index in G;(v;) or the reverse of some pointer from L(v) to G;(v;)). Let
B(vt)[e}] point to B(v)[e'], with location (Gy(v),i,). Then, by our construction,
B(v)[e] is also in Gg(v), since if it belonged to a different block G,,(v), then there
would be a pointer from the first occurrence of ¢ in G, (v).str pointing between e} and
e, and its bidirectional version would contradict the definition of e;. Furthermore,
let 4, be the local index of e} in G;(v;). Then the local index of B(v)[e] is i, =
select; (G (v).str, rank: (Ge(v).str, i) + (ir — 7})).
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To solve access(S, i), we visit the nodes vg = v, v1, ...,V = vq, Where h = Ig, o is
the height of T, vy is the tx-th child of vy_1 and B(vk_1)[ex—1].chr = ¢ encodes S[i].
We do not compute the offsets ey, ..., en, but just their locations. The location of
B(v,)[ep = i] is found in O(lgn/lglgn) time using the partial-sums structure K (v;).
If the location of B(vk—1)[ex—1] is known, we can find that of B(uvg)[ex] in O(1) time,
as explained. When a leaf node vj, = v, is reached, we have S[i] = a.

To solve select, (S, 1), we set e, = ¢ and identify the location of B(v,)[es] in the
list L(v,) of the leaf v,, using structure K(v,). Then we traverse the path v, =
Vg, Vh—1,---,V0 = U Where vi_1 is the parent of v, until the root node is reached.
In every node vy, we find the location of B(vi_1)[ex—1] in L(vi—1) that corresponds
to B(vi)[ek], as explained above. Finally, we compute the number of elements that
precede eg in L(v,) using structure K (v, ).

Thus access and select require O(lg, o + lgn/lglgn) = O((Igo + lgn)/lglgn)
worst-case time.

4.3. Rank Queries. We need some additional data structures for the efficient
support of rank queries. In every node v such that L(v) consists of more than one
block, we store a data structure P(v). Using P(v) we can find, for any 0 < ¢t < p
and for any block G;(v), the last block G¢(v) such that ¢ < j and G¢(v) contains an
element B(v)[e] with B(v)[e].chr = t. P(v) consists of p predecessor data structures
Pi(v) for 0 < ¢ < p. We describe in Section 5 a way to support these predecessor
queries in constant time in our scenario.

Let the location of B(v)le] be (G;(v),4). Structure P(v) enables us to find the
last offset ¢/ < e such that B(v)[e/].chr = ¢. First, we use R;(v) to compute r =
rank, (G, (v).str,7). If r > 0, then ¢’ belongs to the same block G,(v), and its local
index is select;(G;(v).str,r). Otherwise, we use P;(v) to find the last block Gy(v)
that precedes G, (v) and G(v).str contains an occurrence of t. Then we find the local
index of the last such occurrence in Gy(v).str using Ry (v).

Now we are ready to describe the procedure to answer rank,(S,4). The symbol a
is represented as a concatenation of symbols ¢y oty o...oty, where each ¢ € [1..p]. We
traverse the path from the root v, = vg to the leaf v, = vy. We find the location of
eo = ¢ in v, using the data structure K (v,.). In each node vy, 0 < k < h, we identify
the location of the last element B(vg)[e}] such that e} < e and B(vy)[e}].chr = ¢y,
using P, (vg) as explained. From the location of B(vy)[e).] we find the location of the
corresponding element B(vi41)[ex+1] in L(vky1), just as done for access.

When our procedure reaches the leaf node vj, = v,, the (virtual) element B(vp,)[ep]
encodes the last occurrence of @ in S[1,4]. Note that we know the location (Ge¢(vp),in)
of B(vp)[en], not the offset ey, itself. Then we find the number r of elements in all the
blocks that precede Gy(vy,) using K (v,). Finally, rank,(S,7) = r + ip.

Therefore, the total time for rank is also O(lg, o + lgn/lglgn) = O((lgo +
lgn)/lglgn).

4.4. Insertions. Now we describe how inter-node pointers are implemented. We
say that an element is pointed if there is a pointer to it. We cannot directly store the
local index of a pointed element in the pointer: when a new element is inserted into
a block, the indexes of all the elements that follow it are incremented by 1. Since
a block can contain @(lg3 n/lgp) pointed elements, we would have to update that
many pointers after each insertion and deletion.

Therefore we resort to the following two-level scheme. Each pointed element in a
block is assigned a unique identifier. When a new element is inserted, we assign it the
identifier max_id+ 1, where max _id is the maximum identifier value used so far. We
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also maintain a data structure H;(v) for each block G;(v), which enables us to find
the local index of a pointed element given its identifier in G;(v). The implementation
of H;(v) is based on standard word RAM techniques and a table that contains the
identifiers of the pointed elements; the details are given in Section 6.

Now we describe how to insert a new symbol a at position i in S. Let eg, e, ..., ep
be the offsets of the elements that will encode a = tgo. ..oty in v, = vg,v1,...,Vn = Vq.
We can find the location of B(v.)[ep = 4] in L(v,) in O(lgn/lglgn) time using
K(v.), and then insert a new element b, with b, .chr = ¢, at that location, so
that now B(v,)[eg] = b,,.. Now, given the location of B(vg)[ex] in L(vg), where
B(vk)[ex].chr = t; has just been inserted, we find the location of B(vy)[e}], for the
largest offset e}, < e such that B(vi)[e)].chr = ¢z, in the same way as for rank
queries.? From the location of B(vg)[e,], we find the location of the corresponding
element, B(vgy1)[ej ], in L(vgy1). The symbol #xy1 must then be inserted into
L(vgy1) immediately after B(vxi1)[e) ], that is, at offset epq1 = ej | + 1.

The insertion of a new element b,, into a block G;(vx) is handled by structure
R;(v) and the memory manager of the block. We must also update structures F}j(vy)
and H;(vg) to keep the correct alignments, and possibly to create and destroy a
constant number inter-node pointers to maintain our invariants. Also, since pointers
are bidirectional, a constant number of inter-node pointers in the parent and children
of node vy, may be updated. All those changes can be done in O(1) time; see Section 6
for the details. Insertions may also require updating structures P;(vy), which takes
O(1) amortized time, see Section 5. Finally, if vy is the root node or a leaf, we also
update K (vg). This update is only by +1, so we recall it requires just O(lgn/lglgn)
time.

If |G (k)| exceeds 21g” n/1g p, we split G;(vg) evenly into two blocks, G}, (vg)
and Gj, (vg). Then, we rebuild the data structures R, F' and H for the two new blocks.
Note that there are inter-node pointers to G;(vy) that now could become dangling
pointers, but all those can be known from F}j(v), since pointers are bidirectional, and
updated to point to the right locations in Gj, (v;) or G, (vx). Finally, if vy, is the root
or a leaf, then K (vy) is updated.

The total cost of splitting a block is dominated by that of building the new data
structures R, F' and H. These are easily built in O(lg3 n/lgp) time. Since we split
a block G;(v) at most once per sequence of ©(lg*n/lgp) insertions in G;(v), the
amortized cost incurred by splitting a block is O(1). Therefore the total amortized
cost of an insertion in L(v) is O(1). The insertion of a new symbol leads to O(lg, o)
insertions into lists L(vy).

To update K (vy), upon an overflow in G;(vx), we add a new element before
or after z;. Lemma 4.1 does not support updates with large values. Inserting
a new value xj41 = 0, then increasing it up to z;11 = |Gj,(vg)|, and then de-
creasing the value of z; = |G,(vx)| to make it z; = |G, (vg)|, can be done in
O(lg* n/(lg plglgn)) time by adding/subtracting O(lgn) units at a time. Each such
increment/decrement and insertion takes O(lgn/lglgn) time, and we carry it out
O(|G;(v)|/1gn) = O(lg*n/lgp) times. Still, this total cost amortizes to o(1) per
operation.

Hence, the total amortized cost of an insertion is O(lg, o +lgn/lglgn) = O((Ig o+

lgn)/lglgn).

2We cannot descend using ey, itself, as for access, because the inter-node pointer invariants have
not yet been restored for the new elements.
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Next we describe how deletions are handled, and we also describe the data struc-
ture P(v).

5. Lazy Deletions and Data Structure P(v). We do not process deletions
immediately, but in lazy form: we do not maintain exactly S but a supersequence S
of it. When S[i] is deleted from S, we retain it in S but mark S[i] as deleted. When
the number of elements marked as deleted exceeds a certain threshold, we expunge
them all from the data structure. We define B(v) and the list L(v) for the sequence
S in the same way as B(v) and L(v) are defined for S.

We will make use of split-find data structures. This structure maintains a sequence
of objects, some of which are marked. Operation split(x) marks object 2. Operation
find(z) gives the rightmost marked object that is not after z in the sequence. A
new object can be inserted immediately before or after an object x in the sequence.
A split-find data structure [33] can implement operation find in constant time, and
operation split and insertions in amortized constant time.

Since elements of L(v) are never removed, we can implement P(v) using split-
find data structures. For each t, 0 < ¢ < p, P,(v) will be a split-find data structure
containing one object per block G;(v) in L(v). The marked objects in P,(v) are the
blocks G (v) that contain an occurrence of ¢, so find(G,;(v)) gives the block G(v) for
the maximum ¢ < j such that G¢(v).str contains a ¢, in constant time as desired.

The insertion of a symbol ¢ in G;(v) may induce a new split in P,(v), if G;(v)
was not already marked. Furthermore, overflows in G, (v), which convert it into two
blocks G, (v) and Gy, (v), induce insertions in P;(v). Note that an overflow in G;(v)
triggers p insertions in the P;(v) structures, but the resulting O(p) time amortizes to
o(1) because overflows occur every ©(lg® n/lg p) insertions.

Structures P;(v) do not support “unsplitting” nor removals. The replacement of
Gj(v) by G, (v) and G}, (v) is implemented by leaving in P, (v) the object correspond-
ing to G;(v) and inserting one corresponding to either G;, (v) or G;, (v). If G;(v).str
contained ¢, then at least one of Gj, (v).str and G, (v).str must contain ¢, and the
other can be inserted as a new element (possibly followed by a split, if it also contains
t).

We will maintain partial-sums structures K (v), storing the number of non-deleted
elements in each block of L(v), for the root node v = v, and each leaf node, v = v,.
Moreover, we maintain a new data structure D;(v) for every block G;(v), where v
is either the root or a leaf node. Dj;(v) returns, in constant time, the number of
non-deleted elements in G;(v)[1,4], for any local index 4, as well the local index in
Gj(v) of the i-th non-deleted element. The implementation of D;(v) is described in
Section 6. We use K (v) and D;(v) to find the offset € in L(v) of the e-th non-deleted
element, and to count the number of non-deleted elements that occur up to offset €
in L(v).

We also store a global list DEL that contains, in any order, all the elements
marked as deleted that have not yet been expunged from the wavelet tree. For any
element S[i] in DEL we store a pointer to B(v,)[i] in L(v,). These are implemented
in the same way as inter-node pointers.

5.1. Queries. Queries are answered very similarly to Section 4. The main idea
is that we can essentially ignore deleted elements except at the root and at the leaves.
access(S,1): We do exactly as in Section 3, except that eg refers to the i-th non-deleted

element in L(v,), and is found using K (v,) and Dj(v,).
select,(S,7): We find the location of the i-th non-deleted element in L(vy,), where
vy = v, and the offset e, is found using K(UQ) and some D,(v,). Then we
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move up in the tree exactly as in Section 4. When the root node vy = v, is
reached, we count the number of non-deleted elements that precede offset eg
using K (v,) and some D;(v;.).

rank,(S,7): We find the offset eq of the i-th non-deleted element in Z(vr). Let vy, tg,
be defined as in Section 4. In every node vg, we find the last offset e} < ey,
such that B(vy)[e},].chr = t;. Note that this element may be a deleted one,
but it still drives us to the correct location in L(vg+1). We proceed exactly as
in Section 4 until we arrive at a leaf v, = v,. Finally, we count the number
of non-deleted elements preceding offset e, using K (v,) and some D;(v,,).

5.2. Updates. Insertions are performed just as in Section 4, except that we
also update the data structure D;(vg) when an element B(vg)[ex] that encodes the
inserted symbol a is added to a block Gj(vy). When S[i] is deleted, we append it
to the list DEL. Then we visit each block Gj(vy) containing the element B(vy)[e]
that encodes S[i] and update the data structures D;(vg). Finally, K (v,) and K (v,)
are also updated. This takes in total O(lg, o +1gn/lglgn) = O((Igo +1gn)/lglgn)
time.

When the number of symbols in the list DEL reaches n/ lg2 n, we perform a
procedure to effectively delete all of its elements. Therefore DEL never requires
more than O(n/lgn) bits, and the space overhead due to storing deleted symbols
is O(nlgo/lg®n) bits.

Let B(vg)[ex], 0 < k < h, be the elements that encode a symbol S[i] € DEL. The
method for tracking the elements B(v)[ex], removing them from their blocks G (vy),
and updating the block structures, is symmetric to the insertion procedure described
in Section 4. In this case we do not need the predecessor queries to track the elements
to delete, as the procedure is similar to that for accessing S[i]. When the size of a
block G (vy) falls below (lg®n)/(21g p) and it is not the last block of L(vy), we merge
it with G,j41(vg), and then split the result if its size exceeds 2 1g? n/lg p. This retains
O(1) amortized time per deletion in any node vy, including the updates to K (vy,)
structures, and adds up to O((lgo+1gn)/lglgn) amortized time per deleted symbol.

Once all the pointers in DEL are processed, we rebuild from scratch the structures
P(v) for all nodes v. The total size of all the P(v) structures is O(pnlgo/lg®n).
Since a data structure for incremental split-find is constructed in linear time [33], all
the P(v) structures are rebuilt in O(nlgo/1g” °n) time. Hence the amortized time
to rebuild the P(v)s is O(lgo/lg' " n), which does not affect the amortized time
O((lgo +1gn)/lglgn) to carry out the effective deletions.

6. Data Structures for Handling Blocks. We describe the way the data is
stored in blocks G;(v), as well as the way the various structures inside blocks operate.
All the data structures are based on the same idea: We maintain a tree with node
degree lg5 n and leaves that contain O(Ign) bits. Since elements within a block can be
addressed with O(lglgn) bits, each internal node and each leaf fits into O(1) machine
words. As a result, we can support searching and basic operations in each node in
constant time.

6.1. Data Organization. The block data is physically stored as a sequence of
miniblocks of 1g, n to 21g, n symbols, using ©(Ign) bits. Thus there are O(|G;(v)|/1g,n) =]}
O(lg? n) miniblocks in a block. These miniblocks will be the leaves of a B-tree T' with
internal nodes of arity 7 to 27, for 7 = ©(Ig° n) and some constant 0 < § < 1. The
height of this tree is constant, O(1/§). Each node of T' stores ©(7) counters telling the
number of symbols stored at the leaves that descend from each child. This requires
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just O(71glgn) = o(lgn) bits. To access any position of G;(v), we descend in T,
using the counters to determine the correct child. When we arrive at a leaf, we know
the local offset of the desired symbol within the leaf, and can access it directly. Since
the counters fit in less than a machine word, a small global precomputed table gives
the correct child in constant time, for any possible sequence of up to 27 counters and
any possible desired offset. The table has 22718(218,7) . 21g, n entries, which is o(n®)
for any constant a > 0. Therefore, we have O(1) time access to any symbol.

Upon updates in G;(v), we arrive at the correct leaf of its B-tree T', insert or delete
the symbol (in constant time because the leaf contains O(lgn) bits), and update the
counters in the path from the root (in constant time as they have o(lgn) bits, with the
help of another global precomputed table). Splits/merges upon overflows/underflows
of leaves are handled as usual, and can be solved in O(1/6) constant-time operations
(again, with the help of global precomputed tables to update the counters upon splits
and merges).

The space overhead of the internal nodes of T is O(|G;(v)|lg plglgn/lgn) bits,
as there are O((|G;(v)|/1g,n)/T) internal nodes and each one uses O(7lglgn) bits
for its counters.

We consider now the space used by the data itself, that is, the string G;(v).str.
In order not to waste space, the miniblock leaves are stored using a simple memory
management structure.

LEMMA 6.1 ([45]). A memory area storing s bits in total, handling chunks of
sizes up to b bits, can be managed so that chunks can be allocated, freed, and accessed
in O(b/lgn) worst-case time, within a total space of s+ O((s/b)1gs+b*+blgs) bits.
This space forms a contiguous area that grows or shrinks by multiples of some fized
value in ©(b).

For our case, where s = |G;(v)|lgp = O(lg®n) and b = O(lgn) is a mem-
ory area of polylogarithmic size, the lemma allows us to allocate, free, and ac-
cess miniblocks in constant time, while using pointers of O(lglgn) bits and wasting
O(|G;(v)|1g plglgn/lg® n +1g°n + lgnlglgn) bits. Added up over all the wavelet
tree, the first term adds up to O(nlgolglgn/lg?n) bits, whereas the rest adds up to
O(nlgo/lgn + olg®n) bits. In order to reduce the last term to O(clgn), the first
blocks G1(v) of all the o wavelet tree lists L(v) are grouped into sets of size O(lgn)
and their memory areas are managed together. Their combined address spaces are of
size O(lg4 n), which does not affect the result. This grouping is fixed and does not
change upon updates.

The allocation structure of Lemma 6.1 uses a memory area of fixed-size cells that
grows or shrinks at the end as miniblocks are created or destroyed. Such structure is
called an extendible array (EA) [54], and the problem is how to handle a collection of
EAs. In our case, we must handle a set of O(nlgo/lg® n+ o /lgn) EAs. A collection
of EAs must support accessing any cell of any EA, letting any EA grow or shrink by
one cell, and create and destroy EAs. The following lemma, which assumes words of
lg n bits, is useful.

LEMMA 6.2 ([54, Lem. 1], simplified). A collection of a EAs of total size s bits can
be represented using s+ O(algn++/salgn) bits of space, so that the operations of cre-
ation of an empty EA and access take constant worst-case time, whereas grow/shrink
take constant amortized time. An FA of s' bits can be destroyed in time O(s'/1gn).

In our case a = O(nlgo/lg* n+0/lgn) and s = O(nlg o), so the space overhead
posed by the EAs is O(nlgo/lg’n + o +nlgo/lgn + /nolgo) = O(nlgo/lgn +
olgn).
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When we store the miniblocks in compressed form, in Section 8, they could
use as little as O(lg° nlglgn) bits, and thus we could store up to O(lg*~°n/lglgn)
miniblocks in a single leaf of T'. This can still can be handled in constant time using
(more complicated) global precomputed tables [39], and the counters and pointers of
O(lglgn) bits are still large enough.

Summing up, the total space overhead of the structure is O(nlgo(lglgn)?/lgn +
olgn) bits.

6.2. Structure R;(v). To support rank and select we enrich T" with further infor-
mation per node. We store p counters with the number of occurrences of each symbol
in the subtree of each child. The node size becomes O(rplglgn) = O(g*° nlglgn) =
o(lgn) as long as € + § < 1. This adds up to O(|G;(v)|plg plglgn/lgn) bits because
the leaves of T' handle ©(7) miniblocks. Added over the whole wavelet tree, this is
O(nlgolglgn/lg' ™~ n) bits.

With this information on the nodes we can easily solve rank and select in constant
time, by descending on 7" and determining the correct child (and accumulating data
about the leftward children) in O(1) time using global precomputed tables. Nodes can
also be updated in constant time even upon splits and merges, since all the counters
can be recomputed in O(1) time with the help, again, of global precomputed tables.

6.3. Structure F)(v). This structure stores all the inter-node pointers leaving
from block G;(v), to its parent and to any of the p children of node v.

The structure is a tree T very similar in spirit to 7. The pointers are stored at
the leaves of T, in increasing order of their source index inside G,(v). The pointers
stored are inter-node, and thus require O(lgn) bits. Thus we store a constant number
of pointers per leaf of Ty. For each pointer we store the local index in G;(v) holding
the pointer, and the target location, formed by a system-wide pointer to a block Gy ()
plus an identifier of the local index within G(u) (see Section 6.4). The internal nodes
x, of arity ©(7), maintain information on the number of indexes of G;(v) covered by
each child of z, and the number of pointers of each kind stored in the subtree of each
child of z (1 4+ p counters, for the parent of v and for the t-th wavelet tree child of v,
for each 0 < ¢t < rho). This requires O(7plglgn) = o(lgn) bits, as before. To find the
last local index up to ¢ holding a pointer of a certain kind, we traverse Ty from the
root looking for index i. At each node z, it might be that the child y where we have
to enter holds pointers of that kind, or not. If it does, then we first enter into child
y. If we return with an answer, we recursively return it. If we return with no answer,
or there are no pointers of the desired kind below y, we enter into the last sibling to
the left of y that holds a pointer of the desired kind, and switch to a different mode
where we simply go down the tree looking for the rightmost child with a pointer of the
desired kind. Tt is not hard to see that this procedure visits O(1/6) nodes, and thus it
is constant-time because all the computations inside nodes can be done in O(1) time
with global precomputed tables. When we arrive at the leaf, we scan for the desired
pointer in constant time.

The tree Ty must be updated when a symbol ¢ is inserted before any other occur-
rence of ¢ in G,;(v), when a symbol is inserted at the first position of G, (v) and, sim-
ilarly, when symbols are deleted from G;(v). The needed queries are easily answered
with tree T' (enriched for rank/select queries). Moreover, due to the bidirectionality,
we must also update Ty when pointers to G;(v) are created from the parent or a child
of v, or when they are deleted. Those updates work just like on the tree T'. T} is
also updated upon insertions and deletions of symbols, even if they do not change
pointers, to maintain the positions up to date. In this case we traverse T’ looking for
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the position of the update, change the local indexes stored at the leaf, and update
the subtree sizes stored at the internal nodes of 7. The total space overhead is as of
R;(v).

6.4. Structure H;(v). This structure manages the inter-node pointers that
point inside G;(v). As explained in Section 4.4, we give a handle to the outside
nodes, that does not change over time, and H;(v) translates handles to local indexes
in G(v).

We store a tree T}, that is just like T, where the incoming pointers are stored.
Ty, is simpler, however, because at each node we only need to store the number of
indexes covered by the subtree of each child. It must also be possible to traverse T}
from a leaf to the root.

In addition, we manage a table Tl so that Tbl[id] points to the leaf of T}, where
the pointer corresponding to handle ¢d is stored. T'bl is also managed as a tree similar
to T, with pointers sorted by id, where a constant number of identifiers i¢d are stored
at the leaves together with their pointers to the leaves of T}, (note that there are
O(lg*n/lg p) identifiers at most, so we need O(lglgn) bits for the identifiers and
their pointers to 7},). Each internal node in Thl maintains the maximum identifier,
and the number of identifiers, stored at its leaves. Thus one can, in constant time,
find the pointer to T} corresponding to a given id, and also find the smallest unused
identifer when a fresh one is needed (by looking for the first leaf of Thl where the
maximum identifier is larger than the number of identifiers up to that leaf).

At the leaves of T}, we store, for each pointer, a backpointer to the corresponding
leaf of Thl and the local index in G;(v). Given a handle id, we find using Tl the
corresponding place in the leaf of T},, and move upwards up to the root of T}, adding
to the leaf index the number of indexes covered by the leftward children of each node.
At the end we obtain the local index of id.

When pointers to G;(v) are created or destroyed, we insert or remove pointers
in Tj. Insertion requires traversing T}, top-down to find the leaf covering the desired
index, and then creating a fresh entry Tbl[id] pointing to it (so that id will be the
external handle associated to the inserted pointer). Deletion of id requires going to
the leaf of T}, given by Tbl[id], removing the pointer from the leaf, and freeing id
from Tbl. Splits and merges of leaves of T} require moving a constant number of
pointers, updating their pointers from 70l (which are found using the backpointers),
and updating the counters towards the root of Tj. Similarly, the splits and merges
in T'bl require updating the backpointers from 7}, which are found using the pointers
from Tbl to Ty. We must also update T} upon symbol insertions and deletions in
Gj(v), to maintain the indexes up to date.

Tbl and T}, may contain up to O(lg* n/lg p) pointers of O(lglgn) bits, which can
be significant for some blocks. However, across the whole structure there can be only
O(pnlgo/1g® n) pointers, adding up to s = O(pnlg o lglgn/lg® n) bits, spread across
a = O(nlgo/1g®n) structures Thl and Tj,. Using again Lemma 6.2, a collection of
EAs poses an overhead of O(nlgo/ 1g? n) bits. This includes the space overhead of
the values stored at internal nodes.

6.5. Structure D,(v) and the Final Result. Structure D;(v) is implemented
as a tree Ty analogous to T, storing at each node the number of elements and the
number of non-deleted elements below each child. It takes O(|G;(v)|1lg plglgn/lgn)
bits. Since these are stored only for the root v, and the leaves v, of T, its space adds
up to O(nlg plglgn/lgn) = O(n(lglgn)?/lgn) bits.
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Let us now consider the total space for all the data structures. While the raw
data adds up to nlgo bits, the extra space is dominated by structures R;(v) and
F;(v), adding up to O(nlgolglgn/ 1g'7°7¢ ) bits, plus O(clgn) for the memory
management overhead. We can use, say, § = ¢ and then have O(1/e) time and
O(nlgolglgn/lg'~° n+olgn) bits for any 0 < € < 1 (renaming 2¢ as ). By further
increasing ¢ infinitesimally, we can write the space overhead as O(nlgo/ g n +
olgn) bits for any 0 < ¢ < 1.

7. Changes in lgn and Alphabet Independence. Note that our structures
depend on the value of Ig n, so they should be rebuilt when [lgn] changes. We use w =
[lgn] as a fixed value and rebuild the structure from scratch when n reaches another
power of two (more precisely, we use words of w = [lgn] bits until [lgn] increases by 1
or decreases by 2, and only then update w and rebuild). These reconstructions do not
affect the amortized complexities, and the slightly larger words waste an O(1/1gn)
extra space factor in the redundancy.

We take advantage of using a fixed w value to get rid of the alphabet dependence.
If lgo < w, our time complexities are the optimal O(lgn/lglgn). However, if o
is larger, this means that not all the alphabet symbols can appear in the current
sequence (which contains at most n < 2% < ¢ distinct symbols). Therefore, in this
case we create the wavelet tree for an alphabet of size s = 2%, not o (this wavelet tree
is created when w changes). We also set up a mapping array SN|[1, o] that will tell to
which value in [1..s] is a symbol mapped, and a reverse mapping NS|[1, s] that tells
to which original symbol in [1..c] does a mapped symbol correspond. Both SN and
NS are initialized in constant time [42, Section II1.8.1] and require O(o lgn + nlgo)
bits of space. Since this is used only when o > n, the space is O(o lgn).

Upon operations rank,(.S,7) and select, (S, j), the symbol a is mapped using SN
(the answer is obvious if a does not appear in SN) in constant time. The answer of
operation access(S, i) is mapped using NS in constant time as well. Upon insertion of
a, we also map a using SN. If not present in SN, we find a free slot N S[i] (we maintain
a list of free slots) and assign NS[i] = a and SN[a] = i. When the last occurrence of
a symbol a is deleted (we maintain global counters to determine this in constant time)
we return its slot to the free list and uninitialize its entry in SN. In this way, when
lg o > lgn, we can support all the operations in time O(lg s/lglgs) = O(lgn/lglgn).

We are ready to state a first version of our result, not yet compressing the
sequence. In Section 6 it was shown that the time for the operations is O(1/g).
Since the height of the wavelet tree is lg, min(o, s) = O(L1gn/lglgn), then we have
O(Z%1gn/lglgn) time for all the operations. Considering the total space overhead
obtained in Section 6, which also dominates previous ones like the space for the struc-
tures L(v), K(v), P(v) and DEL (see Table 4.1), we obtain the following result.
(Note that when o > n we use an alphabet of size O(n), but then still we need the
SN mapping, that takes O(o lgn) bits.)

THEOREM 7.1. A dynamic string S[1,n| over alphabet [1..c] can be stored in
a structure using nlgo + O(nlgo/ gt n + olgn) bits, for any 0 < ¢ < 1, and
supporting queries access, rank and select in time O(ai2 lgn/lglgn). Insertions and
deletions of symbols are supported in O(%1gn/lglgn) amortized time.

8. Compressed Space. Now we compress the space of the data structure to
zero-order entropy (nHo(S) plus redundancy). We show how a different encoding of
the bits within the blocks reduces the nlgo to nHy(S) in the space without affecting
the time complexities.
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Raman et al. [53] describe an encoding for a bit vector B[1,n]| that occupies
nHy(B) + O(nlglgn/lgn) bits of space. It consists of cutting the bit vector into
chunks of length b = (Ign)/2 and encoding each chunk i as a pair (¢;,0;): ¢ is
the class, which indicates how many 1s are there in the chunk, and o; is the offset,
which is the index of this particular chunk within its class. The ¢; components add
up to O(nlglgn/lgn) bits, whereas the o; components add up to nHy(B). Navarro
and Sadakane [49, Sec. 8] describe a technique to maintain a dynamic bit vector in
this format. They allow the chunk length b to vary, so they encode triples (b;, ¢;, 0;)
maintaining the invariant that b; + b;4.1 > b for any 7. They show that this retains
the same space, and that each update affects O(1) chunks.

We extend this encoding to handle an alphabet [1..p] [20], so that b = (lg,n)/2
symbols, and each chunk is encoded as a tuple (b;, cll, ..., 0;) where ¢! counts the
occurrences of ¢ in the block. The classes (b;,c},...,c?) use O(pnlglgn/lgn) bits,
and the offsets still add up to nHy(B). Blocks are encoded/decoded in O(1) time,
as the class takes O(plglgn) = o(lgn) bits and the block encoding requires at most
O(lgn) bits. At the end of Section 6.1 we show that the plain representation of the
data can be changed by a compressed one without affecting the operations inside
blocks, thanks to the fact that a tuple (b;,c},...,cl,0;) uses at least ©(lg° nlglgn)
bits, so the number of miniblocks that fit in a single leaf of T is still polylogarithmic,
and then the counters in internal nodes of 7' still require O(lglgn) bits.

The sum of the local entropies of the chunks, across the whole L(v), adds up
to nHy(B,), and these add up to nHy(S) [26]. The redundancy over the entropy is
O(plglgn) bits per miniblock, adding up to O(nHy(S)lglgn/ gt ¢ n) bits. The fact
that we store S instead of S, with up to O(n/lg?n) spurious symbols, can increase
nHo(S) up to nHo(S) < nHy(S)+O(n/lgn) bits. Adjusting  infinitesimally, all the
space overhead on top of nHy(S) is dominated by the O(nlgo/lg' ™ n + olgn) bits
of space overhead obtained in Section 6.2 Thus we get the following result, for any
desired 0 < e < 1.

THEOREM 8.1. A dynamic string S[1,n] over alphabet [1..0] and with zero-order
empirical entropy Ho(S) can be stored in a structure using nHo(S)+O(nlgo/1g' ¢ nt
olgn) bits, for any 0 < & < 1, and supporting queries access, rank and select in time
O(Z&1gn/lglgn). Insertions and deletions of symbols are supported in O(% lgn/1glgn)f]
amortized time.

9. Worst-Case Complexities. While in previous sections we have obtained
optimal time and compressed space, the time for the update operations is amortized.
In this section we derive worst-case time complexities, at the price of losing the time
optimality, which will now become logarithmic for some operations. Along the rest of
the section we remove the various sources of amortization in our solution.

9.1. Block Splits and Merges. Our amortized solution splits overflowing blocksfi
and rebuilds the two new blocks from scratch (Section 4.4). Similarly, it merges un-
derflowing blocks (as a part of the cleaning of the global DEL list in Section 5.2).
This gives good amortized times but in the worst case the cost is Q(lg* n/lglgn).

We use a technique [25] that avoids global rebuildings. A block is called dense
if it contains at least 1g3n bits, and sparse otherwise. While sparse blocks of any
size (larger than zero) are allowed, we maintain the invariant that no two consecutive

3 Actually, some of this space overhead is also reduced to a function of Ho(S) instead of lg o, but
there are anyway other additive terms that are insensitive to the compression, which make this path
less attractive to pursue.
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sparse blocks may exist. This retains the fact that there are O(nlg o/ lg® n+ o) blocks
in the data structure. The maximum size of a block will be 21g® n bits. When a block
overflows due to an insertion, we move its last element to the beginning of the next
block. If the next block would also overflow, then we are entitled to create a new
sparse block between both dense blocks, containing only that element. Analogously,
when a deletion converts a dense block into sparse (i.e., it falls below length g n
bits), we check if both neighbors are dense. If they are, the current block can become
sparse too. If, instead, there is a sparse neighbor, we move its first/last element into
the current block to avoid it becoming sparse. If this makes that sparse neighbor
block become of size zero, we remove it.

Therefore, we only create and destroy empty blocks, and move a constant number
of elements to neighboring blocks. This can be done in constant worst-case time. It
also simplifies the operations on the partial-sum data structures K (v), since now only
updates by +1 and insertions/deletions of elements with value zero are necessary, and
these are carried out in O(lgn/lglgn) worst case time (Lemma 4.1). Recall that lgn
is fixed in each instance of our data structure, so the definition of sparse and dense is
static.

9.2. Split-Find Data Structure and Lazy Deletions. The split-find data
structure [33] we used in Section 5 to implement the P; structures has constant amor-
tized insertion time. We replace it by another one [44, Thm 4.1] achieving O(lglgn)
worst-case time. Their structure handles a list of colored elements (list nodes), where
each element can have O(1) colors (each color is a positive integer bounded by O(1g® n)
for a constant 0 < € < 1). We will only use list nodes with 0 or 1 color. The operations
of interest to us are: creating a new list node without colors, assigning or removing
a color to/from a list node, and finding the last list node preceding a given node and
having some given color. Node deletions are not supported. The number of list nodes
must be smaller than a certain upper bound n’, and the operations cost O(lglgn’).
In our case, since lgn is fixed, we can use n’ = 2% = O(n) as the upper bound.

We use p colors, one per symbol in the sequences. Each time we create a block,
we add a new uncolored node to the list, with a bidirectional pointer to the block.
Each time we insert a symbol ¢ € [1..p] for the first time in a block, we add a new
node colored ¢ to the list, right after the uncolored element that represents the block,
and also set a bidirectional pointer between this node and the block.

We cannot use the lazy deletions mechanism of Section 5, as it gives only good
amortized complexity. We carry out the deletions immediately in the blocks, as said
in Section 9.1. Each time the last occurrence of a symbol ¢ € [1..p] is deleted from a
block, we remove the color from the corresponding list node (if the symbol reappears
later, we reuse the same node and color it, instead of creating a new one).

Therefore, finding the last block where a symbol ¢ appears, as needed by the
rank query and for insertions, corresponds to finding the last list node colored ¢ and
preceding the uncolored node that represents the current block.

Since list nodes cannot be deleted, when a block disappears its (uncolored) list
nodes are left without an associated block. This does not alter the result of queries,
but there is the risk of maintaining too many useless nodes. We permanently run an
incremental list “copying” process, traversing the current list of blocks and inserting
the corresponding nodes into a new list. This new list is also updated, together with
the current list, on operations concerning the blocks already copied. When the new
list is ready it becomes the current list and the previous list is incrementally deleted.
In O(nplgp/ 1g? n) steps we have copied the current list; by this time the number of
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useless nodes is at most O(nplg p/lg®n) and just poses O(nlglgn/lg®> n) bits of
space overhead.

Note that blocks must manage the sets of up to p pointers to their colored nodes.
This is easily handled in constant time with the same techniques used for structure
F;(v) in Section 6.

Since the colored list data structure requires O(lglgn) time, operations rank and
insert take worst-case time O(% lgn), whereas access, select and delete still stay in
O(%1gn/lglgn).

9.3. Changes in lgn. As an alternative to reconstructing the whole structure
when n doubles or halves, Mékinen and Navarro [39] describe a way to handle this
problem without affecting the space nor the time complexities, in a worst-case sce-
nario. The sequence is cut into a prefix, a middle part, and a suffix. The middle
part uses a fixed value [lgn], the prefix uses [lgn] — 1 and the suffix uses [lgn] + 1.
Insertions and deletions trigger slight expansions and contractions in this separation,
so that when n doubles all the sequence is in the suffix part, and when n halves all
the sequence is in the prefix part, and we smoothly move to a new value of 1gn. This
means that the value of [lgn] is fixed for any instance of our data structure. Opera-
tions access, rank and select, as well as insert and delete, are easily adapted to handle
this split string.

Actually, to have sufficient time to build global precomputed tables of size O(n®)
for 0 < a < 1, the solution [39] maintains the sequence split into five, not three, parts.
This gives also sufficient time to build any global precomputed table we need to handle
block operations in constant time, as well as to build the wavelet tree structures of
the new partitions.

9.4. Memory Management Inside Blocks. The extendible arrays (EAs) of
Lemma 6.2 (Section 6) have amortized times to grow and shrink. Converting those
to worst-case time requires a constant space overhead factor. While this is acceptable
for the EAs of structures Thl and Tj, in Section 6, they raise the overall space to
O(nHy(S)) bits if used to maintain the main data. Instead, we get rid completely of
the EA mechanism to maintain the data, and use a single large memory area for all
the miniblocks of Section 6, using Lemma 6.1.

The problem of using a single memory area is that the pointers to the miniblocks
require ©(lgn) bits, which is excessive because miniblocks are also of O(lgn) bits.
Instead, we use slightly larger miniblocks, of ©(lgnlglgn) bits. This makes the
overhead due to pointers to miniblocks O(|G;(v)|/1glgn), adding up to additional
O(nHy(S)/1glgn +nlgo/lg" " n) = o(nlg o) bits.

The price of using larger miniblocks is that now the operations on blocks are not
anymore constant time because they need to traverse a miniblock, which takes time
O(lglgn). We can still retain constant time for the query operations, by considering
logical miniblocks of ©(lgn) bits, which are stored in physical areas of ©(lglgn)
miniblocks. However, update operations like insert and delete must shift all the data
in the miniblock area and possibly relocate it in the memory manager, plus updating
pointers to all the logical miniblocks displaced or relocated. This costs O(lglgn) time
per insertion and deletion. This completes our result.

THEOREM 9.1. A dynamic string S[1,n| over alphabet [1..c] can be stored in
a structure using nHo(S) + O(nHo(S)/lglgn + nlgo/1g' °n + olgn) = nHy(S) +
o(nlgo)+0(olgn) bits, for any constant 0 < & < 1, and supporting queries access and
select in worst-case time O(Ei2 lgn/lglgn), and query rank, insertions and deletions
1 worst-case time O(% lgn).
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10. Extensions and Applications. We first describe two direct applications
of our result in important open problems. Then we extend our results to handling
general alphabets, and describe various applications of this extension.

10.1. Dynamic Sequence Collections. A landmark application of dynamic
sequences, stressed out in several papers along time [14, 38, 13, 38, 36, 39, 24, 37, 25,
29, 49], is to maintain a collection C of texts, where one can carry out indexed pattern
matching, as well as inserting and deleting texts from the collection. Plugging in our
new representation we can significantly improve the time and space of previous work,
with an amortized and with a worst-case update time, respectively.

THEOREM 10.1. There exists a data structure for handling a collection C of
texts over an alphabet [1..0] within size nHy(C) + o(nlgo) + O(a"Tign + mlgn)
bits, simultaneously for all h. Here n is the length of the concatenation of m texts,
C= TioTy-- oT,,, and we assume that the alphabet size is 0 = o(n). The structure
supports counting of the occurrences of a pattern P in O(|P|lgn/lglgn) time. After
counting, any occurrence can be located in time O(lg, nlgn). Any substring of length
¢ from any T in the collection can be displayed in time O((¢/1glgn + lg, n)lgn).
Inserting or deleting a text T takes O(lgn + |T|lgn/lglgn) amortized time. For
0 <h<(alg,n)—1, for any constant 0 < o < 1, the space simplifies to nHp(C) +
o(nlgo) + O(mlgn) bits.

THEOREM 10.2. There exists a data structure for handling a collection C of
texts over an alphabet [1..0] within size nHy(C) + o(nlgo) + O(c"ign + mlgn)
bits, simultaneously for all h. Here n is the length of the concatenation of m texts,
C= Tyo Ty--- o T, and we assume that the alphabet size is o0 = o(n). The
structure supports counting of the occurrences of a pattern P in O(|P|1gn) time. After
counting, any occurrence can be located in time O(lg, nlgnlglgn). Any substring of
length € from any T in the collection can be displayed in time O((¢+1g, nlglgn)lgn).
Inserting or deleting a text T takes O(|T|1gn) time. For 0 < h < (alg,n) —1, for
any constant 0 < o < 1, the space simplifies to nHy(C) + o(nlgo) + O(mlgn) bits.

The theorems refer to Hp(C), the h-th order empirical entropy of sequence C
[41]. This is a lower bound to any semistatic statistical compressor that encodes
each symbol as a function of the h preceding symbols in the sequence, and it holds
Hp(C) < Hp—1(C) < Hy(C) < lgo for any h > 0. To offer search capabilities, the
Burrows-Wheeler Transform (BWT) [12] of C, C"*, is represented, not C; then access
and rank operations on C*** are used to support pattern searches and text extractions.
Kirkkiinen and Puglisi [35] showed that, if C*™* is split into superblocks of size
O(o lg2 n), and a zero-order compressed representation is used for each superblock,
the total number of bits is nH(C) 4 o(n).

We use their partitioning, and Theorems 8.1 or 9.1 to represent each superblock.
For Theorem 10.1, the superblock sizes are easily maintained upon insertions and dele-
tions of symbols, by splitting and merging superblocks and rebuilding the structures
involved, without affecting the amortized time per operation. They [35] also need to
manage a table storing the rank of each symbol up to the beginning of each superblock.
This is arranged, in the dynamic scenario, with ¢ partial sum data structures con-
taining O(n/ (o lg> n)) elements each, plus another one storing the superblock lengths.
This adds O(n/lgn) bits and O(lgn/lglgn) time per operation (Lemma 4.1). Upon
block splits and merges, we use the same techniques used for K structures described
in Section 4.4.

For Theorem 10.2 we use the smooth block size management algorithm described
in Section 9.1 for the superblocks, which guarantees worst-case times and the same
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space redundancy. Then partial-sum data structures are used without problems.

Finally, the locating and displaying overheads are obtained by marking one ele-
ment out of lg, nlglgn, so that the space overhead of o(nlg o) is maintained. Other
simpler data structures used in previous work [39], such as mappings from document
identifiers to their position in C*** and the samplings of the suffix array, can easily be
replaced by O(lgn/lglgn) time partial-sums data structures and simpler structures
to maintain dictionaries of values.

10.2. Burrows-Wheeler Transform. Another application of dynamic sequencesfi
is to build the BWT of a text T, T""*, within compressed space, by starting from
an empty sequence and inserting each new character, T'[n], T[n — 1], ..., T[1], at the
proper positions. Equivalently, this corresponds to initializing an empty collection
and then inserting a single text T using Theorem 10.1. The result is also stated as
the compressed construction of a static FM-index [20], a compressed index that con-
sists essentially of a (static) wavelet tree of T°%!. Our new representation improves
upon the best previous result on compressed space [49].

THEOREM 10.3. The Alphabet-Friendly FM-index [20], as well as the BWT [12],
of a text T[1,n] over an alphabet of size o, can be built using nHy(T)+ o(nlgo) bits,
sitmultaneously for all 1 < h < (alg,n) —1 and any constant 0 < o < 1, in time
O(nlgn/lglgn). It can also be built within the same time and nHy(T) 4+ o(nlgo) +
O(olgn) bits, for any alphabet size o.

We are using Theorem 10.1 for the case h > 0, and Theorem 8.1 to obtain a
less alphabet-restrictive result for o = 0 (in this case, we do not split the text into
superblocks of O(o 1g% n) symbols, but just use a single sequence). Note that, although
insertion times are amortized in those theorems, this result is worst-case because we
compute the sum of all the insertion times.

This is the first time that o(nlgn) time complexity is obtained within compressed
space. Other space-conscious results that achieve better time complexity (but more
space) are Okanohara and Sadakane [51], who achieved optimal O(n) time within
O(nlgolglg, n) bits, and Hon et al. [31], who achieved O(nlglg o) time and O(nlgo)
bits. On the other hand, Kérkkéinen [34] may obtain less space but more time:
O(nlogn+nv) time and O(nlogn/\/v) bits on top of the raw data, for any parameter
.

10.3. Handling General Alphabets. Our time results do not depend on the
alphabet size o, yet our space does, in a way that ensures that o does not interfere
with the results as long as 0 = o(n) (so olgn = o(nlgo)).

Let us now consider the case where the alphabet X is much larger than the effective
alphabet of the string, that is, the set of symbols that actually appear in S at a given
point in time. Let us now use s < n to denote the effective alphabet size. Our aim is
to maintain the space within nHy(S)+o0(nlg s)+O(slgn) bits, even when the symbols
come from a large universe ¥ = [1..|X|], or even from a general ordered universe such
as ¥ =Ror X =T* (ie., ¥ are words over another alphabet I).

Our mappings SN and NS of Section 7 give a simple way to handle a sequence
over an unbounded ordered alphabet. By changing SN to a custom structure to
search X, and storing elements of ¥ in array NS, we obtain the following results,
using respectively Theorems 8.1 and 9.1.

THEOREM 10.4. A dynamic string S[1,n] over a general alphabet 2 can be stored
in a structure using nHy(S) + o(nlg s) + O(slgn) + S(s) bits and supporting queries
access, rank and select in time O(T (s) +lgn/lglgn). Insertions and deletions of
symbols are supported in O(U(s) + lgn/lglgn) amortized time. Here s < n is the
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number of distinct symbols of ¥ occurring in S, S(s) is the number of bits used by a
dynamic data structure to search over s elements in X plus to refer to s elements in
3, T(s) is the worst-case time to search for an element among s of them in %, and
U(s) is the amortized time to insert/delete symbols of ¥ in the structure.

THEOREM 10.5. A dynamic string S[1,n] over a general alphabet > can be stored
in a structure using nHy(S) + o(nlg s) + O(slgn) + S(s) bits and supporting queries
access and select in time O(T (s) + lgn/lglgn) and rank in time O(T (s) + lgn).
Insertions and deletions of symbols are supported in O(U(s) +1gn) time. Here s <n
is the number of distinct symbols of X occurring in S, S(s) is the number of bits used
by a dynamic data structure to search over s elements in X plus to refer to s elements
in X, T(s) is the time to search for an element among s of them in X, and U(s) is
the time to insert/delete symbols of 3 in the structure. All times are worst-case

For example, a sequence of arbitrary real numbers can be handled with a balanced
search tree for the alphabet data structure that adds O(lg s) time to the operations.
A large integer range ¥ = [1..|X[], instead, can be handled with a predecessor data
structure that adds O((Iglg|X|)?) to the times, and O(slg|3|) further bits. When
the identity of the symbols is not important, one can handle a contiguous alphabet
[1..s], and only insert new symbols s 4+ 1. In this case there is no penalty for letting
the alphabet grow dynamically.

The only case where a previous solution with dynamic alphabet exists [27] is for
the case ¥ = I'* on an alphabet I'. Here we can store the effective set of strings in a
data structure by Franceschini and Grossi [21], so that operations involving a string a
take time O(|a|+1gvy+1gn/lglgn), where ~ is the number of symbols of I' actually in
use. With Theorem 10.5 we obtain worst-case time O(|a| +1g~ +1gn). The previous
dynamic data structure [27] requires time O(|a|lgv1gn) (although its space could be
lower than ours).

Handling general alphabets impacts on various dynamic representations that build
on access, rank and select operations on strings, where alphabet dynamism is essential.
For example, it allows inserting/deleting both objects and labels in binary relations
[4], inserting/deleting nodes in graphs [18], inserting/deleting both rows and columns
in discrete grids [10], and inserting new words and deleting words from text collections
in positional [6] and non-positional [3] inverted indexes [1].

11. Conclusions and Further Challenges. We have obtained O(Ign/lglgn)
time for all the operations that handle a dynamic sequence on an arbitrary alphabet
[1..0], matching lower bounds that apply to binary alphabets [22], and using zero-
order compressed space. Our structure is faster than the best previous work [29, 49]
by a factor of ©(lgo/lglgn) when the alphabet is larger than polylogarithmic. The
query times are worst-case, yet the update times are amortized. We also show that
it is possible to obtain worst-case for all the operations, although times for rank
and updates raises to O(lgn). Finally, we show how to handle general and infinite
alphabets. Our result can be applied to a number of problems and improve previous
upper bounds on those; we have described several ones.

The lower bounds [22] are valid also for amortized times, so our amortized-time
solution is optimal, yet our worst-case solution could be not. The main remaining
challenge is to determine whether it is possible to attain the optimal O(lgn/lglgn)
worst-case time for all the operations.

Another interesting challenge is to support a stronger set of update operations,
such as block edits, concatenations and splits in the sequences. Navarro and Sadakane
[49] support those operations within time O(clg'tn). While it seems feasible to
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achieve, in our structure, O(olgn) time by using blocks of ©(lg>n) bits, the main
hurdle is the difficulty of mimicking the same splits and concatenations on the list
maintenance data structures we use [33, 44].
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