
MEDIACORE: A MULTIMEDIA INTERFACE COMPOSITIONTOOLKITGonzalo Navarro� Jorge SanzUniversidad de Chile at Santiago, Chile University of Illinois at Urbana-Champaign, IllinoisIBM ArgentinaAbstractIn this paper, the problem of complex interface development when adding multimedia features isanalyzed. A model is proposed which focuses mainly in managing the complexity of control, a problemlargely ignored in many approaches. This model is integrated into a whole development methodology forcomposing arbitrarily complex multimedia interfaces. A system implementing this model is presented,which isolates the user from nonrelevant details of the multimedia data he manages and allows him toprogram full interfaces while thinking only in terms of the model.Key words and phrases: Multimedia systems, multimedia interfaces, interface composition.1 IntroductionHuman-machine communication has been continuously evolving, from the early days of punchcards to today'sgraphical environments and windowed interfaces. This evolution has been discontinuous, with big jumpsspaced by long periods of stability.At each step, the achievements in interface friendliness were correlated with hardware advances, newbase software support... and more programming complexity for applications [11, 10]. Application interfaces,which began almost nonexistent (in the old Input ! Program ! Output model), evolved to application-driven (alphanumerical interfaces), and �nally to event-driven (graphical windowed interfaces). Each stepinvolved more complex interface logic.A new step in computer interfaces is at the next corner: technology has evolved so as to allow multimediadata being managed by computers, so the time of multimedia interfaces is coming. The jump from windowedto multimedia interfaces could make interface programming complexity simply the most relevant part ofapplication development.A multimedia interface will have to take into account di�cult problems such as paralellism, synchroniza-tion of data streams, real-time constraints, asynchronous events, very large data objects, CPU-demandingactivities, etc. [5, 1]. And all those problems not only claim for better hardware and base software support,but for much more complex logic.The aim of this toolkit is to ease the process of multimedia interface composition in two ways: by isolatingthe programmer from low-level details of multimedia interaction (hardware, drivers, operating system, etc.),and by providing him a model for expressing the complex logic of such interfaces. The �rst goal is achievedthrough a set of multimedia servers, which isolate not only the low-level details of each medium, but also itssynchronization, timing and data manipulation issues. The second goal is achieved by creating a powerfulmodel of the logic of a multimedia interface, which incorporates communication with the multimedia servers,and giving the necessary support for programming in that model.The description of the toolkit may be divided in four areas: global model, control agents, multimediaservers and development methodology. Each area will be explained in a separate section.2 Global modelWe will use the term show to denote a running program which has a multimedia interface. Our aim is notto develop a special language for shows (as many proposals do, generally losing some expressive power in

the process, see for example [12, 9]), but to enrich a traditional one with the necessary tools to easily writeshows.In our model, a show will be seen as the concurrent execution of a set of agents, each one the guardianof a resource in the show. Agents are sequential in nature, so this is a
at model in this sense (i.e. agentsare not shows). Agents communicate by using asynchronous message passing.2.1 AgentsThere are two main classes of agents: server agents and control agents.Server agents are simply multimedia servers. They act as guardians of speci�c multimedia resources,and are prede�ned: the composer picks them from the pool the toolkit o�ers. Control agents, instead, arecomposer-de�ned, and express the logic of the show. They are what di�erentiate one show from another.Figure 1 illustrates this idea.
control agent control agent

graphic
 server

 audio
 server

 time
 server

graphic
 server

cooperation

no
tif

ic
at

io
ns

requests

interface &
 window interface &

 window

 speaker,
microphone

real
time

composer
 interface

Figure 1: The interface model.Thus, multimedia servers encapsulate low-level details of the implementation of each medium, and o�era high-level and consistent interface to the composer, which interacts with them from control agents whende�ning the logic of the show. Each server de�nes a number of requests it services (e.g. \play audio", \showimage", \set alarm"), and a number of noti�cations (e.g. \mouse click", \time alarm", etc.) it provides tointerested control agents. The composer should not be aware of low-level changes. Also, new capabilitieswould be re
ected in more multimedia servers to choose from.In case of control agents, encapsulation of a \resource" of the show is intended to mean \behavior". Ifthe composer designs wisely a set of control agents, each one could be dedicated to perform a speci�c task.Control agents communicate among themselves by interchanging arbitrary messages, as opposed to the �xedinterface o�ered by servers.Control agents may have an arbitrary complex logic, and the toolkit o�ers a powerful model for expressingit. This is explained in a separate section.Control agents may be combined (perhaps also with some servers) to form more complex \multimediaservers". For example a video server, and audio server, a graphic server and a control agent could be

combined to create a new, reusable, \annotated movie server".All agents of a show are started simultaneously, and the show is considered active until the last agentterminates. So, the process model is CSP-like [2].2.2 MessagesCommunication between agents proceeds exclusively by message-passing, in the variant most used by client-server models: the sender speci�es the recipient, but the recipient does not specify from which sender toreceive [2]. The idea of guardians, combined with message-passing �xed services o�ered by servers, resembleAda tasks. The interface of control agents, instead, is arbitrarily
exible.The client-server model also speci�es (in general) an asynchronous message-passing scheme, with FIFOservicing. This is the main method used here; but in a multimedia environment it is also needed a mechanismfor immediate servicing of some requests (e.g. pause/resume). Thus, although the FIFO model is the normalconvention, there are special types of messages, which are immediately delivered to the front of the messagequeue of the recipients. The servers guarantee immediate servicing of those messages, and the composershould do the same in control agents.Another feature is the possibility of broadcasting messages to all agents in a show. This is used, forexample, by a time server to synchronously send ticks to all participant agents, if asked to do so.Synchronization mechanisms are provided on top of the asynchronous model, in two ways. In the �rst, aspecial message is de�ned, which when reaches the front of the receiver's FIFO queue, transparently generatesan acknowledgment and dissappears. If the recipient follows a FIFO processing semantics (as all servers do)the ack guarantees that all previous messages have been processed.The second is a general send-wait mechanism, in which the sender expects an explicit ack from thereceiver, only broken by immediate (non-FIFO) requests.Communication with servers proceeds in two main forms. In the �rst (request), a control agent \asks"something to a server (e.g. to show some image, to a graphic server) and the server replies (if necessary).In the second (noti�cation), the servers themselves generate \events", and notify all interested agents ofthem. Examples of events are clock ticks, special points in an audio stream, mouse clicks, etc. In order toreceive events, a control agent must declare its interest to the corresponding server. An agent may also maskmessages, in order to not receive them.As said, server messages (requests and noti�cations) are prede�ned. Control agents, instead, must \cre-ate" new messages for communicating with one another.Along with the prede�ned synchronization messages, there are also a few number of prede�ned immediatemessages. These are pause, resume and terminate. The two �rst are meant to express the suspension of\real" time, while the last is for immediate termination (e.g. in presence of an error). While the serversobey this semantics, the tool provides mechanisms for the composer to do the same in its control agents.3 Control agentsAs said, control agents are which de�ne the behavior of the show, by interacting with servers, with oneanother, and by performing whatever actions are desired in the program. Since, as said in the introduction,the logic of multimedia interfaces is harder to program than traditional ones, the tool provides a powerfulmodel for expressing the logic of these agents, by focusing on their response to messages (i.e. noti�cationsfrom servers and messages from other control agents). This problem is largely ignored in many compositionmodels (see, for example, [12, 9]).The idea is to extend the classical event loop [10] with states. The agent's code is seen as a dynamicautomaton [3] (the \dynamic" aspect will be explained shortly). States represent the potential behavior ofthe agent upon each message. There is an initial state, at which execution begins. At each state and uponreceiving each message, the agent performs a di�erent action and passes to a new state. There is also a �nalstate, at which the agent immediately terminates if it passes to it (upon receiving a termination message,the next state is always the �nal one).The agent could be modelled, in principle, as an automaton with labeled edges, each edge correspondingto a (message,action) pair. But it is really more powerful than that, since it is the action which dictates

which the next state is (if it has to be changed at all), and the term \dynamic" stands for this capability.Another facility is the attachment of entry and exit actions to a state, which are to be invoked, respectively,when entering a new state and when exiting the current one. Both are performed after the action of thecorresponding \edge" completes. They wouldn't really add nothing to the expressive power, except for the\ghost" transitions to the �nal state caused by a termination message (this way allowing cleanup actions).The automata model is actually present in many event-driven programs, implemented in many tortuousforms. In a complex multimedia interface, the complexity could be raised up to the unmanageable. Thismodel, by simplifying the design and implementation of a control agent down to the de�nition of automata,will greatly ease this task.4 Multimedia serversThe global model assumes little about multimedia servers, which allows the toolkit to be extended with newservers as new possibilities appear. The clearcut request/notify semantics are common grounds on which tospecify the behavior of each medium from a very high-level point of view.Three multimedia servers are, by now, provided in the toolkit, and this is related to the capabilitiesavailable at our operating environment: a real-time server, a graphics and interaction server, and an audioserver. In the last section we explore a little the possibility of a video server.4.1 Real-time serverThe time server is designed as a general mechanism for synchronization. It may act as the clock of the wholeshow, imposing a uniform timestamping on all agents. At most one time server can exist per show.The most important request this server accepts takes the form \after x seconds, send me/anyone messagem, n times, with a gap of d seconds among each of them". n may be speci�ed as in�nite. This request,submitted at time t, will generate n noti�cations (messagem) at times t+x; t+x+d; t+x+2d; :::; t+x+(n�1)d(or in�nite ones if n =1). This is called a \noti�cation sequence", and is very useful in multimedia shows.At any moment, however, the sequence can be cancelled by the requester. Also note that the \ticks" canbe sent to the requester or broadcast to all agents (notice that unless an agent unmasks a message, it willnot be received).Other services include: a blocking wait, the current time, converting timestamps to human-readablestrings, etc.Upon a termination request, the time server simply frees up its resources and ends, thereby truncatingall noti�cation sequences in progress.Response to pause and resume is a bit tricky. The problem is how to understand, being the clock of theshow, the time elapsed between pause and resume, specially if some client agent is not paused and expectsnoti�cations or sends new requests (it was decided not to pause the whole show upon time server pause,this can easily be done at higher levels). The time server acts as if time were stopped at pause time, andcontinued at resume time. In the while, requests arrived T seconds after pause time are accepted and storedas if they had been sent T seconds after resume time. Besides, all other pending requests are also shiftedwith the pause gap, and all else proceeds normally.An important problem to be addressed by this server is the gap between the moment in which a noti�cationis sent and in which it arrives to the queue of the requester. The times labeled t + x+ id are supposed tobe the arrival times, not send times. So, the gap must be subtracted from the arrival times to get the sendtimes. The time server uses a mechanism by which an estimation of the gap is being tuned permanently,since it depends on system workload.4.2 Graphics and interaction serverSince the windowed environment [10] (of which this tool is an extension) imposes a per-window input policy,interaction services could not be separated from graphic services (the precise reasons for this will becomeapparent later).This server is the guardian of a window, hiding hardware and low-level problems from the composer, andpresenting him a high-level interface to many graphic features. X- and graphic-server-windows may freely

coexist in the parent-child hierarchy, this way easing the inclusion of some multimedia features in an alreadyexistent, traditional windowed application.The response of this server to pause requests is to immediately stop all input/output activities, freezingthe window, until receiving a resume request. Response to termination involves cancelling all input/outputactivity and destroying the window.4.2.1 Graphic servicesOnce created, the graphic server maps its window and starts servicing requests of various kinds.A group of requests allow to display full-RGB 24-bit 3D color images, with the desired e�ect. An e�ectis a form of showing the image smoothly, for example by fading it in, or by randomly �lling squares of theimage until it is wholly mapped, or by making it appear from the left side moving it to the right, etc. A largenumber of e�ects are provided. Each one may be asked to be performed within a given time, with a given\granularity" (size of the atomic granules that comprise the e�ect, e.g. the size of the mentioned squares).Images are stored in a custom format (converters are available). For each pixel, not only its RGB valueis stored, but (optionally) its depth and a transparency tag. If the pixel is transparent, or its depth is largerthan the corresponding point in background, it will not change this background when the image is mapped(images may be mapped at any x, y and depth coordinate).It is possible to \preload" an image, precalculating the �nal (3D-merged) result and storing it for fastrendering at time-critical parts of the show.Another group of requests allow to draw interactive 3D graphics [4] in the window, correctly merging withdepths of images. Although the ideal protocol would have been to submit display lists, technical limitationsimposed to use submission of procedures to execute (which are expected to draw those display lists).Yet another request allows to show text, in any X-known font, color, size, position and depth.Finally, it is possible to save the current contents of a window, as a normal image. This provides formultimedia image editors, and allows to record as images the runtime capabilities of the graphic server (e.g.3D graphics).Although the required drivers were not available, a placeholder has been left in the protocol that allowshandling video camera input as a normal image �le (i.e. allowing to show online static shots in a window),this way providing for very interesting interaction possibilities, and combined with the saving capability, away to capture images.4.2.2 Interaction servicesUser input is gathered on a per-window (i.e. per-server) basis, from two devices: keyboard and mouse.There are two kinds of keyboard services: modal and modeless.The modal input service consists of a (non-blocking) request an agent makes to the server. When received,the server allows the user to edit a string in the window (a number of features are provided), and noti�es therequester of the �nal input string. Only then does the server proceed with the next graphic or interactionrequest (as it can be seen, these two services are tightly coupled). Note that, however, the protocol is notblocking from the side of the requester: it makes the input request and the answer noti�cation arrives later.Modeless keyboard input allows agents to be noti�ed of asynchronous user keystrokes. An agent declaresits interest in those noti�cations, and may further cancel them.The other supported device is the mouse, which has no \modal" form: agents request or cancel theirinterest on click noti�cations.It is possible to ask simply to be noti�ed about click coordinates, but a more interesting way is throughtriggers, which denotes sensitive areas of an image (it is used with the same meaning in [9]). Since theseinterfaces show mainly natural images, it is better to drive interaction through objects appearing in images,rather than on traditional buttons and the like.The toolkit's image format also contains (optionally) the de�nition of triggers. When an image is mappedagents can request to be noti�ed when the user clicks on its triggers. In that case, the name of the triggerwill be included in the noti�cation. This stands for a higher-level interaction.The way such triggers are de�ned is a subject by itself. The toolkit allows a \gross" delimitation methodby specifying a cube, that is, a 3D block. When the user clicks on a pixel, it must be in the 2D square andits depth must be in range in order to be considered as part of the trigger.

Sharper object delimitation is possible by using color. Color is an important way by which humansseparate visual objects, and it was decided to evaluate it as a way of trigger delimitation. Thus a pixel, inorder to be considered as belonging to a trigger, must also have its color within a speci�ed cube in colorspace (this is another dependency between the two types of services).RGB is not the best color space for this purpose. A desirable property for the needed color coordinatesystem is that small perceptual changes in color are mapped to small shifts in color space. But a humanviewer is most sensitive to color shifts in the blue, moderately in the red, and least sensitive in the green [7].A color space with the desired characteristics already exists, and is called UCS (Uniform ChromacityScale). In UCS, numerical distance corresponds to human perceptual color distance, and brightness is aseparate coordinate [7]. The color space we use is UCS, with brightness discarded (making it insensitive toillumination changes). The two remaining coordinates form the new color space. Actually, a square of 5�5,centered on the point, is averaged (�ltering out artifacts) to determine the pixel's color.4.3 Audio serverThe audio server is responsible for providing a very high-level modelling of an audio stream, isolating thecomposer from the details.A very important part of this modelling is to consider that stream as a clock, replacing real time. It ispossible to label distinguished points in the audio stream, being the principal noti�cation activity of thisserver to send appropriate messages to interested agents when those labels are reached during playback.The most important request this server processes is to play a segment of an audio �le (saved in a customformat, along with labels), at some volume and balance. A large number of format options are available:mono/stereo, data format, sampling rate, quantization scale, etc.A given server can play one segment at a time. Once playing starts, it accepts requests for noti�cationof labels, volume and balance changes (with fading e�ects, if desired), pause/resume or stop playing, etc.Any agent may request to be noti�ed of labels, and later cancel these requests. It may ask for a speci�clabel or for all labels in the current segment.Audio input devices are treated as normal �les, thus allowing live audio to take part of a show. It mayalso be asked to save the current segment in another audio �le. Both capabilities combined provide for audiorecording.Response to pause requests involves stopping playback until resume time (thus deferring labels to reachas it corresponds to a pause in time). Response to termination includes truncating playback and labelnoti�cations. In order to ease client's development, two special labels are guaranteed to be emited for eachsegment: begin and end.5 Development methodologyThis toolkit is still a kernel, that is, although it isolates the composer from all low-level details, it has to beaccessed from C: it consists of a C-callable library. The composer, which still has to be a programmer, de�nesits entities and automata, its actions, requests and noti�cations, using toolkit-provided C-calls. However,the task of expressing this behavior in C is very easy once the design is done. A future project includes ahigher-level graphical interface for avoiding C-coding, making the toolkit available also to nonprogrammers.Creating a multimedia interface is a process that goes from capturing and generating multimedia datato the delivery of a �nal product (a simple or complex organization for the presentation of these data).No uni�ed methodology exists yet for multimedia interface composition. One of the purposes of thistoolkit is to enforce a particular style of design.Roughly speaking, the process can be divided into four stages [9] (although even this division is notuniversal):Capture/Generation: In this stage, the basic blocks of multimedia data (images, audio pieces, videosegments, graphics, text) may be captured or generated, depending on their nature. Audio and videomay be recorded, text is written, graphics may be rendered and stored, etc.

Edition: The captured and generated pieces of data are edited. This stage may be confused with theprevious one in the case of generated media, but is clearly distinguished in captured media. Audiopieces may be cut and pasted anywhere, mixed with another audio, �ltered in order to reduce noise,etc. Images may be cut and pasted, merged, and �ltered too. This is the stage for \special e�ects"(such as adding graphic overlays to video).Composition: The many pieces of collected data are assembled and organized in a logical scheme. Thisscheme de�nes how the data will be presented along the time, how the interaction with the end userwill be, and what the response to his input will be. The result may be as simple as a sequence ofshows along a �nite time interval, or as complex as an interface for a full system, including databasefront-ends, hypermedia document presentations, etc.Run: In the �nal stage, the interface is run by the end-user, who will interact with it.In fact, this scheme must be embedded in a prototype/�nal product process: it is necessary to beginby roughly designing the interface (composition stage), then to obtain \prototype" multimedia data untilthe composition is completed and it is exactly understood which multimedia data is needed. Only then thehigh-quality data is obtained and the �nal layout details are tuned.This toolkit does not attempt to address the full four-stage process, but only the last two. Although itis possible to think in a full multimedia interface composition system (as [9]), it would be better to allowa great diversity of capture and edition hardware and tools, only focusing on format compatibility issues;and then to use a unique composition tool for composition stage (which, in general, should also include thenecessary support for run stage).The composer should start by identifying the windows and audio tracks which will make up his interface,assigning a server to each of them. Then, the compound behavior of the whole interface should be stated,and expressed in terms of a state machine (or many, if the behavior is better expressed concurrently), whereevents cause transitions among its states and actions to be performed. If real-time speci�cations are part ofthe behavior, a time server should also be included. Finally, events should be mapped to server noti�cationsor messages among control agents, interface actions should be mapped to requests to servers, and automataof control agents should be de�ned.Only then the implementation step is performed: the exact layout of windows, audio volumes, tight audiolabels, etc. are depicted. Then the show is C-coded: automata are de�ned, servers are declared, and theshow is started. The �nal process is to �ne-tune all these details.All this is very easy to do, and normally it takes a short while to build simple shows.6 Implementation detailsThe toolkit has been implemented in C, on AIX (IBM's Unix) and its standard inter-process communicationfacilities.The real-time server is a standard Unix process, whose scheduling policy makes hard to satisfy any kindof time guarantee.The graphic server is built on XWindows and the IBM's version of GL (Graphics Language). GL allowsto display directly RGB images, fast image transferring and graphics rendering, and 3D processing.The audio server was implemented on IBM's ACPA (Audio Capture & Playback Adapter) card drivers,accessed through AIX facilities.Our implementation is currently running on a network of IBM Risc System/6000 machines, connectedwith TCP/IP on a 16 Mbps token-ring. The RISC machines are POWERstation 530 model, with 30 MHz,15 MFLOPS, 48M RAM. All audio �les were stored on other machines and accessed via NFS.A HP3D-SGP (High-Performance 3D Super Graphics Processor) card is used and accesed through GL.It allows to display 24-bit RGB images, and has a 24-bit zbu�er (to process depths).Two ACPA cards are used, which allow two simultaneous audio servers to be in operation.

7 A simple case studyLet's now go into an example of the design and implementation process in a simple project. Suppose theshow is to resemble an illustrated story tale book. We have stored (in some way) a set of stories, each oneconsisting of a sequence of images and an audio stream. There is a label in the audio stream for each image,indicating that that image should be shown. We want also to add the label text at the bottom of the image.The scenario is as follows: the user writes a story name, and then the story begins, showing images andplaying audio. He has buttons to pause and resume the story, and to stop it at all. He also may turn thepage forward or backward at any moment, and the audio should resynchronize with the new page.The �rst thing to do is to identify the participant windows (i.e. graphic servers). There is a window atwhich the input of the story name will take place and will serve as the \title" throughout the story, let'scall it TITLE. There is another where images will be shown, called IMAGE. Both of them will lay on a bigcontainer: BACKGR, which will have a number of sensitive \buttons" (triggers): End (to �nish the show), Stop(to end the current story), Pause and Cont (to pause and resume the story), Back and Forw (to turn pages).Figure 2 shows the rough layout.
TITLE

IMAGE

BACKGR

PAUSE

CONT

BACK

FORW

END

STOPFigure 2: Rough layout of the interface.We will also need an audio server for the speech, let's call it AUDIO. We don't seem to need more servers.Which states will have our automaton? There is an idle state (not telling) and a story state (telling astory).Which events do we expect in idle state?� End pressed� The user entered a new story nameWhat about story state?� End, Stop, Pause, Cont, Back or Forw pressed

� A new audio label reachedFigure 3 depicts the automaton with all events, actions and transitions. Ovals are states, dotted linesare transitions. The actions on top of states are entry actions. The \when" clause near each state speci�esits behavior against messages: arriving messages are indicated as right-to-left solid arrows, and the \code"below them are the actions to carry out in that case. Left-to-right solid arrows indicate messages to emit(they are actions too). Note that in both types of solid arrows, the other agent is identi�ed at the right ofthe arrow.Coding the show is a very simple step from the automaton design, being little more than to rephrase thegraph as C calls (one call per event, one per emitted message, etc.).8 Conclusions and Future WorkA number of projects are being carried out on the toolkit: demos; simple image, triggers and audio editors;hypermedias; etc. Much more use of the toolkit is needed in order to evaluate it extensively, so it is stillearly for clear-cut conclusions. In the tests made so far, the system did ful�ll all expectations: interfacesare very easily programmed and debugged, their look and feel is very impressive and the interaction workswell. Ideas such as the delimitation of triggers with colors worked �ne; the CPU requirements posed by thetoolkit can be accommodated by the RISC/6000 without noticeably slowing down the system; audio can bereproduced at very high rates without jitter (two ACPAs playing in parallel at 44.1k mono and 16 bits persample were tested), performing the playback all the time from a remote �le system; and time requests areful�lled very accurately (error is under the millisecond).On the other hand, a number of necessary improvements are becoming apparent:Video: Video was not included in the �rst release, since we lack at this moment a video-generating or capturetool. There are two possible alternatives to support it in the future. The �rst one is graphic animations:to generate the frames one by one, as images, using a tool like TDI or the VCA (IBM's Video CaptureAdapter) and a high-quality video player (to capture each frame). This approach presents a numberof challenging problems (storage and CPU demands, jitter, etc. [8]). The second one is to use theActionMedia II card [6], which will solve all low-level problems. Regarding the high-level interface ofa video server, there are a number of interesting possibilities: video labels, video (temporal) triggers,etc. Indeed, video combines many audio and graphical features.Trigger delimitation: Although the use of color works well, it is interesting to study alternative ways of\real-object" delimitation in images (such as image-processing techniques).Jitter: When many graphical e�ects take place simultaneously, jitter begins to be noticeable. And it willbecome a real problem if software-rendered video is used. A general mechanism of CPU reservation,overriding Unix's scheduling, will be necessary (see [1]).VCA and others: Graphic servers will bene�t from the incorporation of image capture capabilities fromcameras (and possibly scanners); new versions of ACPA drivers may incorporate MIDI; etc.Editors: A wealth of editors, particular of this toolkit, are urgently needed: depth, transparencies andtrigger editors for images; audio and audio labels; a video editor (when it becomes supported); etc.Composition scripts: A high-level script language for composition is needed (perhaps graph-oriented), inorder to make this toolkit available also to nonprogrammers. An integrated framework with scripteditor, interpreter, debugger and compiler is one of the main projects.Merging with Motif: The incorporation of the graphic server as a widget class will ease the inclusion ofmultimedia features in traditional application development.AcknowledgementsThe �rst author is in deep gratitude with Ricardo Baeza-Yates, who not only pushed him to publish thispaper, but also found time to review it and made a number of improvements.We want also to thank the helpful comments of the referees.

Idle

Story

Final

if (firstTime)

when

when

kill show

load(triggers)

wait input
BACKGR

TITLE

touch(END)

Jump

input(a)

 play(a) (begin to end)

Jump

TITLE

AUDIO

BACKGR

touch(END)
BACKGR

Jump

touch(PAUSE) BACKGR

pause
AUDIO

BACKGR
touch(CONT)

AUDIO
resume

BACKGR
touch(STOP)

AUDIO
stop

clear
IMAGE

Jump

BACKGR
touch(FORW)

AUDIO
play(a) (next label to end)

BACKGR

AUDIO

touch(BACK)

play(a) (prev label to end)

AUDIO
label(l)

if (l = end)
clear

IMAGE

Jump

else IMAGE

IMAGE

show image (l)

show text (l)

END

BEGIN

Figure 3: Automaton design for the interface.

References[1] David P. Anderson. Meta-scheduling for distributed continuous media. Technical report, ComputerScience Division, EECS Department, University of California at Berkeley, Berkeley, CA 94720, October1990.[2] Henri E. Bal, Jennifer G. Steiner, and Andrew S. Tanembaum. Programming languages for distributedcomputing systems. ACM Computing Surveys, 21(3):261{357, September 1989.[3] Martin D. Davis and Elaine J. Weyuker. Computability, Complexity and Languages. Academic Press,Inc., Orlando, Florida 32887, 1983.[4] J. D. Foley and A. van Dam. Fundamentals of Interactive Computer Graphics. Addison-Wesley SystemsProgramming Series. Addison-Wesley, Reading, Massachusetts, 1982.[5] Edward A. Fox. Advances in interactive digital multimedia systems. IEEE Computer, pages 9{21,October 1991.[6] K. Harney, M. Keith, G. Lavelle, L. D. Ryan, and D. J. Stark. The i750 video processor: A totalmultimedia solution. Communications of the ACM, 34(4):65{78, April 1991.[7] Anil K. Jain. Fundamentals of Digital Image Processing. Prentice-Hall Information and System Series.Prentice-Hall, Englewood Cli�s, NJ 07632, 1989.[8] M. Liebhold and E. M. Ho�ert. Toward an open environment for digital video. Communications of theACM, 34(4):104{112, April 1991.[9] D. J. Moore. Multimedia presentation development using the Audio Visual Connection. IBM SystemsJournal, 29(4):494{508, 1990.[10] Adrian Nye. Xlib Programming Manual, volume 1. O'Reilly & Associates, Inc., 632 Petaluma Avenue,Sebastopol CA 95432, 1988.[11] James Peterson and Abraham Silberschatz. Operating System Concepts. Addison-Wesley Series inComputer Science. Addison-Wesley, Reading, Massachusetts, 1984.[12] Dennis Tsichritzis, Simon Gibbs, and Laurent Dami. Active Media. In Dennis Tsichritzis, editor, ObjectComposition, pages 115{132. Centre Universitaire d'Informatique, Universit�e de Gen�eve, Switzerland,June 1991.

