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Abstract

The Dynamic Spatial Approximation Tree (dsa–tree) is
a recently proposed data structure for searching in met-
ric spaces. It has been shown that it compares favorably
against alternative data structures in spaces of high dimen-
sion or queries with low selectivity. Thedsa–treesupports
insertion and deletions of elements. However, it has been
noted that deletions degrade the structure over time, so the
structure cannot be regarded as fully dynamic in the sense
that deletions are not sustainable for long periods of time.

In this paper we propose and study a new method to han-
dle deletions over thedsa–tree, which is shown to be supe-
rior to the former in the sense that it does not affect search
time at all. Indeed, we show that the resulting tree is ex-
actly as if the deleted element had never been inserted. The
outcome is a fully dynamic data structure that can be man-
aged through insertions and deletions over arbitrarily long
periods of time without any reorganization.

1. Introduction

“Proximity” or “similarity” searching is the problem of
looking for objects in a set close enough to a query under
a certain (expensive to compute) distance. This has appli-
cations in a vast number of fields. All those applications
can be formalized with themetric space model[3]. That is,
there is an universeU of objects, and a positive real valued
distance functiond : U � U �! R+ defined among them.
This distance may (and ideally does) satisfy the three ax-
ioms that make the set a metric space:strict positiveness,
symmetry, andtriangle inequality. The smaller the distance
between two objects, the more “similar” they are. We have
a finite databaseS � U , which is a subset of the universe
and can be preprocessed. Later, given a new object from the�This work has been partially supported CYTED VII.19 RIBIDI
Project (both authors) and Millenium Nucleus Center for WebResearch,
Grant P01-029-F, Mideplan, Chile (first author).

universe (aqueryq), we must retrieve all similar elements
found in the database. There are two typical queries of this
kind:

Range query: retrieve all elements within distancer to q
in S.

Nearest neighbor query (k-NN): retrieve thek closest el-
ements toq in S.

The distance is considered expensive to compute. Hence,
it is customary to define the complexity of the search as the
number of distance evaluations performed. We consider the
number of distance evaluations instead of the CPU time be-
cause the CPU overhead over the number of distance evalu-
ations is negligible in thedsa–tree, unlike other structures.

In this paper we are devoted to range queries. In [5] is
shown how to build an nearest neighbors algorithm range-
optimal using a range algorithm, so we can restrict our at-
tention to range queries.

A particular case of this problem arises when the space
is a set ofD-dimensional points and the distance belongs
to the MinkowskiLp family. There are effective meth-
ods to search inD-dimensional spaces [4, 1]. However,
for roughly 20 dimensions or more those structures cease
to work well. We focus in this paper on general metric
spaces, although the solutions are well suited also forD-
dimensional spaces. It is interesting to notice that the con-
cept of “dimensionality” can be translated to metric spaces
as well [2, 3]. We say that a general metric space is high di-
mensional when its histogram of distances is concentrated.

Proximity search algorithms build anindex of the
database and perform queries using this index, avoiding the
exhaustive search. For general metric spaces, there exist a
number of methods to preprocess the database in order to re-
duce the number of distance evaluations [3]. All those struc-
tures work on the basis of discarding elements using the
triangle inequality, and most use the classical divide-and-
conquer approach. (which is not specific of metric space
searching).



The Spatial Approximation Tree (sa–tree) is a recently
proposed data structure of this kind [6, 7], based on a novel
concept: approach the query spatially, that is, start at some
point in the space and get closer and closer to the query.
It has been shown that thesa–treegives better space-time
tradeoffs than the other existing structures on metric spaces
of high dimension or queries with low selectivity [7], which
is the case in many applications. Thesa–tree, however, has
some important weaknesses. The first is that, compared to
other indexes, it is relatively costly to build in low dimen-
sions The second is that, in low dimensions or for queries
with high selectivity (smallr or k), its search performance
is poor when compared to simple alternatives. The third
is that it is a static data structure: once built, it is hard to
add/delete elements to/from it. These weaknesses make the
sa–treeunsuitable for important applications such as multi-
media databases.

The dsa–treeis a dynamic version of thesa–treeand
overcomes its drawbacks. The dynamicsa–treecan be built
incrementally (i.e., by successive insertions) at the same
cost of its static version, and the search performance is unaf-
fected. It has been shown that it compares favorably against
alternative data structures in spaces of high dimension or
queries with low selectivity [9]. Thedsa–treesupports in-
sertion and deletions of elements. However, it has been
noted that deletions degrade the structure over time, so the
structure cannot be regarded as fully dynamic in the sense
that deletions are not sustainable for long periods of time.

In this paper we present a new deletion algorithm that
does not degrade the search performance over time. Only
with such a deletion algorithm can we consider that thedsa–
tree is a fully dynamic data structure. Although the new
deletion method is more costly than the previous, it can be
invoked sparsely, so as to have an amortized deletion cost
comparable to the insertion cost of thedsa–tree. The pre-
vious deletion algorithm was cheaper but degraded search
costs. We show that this new algorithm yields better trade-
offs between search performance and deletion cost.

Full dynamism is not so common in metric data struc-
tures [3]. While permitting efficient insertions is quite
usual, deletions are rarely handled. In several indexes one
can delete some elements, but there are selected elements
that cannot be deleted at all. This is particularly problem-
atic in the metric space scenario, where objects could be
very large (e.g., images) and deleting them physically may
be mandatory. Our algorithms permit deleting any element
from a dsa–tree. This is remarkable on a data structure
whose original conception was markedly static [6].

The outcome is a much more practical data structure that
can be useful in a wide range of applications. We expect the
dsa–tree, with the new deletion algorithm, to replace the
static version in the developments to come.

For the experiments of this paper we have selected two
metric spaces, which are the real unitary cube in dimen-
sion 15 and 5, using Euclidean distance, where we gener-
ated 100,000 random points with uniform distribution. We
have tested ourdsa–treeon these synthetic sets of random
points in aD-dimensional space: every coordinate has been
chosen uniformly and independently in[0; 1). However,
we have not used the fact that the space has coordinates,
treating the points as abstract objects in an unknown metric
space. This choice allows us to control the exact dimension-
ality we are working with, which is not so easy if the space
is a general metric space or the points come from a real sit-
uation. The results on these two spaces are representative
of those on several other metric spaces we tested, for lack
of space we omit those results.

This paper is organized as follows: In Section 2 we give a
description of thedsa–trees. Section 3 presents our new im-
proved deletion method, and Section 4 contains results ob-
tained from experimentations. Finally, in Section 5 we con-
clude and discuss about possible extensions for our work.

2. Dynamic Spatial Approximation Trees

In this section we briefly describe dynamicsa–trees
(dsa–treesfor short) [8, 9, 10, 11].

2.1. Insertion Algorithm

To construct thedsa–treeincrementally we fix a maxi-
mum tree arity, and also keep a timestamp of the insertion
time of each element. Each nodea in the tree is connected
to its children, which form a set of elements calledN(a),
the neighborsof a. When inserting a new elementx, its
point of insertion is found by beginning from the tree roota and performing the following procedure. We addx toN(a) (as a new leaf node) if (1)x is closer toa that to any
elementb 2 N(a), and (2) the arity of nodea, jN(a)j, is
not already maximal. Otherwise we forcex to choose the
closest neighbor inN(a) and keep walking down the tree
in a recursive manner, until we reach a nodea such thatx
is closer toa that anyb 2 N(a) and the arity of nodea is
not maximal (this eventually occurs at a tree leaf). At this
point we addx at the end of the listN(a), put the current
timestamp tox and increment the current timestamp. The
following information is kept in each nodea of the tree: the
set of neighborsN(a), the timestamptime(a) of the inser-
tion time of the node, and the covering radiusR(a) with the
distance betweena and the farthest element in the subtree
of a.

Note that by reading neighbors from left to right we have
increasing timestamps. It also holds that the parent is al-
ways older than its children. Thedsa–treecan be built by



starting with a first single nodea whereN(a) = ; andR(a) = 0, and then performing successive insertions.

2.2. Range Search Algorithm

The idea for range searching is to replicate the insertion
process of relevant elements. That is, we act as if we wanted
to insertq but keep in mind that relevant elements may be at
distance up tor from q, so in each decision for simulating
the insertion ofq we permit a tolerance of�r, so that it may
be that relevant elements were inserted in different children
of the current node, and backtracking is necessary.

We have to consider two facts. The first is that, when an
elementx was inserted, a nodea in its path may not have
been chosen as its parent because its arity was already max-
imal. So, at query time, instead of choosing the closest tox amongfag [ N(a), we may have chosen only amongN(a). Hence, we perform the minimization only among
elements inN(a). The second fact is that, at the timex
was inserted, elements with higher timestamp were not yet
present in the tree, sox could choose its closest neighbor
only among elements older than itself. Hence, we consider
the neighborsfb1; : : : ; bkg of a from oldest to newest, dis-
regardinga, and perform the minimization as we traverse
the list. This means that we enter into the subtree ofbi ifd(q; bi) 6 min (d(q; b1); : : : ; d(q; bi�1))+2r. Let us stress
again the reason: between the insertion ofbi andbi+j there
may have appeared new elements that chosebi just becausebi+j was not yet present, so we may miss an element if we
do not enter intobi because of the existence ofbi+j .

Up to now we do not really need the exact timestamps
but just to keep the neighbors sorted by timestamp. We
make better use of the timestamp information in order to
reduce the work done inside older neighbors. Say thatd(q; bi) > d(q; bi+j) + 2r. We have to enter into the sub-
tree ofbi anyway becausebi is older. However, only the
elements with timestamp smaller than that ofbi+j should
be considered when searching insidebi; younger elements
have seenbi+j and they cannot be interesting for the search
if they are insidebi. As parent nodes are older than their
descendants, as soon as we find a node inside the subtree ofbi with timestamp larger than that ofbi+j we can stop the
search in that branch, because all its subtree is even younger.

Figure 1 shows the algorithm to perform range search-
ing. Note that, except in the first invocation,d(a; q) is al-
ready known from the invoking process.

2.3. Deletions

To delete an elementx, the first step is to find it in the
tree. Unlike most classical data structures, doing this is not
equivalent to simulating the insertion ofx and seeing where
it leads us to in the tree. The reason is that the tree was

RangeSearch (Node a, Query q, Radius r,
Timestamp t)

1. If time(a) < t ^ d(a; q) � R(a) + r Then
2. If d(a; q) � r Then Report a
3. dmin  1
4. For bi 2 N(a)

// in increasing timestamp order
5. If d(bi; q) � dmin + 2r Then
6. k  min fj > i; d(bi; q) > d(bj ; q) + 2rg
7. RangeSearch (bi,q,r,time(bk))
8. dmin  minfdmin; d(bi; q)g

Figure 1. Searching q with radius r in a dsa–tree.

different at the timexwas inserted. Ifxwere inserted again,
it could choose to enter a different path in the tree, which did
not exist at the time of its first insertion.

An elegant solution to this problem is to perform a range
search with radius zero, that is, a query of the form(x; 0).
This is reasonably cheap and will lead us to all the places in
the tree wherex could have been inserted.

On the other hand, whether this search is necessary is ap-
plication dependent. The application could return a handle
when an object was inserted into the database. This han-
dle can contain a pointer to the corresponding tree node.
Adding pointers to the parent in the tree would permit to
locate the path for free (in terms of distance computations).
Hence, in which follows, we do not consider the location of
the object as part of the deletion problem, although we have
shown how to proceed if necessary.

We had studied several alternatives to delete elements
from adsa–treein [9, 11]. From the beginning we have dis-
carded the trivial option of marking the element as deleted
without actually deleting it. As explained, this is likely to
be unacceptable in most applications. We assume that the
element has to be physically deleted. We may, if desired,
keep its node in the tree, but not the object itself.

It should be clear that a tree leaf can always be removed
without any complication, so we focus on how to remove
internal tree nodes.

2.3.1. Reinserting Subtrees

A widespread idea in the Euclidean range search commu-
nity is that reinserting the elements of a disk page may be
beneficial because, with more elements in the tree, the space
can be clustered better. We follow this principle now to ob-
tain a method with costly deletions but good search perfor-
mance.

When nodex is deleted, we disconnect the subtree
rooted atx from the main tree. This operation does not af-
fect the correctness of the remaining tree, but we have now
to reinsert the subtrees rooted at the nodes ofN(x). To do



this efficiently we try to reinsert complete subtrees when-
ever possible.

In order to reinsert a subtree rooted aty, we follow the
same steps as for inserting a fresh objecty, so as to find the
insertion pointa. The difference is that we have to assume
that y is a “fat” object with radiusR(y). That is, we can
choose to put the whole subtree rooted aty as a new neigh-
bor ofa only if d(y; a)+R(y) is smaller thand(y; b) for anyb 2 N(a). Similarly, we can choose to go down by neigh-
bor 
 2 N(a) only if d(y; 
) +R(y) is smaller thand(y; b)
for anyb 2 N(a). When none of these conditions hold, we
are forced to split the subtree rooted aty into its elements:
one is a single elementy, and the others are the subtrees
rooted atN(y). Once we split the subtree, we continue the
insertion process with each constituent separately.

Every time we insert a node or a subtree, we pick a fresh
timestamp for the node or the root of the subtree. The ele-
ments inside the subtree should get fresh timestamps while
keeping the relative ordering among the subtree elements.
The easiest way to do this is to assume that timestamps are
stored relative to those of their parent. In this way, nothing
has to be done. We need, however, to store at each node
the maximum differential time stored in the subtree, so as
to updateCurrentT ime appropriately when a whole sub-
tree is reinserted. This is easily done at insertion time and
omitted in the pseudocode for simplicity.

During reinsertion, we also modify the covering radii of
the tree nodesa traversed. When inserting a whole subtree
we have to addd(y; a) + R(y), which may be larger than
necessary. This involves at search time a price for having
reinserted a whole subtree in one shot.

Note that it may seem that, when searching the place to
reinsert subtrees of a removed nodex, one could save some
time by starting the search at the parent ofx. However, the
tree has changed since the subtree ofxwas created, and new
choices may exist now.

Figure 2 shows the algorithm to reinsert a tree with rooty into a dsa–treerooted ata. The deletion of a nodex is
done by first locating it in the tree (say,x 2 N(b)), then
removing it fromN(b), and finally reinserting every subtreey 2 N(x) usingReinsert(a,y).

Optimization. A further optimization to the subtree rein-
sertion process makes a more clever use of timestamps. Say
thatx will be deleted, and letA(x) be the set of ancestors
of x, that is, all the nodes in the path from the root tox.
For each node
 belonging to the subtree rooted atx we
haveA(x) � A(
). So, when node
 was inserted, it was
compared against all the neighbors of every node inA(x)
whose timestamp was lower than that of
. Using this in-
formation we can avoid evaluating distances to these nodes
when revisiting them at the time of reinserting
. That is,
when looking for the neighbor closest to
, we know that

Reinsert (Node a, Node y)
1. If jN(a)j < MaxArity Then M  fag [N(a)
2. Else M  N(a)
3. 
1  argminb2Md(b; y)
4. 
2  argminb2M�f
1gd(b; y)
5. If d(
1; y) +R(y) � d(
2; y)
6. Then // keep subtree together
7. R(a) max(R(a); d(a; y) +R(y))
8. If 
1 = a Then // insert it here
9. N(a) N(a) [ fyg

10 . time(y) CurrentT ime
11. Else Reinsert (
1, y) // go down
12. Else // split subtree
13. For z 2 N(y) Do Reinsert (a, z)
14. N(y) ;, R(y) 0
15. Reinsert (a, y)
Figure 2. Simple algorithm to reinsert a subtree

with root y into a dsa–tree with root a.

the one inA(x) is closer to
 than any older neighbor, so
we have to consider only newer neighbors. Note that this
is valid as long as we reenter the same path where
 was
inserted previously.

The average cost of subtree reinsertion is as follows.
Assume that we just reinsert the elements one by one.
Assuming that the tree has always arityA and that it is
perfectly balanced, the average size of a randomly cho-
sen subtree turns out to belogA n(1 + o(1)). As every
(re)insertions costsA logA n(1 + o(1)), the average dele-
tion cost is(A log2A n)(1+ o(1)). This is much more costly
than an insertion.

3. A New Deletion Technique

Reinsertion of subtrees and reinsertion by element have
shown that it is possible to delete elements from adsa–tree
at a reasonable cost, but it has been noted that deletions de-
grade the structure over time, so that deletions are not sus-
tainable for long periods of time.

This degradation is partially caused by inevitable over-
estimation of covering radii. Figure 3 shows query costs
on the space of vectors in dimension 5, without correcting
the covering radii after each deletion (above), and correct-
ing them (below). We can observe that the overestimation
of covering radii is not the only reason for degradation.

Now we propose and study a new method to handle dele-
tions over thedsa–tree. Our idea is to ensure that the result-
ing tree is exactly as if the deleted element had never been
inserted. This ensures that no degradation can occur due
to repeated deletions. The new method is calledrebuilding
subtrees.
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When nodex 2 N(a) is deleted, we disconnectx from
the main tree. Hence all its descendants must be reinserted.
Moreover, elements in the subtree ofa that are younger thanx have been compared againstx to decide their insertion
point. Therefore, these elements, in absence ofx, could
choose another path if we reinsert them into the tree. Then,
we retrieve all the elements younger thanx that descend
from a (i.e. those whose timestamp is greater, which in-
cludes its descendants) and reinsert them into the tree, leav-
ing the tree as ifx had never been inserted.

If we reinsert the elements younger thanx like com-
pletely new elements, that is if they get fresh timestamps,
we must search the appropriate point of reinsertion begin-
ning at tree root. On the other hand, if we maintain their
timestamp we can begin reinsertion process froma, so we
can save many comparisons. In order to leave the resulting
tree exactly as ifx never had been inserted, we must reinsert
the elements in the original order, that is the elements must
be reinserted in increasing order of timestamp.

Hence, when nodex 2 N(a) is deleted we retrieve all
the elements younger thanx from the subtree rooteda, then
disconnect them from the main tree, sort them in increasing
order of timestamp and reinsert them one by one, searching
their reinsertion point froma.

Figure 4 shows the algorithm to retrieve from the subtree
of a all the elements younger thanx. We denoteT (b) the set

of elements in the subtree rooted atb for simplicity. Figure 5
illustrates the algorithm to rebuild subtrees, which invokes
to RetrieveTS (a,x), according to this technique.

RetrieveTS (Node a, Node x)
1. Q  fag , T  ;
2. While Q not empty
3. b  first element of Q
4. Q  Q� fbg
5. For v 2 N(b)
6. If timestamp(v)> timestamp(x) Then
7. N(b)  N(b)� fvg
8. T  T [ T (b)
9. Else

10. Q  Q [ fvg
11. Return T
Figure 4. Algorithm to retrieve from the subtree

rooted a all the elements younger than x 2 N(a).
RebuildTS (Node a, Node x)
1. T  RetrieveTS (a,x)
2. Sort T by timestamp (older first)
3. N(a)  N(a)� fxg
4. For v 2 T
5. Insert (a, v)

// without changing its timestamp

Figure 5. Algorithm to rebuild the subtree with

root a in a dsa–tree, after the deletion of x 2N(a).
Note that in this method the covering radii can also be-

come overestimated, because they are never reduced due to
a deleted element. That is, if we delete an elementx, everya 2 A(x) such thatx was the farthest element in its subtree
will possibly have itsR(a) overestimated. In spite of it, this
problem does not seem to affect much search performance
since, as can be seen in Figure 6, it does not significantly
degrade over time (we have considered the same space used
in Figure 3).

The average cost of rebuilding subtrees in adsa–tree
with arity A is (A2=4)log2An(1 + o(1)) (we omit the proof
for lack of space), that is more costly than reinsertion ele-
ment by element (or of subtrees), and this difference grows
as the arity tree grows. As we will see, however, this is
compensated by a better search time.
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database deleted, using rebuilding of subtrees.

3.1. Optimization

We analyze two posible optimizations to rebuilding sub-
trees. Say thatx will be deleted from the subtree rooted
at nodea (that isx 2 N(a)). The first one makes a more
clever use of timestamps. We can observe that there can
be elements younger thanx which not will change their in-
sertion point when we reinsert them into the subtree rooteda. These elements are younger than the first child ofx and
also than the next sibling ofx. For these elements, the avail-
able options at reinsertion time will be the same of insertion
time, so they will choose the same. So we can avoid com-
puting their new insertion place.

A further optimization to the subtree rebuilding process
uses the previous work done during the insertion to save
distance evaluations. That is, when nodey was inserted,
it was compared against all the neighbors of every node inA(x) whose timestamp was lower than that ofy. Using
this information we can avoid evaluating distances to these
nodes when revisiting them at the time of reinsertingy. That
is, when looking for the neighbor closest toy, we know that
the one inA(x) is closer toy than any older neighbor, so
we have to consider only newer neighbors. Note that this
is valid as long as we reenter the same path wherey was
inserted previously.

3.2. Fake Nodes

Another alternative to delete elementx is to leave its
node in the tree (without content) and mark it as deleted.
We call these nodesfake. Although cheap and simple at
deletion time, we must now figure out how to carry out a
consistent search when some nodes do not contain an ob-
ject. This alternative was also considered previously in [9],
because it is a general form of amortizing the cost of one
deletion over many.

Basically, if nodeb 2 N(a) is fake, we do not have

enough information to avoid entering into the subtree ofb
once we have reacheda. So we cannot includeb in the min-
imization and have to enter always its subtree (except if we
can use the timestamp information ofb to prune the search).

The search performed at insertion time, on the other
hand, has to follow just one path in the tree. In this case,
one is free to choose inserting the new element into any fake
neighbor of the current node, or into the closest non-fake
neighbor. A good policy is, however, trying not to increase
the size of subtrees rooted at fake nodes, as eventually they
will have to be rebuilt (see later). Hence, although deletion
is simple, the search process degrades its performance.

3.3. Combining both Methods

We have two methods. Fake nodes delete elements for
free but degrade the search performance of the tree. Subtree
rebuilding makes a costly subtree rebuilding but maintains
the search quality of the tree. Note that the cost of rebuild-
ing a subtree would not be much different if it contained
fake nodes, so we could remove all the fake nodes with a
single subtree rebuilding, therefore amortizing the high cost
of the rebuilding over many deletions.

Our idea is to ensure that every subtree has at most a
fraction� of fake nodes. We say that such subtrees are “bal-
anced”. When we mark a new nodex 2 N(a) as fake, we
check if we have not unbalanced it. In this case,x is dis-
carded and all the younger non-fake elements reinserted in
increasing order of timestamp. The only difference is that
we never insert a fake node, but we discard it. A compli-
cation is that removingx may unbalance several ancestors
of x, even ifx is just a leaf that can be directly removed,
and even if the ancestor is not rooted at a fake node. As an
example, consider a unary tree of height3n where all the
nodes at distance3i from the root,i � 0, are fake. The tree
is balanced for� = 1=3, but removing the leaf or marking it
as fake its parent unbalances every node. We opt for a sim-
ple solution. We look for the lowest ancestor ofx that gets
unbalanced and rebuild all the subtree from the parent ofx.
As an example in ours experiment on vectors in dimension
15, using� = 30%, deleting 10% of the elements the “real”� is 2.2%, deleting 20% is 3.9%, deleting 30% is 5.5% and
deleting 40% produces 6.6%, that is clearly lower than the� chosen as parameter.

This technique has a nice performance property. Since
we reinsert the non-fake elements, we have the guarantee
that the fraction� of its elements are fake. This means that
if the size of the subtree to rebuild ism, we pay on aver-
ageA(1 � �)m reinsertions for each�m deletions made
in the subtree. Hence the amortized cost of a deletion is
at most((1 � �)=�)A2logAn. This is almost true, since
because of the problem mentioned in the above paragraph
we sometimes cannot guarantee the given fraction of fake



nodes. In practice, however, all the subtrees easily satisfy
the criterion.

Asymptotically, the tree works as if we permanently had
a fraction� of fake nodes. Hence, we can control the trade-
off between deletion and search cost. Note that pure fake
nodes corresponds to� = 100% and pure rebuilding of
subtree to� = 0%.

3.3.1. Optimization

A further optimization to those considered in Section 3.1,
allows us saving more distance evaluations when we rebuild
a subtree. We rebuild a subtree when we find the lowest
ancestory of x, whose fraction of fake nodes exceeds�.
Nodey can be in one of two possible situations: (1)y is
a fake node, or (2)y is not a fake node. In both cases we
can save distance evaluations. In (1) sincey is a fake node,
theny must be discarded, and we proceed as pure rebuild-
ing of subtrees. This means discardingy in the subtree of its
parent and reinserting the non-fake elements younger thany (sorted by timestamp). In (2), elementy cannot be dis-
carded, so we retrieve the timestampt of the oldest fake
node in the subtree rooted aty and reinsert all the non-fake
elements not older thant (sorted by timestamp).

4. Experimental Comparison

Let us now compare the reinsertion of subtrees versus
rebuilding of subtrees on the space of vectors in dimension
15 using arity 16. Figure 7 shows the cost to delete 10% of
database with arity 16 (above), and how the arity affects the
search cost using pure rebuilding of subtrees (below). As it
can be seen, our new method is much more expensive (but
it preserves the quality of the database over time, as seen).

We compare now the three methods to handle deletions
on vectors in dimension 15 using different arities, that is
pure fake nodes, pure rebuilding of subtrees and the com-
bined method. Figure 8 shows the deletion cost for the first
10% of the database using arity 16 (above) and 32 (below)
and different�. We can note that pure rebuilding of sub-
trees is very costly, but as soon as we allow� = 1% the
deletion costs decrease considerably.

On the other hand, let us consider how the search costs
are affected by the fraction� of fake nodes and by deletions.
We search on an index built on half of the elements of the
database. This half is built by inserting more elements and
then removing enough elements to leave 50% of the set in
the index. So, we compare the search on sets of the same
size where a percentage of the elements has been deleted
in order to leave the set in that size. For example, 30%
deletions means that we inserted 80000 elements and then
removed 30000, so as to leave 50000 elements (half of the
set).
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Figure 7. Deletion costs of 10% of database with

arity 16 (above), and how arity affects search

costs (below), using rebuilding of subtrees in

dim. 15.

Figure 9 shows the results for� = 0% (pure rebuild-
ing of subtrees), 1%, 3% and 10%. As can be seen, even
considering� = 10% the search quality does not degrade
considerably as the number of deletions grows. Figure 10
shows the same data in a way that permits comparing the
change of search costs as� grows, considering 10% and
40% of elements deleted. As� grows, the search cost in-
creases because of the need to enter every neighbor of fake
nodes. The difference in search cost ceases to be reasonable
as early as� = 30%, but it is not significant to lower�. So
one has to choose the right tradeoff between deletion and
search cost depending on the application. A good tradeoff
for vectors in dimension 15 is� = 10%.

Figure 11 shows the comparison between the reinsertion
of subtrees and the new rebuilding of subtrees. In each case
we show search costs versus deletion costs, when deleting
10% or 40% of database, and considering range searches
where 0.01%, 0.1% and 1% of database is retrieved. For ex-
ample, we can note that deleting 10% of database, a given
search cost is more costly to achieve (in terms of deletion
cost) under rebuilding of subtrees than under the reinsertion
of subtrees. However, the rebuilding of subtrees allows us
to achieve cheaper search costs if we pay more expensive
deletion costs (which is not possible at all with the former
method). On the other hand, considering 40% of database
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Figure 8. Deletion costs combining rebuilding of

subtrees with fake nodes, for arities 16 (above)

and 32 (below) in dim. 15.

deleted, rebuilding of subtrees offers a better tradeoff than
subtree reinsertion: Rebuilding of subtrees obtains the same
search costs at lower deletion costs. In a real scenario,
where the database evolves over time and suffers many in-
sertions and deletions, the difference between both methods
will favor more and more clearly the new technique.

Figure 12 shows how the deletion costs of the combined
method improve with the optimizations proposed in Sec-
tion 3.1 and Section 3.3.1, for different values of�. Fig-
ure 13 shows the deletion costs with optimized rebuilding
of subtrees for different�.

We compare the methods by deleting different percent-
ages of the database to make appreciable not only the dele-
tion cost per element but also to show the cumulative effect
of deletions over the structure.

5. Conclusions

In this paper we have presented a new method to delete
elements from adsa–tree. This method has shown to be
better than the former because the tradeoff between deletion
and search cost improves.

The outcome is a fully dynamic data structure that can
be managed through insertions and deletions over arbitrar-
ily long periods of time without any reorganization. We
also obtain optimizations for deletion costs in both meth-
ods: pure rebuilding of subtrees and the combined method
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Figure 9. Search costs combining the rebuilding

of subtrees and fake nodes for different �.

with fake nodes.
Our new dynamicdsa–treestands out as a practical and

efficient data structure that can be used in a wide range of
applications, while retaining the good features of the origi-
nal data structure.

We are currently pursuing in the direction of making the
dsa–treework efficiently in secondary memory. In that case
both the number of distance computations and disk accesses
are relevant.



32000

34000

36000

38000

40000

42000

44000

46000

48000

0.01 0.1 1

D
is

ta
nc

e 
ev

al
ua

tio
ns

Percentage of database retrieved

Query cost per element for n = 50000 vectors, dim. 15, Ar. 16, deleted 10%

alpha = 0%
alpha = 1%
alpha = 3%
alpha = 10%
alpha = 30%
alpha = 100%

32000

34000

36000

38000

40000

42000

44000

46000

48000

0.01 0.1 1

D
is

ta
nc

e 
ev

al
ua

tio
ns

Percentage of database retrieved

Query cost per element for n = 50000 vectors, dim. 15, Ar. 16, deleted 20%

alpha = 0%
alpha = 1%
alpha = 3%
alpha = 10%
alpha = 30%
alpha = 100%

32000

34000

36000

38000

40000

42000

44000

46000

48000

0.01 0.1 1

D
is

ta
nc

e 
ev

al
ua

tio
ns

Percentage of database retrieved

Query cost per element for n = 50000 vectors, dim. 15, Ar. 16, deleted 30%

alpha = 0%
alpha = 1%
alpha = 3%
alpha = 10%
alpha = 30%
alpha = 100%

32000

34000

36000

38000

40000

42000

44000

46000

48000

0.01 0.1 1

D
is

ta
nc

e 
ev

al
ua

tio
ns

Percentage of database retrieved

Query cost per element for n = 50000 vectors, dim. 15, Ar. 16, deleted 40%

alpha = 0%
alpha = 1%
alpha = 3%
alpha = 10%
alpha = 30%
alpha = 100%

Figure 10. Search costs combining rebuilding

of subtrees and fake nodes, comparing � and

deleting 10%, 20%, 30% and 40% (above to be-

low) of database.

References
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