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Abstract universe (aqueryq), we must retrieve all similar elements
found in the database. There are two typical queries of this
The Dynamic Spatial Approximation Treds@—tregis kind:
a recently proposed data structure for searching in met-
ric spaces. It has been shown that it compares favorably
against alternative data structures in spaces of high dimen
sion or queries with low selectivity. Thisa—treesupports
insertion and deletions of elements. However, it has been
noted that deletions degrade the structure over time, so the
structure cannot be regarded as fully dynamic in the sense ~ The distance is considered expensive to compute. Hence,
that deletions are not sustainable for long periods of time. itis customary to define the complexity of the search as the
In this paper we propose and study a new method to han-number of distance evaluations performed. We consider the
dle deletions over thdsa—tregwhich is shown to be supe- number of distance evaluations instead of the CPU time be-

rior to the former in the sense that it does not affect search cause the CPU overhead over the number of distance evalu-

time at all. Indeed, we show that the resumng tree is ex- ations is negllglble in thdsa—treeunlike other structures.

actly as if the deleted element had never been inserted. The In this paper we are devoted to range queries. In [5] is
outcome is a fully dynamic data structure that can be man- shown how to build an nearest neighbors algorithm range-
aged through insertions and deletions over arbitrarilygon ~ optimal using a range algorithm, so we can restrict our at-

periods of time without any reorganization. tention to range queries.
A particular case of this problem arises when the space

is a set of D-dimensional points and the distance belongs
to the Minkowski L, family. There are effective meth-
o o o ods to search irD-dimensional spaces [4, 1]. However,
“Proximity” or “similarity” searching is the problem of o1 roughly 20 dimensions or more those structures cease
looking for objects in a set close enough to a query underig work well. We focus in this paper on general metric
a certain (expensive to compute) distance. This has app"'spaces, although the solutions are well suited alsafor
cations in a vast number of fields. All those applications gimensjonal spaces. It is interesting to notice that the con
can be formalized with thmetric space mod¢8]. Thatis,  cept of “dimensionality” can be translated to metric spaces
there is an universk of objects, and a positive real valued 55 \well [2, 3]. We say that a general metric space is high di-
distance functionl : ¢/ x # — R* defined among them.  mensjonal when its histogram of distances is concentrated.
This distance may (and ideally does) satisfy the three ax- Proximity search algorithms build aindex of the
ioms that make the set a metric spaseict positiveness  gatabase and perform queries using this index, avoiding the
symmetryandtriangle inequality The smaller the distance  exhaustive search. For general metric spaces, there exist a
between two objects, the more “similar” they are. We have nymper of methods to preprocess the database in order to re-
a finite databas§ C U/, which is a subset of the universe g ce the number of distance evaluations [3]. All those struc
and can be preprocessed. Later, given a new object from thqres work on the basis of discarding elements using the

Range query: retrieve all elements within distaneeto ¢
inS.

Nearest neighbor query (k-NN): retrieve thet closest el-
ementstayin S.

1. Introduction

*This work has been partially supported CYTED VII.19 RIBIDI
Project (both authors) and Millenium Nucleus Center for \iR&search,
Grant P01-029-F, Mideplan, Chile (first author).

triangle inequality, and most use the classical divide-and
conquer approach. (which is not specific of metric space
searching).



The Spatial Approximation Treesg—treg is a recently For the experiments of this paper we have selected two
proposed data structure of this kind [6, 7], based on a novelmetric spaces, which are the real unitary cube in dimen-
concept: approach the query spatially, that is, start aesom sion 15 and 5, using Euclidean distance, where we gener-
point in the space and get closer and closer to the queryated 100,000 random points with uniform distribution. We
It has been shown that ttea—treegives better space-time have tested oullsa—treeon these synthetic sets of random
tradeoffs than the other existing structures on metricapac points in aD-dimensional space: every coordinate has been
of high dimension or queries with low selectivity [7], which chosen uniformly and independently [0, 1). However,
is the case in many applications. Tée-treg however, has  we have not used the fact that the space has coordinates,
some important weaknesses. The first is that, compared tdreating the points as abstract objects in an unknown metric
other indexes, it is relatively costly to build in low dimen- space. This choice allows us to control the exact dimension-
sions The second is that, in low dimensions or for queries ality we are working with, which is not so easy if the space
with high selectivity (smalk or k), its search performance is a general metric space or the points come from a real sit-
is poor when compared to simple alternatives. The third uation. The results on these two spaces are representative
is that it is a static data structure: once built, it is hard to of those on several other metric spaces we tested, for lack
add/delete elements to/from it. These weaknesses make thef space we omit those results.
sa—treeunsuitable for important applications such as multi-  This paper is organized as follows: In Section 2 we give a
media databases. description of thelsa—treesSection 3 presents our new im-
proved deletion method, and Section 4 contains results ob-
tained from experimentations. Finally, in Section 5 we con-
clude and discuss about possible extensions for our work.

The dsa-treeis a dynamic version of thea—treeand
overcomes its drawbacks. The dynarsée-treecan be built
incrementally (i.e., by successive insertions) at the same
cost of its static version, and the search performance i una
fected. It has been shown that it compares favorably againsR. Dynamic Spatial Approximation Trees
alternative data structures in spaces of high dimension or
gueries with low selectivity [9]. Thesa—treesupports in- In this section we briefly describe dynamia—trees
sertion and deletions of elements. However, it has been(dsa—treesﬁor short) [8, 9, 10, 11].
noted that deletions degrade the structure over time, so the
structure cannot be regarded as fully dynamic in the sense
that deletions are not sustainable for long periods of time. 2.1. Insertion Algorithm

In this paper we present a new deletion algorithm that
does not degrade the search performance over time. Only TO construct thelsa—treeincrementally we fix a maxi-
with such a deletion algorithm can we consider thadtse— ~ Mum tree arity, and also keep a timestamp of the insertion
treeis a fully dynamic data structure. Although the new time of each element. Each nodén the tree is connected
deletion method is more costly than the previous, it can beto its children, which form a set of elements calléda),
invoked sparsely, so as to have an amortized deletion costhe neighborsof a. When inserting a new element its
comparable to the insertion cost of tsa—tree The pre-  Point of insertion is found by beginning from the tree root
vious deletion algorithm was cheaper but degraded searct and performing the following procedure. We addo
costs. We show that this new algorithm yields better trade- V(a) (as a new leaf node) if (1) is closer toa that to any

offs between search performance and deletion cost. element) € N(a), and (2) the arity of node, |N(a)l, is
not already maximal. Otherwise we foreeto choose the

Full dynamism is not so common in metric data struc- ¢|qeqt neighbor inv(a) and keep walking down the tree
tures [3]. While permitting efficient insertions is quite ;, a recursive manner, until we reach a nadsuch that:
usual, deletions are rarely handled. In several indexes oN€q .oser tou that anyb € N(a) and the arity of node is
can delete some elements, but t.he.re are selected elemen%t maximal (this eventually occurs at a tree leaf). At this
that cannot be deleted at all. This is particularly problem- point we addz at the end of the listv(a), put the current
atic in the metric space scenario, where objects could bejmestamp tar and increment the current timestamp. The
very large (€.g., images) _and deletln_g them physically may following information is kept in each nodeof the tree: the
be mandatory. Our algorithms permit deleting any element oo ¢ neighbordV (a), the timestampime(a) of the inser-
from a dsa-tree This is remarkable on a data structure 4. time of the node. and the covering radf:) with the
whose original conception was markedly static [6]. distance between and the farthest element in the subtree

The outcome is a much more practical data structure thatof a.
can be useful in a wide range of applications. We expectthe Note that by reading neighbors from left to right we have
dsa—tree with the new deletion algorithm, to replace the increasing timestamps. It also holds that the parent is al-
static version in the developments to come. ways older than its children. Thisa—treecan be built by



starting with a first single node where N(a) = § and RangeSearch (Node a, Query ¢, Radius r,
R(a) = 0, and then performing successive insertions. Ti mestanp t)
1. If time(a) <t A d(a,q) < R(a)+r Then
2.2. Range Search Algorithm 2. If d(a,q) <r Then Report a
3. Amin 4 00
The idea for range searching is to replicate the insertion|4- ~ For bi € N(a) .
process of relevant elements. Thatis, we act as if we wanted 5 I Ffl Scbr‘eas:‘:lg _t' ”‘;"St?:p or der
to insertg but keep in mind that relevant elements may be at | - (bi, q),— min + 21 Then
. : o . . 6. k< min {j >, d(bi,q) >d(bj,q)+2r}
distance up tor from ¢, so in each decision for simulating .
. . . . 7. RangeSearch (b, q, r, time(by))
the insertion of; we permit atole_rance oJE7_", SO that it may 8. dmin — min{dmin, d(bi,q)}
be that relevant elements were inserted in different childr

of the current node, and backtracking is necessary.

We have to consider two facts. The first is that, when an
elementz was inserted, a nodein its path may not have
been chosen as its parent because its arity was already max-
imal. So, at query time, instead of choosing the closest todifferentat the time: was inserted. I were inserted again,

x among{a} U N(a), we may have chosen only among itcould choose to enter a different path in the tree, which di
N(a). Hence, we perform the minimization only among not exist at the time of its first insertion.

elements inN (a). The second fact is that, at the time An elegant solution to this problem is to perform a range
was inserted, elements with higher timestamp were not yetsearch with radius zero, that is, a query of the fdu0).
present in the tree, se could choose its closest neighbor This is reasonably cheap and will lead us to all the places in
only among elements older than itself. Hence, we considerthe tree where: could have been inserted.

Figure 1. Searching ¢ with radius r in a dsa—tree.

the neighborgb, ..., b} of a from oldest to newest, dis- On the other hand, whether this search is necessary is ap-
regardinga, and perform the minimization as we traverse plication dependent. The application could return a handle
the list. This means that we enter into the subtreég; of when an object was inserted into the database. This han-
d(q,b;) < min (d(q,b),...,d(q,bi_1))+2r. Letus stress  dle can contain a pointer to the corresponding tree node.

again the reason: between the insertioh;afndb; , ; there Adding pointers to the parent in the tree would permit to
may have appeared new elements that clhpgest because  locate the path for free (in terms of distance computations)
b;+; was not yet present, so we may miss an element if we Hence, in which follows, we do not consider the location of
do not enter intd; because of the existencelof ;. the object as part of the deletion problem, although we have

Up to now we do not really need the exact timestamps shown how to proceed if necessary.
but just to keep the neighbors sorted by timestamp. We We had studied several alternatives to delete elements
make better use of the timestamp information in order to from adsa-treen [9, 11]. From the beginning we have dis-
reduce the work done inside older neighbors. Say thatcarded the trivial option of marking the element as deleted
d(q,b;) > d(g,biy;) + 2r. We have to enter into the sub- without actually deleting it. As explained, this is likelg t
tree ofb; anyway becauss; is older. However, only the  be unacceptable in most applications. We assume that the
elements with timestamp smaller than thathpf; should element has to be physically deleted. We may, if desired,
be considered when searching insigeyounger elements  keep its node in the tree, but not the object itself.
have seem; . ; and they cannot be interesting for the search It should be clear that a tree leaf can always be removed
if they are insideb;. As parent nodes are older than their Without any complication, so we focus on how to remove
descendants, as soon as we find a node inside the subtree #fternal tree nodes.
b; with timestamp larger than that éf,; we can stop the
searchinthat branch, because all its subtree is even younge2.3.1. Reinserting Subtrees

Figure 1 shows the algorithm to perform range search-
ing. Note that, except in the first invocatiod(a, ) is al-
ready known from the invoking process.

A widespread idea in the Euclidean range search commu-
nity is that reinserting the elements of a disk page may be
beneficial because, with more elements in the tree, the space
can be clustered better. We follow this principle now to ob-

2.3. Deletions tain a method with costly deletions but good search perfor-
mance.
To delete an element, the first step is to find it in the When nodez is deleted, we disconnect the subtree

tree. Unlike most classical data structures, doing thists n  rooted atz from the main tree. This operation does not af-
equivalent to simulating the insertion @fand seeing where  fect the correctness of the remaining tree, but we have now
it leads us to in the tree. The reason is that the tree wasto reinsert the subtrees rooted at the node¥ ¢f). To do



this efficiently we try to reinsert complete subtrees when- | Reinsert (Node a, Node y)
ever possible. 1. If |N(a)] < MazArity Then M < {a}U N(a)
In order to reinsert a subtree rootedyatwe follow the 2. Else M« N(a)
same steps as for inserting a fresh objgao as to find the 3. ¢ ¢ argminyed(b, y)
insertion poinia. The difference is that we have to assume | 4 €2 ¢ argmin,ey_gc,3d(b,y)
thaty is a “fat” object with radiusR(y). That is, we can 5. 1T dler,y) + R(y) < d(ea,y)
. 6. Then // keep subtree together
choose to put the whole subtree rooteg at a new neigh-
bor ofa only if d(y, a)+ R(y) is smaller thami(y, b) for an 7 B(a) - max(R(a), d(a,y) + R(y))
yitaly, Y Y, y 8. If cx=a Then // insert it here
b € N(a). Similarly, we can choose to go down by neigh- 9 N N
. : : (a) = N(a) U{y}
borc € N(a) only if d(y, c) + R(y) is smaller thani(y, b) 10 . time(y) < CurrentTime
for anyb € N(a). When none of these conditions hold, we | 11. El se Reinsert (ci, y) // go down
are forced to split the subtree rootedyanto its elements: 12. Else // split subtree
one is a single element, and the others are the subtrees |13. For 2€ N(y) Do Reinsert (a, 2)
rooted atN (). Once we split the subtree, we continue the |14. N(y) <0, R(y) <0
insertion process with each constituent separately. 15. Reinsert (a, y)

Every time we insert a node or a subtree, we pick a fresh
timestamp for the node or the root of the subtree. The ele- Figure 2. Simple algorithm to reinsert a subtree
ments inside the subtree should get fresh timestamps while  with root y into a dsa—tree with root a.
keeping the relative ordering among the subtree elements.
The easiest way to do this is to assume that timestamps are
stored relative to those of their parent. In this way, nahin
has to be done. We need, however, to store at each nodéhe one inA(z) is closer toc than any older neighbor, so
the maximum differential time stored in the subtree, so asWe have to consider only newer neighbors. Note that this
to updateCurrentTime appropriately when a whole sub- is valid as long as we reenter the same path wheras
tree is reinserted. This is easily done at insertion time andinserted previously.
omitted in the pseudocode for simplicity. The average cost of subtree reinsertion is as follows.

During reinsertion, we also modify the covering radii of Assume that we just reinsert the elements one by one.
the tree nodes traversed. When inserting a whole subtree Assuming that the tree has always arityand that it is
we have to addl(y, a) + R(y), which may be larger than  perfectly balanced, the average size of a randomly cho-
necessary. This involves at search time a price for havingSen subtree turns out to Beg, n(1 + o(1)). As every
reinserted a whole subtree in one shot. (re)insertions 0023'[54 log 4 n(1 + o(1)), the average dele-

Note that it may seem that, when searching the place totion costis(A4log’ n)(1 + o(1)). This is much more costly
reinsert subtrees of a removed nagene could save some ~ than an insertion.
time by starting the search at the parentoHowever, the . .
tree has changed since the subtreews created, andnew 3- A New Deletion Technique
choices may exist now.

Figure 2 shows the algorithm to reinsert a tree with root  Reinsertion of subtrees and reinsertion by element have
y into adsa—treerooted ata. The deletion of a node is shown that it is possible to delete elements frodsa—tree
done by first locating it in the tree (say, € N (b)), then at a reasonable cost, but it has been noted that deletions de-
removing it fromN (b), and finally reinserting every subtree grade the structure over time, so that deletions are not sus-
y € N(z) usingRei nsert (a, y) . tainable for long periods of time.

This degradation is partially caused by inevitable over-

Optimization. A further optimization to the subtree rein- estimation of covering radii. Figure 3 shows query costs
sertion process makes a more clever use of timestamps. Sagn the space of vectors in dimension 5, without correcting
thatz will be deleted, and leti(x) be the set of ancestors the covering radii after each deletion (above), and correct
of z, that is, all the nodes in the path from the rootzto ing them (below). We can observe that the overestimation

For each node belonging to the subtree rooted &atwe of covering radii is not the only reason for degradation.
haveA(z) C A(c). So, when node was inserted, it was Now we propose and study a new method to handle dele-
compared against all the neighbors of every nodd (m) tions over thalsa—tree Our idea is to ensure that the result-
whose timestamp was lower than thatcofUsing this in- ing tree is exactly as if the deleted element had never been
formation we can avoid evaluating distances to these nodesnserted. This ensures that no degradation can occur due
when revisiting them at the time of reinserting That is, to repeated deletions. The new method is calédulilding

when looking for the neighbor closest ¢pwe know that  subtrees



Query cost per element for n = 50000 vectors, dim. 5, Ar. 4
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1. @ <« {a} , T « 0
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3 b « first elenent of @
4 Q « Q—{b}

5 For v € N(b)

6. I f timestamp(v) > timestamp(z) Then
7. N(b) <« N(b)—{v}
8 T « T U T(b)

9 El se

10 Q « Q U {v}

11 Return T
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40% deleted —=—
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Figure 3. Query costs for different percentages
of database deleted, without correcting the cov-

ering radii (above) and correcting them (below).

When noder € N(a) is deleted, we disconnegtfrom

the main tree. Hence all its descendants must be reinserted.

Moreover, elements in the subtreentthat are younger than
x have been compared againsto decide their insertion
point. Therefore, these elements, in absence,ofould
choose another path if we reinsert them into the tree. Then,
we retrieve all the elements younger tharthat descend
from a (i.e. those whose timestamp is greater, which in-
cludes its descendants) and reinsert them into the trae, lea
ing the tree as i had never been inserted.

If we reinsert the elements younger thanike com-
pletely new elements, that is if they get fresh timestamps,

Figure 4. Algorithm to retrieve from the subtree

rooted a all the elements younger than z € N (a).

Rebui | dTS (Node a, Node «z)

1. T +« RetrieveTS (a,x)

2. Sort T by timestanp (ol der first)
3. N(a) « N(a)-—{z}

4. For veT

5.

Insert (a, v)
/1 without changing its tinmestanp

Figure 5. Algorithm to rebuild the subtree with
root a in a dsa-tree, after the deletion of =z €
N(a).

Note that in this method the covering radii can also be-

we must search the appropriate point of reinsertion begin—come overestimated, be(_:au_se they are never reduced due to
ning at tree root. On the other hand, if we maintain their & déleted element. Thatis, if we delete an elemewevery

timestamp we can begin reinsertion process figrao we

a € A(z) such that: was the farthest element in its subtree

can save many comparisons. In order to leave the resultingVill POssibly have itsii(a) overestimated. In spite of it, this
tree exactly as if: never had been inserted, we must reinsert Problem does not seem to affect much search performance

the elements in the original order, that is the elements mustSINce, as can be seen in Figure 6, it does not significantly

be reinserted in increasing order of timestamp.
Hence, when node € N(a) is deleted we retrieve all
the elements younger tharfrom the subtree rooted then

degrade over time (we have considered the same space used
in Figure 3).

The average cost of rebuilding subtrees inlsa—tree

disconnect them from the main tree, sort them in increasingwith arity A4 is (A% /4)log%n(1 + o(1)) (we omit the proof
order of timestamp and reinsert them one by one, searchingor lack of space), that is more costly than reinsertion ele-

their reinsertion point from.

ment by element (or of subtrees), and this difference grows

Figure 4 shows the algorithm to retrieve from the subtree as the arity tree grows. As we will see, however, this is

of a all the elements younger than We denotd’(b) the set

compensated by a better search time.



Query cost per element for n = 50000 vectors, dim. 5, Ar. 4 enough information to avoid entering into the subtreé of
‘ once we have reached So we cannot includiin the min-
imization and have to enter always its subtree (except if we
can use the timestamp informationidb prune the search).
The search performed at insertion time, on the other
] hand, has to follow just one path in the tree. In this case,
107 deleied | one is free to choose inserting the new element into any fake

20% deleted —»—

1000 300 deleted —=— - neighbor of the current node, or into the closest non-fake
Poor o1 : neighbor. A good policy is, however, trying not to increase
et et the size of subtrees rooted at fake nodes, as eventually they
will have to be rebuilt (see later). Hence, although detetio

is simple, the search process degrades its performance.
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Figure 6. Query costs for different percentages of

database deleted, using rebuilding of subtrees. 3.3. Combining both Methods

We have two methods. Fake nodes delete elements for
3.1. Optimization free but degrade the search performance of the tree. Subtree
rebuilding makes a costly subtree rebuilding but maintains
We analyze two posible optimizations to rebuilding sub- the search quality of the tree. Note that the cost of rebuild-
trees. Say that will be deleted from the subtree rooted ing a subtree would not be much different if it contained
at nodea (that isz € N(a)). The first one makes a more fake nodes, so we could remove all the fake nodes with a
clever use of timestamps. We can observe that there carsingle subtree rebuilding, therefore amortizing the higstc
be elements younger tharwhich not will change theirin-  of the rebuilding over many deletions.
sertion point when we reinsert them into the subtree rooted  Our idea is to ensure that every subtree has at most a
a. These elements are younger than the first child ahd fractiona of fake nodes. We say that such subtrees are “bal-
also than the next sibling of For these elements, the avail- anced”. When we mark a new nodec N (a) as fake, we
able options at reinsertion time will be the same of insartio check if we have not unbalanced it. In this casds dis-
time, so they will choose the same. So we can avoid com-carded and all the younger non-fake elements reinserted in
puting their new insertion place. increasing order of timestamp. The only difference is that
A further optimization to the subtree rebuilding process we never insert a fake node, but we discard it. A compli-
uses the previous work done during the insertion to savecation is that removing may unbalance several ancestors
distance evaluations. That is, when nadevas inserted, of z, even ifz is just a leaf that can be directly removed,
it was compared against all the neighbors of every node inand even if the ancestor is not rooted at a fake node. As an
A(x) whose timestamp was lower than thatyof Using example, consider a unary tree of heightwhere all the
this information we can avoid evaluating distances to thesenodes at distanc& from the root; > 0, are fake. The tree
nodes when revisiting them at the time of reinsergnghat is balanced forne = 1/3, but removing the leaf or marking it
is, when looking for the neighbor closesttowe know that  as fake its parent unbalances every node. We opt for a sim-
the one inA(z) is closer toy than any older neighbor, so ple solution. We look for the lowest ancestoriothat gets
we have to consider only newer neighbors. Note that this unbalanced and rebuild all the subtree from the pareat of
is valid as long as we reenter the same path whenas As an example in ours experiment on vectors in dimension

inserted previously. 15, usinga = 30%, deleting 10% of the elements the “real”
a is 2.2%, deleting 20% is 3.9%, deleting 30% is 5.5% and
3.2. Fake Nodes deleting 40% produces 6.6%, that is clearly lower than the
a chosen as parameter.
Another alternative to delete elementis to leave its This technique has a nice performance property. Since

node in the tree (without content) and mark it as deleted. we reinsert the non-fake elements, we have the guarantee
We call these nodefake Although cheap and simple at that the fractiory of its elements are fake. This means that
deletion time, we must now figure out how to carry out a if the size of the subtree to rebuild i, we pay on aver-
consistent search when some nodes do not contain an obage A(1 — a)m reinsertions for each:m deletions made
ject. This alternative was also considered previously Jn [9 in the subtree. Hence the amortized cost of a deletion is
because it is a general form of amortizing the cost of one at most((1 — «)/a)A%logan. This is almost true, since
deletion over many. because of the problem mentioned in the above paragraph
Basically, if nodeb € N(a) is fake, we do not have we sometimes cannot guarantee the given fraction of fake



nodes. In practice, however, all the subtrees easily gatisf gy Cton cos forn = 100000 veors, dim. 15 . 16

the criterion. - Reporion B lenent (o) —
Asymptotically, the tree works as if we permanently had

a fractiona of fake nodes. Hence, we can control the trade-

off between deletion and search cost. Note that pure fake

nodes corresponds @ = 100% and pure rebuilding of

subtree tax = 0%.
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Deletion cost for n = 100000 vectors, dim. 15

A further optimization to those considered in Section 3.1, 80000 ™y g ——
allows us saving more distance evaluations when we rebuild
a subtree. We rebuild a subtree when we find the lowest
ancestory of z, whose fraction of fake nodes exceeds
Nodey can be in one of two possible situations: {1)s

a fake node, or (2) is not a fake node. In both cases we
can save distance evaluations. In (1) sinde a fake node,
theny must be discarded, and we proceed as pure rebuild- L L T S e T

ing of subtrees. This means discardinig the subtree of its Percentage of database deleted

parent and reinserting the non-fake elements younger than

y (sorted by timestamp). In (2), elemepnttannot be dis-

carded, so we retrieve the timestampf the oldest fake Figure 7. Deletion costs of 10% of database with
node in the subtree rootedgtand reinsert all the non-fake arity 16 (above), and how arity affects search
elements not older than(sorted by timestamp).
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40000

30000

20000

Distance evaluations x 1000

10000

costs (below), using rebuilding of subtrees in

4. Experimental Comparison dim. 15.

Let us now compare the reinsertion of subtrees versus
rebuilding of subtrees on the space of vectors in dimension Figure 9 shows the results far = 0% (pure rebuild-

15 using arity 16. Figure 7 shows the cost to delete 10% of ing of subtrees), 1%, 3% and 10%. As can be seen, even
database with arity 16 (above), and how the arity affects theconsideringr = 10% the search quality does not degrade
search cost using pure rebuilding of subtrees (below). As it considerably as the number of deletions grows. Figure 10
can be seen, our new method is much more expensive (bushows the same data in a way that permits comparing the
it preserves the quality of the database over time, as seen).change of search costs asgrows, considering 10% and
We compare now the three methods to handle deletions40% of elements deleted. Asgrows, the search cost in-
on vectors in dimension 15 using different arities, that is creases because of the need to enter every neighbor of fake
pure fake nodes, pure rebuilding of subtrees and the com-nodes. The difference in search cost ceases to be reasonable
bined method. Figure 8 shows the deletion cost for the firstas early agx = 30%, but it is not significant to lowet.. So
10% of the database using arity 16 (above) and 32 (below)one has to choose the right tradeoff between deletion and
and differenta. We can note that pure rebuilding of sub- search cost depending on the application. A good tradeoff
trees is very costly, but as soon as we allew= 1% the for vectors in dimension 15 is = 10%.
deletion costs decrease considerably. Figure 11 shows the comparison between the reinsertion
On the other hand, let us consider how the search costof subtrees and the new rebuilding of subtrees. In each case
are affected by the fractiamof fake nodes and by deletions. we show search costs versus deletion costs, when deleting
We search on an index built on half of the elements of the 10% or 40% of database, and considering range searches
database. This half is built by inserting more elements andwhere 0.01%, 0.1% and 1% of database is retrieved. For ex-
then removing enough elements to leave 50% of the set inample, we can note that deleting 10% of database, a given
the index. So, we compare the search on sets of the samsearch cost is more costly to achieve (in terms of deletion
size where a percentage of the elements has been deletecbst) under rebuilding of subtrees than under the reimserti
in order to leave the set in that size. For example, 30% of subtrees. However, the rebuilding of subtrees allows us
deletions means that we inserted 80000 elements and theto achieve cheaper search costs if we pay more expensive
removed 30000, so as to leave 50000 elements (half of thedeletion costs (which is not possible at all with the former
set). method). On the other hand, considering 40% of database
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subtrees with fake nodes, for arities 16 (above)
and 32 (below) in dim. 15.
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search costs at lower deletion costs. In a real scenario, soov0 | 104 deeed
where the database evolves over time and suffers many in- adono | 0 deleted  —=—

sertions and deletions, the difference between both method
will favor more and more clearly the new technique.

Figure 12 shows how the deletion costs of the combined
method improve with the optimizations proposed in Sec- 36000
tion 3.1 and Section 3.3.1, for different valuescof Fig- sao00
ure 13 shows the deletion costs with optimized rebuilding
of subtrees for different.

We compare the methods by deleting different percent-
ages of the database to make appreciable not only the dele-
tion cost per element but also to show the cumulative effect
of deletions over the structure. of subtrees and fake nodes for different .
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Figure 9. Search costs combining the rebuilding

5. Conclusions

In this paper we have presented a new method to deletewith fake nodes.
elements from alsa—tree This method has shown to be Our new dynamiasa—treestands out as a practical and
better than the former because the tradeoff between deletio efficient data structure that can be used in a wide range of
and search cost improves. applications, while retaining the good features of theierig
The outcome is a fully dynamic data structure that can nal data structure.
be managed through insertions and deletions over arbitrar- We are currently pursuing in the direction of making the
ily long periods of time without any reorganization. We dsa—treewvork efficiently in secondary memory. In that case
also obtain optimizations for deletion costs in both meth- both the number of distance computations and disk accesses
ods: pure rebuilding of subtrees and the combined methodare relevant.
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