
Improved Antidictionary Based Compression�
Maxime Crochemore

Institut Gaspard-Monge, France; King’s College, London.
mac@univ-mlv.fr

Gonzalo Navarro
Dept. of Computer Science, University of Chile.

gnavarro@dcc.uchile.cl

Abstract

The compression of binary texts using antidictionaries is
a novel technique based on the fact that some substrings
(called “antifactors”) never appear in the text. Letsb be
an antifactor, whereb is its last bit. Every times appears
in the text we know that the next bit isb and hence omit
its representation. Since building the set of all antifactors
is space consuming at compression time, it is customary to
limit the maximum length of antifactors considered up to a
constantk. Larger k yields better compression of the text
but requires more space at compression time.

In this paper we introduce the notion ofalmost antifac-
tors, which are strings that rarely appear in the text. More
formally, almost antifactors are strings that, if we consider
them as antifactors and separately code their occurrences
as exceptions, the compression ratio improves. We show
that almost antifactors permit improving compression with
a limited amount of main memory to compress. Our ex-
periments show that they obtain the same compression of
the classical algorithm using only 30%–55% of its memory
space.

1. Introduction

Text compression aims at representing a text using less
space [3]. The compression of binary texts using antidic-
tionaries [4, 5] is a novel technique based on the fact that
some substrings (called “antifactors”) never appear in the
text. Letsb be an antifactor, whereb is its last bit. Every
times appears in the text we know that the next bit isb and
hence omit its representation. The set of antifactors used to
compress a text is called theantidictionary.�Partially supported by ECOS/Conicyt Project C99E04 and Fondecyt
grant 1-020831.

In a semi-static setup, a suitable antidictionary is ob-
tained from the text in a first pass and the text is compressed
using the antidictionary in a second pass. The compressed
file contains the antidictionary plus the compressed text.
Adding an antifactor to the antidictionary reduces the size
of the compressed text but increases the size of the anti-
dictionary and hence its representation in the compressed
file. A simple algorithm to compute the net gain obtained
by each antifactor and to choose the useful ones (those with
positive gain) exists [5], thus yielding the “optimal” antidic-
tionary.

In general, the method is slow to compress and fast to
decompress, which is good because a text is usually com-
pressed once and decompressed many times. So we do not
care much about compression performance. However, a
more important disadvantage of the method is the amount
of memory used at compression time. Despite that the final
set of useful antifactors is normally small, we have to find
and store all the antifactors first and then choose those with
positive net gain. A way to reduce the amount of memory
used is to limit the length of the antifactors considered up
to a constantk. A largerk yields better compression of the
text but needs more memory to compress the text.

In this paper we introduce the notion ofalmost antifac-
tors, which are strings that rarely appear in the text. More
formally, almost antifactors are strings (either normal an-
tifactors or text factors) that, if we consider them as antifac-
tors and separately code their occurrences as exceptions, we
obtain improved compression ratios.

Our experiments show that almost antifactors are espe-
cially useful to improve compression when there is a limited
amount of main memory to compress, that is, when lowk
values have to be used. In these cases we obtain the same
compression of the classical algorithm using 30%–55% of
the memory space.

1

2. Compression Using Antidictionaries

In this section we briefly explain the algorithm to com-
press a binary text using antidictionaries. For a full descrip-
tion see [4, 5].

We represent the set of text factors using a binary trie
data structure [7, 2]. The valuek is then the maximum
height allowed for the trie. This trie is built in a single pass
over the text using standard techniques, which in particular
involve storing asuffix linkon each node. A suffix link con-
nects the node that representsbs to the node that representss, whereb is a single bit. For example, a simpleO(kn) time
construction algorithm traverses the text and keeps a cursor
at the trie node that represents the last length-k suffix read,b1 : : : bk. When a new text characterb is read, it uses the
suffix link to reach the node that representsb2 : : : bk and
then creates its childb2 : : : bkb, if it does not already exist
(this is the new cursor position). If the node did not exist
already, it repeats the process creatingb3 : : : bkb, b4 : : : bkb,
and so on, until the corresponding node exists (and hence
all its remaining suffixes already exist) or until it createsthe
node representing justb.

Once this trie is built, we haveinternal and external
nodes. The former correspond to nodes actually represented
in the tree, that is, to factors of the text. The external
nodes correspond to antifactors, and they are implicitly rep-
resented in the tree by the null pointers that are children of
internal nodes. The exception are the (forcedly) external
nodes at depthk + 1, that are children of internal nodes at
the maximum depthk, which may or may not be antifactors.

We transform this trie of text factors into atrie of an-
tifactors: Each external node that surely corresponds to an
antifactor (i.e., at depth� k) is converted into an internal
(leaf) node. These new internal nodes are calledterminal.
Note that not all leaves are terminal, as some leaves at depthk are not antifactors.

For compression, this trie is later turned into an automa-
ton [1] that recognizes antifactors: basically, every timewe
reach a node with a terminal child, this child represents an
antifactor, so we can omit the bit in the compressed text rep-
resentation. Similarly, for decompression, the trie is con-
verted into a transducer that completes the missing bits. For
this paper it is enough to think in terms of the trie of antifac-
tors. In the compressed file we store the trie of antifactors
and the compressed text. The text is given as a pair(s; n),
wheres is the text with some bits omitted as explained andn is the uncompressed text length. The valuen is neces-
sary for technical reasons, for example the text10n�1 withk = 2 can be represented as the antifactor setf01; 11g and
the pair(1; n).

An important consideration when converting external
nodes into antifactors is to avoid representing antifactors
that are suffixes of others, as the shorter is enough to omit

all the corresponding bits, and storing the longer one unnec-
essarily increases the antidictionary size. Hence, the pro-
cess of converting external nodes into antifactors is done
in breath-first top-down order in the tree, so as to get
the shorter antifactors first. Before converting an exter-
nal nodebs into a terminal node, we use its suffix link
to check thats is an internal node and is not terminal.
This ensures that, given external nodes representing stringss; b1s; b2b1s; : : :, only s will be converted into terminal:b1s will not because its suffix link points to the terminal
nodes, b2b1s will not because its suffix link points to an
external node (sinceb1s was left as an external node), and
so on.

3. Optimal Antidictionaries

As we letk grow, more and more antifactors are found.
This allows us to omit more and more bits in the compressed
representation of the text. On the other hand, we need to
code the new antifactors in the compressed file. Therefore
the challenge of finding an optimal subset of antifactors is
raised.

In this section we present an algorithm [5] that, given a
binary tree of antifactors, obtains an optimal subset of it,in
the sense that no other subset will obtain better compression
when both the antidictionary representation and the com-
pressed text are considered. Combined with the previous
technique that first finds all the antifactors of length up tok,
this scheme improves monotonically ask grows, because it
takes the optimal subset of larger and larger sets.

The main concept is that it is possible to exactly predict
the number of bits that are saved in the compressed text
thanks to a given antifactorsb. This is precisely the number
of occurrences of its longest proper prefixs in the original
text, because each time this prefix appears the compressor
avoids coding the next bitb thanks to the existence of the
antifactorsb.

On the other hand, we need to know how many bits we
need in order to code the antifactor in the compressed file,
for which we have to fix a coding scheme. We code the
antidictionary as follows: we traverse the tree in depth-first
order and write a 1 bit each time we find an internal node
and a 0 bit each time we find an external node. Therefore,
a binary tree ofm internal nodes will need exactly2m+ 1
bits. This is almost identical to the scheme used in [5].

The algorithm works recursively on the binary tree of
antifactors. The goal is to compute thegain that is obtained
by storing each subtree. If thegain is negative then the
subtree is pruned, otherwise it is kept. The final non-pruned
subtree is the optimal set of antifactors.

To compute thegain of a node, we need to have com-
puted thegainsof its two children. Only the terminal nodes
of the tree (the antifactors) add a positive term to thegain,

namely the number of occurrences of their longest proper
prefix. Being leaves, they also decrement theirgain in 3
bits. Thegainof an internal node is the sum of thegainsof
its two children minus one bit to represent the internal node.
Note that it is possible that an antifactor that at first seems
interesting turns out to be unconvenient when higher nodes
of the tree are considered.

Figure 1 depicts the algorithm, which takes time linear
in the size of the input. The algorithm removes unconve-
nient subtrees on the fly and leaves the optimal subtree. It
also returns the number of bits that will be saved thanks to
the compression. In the worst case it can return�1, which
means that an empty antidictionary is the best choice. In
that case the text will not be altered but an extra bit to code
the empty antidictionary will be necessary.

Optimize (A)
if A is an external node then return �1
if A is terminal

then gain oParent(A)� 3
else gain Optimize (hild0(A))+ Optimize (hild1(A)) � 1

if gain > �1 then return gain
remove the whole tree rooted at A
return �1

Figure 1. The algorithm that leaves an opti-
mal antidictionary from an initial set of can-
didates. The children of A are referred to ashild0 and hild1. Function oParent gives
the number of times that the factor repre-
sented by the parent node of A appears in
the text. The algorithm returns the number of
bits that the compression will save.

What is left is the algorithm to computeoParent.
This is the number of occurrences of the parent node ofA,
so it is enough to be able to keep count of the number of
times every trie node has appeared in the text. This is ob-
tained as a modification of the algorithm that obtains all the
text factors of length up tok. Each time a new text bit is
read we add 1 to the number of occurrences of the cursor
node. At the end, each text position has been counted ex-
actly once and added to the number of occurrences of the
longest text factor ending at that position. The number of
occurrences of the factors of lengthk is already correct, but
shorter factorss still need that we add the occurrences of
other factorss0s they are suffixes of.

This is solved using the suffix links. These induce a topo-
logical ordering in the trie nodes, where the leaves at depthk are the first nodes that can be processed because they re-

ceive no suffix links. We traverse the nodes in this topo-
logical order and, for every suffix linkbs ! s, we add the
occurrences of nodebs to those ofs. This algorithm cor-
rectly computes the number of occurrences of all the text
factors in time proportional to the size of the tree.

In the rest of the paper this will be called the “classical”
algorithm.

4. Almost Antifactors

Let us consider this odd behavior of antidictionaries: if
we try to compress the string10n�1 with k � 2, then the re-
sult is very good because we can use, for example,f01; 11g
as our antidictionary. This permits compressing the string
to (1; n) plus the small antidictionary. However, if we re-
verse the string to0n�11, then for anyk < n the antidic-
tionary containsf10; 11g, which indeed does not yield any
compression. For example, the classical algorithm yields
an empty antidictionary. Yet, both strings have the same
entropy.

The main problem is that a single occurrence of a string
in the text (in our second example the string01) outrules it
as an antifactor. In a less extreme case, it may be possible
that a stringsb appears just a few times in the text, but its
prefix s appears so many times that it is better to considersb as an antifactor. Of course, to be able to recover the
original text, we need to code somehow those text positions
where the bit predicted by taking the string as an antifactor
is wrong. We callexceptionsthe positions in the original
text where this happens, that is, the final positions of the
occurrences ofsb in the text.

Let us assume that a given strings appearsm times in
the text, and thats0 ands1 appearm0 andm1 times, re-
spectively, so thatm = m0 +m1 (except ifs is at the end
of the text, wherem = m0 +m1 + 1). Let us assume that
we neede bits to code an exception. Hence, ifm > e�m0,
then we improve the compression by considerings0 as an
antifactor (similarly withs1). Note that in the computation
we have used the fact that we omit the bit even when we are
wrong, although in this case we paye bits for reversing the
mistake. We callalmost antifactorsthose strings that im-
prove compression if taken as antifactors. This, of course,
includes true antifactors that have no other antifactor as a
suffix.

In this scheme we generate two files: one is the same as
before (antidictionary plus compressed text) and the other
is the exceptions file, which will be read in parallel with the
classical file. Many different coding formats are possible
for the exceptions file. We have chosen to code the dif-
ferences between consecutive positions of exceptions using
the 8:1 format. This format codes a number as a sequence
of bytes, from which 7 bits are used to code data and the
eighth signals the end of the number.

We build on top of the previous algorithm. The idea is
that we can compute again for all internal nodes as if they
were terminal. If a given nodeA is taken as an antifactor
(and hence converted into a leaf node), then the gain that it
will produce isoParent(A)� e� o(A) (1)

whereo(A) is the number of timesA occurs in the text.
The first term corresponds to the number of times a (correct
or not) bit prediction will be made1, while the second term
is the penalty to code the exceptions. Note that this gain is
positive only ifA appears much fewer times than its parent
node.

Now, for each internal node, we have the choice of leav-
ing it as is or converting it into terminal (and hence deleting
its subtree). To make this decision, we have to compare the
gain it produces as an internal node versus the gain it pro-
duces as a terminal node (Eq. (1)). On top of this, we ap-
ply the normal optimization algorithm that discards subtrees
whose overall gain is not positive. Just like the optimiza-
tion algorithm, all this process has to be done bottom-up,
so that the gains of the subtrees are already computed when
we make the decision about the current node.

The problem is that we also have to guarantee that none
of these newly created terminal nodes are suffixes of others
(they could be suffixes of real antifactors as well). Other-
wise, ourgaincomputations of Eq. (1) would be optimistic,
since they will add up text occurrences that are not dis-
joint. When we deal with real antifactors, we can detect at
creation time whether we are trying to create an antifactor
whose suffix is already an antifactor. Moreover, in that case
it is clear that the shorter antifactor is the best choice2. This
is independent on the optimization of leaving the antifactors
of nonnegative gain, which is done later.

For this sake, we would like to process the tree top down,
so as to decide first which of the shorter substrings will be
almost antifactors, and later see if a node has a suffix that
is already terminal prior to considering converting it into
terminal as well. But even this is not a complete solution
now: given two terminal nodes, one a suffix of the other,
it is not immediate which is better: the longer one could
produce a larger gain, but whether it will be finally left in
the tree or not will be known later, when we process the
higher nodes (as an ancestor could have negative gain or be
converted into terminal).

The key problem is that the decision of what is an al-
most antifactor depends in turn on the gains produced, so

1This may be off by 1 ifA appears at the end of the text, but the effect
of this case is negligible and we ignore it here for simplicity.

2In fact, in pathological cases more compression could be obtained by
leaving the longer antifactor, if it turns out to need less bits to be repre-
sented. This has not been considered up to now.

we cannot separate the process of creating the almost an-
tifactors and computing their gains: creating an almost an-
tifactor changes the gains upwards in the tree, as well as the
gains downwards via (reversed) suffix links. So there seems
to be no suitable traversal order. It is not possible either
to do a first pass computing gains and then a second pass
deciding which will be terminals, because if one converts a
node into terminal its gain changes and modifies those of all
the ancestors in the tree. It is not possible to leave the re-
moval of redundant terminals for later because the removal
can also change previous decisions on ancestors of the re-
moved node.

We have resorted to heuristic solutions, some more so-
phisticated (and costly in compression time) than others.
We present now the two most successful ones.

4.1. A One-Pass Heuristic

A simple heuristic solution is to (1) determine terminal
nodes based solely on the gains of Eq. (1), without con-
sidering their possible gains as internal nodes; and (2) give
preference always to the shorter almost antifactor, which is
a good guess. That is, if a node produces a positive gain
when converted into terminal, it is converted into terminal
unless it has already a terminal suffix. So we first perform
a breadth-first top-down traversal determining which nodes
will be terminal, and then apply the normal bottom-up op-
timization algorithm to compute gains and decide which
nodes deserve belonging to the antidictionary.

Note that, unlike the case of exact antifactors, using the
suffix link is not enough to determine whether a suffix of the
current node is already terminal. Since antifactors were ex-
ternal nodes, the first extensionbs of a terminal nodes was
left as an external node because of its suffix link tos. The
next extensionb0bs and the others had suffix links pointing
to external nodes and knew that they could not be terminals
either. However, with almost antifactors, an internal node
may become terminal, and a node may have to traverse sev-
eral suffix links through internal nodes in order to reach a
suffix terminal node.

Hence we use a transitive mechanism: Every time we
create a terminal node, we mark it as transitively-terminal
too. Every time we process a node, if its suffix link points
to a transitively-terminal node, we mark it as transitively-
terminal as well and forbid making the node terminal.

An advantage of this heuristic is that it produces reason-
able solutions by performing the same number of passes
over the tree as the classical method. It also needs the same
memory space.

We also tried the alternative of computing gains with-
out paying attention to suffixes dependencies, but the results
were worse. This suggests that the errors for ignoring these
dependencies are significative, and that it is better to giveat

least a simplified treatment to the problem.

4.2. A Multi-Pass Heuristic

A more sophisticated heuristic takes into account the
facts that (1) it may be a bad decision to convert into ter-
minal a node that turns out to have a subtree with a large
gain, hence losing it; and (2) giving the preference to the
highest node is not necessarily the best choice.

The idea is to perform several passes over the trie, re-
fining the gain estimations until we converge (that is, the
last pass makes no changes). In a first pass we compute
gains using the classical antifactor mechanism. In succes-
sive passes, we use the gains computed in the previous pass
to determine the gain an internal node produces, so as to
compare that gain against that of converting the node into
terminal. If the node gives a higher gain as a terminal node,
it is converted into terminal and its gain is recomputed (its
subtree is not physically deleted because the decision can
be reverted in further passes). All the passes are breadth
first top-down, since the gains are already computed in the
previous pass.

We use the same transitive mechanism to avoid making
terminal nodes with a suffix that is already terminal in the
current pass. Note that since we recompute the gains in
the wrong order (top-down), these are not consistent when
we finish. Hence, after each pass, we perform a bottom-up
recomputation of the gains, given the nodes that have been
declared as terminal in the current pass.

With respect to giving the preference always to the high-
est node, we keep this decision but permit correcting it in
further passes. Every time a nodes0s wants to become ter-
minal and cannot becauses is already terminal, it compares
its gain as a terminal node against that ofs. If the gains0s could obtain is higher, it annotates this gain in a “suffix-
gain” field of s. In the next pass, ifs wants to become
terminal but itssuffix-gainvalue is larger than the potential
gain ofs, this means thats is preventing a more productive
node from being terminal, sos does not become terminal.
This opens the door fors0s to become terminal in this pass.

Note that this is just a heuristic, becauses0s could later
be removed at a higher level, and then we lose both gains:
those ofs ands0s. However, this has worked better than
giving preference always to the lower node.

The method has the disadvantage of requiring several
passes over the trie until converging, but it does improve the
compression obtained. With respect to memory usage, it is
the same as for the classical algorithm. The new fields in-
troduced can share space with existing values that are used
in different moments in the algorithm.

5. Experimental Results

We have implemented the classical algorithm and both
heuristics using almost antifactors, together with their de-
compressors. We store both the antidictionary (using the
storage scheme of Section 3) and the compressed text into
the compressed file. The exceptions file is separated be-
cause it has to be accessed in parallel with the classical file.
Our implementation, in C under Linux, is careful with the
space usage. We have applied the algorithms to 100 Kbytes
(i.e., 800 Kbits) of articles extracted from The Wall Street
Journal 1989 [6].

Figure 2 shows the behavior of the classical algorithm
ask grows. On top, we show the sizes of both parts of the
compressed file (the antidictionary representation and the
compressed text). On the bottom we show the amount of
main memory needed to compress the file. As it can be seen,
reachingk = 40 is necessary to achieve good compression
(so the compressed file reaches 40% of the original file).
However, this requires a lot of main memory (more than
70 Mbytes), if we consider that we are compressing just
100 Kbytes. The algorithm has naturally low locality of
reference when manipulating the set of antidictionaries, so
this means that we need 70 Mbytes of main memory in order
to have reasonable compression time. Note that this figure
would worsen with larger files.

We consider now the effect of almost antifactors. As the
expected length of an exception has been left as a parame-
ter, we have manually found the best value for eachk. The
more bits we assume are necessary to code an exception,
the less almost antifactors are used. Ideally, the best per-
formance would be achieved when the expected length we
give and the resulting length matched, but since the heuris-
tic decisions taken are not perfect and tend to produce more
terminal nodes than the ideal, the optimum compression
is achieved with largere values. For example, the typical
length of an exception is around 9–14 bits, but the optima
are reached with values that are typically in the range 9–65
for the one-pass heuristic and 9–30 in the multi-pass. This
shows that the latter makes better decisions.

Figure 3 shows the behavior of the different parts of the
compressed representation. The maximum size of the ex-
ceptions file does never reach 15% of the compressed text
using the one-pass heuristic, while it has a more erratic be-
havior, surpassing 20% at times, on the multi-pass. In both
cases, there is no monotonic behavior in the optimal size of
the exceptions file. After reaching a maximum, its size re-
duces ask grows. This means that the importance of almost
antifactors is higher for smallk, or which is the same, when
the resources for compression are limited.

Figure 4 (top) compares the compression ratios obtained
with the classical algorithm against those obtained with the
two almost antifactor heuristics. The one-pass heuristic is

moderately successful: in the best case it improves the clas-
sical compression by less than 8%. However, it becomes
worse than the classical compression fork � 33.

0

100

200

300

400

500

600

700

800

900

5 10 15 20 25 30 35 40

bi
ts

 x
 1

,0
00

k [n = 800 Kbits]

antidictionary
text

total

0

10

20

30

40

50

60

70

80

5 10 15 20 25 30 35 40

M
by

te
s

k [n = 800 Kbits]

main memory used

Figure 2. Classical method:On top, the size of
the different parts of the compressed file ask grows. On the bottom, amount of memory
required.

The multi-pass heuristic is much more successful, al-
though in many cases it needs as many as 20 passes over
the trie (the number of passes is aboutk=2 : : :2k=3). It ob-
tains up to 12% improvement in the compression ratio and it
is never worse than the classical method. The improvement,
however, declines ask grows, being negligible fork = 40.

Another way to see this effect is to consider how much
less memory we need to obtain the same compression of
the classical algorithm. For example, with the multi-pass
heuristic we obtain withk = 32 the same compression ob-
tained with the classical algorithm usingk = 40, which
means that we can obtain the same result using 37% of the
memory space.

0

100

200

300

400

500

600

700

800

900

5 10 15 20 25 30 35 40

bi
ts

 x
 1

,0
00

k [n = 800 Kbits]

antidictionary
text

exceptions
total

0

100

200

300

400

500

600

700

800

900

5 10 15 20 25 30 35 40

bi
ts

 x
 1

,0
00

k [n = 800 Kbits]

antidictionary
text

exceptions
total

Figure 3. Almost antifactors:The sizes of the an-
tidictionary, the exceptions file, and the com-
pressed text. On top the one-pass and on the
bottom the multi-pass heuristics.

We show this memory comparison in Figure 4 (bottom).
Since we never obtain exactly the same compression ratio,
we can speak about an optimistic and a pessimistic estima-
tion of the savings in memory, knowing that the true value
is somewhere in between. As it can be seen in the figure, fork � 15 we need 30%–55% of the memory of the classical
algorithm in order to obtain the same compression perfor-
mance.

This shows that almost antifactors are interesting when
there is limited space for compression, since they permit
obtaining the compression ratios that, using the classicalal-
gorithm, would demand much more main memory.

0

20

40

60

80

100

5 10 15 20 25 30 35 40

co
m

pr
es

si
on

 r
at

io

k [n = 800 Kbits]

classical algorithm
almost antifactors (one pass)

almost antifactors (multi pass)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30 35 40

fr
ac

tio
n

of
 m

ai
n

m
em

or
y

us
ed

k [n = 800 Kbits]

optimistic
pessimistic

Figure 4. On top, the compression ratio ob-
tained for the classical algorithm and for both
almost antifactors heuristics. On the bottom,
fraction of the memory needed by the multi-
pass heuristic to obtain the same compres-
sion of the classical algorithm, when the latter
uses the k values shown in the x axis.

6. Conclusions

We have presented an improvement on antidictionary
based compression, by introducing a statistical technique
that adds antifactors which in fact do appear in the text,
but so few times that we improve compression by consid-
ering that they do not appear and coding the exceptions
separately. We call these “almost antifactors”. It is exper-
imentally shown that these improve compression by up to
12%, or alternatively obtains the same compression using
30%-55% of the space. This mechanism is useful espe-
cially when there is a limited amount of space to compress,

as it obtains results that would demand much more memory
space on the classical algorithm.

There are several directions for future work: (1) Better
ways to code the exceptions file can have an impact on the
result. (2) We have assumed that terminal nodes have to be
leaves, but this is not really necessary. More compression
can be obtained by letting internal nodes be terminal. On
the other hand, we have to devise a mechanism to represent
an antidictionary where internal nodes can be terminal too.
(3) We have proposed a heuristic to find good almost an-
tifactors that performs satisfactorily but does not guarantee
optimality. An interesting issue is whether an algorithm to
obtain the optimal set of almost antifactors can be designed,
or at least improve the current heuristics. (4) Finally, an in-
teresting problem is whether the set of useful antifactors can
be obtained without first building the set of all the antifac-
tors, which is much larger, and seeing how can this be ex-
tended to almost antifactors. This may permit using much
less memory space at compression time.

References

[1] A. Aho, J. Hopcroft, and J. Ullman.The Design and Analysis
of Computer Algorithms. Addison-Wesley, 1974.

[2] A. Apostolico and Z. Galil. Combinatorial Algorithms on
Words. Springer-Verlag, New York, 1985.

[3] T. Bell, J. Cleary, and I. Witten.Text Compression. Prentice
Hall, New Jersey, 1990.

[4] M. Crochemore, F. Mignosi, A. Restivo, and S. Salemi. Text
compression using antidictionaries. In J. Gruska, L. Brim,
and J. Slatus̆ka, editors,Proc. ICALP’99, LNCS 1664, 1999.

[5] M. Crochemore, F. Mignosi, A. Restivo, and S. Salemi. Data
compression using antidictonaries.Proceedings of the IEEE,
88(11):1756–1768, 2000. Special issueLossless data com-
pressionedited by J. Storer.

[6] D. Harman. Overview of the Third Text REtrieval Confer-
ence. InProc. Third Text REtrieval Conference (TREC-3),
pages 1–19, 1995. NIST Special Publication 500-207.

[7] D. Knuth. The Art of Computer Programming, volume 3:
Sorting and Searching. Addison-Wesley, 1973.

