
Dynami
 Spatial Approximation TreesGonzalo Navarro � Nora ReyesDept. of Computer S
ien
e Depto. de Inform�ati
aUniversity of Chile Universidad Na
ional de San LuisBlan
o En
alada 2120, Santiago, Chile Ej�er
ito de los Andes 950, San Luis, Argentinagnavarro�d

.u
hile.
l nreyes�unsl.edu.arAbstra
tThe Spatial Approximation Tree (sa-tree) is a re-
ently proposed data stru
ture for sear
hing in metri
spa
es. It has been shown that it
ompares favorablyagainst alternative data stru
tures in spa
es of highdimension or queries with low sele
tivity. The maindrawba
k of the sa-tree is that it is a stati
 data stru
-ture, that is, on
e built, it is diÆ
ult to add new el-ements to it. This rules it out for many interestingappli
ations.In this paper we over
ome this weakness. We pro-pose and study several methods to handle insertionsin the sa-tree. Some are
lassi
al folklore solutionswell known in the data stru
tures
ommunity, while themost promising ones have been spe
i�
ally developed
onsidering the parti
ular properties of the sa-tree, andinvolve new algorithmi
 insights in the behavior of thisdata stru
ture. As a result, we show that it is viable tomodify the sa-tree so as to permit fast insertions whilekeeping its good sear
h eÆ
ien
y.1. Introdu
tionThe
on
ept of \approximate" sear
hing has appli-
ations in a vast number of �elds. Some examples arenon-traditional databases (e.g. storing images, �nger-prints or audio
lips, where the
on
ept of exa
t sear
his of no use and we sear
h instead for similar obje
ts);text sear
hing (to �nd words and phrases in a textdatabase allowing a small number of typographi
al orspelling errors); information retrieval (to look for do
-uments that are similar to a given query or do
ument);ma
hine learning and
lassi�
ation (to
lassify a newelement a

ording to its
losest representative); image�Partially supported by Fonde
yt grant 1-000929.

quantization and
ompression (where only some ve
-tors
an be represented and we
ode the others as their
losest representable point);
omputational biology (to�nd a DNA or protein sequen
e in a database allowingsome errors due to mutations); and fun
tion predi
tion(to sear
h for the most similar behavior of a fun
tion inthe past so as to predi
t its probable future behavior).All those appli
ations have some
ommon
hara
-teristi
s. There is a universe U of obje
ts, and a non-negative distan
e fun
tion d : U � U �! R+ de�nedamong them. This distan
e satis�es the three axiomsthat make the set a metri
 spa
e: stri
t positiveness(d(x; y) = 0 , x = y), symmetry (d(x; y) = d(y; x))and triangle inequality (d(x; z) � d(x; y) + d(y; z)).The smaller the distan
e between two obje
ts, themore \similar" they are. We have a �nite databaseS � U , whi
h is a subset of the universe of obje
ts and
an be prepro
essed (to build an index, for example).Later, given a new obje
t from the universe (a queryq), we must retrieve all similar elements found in thedatabase. There are two typi
al queries of this kind:Range query: Retrieve all elements within distan
er to q in S. This is, fx 2 S ; d(x; q) � rg.Nearest neighbor query (k-NN): Retrieve the k
losest elements to q in S. That is, a set A � Ssu
h that jAj = k and 8x 2 A; y 2 S�A; d(x; q) �d(y; q).The distan
e is
onsidered expensive to
ompute(think, for instan
e, in
omparing two �ngerprints).Hen
e, it is
ustomary to de�ne the
omplexity ofthe sear
h as the number of distan
e evaluations per-formed, disregarding other
omponents su
h as CPUtime for side
omputations, and even I/O time. Givena database of jSj = n obje
ts, queries
an be triviallyanswered by performing n distan
e evaluations. Thegoal is to stru
ture the database su
h that we performless distan
e evaluations.

A parti
ular
ase of this problem arises when thespa
e is a set of d-dimensional points and the dis-tan
e belongs to the Minkowski Lp family: Lp =(P1�i�d jxi � yijp)1=p. The best known spe
ial
asesare p = 1 (Manhattan distan
e), p = 2 (Eu
lideandistan
e) and p = 1 (maximum distan
e), that is,L1 = max1�i�d jxi � yij.There are e�e
tive methods to sear
h on d-dimensional spa
es, su
h as kd-trees [2℄ or R-trees [13℄.However, for roughly 20 dimensions or more thosestru
tures
ease to work well. We fo
us in this paper ingeneral metri
 spa
es, although the solutions are wellsuited also for d-dimensional spa
es.It is interesting to noti
e that the
on
ept of \di-mensionality"
an be translated to metri
 spa
es aswell: the typi
al feature in high dimensional spa
eswith Lp distan
es is that the probability distributionof distan
es among elements has a very
on
entratedhistogram (with larger mean as the dimension grows),making the work of any similarity sear
h algorithmmore diÆ
ult [5, 10℄. In the extreme
ase we have aspa
e where d(x; x) = 0 and 8y 6= x; d(x; y) = 1, whereit is impossible to avoid a single distan
e evaluation atsear
h time. We say that a general metri
 spa
e is highdimensional when its histogram of distan
es is
on
en-trated.There are a number of methods to prepro
ess the setin order to redu
e the number of distan
e evaluations.All those stru
tures work on the basis of dis
ardingelements using the triangle inequality, and most usethe
lassi
al divide-and-
onquer approa
h (whi
h is notspe
i�
 of metri
 spa
e sear
hing).The Spatial Approximation Tree (sa-tree) is a re-
ently proposed data stru
ture of this kind [16℄, whi
his based on a novel
on
ept: rather than dividing thesear
h spa
e, approa
h the query spatially, that is,start at some point in the spa
e and get
loser and
loser to the query. It has been shown that the sa-tree behaves better than the other existing stru
tureson metri
 spa
es of high dimension or queries with lowsele
tivity, whi
h is the
ase in many appli
ations.The sa-tree, unlike other data stru
tures, does nothave parameters to be tuned by the user of ea
h ap-pli
ation. This makes it very appealing as a generalpurpose data stru
ture for metri
 sear
hing, sin
e anynon-expert seeking for a tool to solve his/her parti
ularproblem
an use it as a bla
k box tool, without the needof understanding the
ompli
ations of an area he/sheis not interested in. Other data stru
tures have manytuning parameters, hen
e requiring a big e�ort fromthe user in order to obtain an a

eptable performan
e.On the other hand, the main weakness of the sa-tree is that it is not dynami
. That is, on
e it is built,

it is diÆ
ult to add new elements to it. This makesthe sa-tree unsuitable for dynami
 appli
ations su
h asmultimedia databases.Over
oming this weakness is the aim of this paper.We propose and study several methods to handle inser-tions in the sa-tree. Some are
lassi
al folklore solutionswell known in the data stru
tures
ommunity, while themost promising ones have been spe
i�
ally developed
onsidering the parti
ular properties of the sa-tree. Asa result, we show that it is viable to modify the sa-treeso as to permit fast insertions while keeping its goodsear
h eÆ
ien
y. As a related byprodu
t of this study,we give new algorithmi
 insights in the behavior of thisdata stru
ture.2. Previous WorkAlgorithms to sear
h in general metri
 spa
es
an bedivided in two large areas: pivot-based and
lusteringalgorithms. (See [10℄ for a more
omplete review.)Pivot-based algorithms. The idea is to use a setof k distinguished elements (\pivots") p1:::pk 2 Sand storing, for ea
h database element x, its dis-tan
e to the k pivots (d(x; p1):::d(x; pk)). Given thequery q, its distan
e to the k pivots is
omputed(d(q; p1):::d(q; pk)). Now, if for some pivot pi it holdsthat jd(q; pi) � d(x; pi)j > r, then we know by the tri-angle inequality that d(q; x) > r and therefore do notneed to expli
itly evaluate d(x; p). All the other el-ements that
annot be eliminated using this rule aredire
tly
ompared against the query.Several algorithms [23, 15, 7, 18, 6, 8℄ are almostdire
t implementations of this idea, and di�er basi
allyin their extra stru
ture used to redu
e the CPU
ost of�nding the
andidate points, but not in their numberof distan
e evaluations.There are a number of tree-like data stru
tures thatuse this idea in a more indire
t way: they sele
t a pivotas the root of the tree and divide the spa
e a

ordingto the distan
es to the root. One sli
e
orresponds toea
h subtree (the number and width of the sli
es di�ersa
ross the strategies). At ea
h subtree, a new pivot issele
ted and so on. The sear
h ba
ktra
ks on the treeusing the triangle inequality to prune subtrees, that is,if a is the tree root and b is a
hildren
orrespondingto d(a; b) 2 [x1; x2℄, then we
an avoid entering in thesubtree of b whenever [d(q; a) � r; d(q; a) + r℄ has nointerse
tion with [x1; x2℄.Several data stru
tures use this idea [3, 22, 14, 24,4, 25℄.

Clustering algorithms. The se
ond trend
onsistsin dividing the spa
e in zones as
ompa
t as possible,normally re
ursively, and storing a representative point(\
enter") for ea
h zone plus a few extra data thatpermits qui
kly dis
arding the zone at query time. Two
riteria
an be used to delimit a zone.The �rst one is the Voronoi area, where we sele
t aset of
enters and put ea
h other point inside the zoneof its
losest
enter. The areas are limited by hyper-planes and the zones are analogous to Voronoi regionsin ve
tor spa
es. Let f
1 : : :
mg be the set of
en-ters. At query time we evaluate (d(q;
1); : : : ; d(q;
m)),
hoose the
losest
enter
 and dis
ard every zonewhose
enter
i satis�es d(q;
i) > d(q;
) + 2r, as itsVoronoi area
annot interse
t with the query ball.The se
ond
riterion is the
overing radius
r(
i),whi
h is the maximum distan
e between
i and an el-ement in its zone. If d(q;
i)� r >
r(
i), then there isno need to
onsider zone i.The te
hniques
an be
ombined. Some te
hniquesusing only hyperplanes are [22, 19, 12℄. Some te
h-niques using only
overing radii are [11, 9℄. One usingboth
riteria [5℄.Nearest neighbor queries. To answer 1-NNqueries, we simulate a range query with a radius thatis initially r� =1, and redu
e r� as we �nd
loser and
loser elements to q. At the end, we have in r� thedistan
e to the
losest elements and have seen themall. Unlike a range query, we are now interested inqui
kly �nding
lose elements in order to redu
e r� asearly as possible, so there are a number of heuristi
s toa
hieve this. One of the most interesting is proposed in[21℄, where the subtrees yet to be pro
essed are storedin a priority queue in a heuristi
ally promising order-ing. The traversal is more general than a ba
ktra
king.Ea
h time we pro
ess the root of the most promisingsubtree, we may add its
hildren to the priority queue.At some point we
an preempt the sear
h using a
uto�
riterion given by the triangle inequality.k-NN queries are handled as a generalization of 1-NN queries. Instead of one
losest element, the k
los-est elements known are maintained, and r� is the dis-tan
e to the farthest to q among those k. Ea
h timea new
andidate appears we insert it into the queue,whi
h may displa
e another element and hen
e redu
er�. At the end, the queue
ontains the k
losest ele-ments to q.3. The Spatial Approximation TreeWe des
ribe brie
y in this se
tion the sa-tree datastru
ture. It needs linear spa
e O(n), reasonable

onstru
tion time O(n log2 n= log logn) and sublinearsear
h time O(n1��(1= log logn)) in high dimensions andO(n�) (0 < � < 1) in low dimensions. It is experi-mentally shown to improve over other data stru
tureswhen the dimension is high or the query radius is large.For more details see the original referen
es [16, 17℄.3.1. Constru
tionWe sele
t a random element a 2 S to be the rootof the tree. We then sele
t a suitable set of neighborsN(a) satisfying the following property:Condition 1: (given a; S) 8x 2 S, x 2 N(a) ,8y 2 N(a)� fxg; d(x; y) > d(x; a).That is, the neighbors of a form a set su
h that anyneighbor is
loser to a than to any other neighbor. The\only if" (() part of the de�nition guarantees that ifwe
an get
loser to any b 2 S then an element in N(a)is
loser to b than a, be
ause we put as dire
t neigh-bors all those elements that are not
loser to anotherneighbor. The \if" part ()) aims at putting as fewneighbors as possible.Noti
e that the set N(a) is de�ned in terms of itselfin a non-trivial way and that multiple solutions �t thede�nition. For example, if a is far from b and
 andthese are
lose to ea
h other, then both N(a) = fbgand N(a) = f
g satisfy the de�nition.Finding the smallest possible set N(a) seems to bea nontrivial
ombinatorial optimization problem, sin
eby in
luding an element we need to take out others(this happens between b and
 in the example of theprevious paragraph). However, simple heuristi
s whi
hadd more neighbors than ne
essary work well. We be-gin with the initial node a and its \bag" holding all therest of S. We �rst sort the bag by distan
e to a.Then, we start adding nodes to N(a) (whi
h is ini-tially empty). Ea
h time we
onsider a new node b, we
he
k whether it is
loser to some element of N(a) thanto a itself. If that is not the
ase, we add b to N(a).At this point we have a suitable set of neighbors.Note that Condition 1 is satis�ed thanks to the fa
tthat we have
onsidered the elements in order of in-
reasing distan
e to a. The \only if" part of Condition1 is
learly satis�ed be
ause any element not satisfyingit is inserted in N(a). The \if" part is more deli
ate.Let x 6= y 2 N(a). If y is
loser to a than x then y was
onsidered �rst. Our
onstru
tion algorithm guaran-tees that if we inserted x inN(a) then d(x; a) < d(x; y).If, on the other hand, x is
loser to a than y, thend(y; x) > d(y; a) � d(x; a) (that is, a neighbor
annotbe removed by a new neighbor inserted later).

We now must de
ide in whi
h neighbor's bag weput the rest of the nodes. We put ea
h node not infag [N(a) in the bag of its
losest element of N(a)(best-�t strategy). Observe that this requires a se
ondpass on
e N(a) is fully determined.We are done now with a, and pro
ess re
ursively allits neighbors, ea
h one with the elements of its bag.Note that the resulting stru
ture is a tree that
an besear
hed for any q 2 S by spatial approximation fornearest neighbor queries. The reason why this works isthat, at sear
h time, we repeat exa
tly what happenedwith q during the
onstru
tion pro
ess (i.e. we enterinto the subtree of the neighbor
losest to q), until werea
h q. This is is be
ause q is present in the tree, i.e.,we are doing an exa
t sear
h after all.Finally, we save some
omparisons at sear
h time bystoring at ea
h node a its
overing radius, i.e. the max-imum distan
e R(a) between a and any element in thesubtree rooted by a. The way to use this informationis made
lear in Se
tion 3.2.Figure 1 depi
ts the
onstru
tion pro
ess. It is�rstly invoked as BuildTree(a,S � fag) where a isa random element of S. Note that, ex
ept for the �rstlevel of the re
ursion, we already know all the distan
esd(v; a) for every v 2 S and hen
e do not need to re-
ompute them. Similarly, d(v;
) at line 10 is alreadyknown from line 6. The information stored by the datastru
ture is the root a and the N() and R() values ofall the nodes.BuildTree (Node a, Set of nodes S)N(a) ; /* neighbors of a */R(a) 0 /*
overing radius */Sort S by distan
e to a (
loser first)for v 2 S doR(a) max(R(a); d(v; a))if 8b 2 N(a); d(v; a) < d(v; b)then N(a) N(a) [fvgfor b 2 N(a) do S(b) ;for v 2 S �N(a) doLet
 2 N(a) be the one minimizing d(v;
)S(
) S(
) [fvgfor b 2 N(a) do BuildTree (b, S(b))Figure 1. Algorithm to build the sa-tree.3.2. Sear
hingOf
ourse it is of little interest to sear
h only for ele-ments q 2 S. The tree we have des
ribed
an, however,be used as a devi
e to solve queries of any type for anyq 2 U . We start with range queries with radius r.

The key observation is that, even if q 62 S, the an-swers to the query are elements q0 2 S. So we use thetree to pretend that we are sear
hing for an elementq0 2 S. We do not know q0, but sin
e d(q; q0) � r, we
an obtain from q some distan
e information regard-ing q0: by the triangle inequality it holds that for anyx 2 U , d(x; q) � r � d(x; q0) � d(x; q) + r.Hen
e, instead of simply going to the
losest neigh-bor, we �rst determine the
losest neighbor
 of qamong fag [N(a). We then enter into all neighborsb 2 N(a) su
h that d(q; b) � d(q;
) + 2r. This is be-
ause the virtual element q0 sought
an di�er from q byat most r at any distan
e evaluation, so it
ould havebeen inserted inside any of those b nodes. In the pro-
ess, we report all the nodes q0 we found
lose enoughto q.Moreover, noti
e that, in an exa
t sear
h for a q0 2S, the distan
es between q0 and the nodes we traverseget redu
ed as we step down the tree. That is,Observation 1: Let a; b;
 2 S su
h that b des
endsfrom a and
 from b in the tree. Then d(
; b) � d(
; a).The same happens, allowing a toleran
e of 2r, in arange sear
h with radius r. That is, for any b in thepath from a to q0 it holds d(q0; b) � d(q0; a), so d(q; b) �d(q; a)+2r. Hen
e, while at �rst we need to enter intoall the neighbors b 2 N(a) su
h that d(q; b)� d(q;
) �2r, when we enter into those b the toleran
e is not 2ranymore but it gets redu
ed to 2r � (d(q; b)� d(q;
)).The
overing radiusR(a) is used to further prune thesear
h, by not entering into subtrees su
h that d(q; a) >R(a) + r, sin
e they
annot
ontain useful elements.Figure 2 illustrates the sear
h pro
ess, starting fromthe tree root p11. Only p9 is in the result, but all thebold edges are traversed. Figure 3 gives the sear
h al-gorithm, initially invoked as RangeSear
h(a,q,r,2r),where a is the tree root. Note that in the re
ursiveinvo
ations d(a; q) is already
omputed.Nearest neighbor sear
hing. We
an also performnearest neighbor sear
hing by simulating a range sear
hwhere the sear
h radius is redu
ed, just as explained atthe end of Se
tion 2. We have a priority queue of sub-trees, most promising �rst. Initially, we insert the sa-tree root in the data stru
ture. Iteratively, we extra
tthe most promising subtree, pro
ess its root, and insertall its subtrees in the queue. This is repeated until thequeue gets empty or its most promising subtree
an bedis
arded (i.e., its promise value is bad enough). Forla
k of spa
e we omit further details.

p13

p4

p2

p12
p3

p7

p15

p6

p8

p9
p14

p11

p1
q

p5

p10

Figure 2. An example of the sear
h pro
ess.RangeSear
h (Node a, Query q, Radius r,Toleran
e t)if d(a; q) � r then Report aif d(a; q) � R(a) + r thendmin minfd(
; q);
 2 fag [N(a)gfor b 2 N(a) doif d(b; q)� dmin � t thenRangeSear
h (b,q,r,t� (d(b; q)� dmin))Figure 3. Sear
hing q with radius r in a sa-tree.4. In
remental Constru
tionThe sa-tree is a stru
ture whose
onstru
tion algo-rithm needs to know all the elements of S in advan
e.In parti
ular, it is diÆ
ult to add new elements un-der the best-�t strategy on
e the tree is already built.Ea
h time a new element is inserted, we must go downthe tree by the
losest neighbor until the new elementmust be
ome a neighbor of the
urrent node a. Allthe subtree rooted at a must be rebuilt from s
rat
h,sin
e some nodes that went into another neighbor
ouldprefer now to get into the new neighbor.In this se
tion we dis
uss and empiri
ally evaluatedi�erent alternatives to permit insertion of new ele-ments into an already built sa-tree. For the experi-ments we have sele
ted two metri
 spa
es. The �rst isa di
tionary of 69,069 English words, from where werandomly
hose queries. The distan
e in this
ase isthe edit distan
e, that is, minimum number of
har-a
ter insertions, deletions and repla
ements to makethe strings equal. The se
ond spa
e is the real unitary
ube in dimension 15 using Eu
lidean distan
e. Wegenerated 100,000 random points with uniform distri-bution. For the queries, we build the indexes with 90%of the points and use the other 10% (randomly
hosen)

as queries. The results on these two spa
es are rep-resentative of those on many other metri
 spa
es wetested: NASA images, di
tionaries in other languages,Gaussian distributions, other dimensions, et
.As a
omparison point for whi
h follows, a stati

onstru
tion
osts about 5 million
omparisons for thedi
tionary and 12.5 million for the ve
tor spa
e.4.1. Rebuilding the SubtreeThe naive approa
h rebuilds the whole subtreerooted at a on
e a new element x being inserted has tobe
ome a new neighbor of a. This has the advantageof preserving the same tree that is built stati
ally, but,as Figure 4 shows for the
ase of the di
tionary, the dy-nami

onstru
tion be
omes too
ostly in
omparisonto a stati
 one (140 times more
ostly in this example,almost 230 times more in our ve
tor spa
e).

0

1000

2000

3000

4000

5000

6000

7000

8000

10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

 (
x

10
,0

00
)

Percentage of database used

Construction cost for n = 69,069 words

Static
Dynamic

Figure 4. Constru
tion
ost by rebuilding subtrees.4.2. Over
ow Bu
ketsWe
an have an over
ow bu
ket per node with \ex-tra" neighbors that should go in the subtree but havenot been
lassi�ed yet. When the new element x mustbe
ome a neighbor of a, we put it in the over
ow bu
ketof a. Ea
h time we rea
h a at query time, we also
ompare q against its over
ow bu
ket and report anyelement near enough.We must limit the size of the over
ow bu
kets inorder to maintain a reasonable sear
h eÆ
ien
y. Werebuild a subtree when its over
ow bu
ket ex
eeds agiven size. The main question is whi
h is the tradeo�in pra
ti
e between re
onstru
tion
ost and query
ost.As smaller over
ow bu
kets are permitted, we rebuildthe tree more often and improve the query time, butthe
onstru
tion time raises.

100

200

300

400

500

600

700

800

0 100 200 300 400 500 600 700 800 900 1000

D
is

ta
nc

e
ev

al
ua

tio
ns

 (
x

10
,0

00
)

Size of overflow bucket

Construction cost for n = 69,069

400

600

800

1000

1200

1400

1600

1800

0 100 200 300 400 500 600 700 800 900 1000

D
is

ta
nc

e
ev

al
ua

tio
ns

 (
x

10
,0

00
)

Size of overflow bucket

Construction cost for n = 100,000 vectors dim. 15

Figure 5. Constru
tion
osts using over
ow bu
kets.Figure 5 shows the
ost of the
onstru
tion usingdi�erent bu
ket sizes, whi
h exhibits interesting
u
-tuations and in some
ases
osts even less than a stati

onstru
tion. This is possible be
ause many un
lassi-�ed elements are left in the bu
kets. For example, forbu
ket size 1,000, almost all the elements are in over-
ow bu
kets in the di
tionary
ase and almost 60%in the ve
tor
ase. These
u
tuations appear be
ausea larger bu
ket size may produ
e more rebuilds thana smaller one for a given set size n. The e�e
t is wellknown, for example it appears when studying the num-ber of splits as a fun
tion of the B-tree page size [1℄.Figure 6 shows the sear
h
osts using over
ow bu
k-ets. We sear
hed with �xed radius 1 to 4 in the di
tio-nary example and with radii retrieving 0.01%, 0.1%and 1% of the set in the ve
tor example. We alsoperformed nearest neighbor sear
h experiments, whi
hyielded similar results and are omitted for la
k of spa
e.As
an be seen by
omparing the results to thoseof Figure 8, this te
hnique is
ompetitive against the

0

10000

20000

30000

40000

50000

60000

1 2 3 4

D
is

ta
nc

e
ev

al
ua

tio
ns

Search radius

Query cost per element for n = 69,069 words

Bucket size = 250
Bucket size = 500
Bucket size = 1000

55000

60000

65000

70000

75000

80000

85000

90000

0.01 0.1 1

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database retrieved

Query cost per element for n = 100,000 vectors dim. 15

Bucket size = 250
Bucket size = 500
Bucket size = 1000Figure 6. Sear
h
osts using over
ow bu
kets.stati

onstru
tion provided the
orre
t bu
ket size is
hosen. For example, with bu
ket size 500 we obtainalmost the same sear
h
osts as for the stati
 version, atthe modest pri
e of 10% extra
onstru
tion
ost for thedi
tionary and 30% for the ve
tors. The main problemin this method is its high sensitivity to the
u
tuations,whi
h makes it diÆ
ult to sele
t a good bu
ket size.The intermediate bu
ket size 500 works well be
auseat this point the elements in over
ow bu
kets are 30%in the di
tionary and 15% in the ve
tors.4.3. A First-Fit StrategyYet another solution is to
hange our best-�t strategyto put elements inside the bags of the neighbors of aat
onstru
tion time. An alternative, �rst-�t, is to putea
h node in the bag of the �rst neighbor
loser thana to q. Determining N(a) and the bag of ea
h otherelement
an now be done all in one pass.With the �rst-�t strategy, however, we
an easilyadd more elements by pretending that the new in
om-

0

200

400

600

800

1000

1200

1400

1600

10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

 (
x

10
,0

00
)

Percentage of database used

Construction cost for n = 69,069 words

Static
First-Fit

Timestamp (up)
Timestamp (down)

0

200

400

600

800

1000

1200

1400

10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

 (
x

10
,0

00
)

Percentage of database used

Construction cost for n = 100,000 vectors dim. 15

Static
First-Fit

Timestamp (down)
Timestamp (up)

Figure 7. Constru
tion
osts using �rst-�t and usingtimestamps.ing element x was the last one in the bag, whi
h meansthat when it be
omes a neighbor of a it
an be simplyadded as the last neighbor of a, and there were no laterelements that had the
han
e of getting into x. Thisallows building the stru
ture by su

essive insertions.Figure 7 shows that the
onstru
tion (stati
 or dy-nami
) using �rst-�t is mu
h
heaper than using best-�t. Moreover, �rst-�t
osts exa
tly the same and pro-du
es the same tree in the stati
 or the dynami

ase.Range sear
hing under the �rst-�t strategy is a lit-tle di�erent. We
onsider the neighbors fv1; : : : ; vkgof a in order. We perform the minimization whilewe traverse the neighbors. That is, we enter intothe subtree of v1 if d(q; v1) � d(q; a) + 2r; into thesubtree of v2 if d(q; v2) � min(d(q; a); d(q; v1)) + 2r;and in general into the subtree of vi if d(q; vi) �min(d(q; a); d(q; v1); : : : ; d(q; vi�1)) + 2r. This is be-
ause vi+j
an never take out an element from vi.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1 2 3 4

D
is

ta
nc

e
ev

al
ua

tio
ns

Search radius

Query cost per element for n = 69,069 words

Best-Fit
First-Fit

Timestamp (up)
Timestamp (down)

50000

55000

60000

65000

70000

75000

80000

85000

90000

0.01 0.1 1

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database retrieved

Query cost per element for n = 100,000 vectors dim. 15

Best-Fit
First-Fit

TimestampFigure 8. Sear
h
osts using �rst-�t and the twoversions of the timestamping te
hnique.Figure 8 shows sear
h times. As
an be seen, thesear
h overhead of the �rst-�t strategy is too high, at apoint that makes the stru
ture not
ompetitive againstother existing ones.4.4. TimestampingAn alternative that has resemblan
es with the twoprevious but is more sophisti
ated
onsists in keeping atimestamp of the insertion time of ea
h element. Wheninserting a new element, we add it as a neighbor at theappropriate point using best-�t and do not rebuild thetree. Let us
onsider that neighbors are added at theend, so by reading them left to right we have in
reasinginsertion times. It also holds that the parent is alwaysolder than its
hildren.As seen in Figure 7, this alternative
an
ost a bitmore or a bit less than stati
 best-�t depending on the

ase. Two versions of this methods, labeled \up" and\down" in the plot,
orrespond to how to handle the
ase of equal distan
es to the root and to the
losestneighbor when inserting a new element. The formerinserts the element as a new neighbor and the lattersends it to the subtree of the
losest neighbor. Thismakes a di�eren
e only in dis
rete distan
es.At sear
h time, we
onsider the neighborsfv1; : : : ; vkg of a from oldest to newest. We performthe minimization while we traverse the neighbors, ex-a
tly as in Se
tion 4.3. This is be
ause between theinsertion of vi and vi+j there may have appeared newelements that preferred vi just be
ause vi+j was notyet a neighbor, so we may miss an element if we do notenter into vi be
ause of the existen
e of vi+j .Note that, although the sear
h pro
ess is the same asunder �rst-�t, the insertion puts the elements into their
losest neighbor, so the stru
ture is more balan
ed.Up to now we do not really need timestamps butjust to keep the neighbors sorted. Yet a more so-phisti
ated s
heme is to use the timestamps to re-du
e the work done inside older neighbors. Say thatd(q; vi) > d(q; vi+j) + 2r. We have to enter into vibe
ause it is older. However, only the elements withtimestamp smaller than that of vi+j should be
onsid-ered when sear
hing inside vi; younger elements haveseen vi+j and they
annot be interesting for the sear
hif they are inside vi. As parent nodes are older thantheir des
endants, as soon as we �nd a node inside thesubtree of vi with timestamp larger than that of vi+jwe
an stop the sear
h in that bran
h, be
ause its sub-tree is even younger.An alternative view, equivalent as before but fo
us-ing on maximum allowed radius instead of maximumallowed timestamp, is as follows. Ea
h time we enterinto a subtree y of vi, we sear
h for the siblings vi+jof vi that are older than y. Over this set, we
omputethe maximum radius that permits to avoid pro
essingy, namely ry = max(d(q; vi)� d(q; vi+j))=2. If it holdsr < ry, we do not need to enter into the subtree y.Let us now
onsider nearest neighbor sear
hing. As-sume that we are
urrently pro
essing node vi and in-sert its
hildren y in the priority queue. We
omputery as before and insert it together with y in the priorityqueue. Later, when the time to pro
ess y
omes, we
onsider our
urrent sear
h radius r� and dis
ard y ifr� < ry. If we insert a
hildren z of y, we put it thevalue min(ry ; rz).Figure 8
ompares this te
hnique against the stati
one. As it
an be seen, this is an ex
ellent alterna-tive to the stati

onstru
tion in the
ase of our ve
-tor spa
e example, providing basi
ally the same
on-stru
tion and sear
h
ost with the added value of dy-

namism. In the
ase of the di
tionary, the timestamp-ing te
hnique is signi�
antly worse than the stati
 one(although the \up" behaves slightly better for nearestneighbor sear
hing). The problem is that the \up" ver-sion is mu
h more
ostly to build, needing more than3 times the stati

onstru
tion
ost.4.5. Inserting at the FringeYet another alternative is as follows. We
an relaxCondition 1 (Se
tion 3.1), whose main goal is to guar-antee that if q is
loser to a than to any neighbor inN(a) then we
an stop the sear
h at that point. Theidea is that, at sear
h time, instead of �nding the
los-est
 among fag[N(a) and entering into any b 2 N(a)su
h that d(q; b) � d(q;
) + 2r, we ex
lude the sub-tree root fag from the minimization. Hen
e, we always
ontinue to the leaves by the
losest neighbor and oth-ers
lose enough. This seems to make the sear
h timeslightly worse, but the
ost is marginal.The bene�t is that we are not for
ed anymore to puta new inserted element x as a neighbor of a, even whenCondition 1 would require it. That is, at insertion time,even if x is
loser to a than to any element in N(a), wehave the
hoi
e of not putting it as a neighbor of a butinserting it into its
losest neighbor of N(a). At sear
htime we will rea
h x be
ause the sear
h and insertionpro
esses are similar.This freedom opens a number of new possibilitiesthat deserve a mu
h deeper study, but an immediate
onsequen
e is that we
an insert always at the leavesof the tree. Hen
e, the tree is read-only in its top partand it
hanges only in the fringe.However, we have to permit the re
onstru
tion ofsmall subtrees so as to avoid that the tree be
omesalmost a linked list. So we permit inserting x as aneighbor when the size of the subtree to rebuild is smallenough, whi
h leads to a tradeo� between insertion
ostand quality of the tree at sear
h time.Figure 9 shows the
onstru
tion
ost for di�erentmaximum tree sizes that
an be rebuilt. As
an be seen,permitting a tree size of 50 yields the same
onstru
tion
ost of the stati
 version.Finally, Figure 10 shows the sear
h times using thiste
hnique. As
an be seen, using a tree size of 50 per-mits the same and even better sear
h time
omparedto the stati
 version, whi
h shows that it may be benef-i
al to move elements downward in the tree. This fa
tmakes this alternative a very interesting
hoi
e deserv-ing more study.

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

0 100 200 300 400 500 600 700 800 900 1000

D
is

ta
nc

e
ev

al
ua

tio
ns

 (
x

10
,0

00
)

Tree size allowed to reconstruct

Construction cost for n = 69,069 words

0

1000

2000

3000

4000

5000

6000

7000

0 100 200 300 400 500 600 700 800 900 1000

D
is

ta
nc

e
ev

al
ua

tio
ns

 (
x

10
,0

00
)

Tree size allowed to recontruct

Construction cost for n = 100,000 vectors dim. 15

Figure 9. Constru
tion
osts inserting at the fringe.5. Con
lusionsWe have presented several te
hniques to modify thesa-tree in order to make it a dynami
 data stru
turesupporting insertions, without degrading its
urrentperforman
e. We have shown that there are manymore alternatives than what appears at a �rst glan
e,and that the invariants of the sa-tree
an be relaxed inways unforeseen before this study (e.g. the fa
t thatwe
an de
ide whether or not to add neighbors).From the
hoi
es we have
onsidered, the use of over-
ow bu
kets shows that it is possible to obtain
on-stru
tion and sear
h times similar to those of the stati
version, although the
hoi
e of the bu
ket size deservesmore study. Timestamping has also shown
ompetitivein some metri
 spa
es and not so attra
tive in others,a fa
t deserving more study. Finally, inserting at thefringe has shown the potential of even improving theperforman
e of the stati
 version, although studyingthe e�e
t of the size of the fringe is required.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 2 3 4

D
is

ta
nc

e
ev

al
ua

tio
ns

Search radius

Query cost per element for n = 69,069 words

Size = 10
Size = 50
Size = 100
Size = 500
Size = 1000
Best-Fit

40000

45000

50000

55000

60000

65000

70000

75000

80000

85000

0.01 0.1 1

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database retrieved

Query cost per element for n = 100,000 vectors dim. 15

Size = 10
Size = 50
Size = 100
Size = 500
Size = 1000
Best-FitFigure 10. Sear
h
osts using insertion in the fringe.Other alternatives, su
h as rebuilding and �rst-�t,proved to be not
ompetitive, although the latter o�ersvery low
onstru
tion
osts, whi
h
ould be interestingdespite its mu
h higher sear
h
ost.It is
lear now that making the sa-tree dynami
 is af-fordable and that the stru
ture
an even be improved ina dynami
 setup,
ontrary to our previous assumptionthat there would be a
ost for the dynamism. On theother hand, we need to pursue more in the most promis-ing alternatives in order to understand them better.Moreover, we have not
onsidered deletions yet. Theseseem more diÆ
ult but always
an be treated by mark-ing the nodes as deleted and making periodi
 rebuilds.This work is a �rst step of a broader proje
t [20℄whi
h aims at a fully dynami
 data stru
ture for sear
h-ing in metri
 spa
es, whi
h
an also work on se
ondarymemory. We have not tou
hed this last aspe
t in thispaper. A simple solution to store the sa-tree in se
-ondary storage is to try to store whole subtrees in diskpages so as to minimize the number of pages read at

sear
h time. This has an interesting relationship withinserting at the fringe (Se
tion 4.5), not only be
ausethe top part of the tree is read-only, but also be
ausewe
an
ontrol the maximum arity of the tree so as tomake the neighbors �t in a disk page.Referen
es[1℄ R. Baeza-Yates and P. Larson. Performan
e of B+-trees with Partial Expansions. IEEE Transa
tions onKnowledge and Data Engineering, 1(2):248{257, 1989.[2℄ J. Bentley. Multidimensional binary sear
h trees indatabase appli
ations. IEEE Transa
tions on SoftwareEngineering, 5(4):333{340, 1979.[3℄ W. Burkhard and R. Keller. Some approa
hes to best-mat
h �le sear
hing. Communi
ations of the ACM,16(4):230{236, 1973.[4℄ T. Bozkaya and M. Ozsoyoglu. Distan
e-based index-ing for high-dimensional metri
 spa
es. In Pro
. ACMConferen
e on Management of Data (SIGMOD'97),pages 357{368, 1997. Sigmod Re
ord 26(2).[5℄ S. Brin. Near neighbor sear
h in large metri
 spa
es. InPro
. of the 21st Conferen
e on Very Large Databases(VLDB'95), pages 574{584, 1995.[6℄ R. Baeza-Yates, W. Cunto, U. Manber, and S. Wu.Proximity mat
hing using �xed-queries trees. In Pro
.5th Conferen
e on Combinatorial Pattern Mat
hing(CPM'94), LNCS 807, pages 198{212, 1994.[7℄ E. Ch�avez, J. Marroqu��n, and R. Baeza-Yates.Spaghettis: an array based algorithm for similarityqueries in metri
 spa
es. In Pro
. 6th InternationalSymposium on String Pro
essing and Information Re-trieval (SPIRE'99), pages 38{46. IEEE CS Press,1999.[8℄ E. Ch�avez, J. Marroqu��n, and G. Navarro. Fixedqueries array: A fast and e
onomi
al data stru
turefor proximity sear
hing. Multimedia Tools and Appli-
ations, 14(2):113{135, 2001. Kluwer.[9℄ E. Ch�avez and G. Navarro. An e�e
tive
lustering al-gorithm to index high dimensional metri
 spa
es. InPro
. 7th International Symposium on String Pro
ess-ing and Information Retrieval (SPIRE'00), pages 75{86. IEEE CS Press, 2000.[10℄ E. Ch�avez, G. Navarro, R. Baeza-Yates, and J. Mar-roqu��n. Sear
hing in metri
 spa
es. ACM ComputingSurveys, 2001. To appear.[11℄ P. Cia

ia, M. Patella, and P. Zezula. M-tree: aneÆ
ient a

ess method for similarity sear
h in metri
spa
es. In Pro
. of the 23rd Conferen
e on Very LargeDatabases (VLDB'97), pages 426{435, 1997.[12℄ F. Dehne and H. Nolteimer. Voronoi trees and
lus-tering problems. Information Systems, 12(2):171{175,1987. Pergamon Journals.[13℄ A. Guttman. R-trees: a dynami
 index stru
ture forspatial sear
hing. In Pro
. ACM Conferen
e on Man-agement of Data (SIGMOD'84), pages 47{57, 1984.

[14℄ L. Mi
�o, J. On
ina, and R. Carras
o. A fast bran
hand bound nearest neighbor
lassi�er in metri
 spa
es.Pattern Re
ognition Letters, 17:731{739, 1996. Else-vier.[15℄ L. Mi
�o, J. On
ina, and E. Vidal. A new version ofthe nearest-neighbor approximating and eliminatingsear
h (aesa) with linear prepro
essing-time and mem-ory requirements. Pattern Re
ognition Letters, 15:9{17, 1994. Elsevier.[16℄ G. Navarro. Sear
hing in metri
 spa
es by spatialapproximation. In Pro
. 6th International Sympo-sium on String Pro
essing and Information Retrieval(SPIRE'99), pages 141{148. IEEE CS Press, 1999.[17℄ G. Navarro. Sear
hing in metri
 spa
es by spatialapproximation. Te
hni
al Report TR/DCC-2001-4,Dept. of Computer S
ien
e, Univ. of Chile, 2001.ftp://ftp.d

.u
hile.
l/pub/users/gnavarro/jsat.ps.gz.[18℄ S. Nene and S. Nayar. A simple algorithm for nearestneighbor sear
h in high dimensions. IEEE Transa
-tions on Pattern Analysis and Ma
hine Intelligen
e,19(9):989{1003, 1997.[19℄ H. Nolteimer, K. Verbarg, and C. Zirkelba
h.Monotonous Bise
tor� Trees { a tool for eÆ
ient par-titioning of
omplex s
henes of geometri
 obje
ts. InData Stru
tures and EÆ
ient Algorithms, LNCS 594,pages 186{203, 1992.[20℄ N. Reyes. Dynami
 data stru
tures for sear
hing met-ri
 spa
es. MS
. Thesis, Univ. Na
. de San Luis, Ar-gentina, 2001. In progress. G. Navarro, advisor.[21℄ J. Uhlmann. Implementing metri
 trees to satisfy gen-eral proximity/similarity queries. Manus
ript, 1991.[22℄ J. Uhlmann. Satisfying general proximity/similarityqueries with metri
 trees. Information Pro
essing Let-ters, 40:175{179, 1991. Elsevier.[23℄ E. Vidal. An algorithm for �nding nearest neighborsin (approximately)
onstant average time. PatternRe
ognition Letters, 4:145{157, 1986.[24℄ P. Yianilos. Data stru
tures and algorithms for near-est neighbor sear
h in general metri
 spa
es. In Pro
.4th ACM-SIAM Symposium on Dis
rete Algorithms(SODA'93), pages 311{321, 1993.[25℄ P. Yianilos. Lo
ally lifting the
urse of dimensionalityfor nearest neighbor sear
h. In Pro
. 11th ACM-SIAMSymposium on Dis
rete Algorithms (SODA'00), 2000.

