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Abstract

The Spatial Approrimation Tree (sa-tree) is a re-
cently proposed data structure for searching in metric
spaces. It has been shown that it compares favorably
against alternative data structures in spaces of high
dimension or queries with low selectivity. The main
drawback of the sa-tree is that it is a static data struc-
ture, that is, once built, it is difficult to add new el-
ements to it. This rules it out for many interesting
applications.

In this paper we overcome this weakness. We pro-
pose and study several methods to handle insertions
in the sa-tree. Some are classical folklore solutions
well known in the data structures community, while the
most promising ones have been specifically developed
considering the particular properties of the sa-tree, and
involve new algorithmic insights in the behavior of this
data structure. As a result, we show that it is viable to
modify the sa-tree so as to permit fast insertions while
keeping its good search efficiency.

1. Introduction

The concept of “approximate” searching has appli-
cations in a vast number of fields. Some examples are
non-traditional databases (e.g. storing images, finger-
prints or audio clips, where the concept of exact search
is of no use and we search instead for similar objects);
text searching (to find words and phrases in a text
database allowing a small number of typographical or
spelling errors); information retrieval (to look for doc-
uments that are similar to a given query or document);
machine learning and classification (to classify a new
element according to its closest representative); image
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quantization and compression (where only some vec-
tors can be represented and we code the others as their
closest representable point); computational biology (to
find a DNA or protein sequence in a database allowing
some errors due to mutations); and function prediction
(to search for the most similar behavior of a function in
the past so as to predict its probable future behavior).
All those applications have some common charac-
teristics. There is a universe U of objects, and a non-
negative distance function d : U x U — R™ defined
among them. This distance satisfies the three axioms
that make the set a metric space: strict positiveness
(d(z,y) =0 & z =y), symmetry (d(z,y) = d(y,))
and triangle inequality (d(z,z) < d(z,y) + d(y,2)).
The smaller the distance between two objects, the
more “similar” they are. We have a finite database
S C U, which is a subset of the universe of objects and
can be preprocessed (to build an index, for example).
Later, given a new object from the universe (a query
q), we must retrieve all similar elements found in the
database. There are two typical queries of this kind:

Range query: Retrieve all elements within distance
rtoqin S. Thisis, {x € S, d(z,q) <r}.

Nearest neighbor query (k-NN): Retrieve the k
closest elements to ¢ in S. That is, a set A C S
such that |A| =k andVx € A,y € S—A,d(z,q) <

d(y,q).

The distance is considered expensive to compute
(think, for instance, in comparing two fingerprints).
Hence, it is customary to define the complexity of
the search as the number of distance evaluations per-
formed, disregarding other components such as CPU
time for side computations, and even I/O time. Given
a database of |S| = n objects, queries can be trivially
answered by performing n distance evaluations. The
goal is to structure the database such that we perform
less distance evaluations.



A particular case of this problem arises when the
space is a set of d-dimensional points and the dis-
tance belongs to the Minkowski L, family: L, =
(3 <icql®i — yil?)!/P. The best known special cases
are p = 1 (Manhattan distance), p = 2 (Euclidean
distance) and p = oo (maximum distance), that is,
L = maxi<i<a |T; — yil.

There are effective methods to search on d-
dimensional spaces, such as kd-trees [2] or R-trees [13].
However, for roughly 20 dimensions or more those
structures cease to work well. We focus in this paper in
general metric spaces, although the solutions are well
suited also for d-dimensional spaces.

It is interesting to notice that the concept of “di-
mensionality” can be translated to metric spaces as
well: the typical feature in high dimensional spaces
with L, distances is that the probability distribution
of distances among elements has a very concentrated
histogram (with larger mean as the dimension grows),
making the work of any similarity search algorithm
more difficult [5, 10]. In the extreme case we have a
space where d(z,z) = 0 and Vy # x, d(x,y) = 1, where
it is impossible to avoid a single distance evaluation at
search time. We say that a general metric space is high
dimensional when its histogram of distances is concen-
trated.

There are a number of methods to preprocess the set
in order to reduce the number of distance evaluations.
All those structures work on the basis of discarding
elements using the triangle inequality, and most use
the classical divide-and-conquer approach (which is not
specific of metric space searching).

The Spatial Approximation Tree (sa-tree) is a re-
cently proposed data structure of this kind [16], which
is based on a novel concept: rather than dividing the
search space, approach the query spatially, that is,
start at some point in the space and get closer and
closer to the query. It has been shown that the sa-
tree behaves better than the other existing structures
on metric spaces of high dimension or queries with low
selectivity, which is the case in many applications.

The sa-tree, unlike other data structures, does not
have parameters to be tuned by the user of each ap-
plication. This makes it very appealing as a general
purpose data structure for metric searching, since any
non-expert seeking for a tool to solve his/her particular
problem can use it as a black box tool, without the need
of understanding the complications of an area he/she
is not interested in. Other data structures have many
tuning parameters, hence requiring a big effort from
the user in order to obtain an acceptable performance.

On the other hand, the main weakness of the sa-
tree is that it is not dynamic. That is, once it is built,

it is difficult to add new elements to it. This makes
the sa-tree unsuitable for dynamic applications such as
multimedia databases.

Overcoming this weakness is the aim of this paper.
We propose and study several methods to handle inser-
tions in the sa-tree. Some are classical folklore solutions
well known in the data structures community, while the
most promising ones have been specifically developed
considering the particular properties of the sa-tree. As
a result, we show that it is viable to modify the sa-tree
so as to permit fast insertions while keeping its good
search efficiency. As a related byproduct of this study,
we give new algorithmic insights in the behavior of this
data structure.

2. Previous Work

Algorithms to search in general metric spaces can be
divided in two large areas: pivot-based and clustering
algorithms. (See [10] for a more complete review.)

Pivot-based algorithms. The idea is to use a set
of k distinguished elements (“pivots”) pi..pr € S
and storing, for each database element z, its dis-
tance to the k pivots (d(x,p1)...d(z,pr)). Given the
query ¢, its distance to the k pivots is computed
(d(q,p1).--d(q,pr)). Now, if for some pivot p; it holds
that |d(q, p;) — d(z,p;)| > r, then we know by the tri-
angle inequality that d(q,z) > r and therefore do not
need to explicitly evaluate d(z,p). All the other el-
ements that cannot be eliminated using this rule are
directly compared against the query.

Several algorithms [23, 15, 7, 18, 6, 8] are almost
direct implementations of this idea, and differ basically
in their extra structure used to reduce the CPU cost of
finding the candidate points, but not in their number
of distance evaluations.

There are a number of tree-like data structures that
use this idea in a more indirect way: they select a pivot
as the root of the tree and divide the space according
to the distances to the root. One slice corresponds to
each subtree (the number and width of the slices differs
across the strategies). At each subtree, a new pivot is
selected and so on. The search backtracks on the tree
using the triangle inequality to prune subtrees, that is,
if @ is the tree root and b is a children corresponding
to d(a,b) € [x1, 2], then we can avoid entering in the
subtree of b whenever [d(q,a) — r,d(g,a) + r] has no
intersection with [z, z3].

Several data structures use this idea [3, 22, 14, 24,
4, 25].



Clustering algorithms. The second trend consists
in dividing the space in zones as compact as possible,
normally recursively, and storing a representative point
(“center”) for each zone plus a few extra data that
permits quickly discarding the zone at query time. Two
criteria can be used to delimit a zone.

The first one is the Voronoi area, where we select a
set of centers and put each other point inside the zone
of its closest center. The areas are limited by hyper-
planes and the zones are analogous to Voronoi regions
in vector spaces. Let {c;...c,} be the set of cen-
ters. At query time we evaluate (d(g,c1),...,d(q,cm)),
choose the closest center ¢ and discard every zone
whose center ¢; satisfies d(q,¢;) > d(g,c) + 2r, as its
Voronoi area cannot intersect with the query ball.

The second criterion is the covering radius cr(c;),
which is the maximum distance between ¢; and an el-
ement in its zone. If d(q,¢;) — r > cr(c;), then there is
no need to consider zone .

The techniques can be combined. Some techniques
using only hyperplanes are [22, 19, 12]. Some tech-
niques using only covering radii are [11, 9]. One using
both criteria [5].

Nearest neighbor queries. To answer 1-NN
queries, we simulate a range query with a radius that
is initially r* = oo, and reduce r* as we find closer and
closer elements to q. At the end, we have in r* the
distance to the closest elements and have seen them
all. Unlike a range query, we are now interested in
quickly finding close elements in order to reduce r* as
early as possible, so there are a number of heuristics to
achieve this. One of the most interesting is proposed in
[21], where the subtrees yet to be processed are stored
in a priority queue in a heuristically promising order-
ing. The traversal is more general than a backtracking.
Each time we process the root of the most promising
subtree, we may add its children to the priority queue.
At some point we can preempt the search using a cutoff
criterion given by the triangle inequality.

k-NN queries are handled as a generalization of 1-
NN queries. Instead of one closest element, the & clos-
est elements known are maintained, and r* is the dis-
tance to the farthest to ¢ among those k. Each time
a new candidate appears we insert it into the queue,
which may displace another element and hence reduce
r*. At the end, the queue contains the k closest ele-
ments to q.

3. The Spatial Approximation Tree

We describe briefly in this section the sa-tree data
structure. It needs linear space O(n), reasonable

construction time O(nlog®n/loglogn) and sublinear
search time O(n!~®(1/108108 1)) in high dimensions and
O(n®*) (0 < a < 1) in low dimensions. It is experi-
mentally shown to improve over other data structures
when the dimension is high or the query radius is large.
For more details see the original references [16, 17].

3.1. Construction

We select a random element a € S to be the root
of the tree. We then select a suitable set of neighbors
N(a) satisfying the following property:

Condition 1: (given a,S) Vz €S, z € N(a) &
Vy € N(a) - {x}/ d(x:y) > d(a:,a).

That is, the neighbors of a form a set such that any
neighbor is closer to a than to any other neighbor. The
“only if” (<) part of the definition guarantees that if
we can get closer to any b € S then an element in N(a)
is closer to b than a, because we put as direct neigh-
bors all those elements that are not closer to another
neighbor. The “if” part (=) aims at putting as few
neighbors as possible.

Notice that the set N(a) is defined in terms of itself
in a non-trivial way and that multiple solutions fit the
definition. For example, if @ is far from b and ¢ and
these are close to each other, then both N(a) = {b}
and N(a) = {c} satisfy the definition.

Finding the smallest possible set N(a) seems to be
a nontrivial combinatorial optimization problem, since
by including an element we need to take out others
(this happens between b and ¢ in the example of the
previous paragraph). However, simple heuristics which
add more neighbors than necessary work well. We be-
gin with the initial node a and its “bag” holding all the
rest of S. We first sort the bag by distance to a.

Then, we start adding nodes to N(a) (which is ini-
tially empty). Each time we consider a new node b, we
check whether it is closer to some element of N (a) than
to a itself. If that is not the case, we add b to N(a).

At this point we have a suitable set of neighbors.
Note that Condition 1 is satisfied thanks to the fact
that we have considered the elements in order of in-
creasing distance to a. The “only if” part of Condition
1 is clearly satisfied because any element not satisfying
it is inserted in N(a). The “if” part is more delicate.
Let z # y € N(a). If y is closer to a than z then y was
considered first. Our construction algorithm guaran-
tees that if we inserted = in N (a) then d(z,a) < d(z,y).
If, on the other hand, z is closer to a than y, then
d(y,z) > d(y,a) > d(z,a) (that is, a neighbor cannot
be removed by a new neighbor inserted later).



We now must decide in which neighbor’s bag we
put the rest of the nodes. We put each node not in
{a} U N(a) in the bag of its closest element of N(a)
(best-fit strategy). Observe that this requires a second
pass once N (a) is fully determined.

We are done now with a, and process recursively all
its neighbors, each one with the elements of its bag.
Note that the resulting structure is a tree that can be
searched for any ¢ € S by spatial approximation for
nearest neighbor queries. The reason why this works is
that, at search time, we repeat exactly what happened
with ¢ during the construction process (i.e. we enter
into the subtree of the neighbor closest to ¢), until we
reach ¢. This is is because ¢ is present in the tree, i.e.,
we are doing an exact search after all.

Finally, we save some comparisons at search time by
storing at each node a its covering radius, i.e. the max-
imum distance R(a) between a and any element in the
subtree rooted by a. The way to use this information
is made clear in Section 3.2.

Figure 1 depicts the construction process. It is
firstly invoked as BuildTree(a,S — {a}) where a is
a random element of S. Note that, except for the first
level of the recursion, we already know all the distances
d(v,a) for every v € S and hence do not need to re-
compute them. Similarly, d(v,¢) at line 10 is already
known from line 6. The information stored by the data
structure is the root a and the N() and R() values of
all the nodes.

BuildTree (Node a, Set of nodes S)

N(a) « 0 /* neighbors of a */

R(a) < 0 /* covering radius */
Sort S by distance to a (closer first)
for veE S do

R(a) < max(R(a),d(v,a))
if Vb € N(a), d(v,a) < d(v,b)
then N(a) « N(a)U{v}

for b€ N(a) do S(b) « 0

for v € S — N(a) do
Let ¢ € N(a) be the one minimizing d(v,c)
S(c) < S(e)U{v}

for b € N(a) do BuildTree (b, S(b))

Figure 1. Algorithm to build the sa-tree.

3.2. Searching

Of course it is of little interest to search only for ele-
ments g € S. The tree we have described can, however,
be used as a device to solve queries of any type for any
q € U. We start with range queries with radius r.

The key observation is that, even if ¢ € S, the an-
swers to the query are elements ¢’ € S. So we use the
tree to pretend that we are searching for an element
q' € S. We do not know ¢', but since d(q,q') < r, we
can obtain from ¢ some distance information regard-
ing ¢': by the triangle inequality it holds that for any
T e U: d($,q) -r< d(xaql) < d(IIQ) +7r.

Hence, instead of simply going to the closest neigh-
bor, we first determine the closest neighbor ¢ of ¢
among {a} U N(a). We then enter into all neighbors
b € N(a) such that d(g,b) < d(g,c) + 2r. This is be-
cause the virtual element ¢’ sought can differ from ¢ by
at most r at any distance evaluation, so it could have
been inserted inside any of those b nodes. In the pro-
cess, we report all the nodes ¢’ we found close enough
to q.

Moreover, notice that, in an exact search for a ¢’ €
S, the distances between ¢’ and the nodes we traverse
get reduced as we step down the tree. That is,

Observation 1: Let a, b, c € S such that b descends
from a and c from b in the tree. Then d(c,b) < d(c, a).

The same happens, allowing a tolerance of 27, in a
range search with radius r. That is, for any b in the
path from a to ¢' it holds d(q',b) < d(¢’,a), so d(q,b) <
d(q,a) + 2r. Hence, while at first we need to enter into
all the neighbors b € N(a) such that d(q,b) —d(q,c) <
2r, when we enter into those b the tolerance is not 2r
anymore but it gets reduced to 2r — (d(q,b) — d(g, ¢)).

The covering radius R(a) is used to further prune the
search, by not entering into subtrees such that d(q,a) >
R(a) + r, since they cannot contain useful elements.

Figure 2 illustrates the search process, starting from
the tree root pi;. Only pg is in the result, but all the
bold edges are traversed. Figure 3 gives the search al-
gorithm, initially invoked as RangeSearch(a,q,r,2r),
where a is the tree root. Note that in the recursive
invocations d(a, q) is already computed.

Nearest neighbor searching. We can also perform
nearest neighbor searching by simulating a range search
where the search radius is reduced, just as explained at
the end of Section 2. We have a priority queue of sub-
trees, most promising first. Initially, we insert the sa-
tree root in the data structure. Iteratively, we extract
the most promising subtree, process its root, and insert
all its subtrees in the queue. This is repeated until the
queue gets empty or its most promising subtree can be
discarded (i.e., its promise value is bad enough). For
lack of space we omit further details.



Figure 2. An example of the search process.

RangeSearch (Node a, Query ¢, Radius r,
Tolerance t)

if d(a,q) <r then Report a
if d(a,q) < R(a) + r then
dmin <+ min{d(c,q), ¢ € {a} UN(a)}
for b€ N(a) do
if d(b,q) — dmin <t then
RangeSearch (b,q,r,t — (d(b,q) — dmin))

Figure 3. Searching ¢ with radius r in a sa-tree.

4. Incremental Construction

The sa-tree is a structure whose construction algo-
rithm needs to know all the elements of S in advance.
In particular, it is difficult to add new elements un-
der the best-fit strategy once the tree is already built.
Each time a new element is inserted, we must go down
the tree by the closest neighbor until the new element
must become a neighbor of the current node a. All
the subtree rooted at a must be rebuilt from scratch,
since some nodes that went into another neighbor could
prefer now to get into the new neighbor.

In this section we discuss and empirically evaluate
different alternatives to permit insertion of new ele-
ments into an already built sa-tree. For the experi-
ments we have selected two metric spaces. The first is
a dictionary of 69,069 English words, from where we
randomly chose queries. The distance in this case is
the edit distance, that is, minimum number of char-
acter insertions, deletions and replacements to make
the strings equal. The second space is the real unitary
cube in dimension 15 using Euclidean distance. We
generated 100,000 random points with uniform distri-
bution. For the queries, we build the indexes with 90%
of the points and use the other 10% (randomly chosen)

as queries. The results on these two spaces are rep-
resentative of those on many other metric spaces we
tested: NASA images, dictionaries in other languages,
Gaussian distributions, other dimensions, etc.

As a comparison point for which follows, a static
construction costs about 5 million comparisons for the
dictionary and 12.5 million for the vector space.

4.1. Rebuilding the Subtree

The naive approach rebuilds the whole subtree
rooted at a once a new element x being inserted has to
become a new neighbor of a. This has the advantage
of preserving the same tree that is built statically, but,
as Figure 4 shows for the case of the dictionary, the dy-
namic construction becomes too costly in comparison
to a static one (140 times more costly in this example,
almost 230 times more in our vector space).

Construction cost for n = 69,069 words

8000 S :

Static —=—
7000 r Dynamic —=—
6000
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Percentage of database used

Figure 4. Construction cost by rebuilding subtrees.

4.2. Overflow Buckets

We can have an overflow bucket per node with “ex-
tra” neighbors that should go in the subtree but have
not been classified yet. When the new element 2 must
become a neighbor of a, we put it in the overflow bucket
of a. Each time we reach a at query time, we also
compare g against its overflow bucket and report any
element near enough.

We must limit the size of the overflow buckets in
order to maintain a reasonable search efficiency. We
rebuild a subtree when its overflow bucket exceeds a
given size. The main question is which is the tradeoff
in practice between reconstruction cost and query cost.
As smaller overflow buckets are permitted, we rebuild
the tree more often and improve the query time, but
the construction time raises.
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Figure 5. Construction costs using overflow buckets.

Figure 5 shows the cost of the construction using
different bucket sizes, which exhibits interesting fluc-
tuations and in some cases costs even less than a static
construction. This is possible because many unclassi-
fied elements are left in the buckets. For example, for
bucket size 1,000, almost all the elements are in over-
flow buckets in the dictionary case and almost 60%
in the vector case. These fluctuations appear because
a larger bucket size may produce more rebuilds than
a smaller one for a given set size n. The effect is well
known, for example it appears when studying the num-
ber of splits as a function of the B-tree page size [1].

Figure 6 shows the search costs using overflow buck-
ets. We searched with fixed radius 1 to 4 in the dictio-
nary example and with radii retrieving 0.01%, 0.1%
and 1% of the set in the vector example. We also
performed nearest neighbor search experiments, which
yielded similar results and are omitted for lack of space.

As can be seen by comparing the results to those
of Figure 8, this technique is competitive against the

Query cost per element for n = 69,069 words
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Figure 6. Search costs using overflow buckets.

static construction provided the correct bucket size is
chosen. For example, with bucket size 500 we obtain
almost the same search costs as for the static version, at
the modest price of 10% extra construction cost for the
dictionary and 30% for the vectors. The main problem
in this method is its high sensitivity to the fluctuations,
which makes it difficult to select a good bucket size.
The intermediate bucket size 500 works well because
at this point the elements in overflow buckets are 30%
in the dictionary and 15% in the vectors.

4.3. A First-Fit Strategy

Yet another solution is to change our best-fit strategy
to put elements inside the bags of the neighbors of a
at construction time. An alternative, first-fit, is to put
each node in the bag of the first neighbor closer than
a to q. Determining N(a) and the bag of each other
element can now be done all in one pass.

With the first-fit strategy, however, we can easily
add more elements by pretending that the new incom-
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Figure 7. Construction costs using first-fit and using

timestamps.

ing element = was the last one in the bag, which means
that when it becomes a neighbor of a it can be simply
added as the last neighbor of a, and there were no later
elements that had the chance of getting into . This
allows building the structure by successive insertions.

Figure 7 shows that the construction (static or dy-
namic) using first-fit is much cheaper than using best-
fit. Moreover, first-fit costs exactly the same and pro-
duces the same tree in the static or the dynamic case.

Range searching under the first-fit strategy is a lit-
tle different. We consider the neighbors {vi,..., v}
of a in order. We perform the minimization while
we traverse the neighbors. That is, we enter into
the subtree of vy if d(q,v1) < d(g,a) + 2r; into the
subtree of vy if d(q,v2) < min(d(q,a),d(q,v1)) + 2r;
and in general into the subtree of v; if d(q,v;) <
min(d(q,a),d(q,v1),...,d(q,vi—1)) + 2r. This is be-
cause v;4; can never take out an element from v;.
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Figure 8. Search costs using first-fit and the two

versions of the timestamping technique.

Figure 8 shows search times. As can be seen, the
search overhead of the first-fit strategy is too high, at a
point that makes the structure not competitive against
other existing ones.

4.4. Timestamping

An alternative that has resemblances with the two
previous but is more sophisticated consists in keeping a
timestamp of the insertion time of each element. When
inserting a new element, we add it as a neighbor at the
appropriate point using best-fit and do not rebuild the
tree. Let us consider that neighbors are added at the
end, so by reading them left to right we have increasing
insertion times. It also holds that the parent is always
older than its children.

As seen in Figure 7, this alternative can cost a bit
more or a bit less than static best-fit depending on the



case. Two versions of this methods, labeled “up” and
“down” in the plot, correspond to how to handle the
case of equal distances to the root and to the closest
neighbor when inserting a new element. The former
inserts the element as a new neighbor and the latter
sends it to the subtree of the closest neighbor. This
makes a difference only in discrete distances.

At search time, we consider the neighbors
{v1,..., v} of a from oldest to newest. We perform
the minimization while we traverse the neighbors, ex-
actly as in Section 4.3. This is because between the
insertion of v; and v;4; there may have appeared new
elements that preferred v; just because v;y; was not
yet a neighbor, so we may miss an element if we do not
enter into v; because of the existence of v;y;.

Note that, although the search process is the same as
under first-fit, the insertion puts the elements into their
closest neighbor, so the structure is more balanced.

Up to now we do not really need timestamps but
just to keep the neighbors sorted. Yet a more so-
phisticated scheme is to use the timestamps to re-
duce the work done inside older neighbors. Say that
d(q,v;) > d(q,vi+;) + 2r. We have to enter into v;
because it is older. However, only the elements with
timestamp smaller than that of v;;; should be consid-
ered when searching inside v;; younger elements have
seen v;4; and they cannot be interesting for the search
if they are inside v;. As parent nodes are older than
their descendants, as soon as we find a node inside the
subtree of v; with timestamp larger than that of v;y;
we can stop the search in that branch, because its sub-
tree is even younger.

An alternative view, equivalent as before but focus-
ing on maximum allowed radius instead of maximum
allowed timestamp, is as follows. Each time we enter
into a subtree y of v;, we search for the siblings v;;
of v; that are older than y. Over this set, we compute
the maximum radius that permits to avoid processing
y, namely 7, = max(d(q,v;) — d(q,vi+;))/2. If it holds
r < ry, we do not need to enter into the subtree y.

Let us now consider nearest neighbor searching. As-
sume that we are currently processing node v; and in-
sert its children y in the priority queue. We compute
ry as before and insert it together with y in the priority
queue. Later, when the time to process y comes, we
consider our current search radius 7* and discard y if
r* < ry. If we insert a children 2z of y, we put it the
value min(ry,r.).

Figure 8 compares this technique against the static
one. As it can be seen, this is an excellent alterna-
tive to the static construction in the case of our vec-
tor space example, providing basically the same con-
struction and search cost with the added value of dy-

namism. In the case of the dictionary, the timestamp-
ing technique is significantly worse than the static one
(although the “up” behaves slightly better for nearest
neighbor searching). The problem is that the “up” ver-
sion is much more costly to build, needing more than
3 times the static construction cost.

4.5. Inserting at the Fringe

Yet another alternative is as follows. We can relax
Condition 1 (Section 3.1), whose main goal is to guar-
antee that if ¢ is closer to a than to any neighbor in
N(a) then we can stop the search at that point. The
idea is that, at search time, instead of finding the clos-
est ¢ among {a}UN (a) and entering into any b € N (a)
such that d(q,b) < d(q,c) + 2r, we exclude the sub-
tree root {a} from the minimization. Hence, we always
continue to the leaves by the closest neighbor and oth-
ers close enough. This seems to make the search time
slightly worse, but the cost is marginal.

The benefit is that we are not forced anymore to put
a new inserted element z as a neighbor of a, even when
Condition 1 would require it. That is, at insertion time,
even if z is closer to a than to any element in N(a), we
have the choice of not putting it as a neighbor of a but
inserting it into its closest neighbor of N(a). At search
time we will reach z because the search and insertion
processes are similar.

This freedom opens a number of new possibilities
that deserve a much deeper study, but an immediate
consequence is that we can insert always at the leaves
of the tree. Hence, the tree is read-only in its top part
and it changes only in the fringe.

However, we have to permit the reconstruction of
small subtrees so as to avoid that the tree becomes
almost a linked list. So we permit inserting z as a
neighbor when the size of the subtree to rebuild is small
enough, which leads to a tradeoff between insertion cost
and quality of the tree at search time.

Figure 9 shows the construction cost for different
maximum tree sizes that can be rebuilt. As can be seen,
permitting a tree size of 50 yields the same construction
cost of the static version.

Finally, Figure 10 shows the search times using this
technique. As can be seen, using a tree size of 50 per-
mits the same and even better search time compared
to the static version, which shows that it may be benef-
ical to move elements downward in the tree. This fact
makes this alternative a very interesting choice deserv-
ing more study.
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Figure 9. Construction costs inserting at the fringe.

5. Conclusions

We have presented several techniques to modify the
sa-tree in order to make it a dynamic data structure
supporting insertions, without degrading its current
performance. We have shown that there are many
more alternatives than what appears at a first glance,
and that the invariants of the sa-tree can be relaxed in
ways unforeseen before this study (e.g. the fact that
we can decide whether or not to add neighbors).

From the choices we have considered, the use of over-
flow buckets shows that it is possible to obtain con-
struction and search times similar to those of the static
version, although the choice of the bucket size deserves
more study. Timestamping has also shown competitive
in some metric spaces and not so attractive in others,
a fact deserving more study. Finally, inserting at the
fringe has shown the potential of even improving the
performance of the static version, although studying
the effect of the size of the fringe is required.

Query cost per element for n = 69,069 words

45000 - :

Size = 10 —
40000 r Size =50 —e—
Size = 100 ——
35000 | §jze =500 ~ ——
30000 | Size = 1000 —
Best-Fit ——

25000 r
20000 r
15000
10000

5000

Distance evaluations

Search radius

Query cost per element for n = 100,000 vectors dim. 15
85000

80000 r
75000 r
70000 r
65000 r
60000 r
55000
50000
45000

40000
0.01 0.1 1

Percentage of database retrieved

Size = 10
Size =50 —e—
Size =100 ——
Size =500 —
Size = 1000 — 4
Best-Fit ——

Distance evaluations

Figure 10. Search costs using insertion in the fringe.

Other alternatives, such as rebuilding and first-fit,
proved to be not competitive, although the latter offers
very low construction costs, which could be interesting
despite its much higher search cost.

It is clear now that making the sa-tree dynamic is af-
fordable and that the structure can even be improved in
a dynamic setup, contrary to our previous assumption
that there would be a cost for the dynamism. On the
other hand, we need to pursue more in the most promis-
ing alternatives in order to understand them better.
Moreover, we have not considered deletions yet. These
seem more difficult but always can be treated by mark-
ing the nodes as deleted and making periodic rebuilds.

This work is a first step of a broader project [20]
which aims at a fully dynamic data structure for search-
ing in metric spaces, which can also work on secondary
memory. We have not touched this last aspect in this
paper. A simple solution to store the sa-tree in sec-
ondary storage is to try to store whole subtrees in disk
pages so as to minimize the number of pages read at



search time. This has an interesting relationship with
inserting at the fringe (Section 4.5), not only because

Y

the top part of the tree is read-only, but also because
we can control the maximum arity of the tree so as to
make the neighbors fit in a disk page.
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