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tThe Spatial Approximation Tree (sa-tree) is a re-
ently proposed data stru
ture for sear
hing in metri
spa
es. It has been shown that it 
ompares favorablyagainst alternative data stru
tures in spa
es of highdimension or queries with low sele
tivity. The maindrawba
k of the sa-tree is that it is a stati
 data stru
-ture, that is, on
e built, it is diÆ
ult to add new el-ements to it. This rules it out for many interestingappli
ations.In this paper we over
ome this weakness. We pro-pose and study several methods to handle insertionsin the sa-tree. Some are 
lassi
al folklore solutionswell known in the data stru
tures 
ommunity, while themost promising ones have been spe
i�
ally developed
onsidering the parti
ular properties of the sa-tree, andinvolve new algorithmi
 insights in the behavior of thisdata stru
ture. As a result, we show that it is viable tomodify the sa-tree so as to permit fast insertions whilekeeping its good sear
h eÆ
ien
y.1. Introdu
tionThe 
on
ept of \approximate" sear
hing has appli-
ations in a vast number of �elds. Some examples arenon-traditional databases (e.g. storing images, �nger-prints or audio 
lips, where the 
on
ept of exa
t sear
his of no use and we sear
h instead for similar obje
ts);text sear
hing (to �nd words and phrases in a textdatabase allowing a small number of typographi
al orspelling errors); information retrieval (to look for do
-uments that are similar to a given query or do
ument);ma
hine learning and 
lassi�
ation (to 
lassify a newelement a

ording to its 
losest representative); image�Partially supported by Fonde
yt grant 1-000929.

quantization and 
ompression (where only some ve
-tors 
an be represented and we 
ode the others as their
losest representable point); 
omputational biology (to�nd a DNA or protein sequen
e in a database allowingsome errors due to mutations); and fun
tion predi
tion(to sear
h for the most similar behavior of a fun
tion inthe past so as to predi
t its probable future behavior).All those appli
ations have some 
ommon 
hara
-teristi
s. There is a universe U of obje
ts, and a non-negative distan
e fun
tion d : U � U �! R+ de�nedamong them. This distan
e satis�es the three axiomsthat make the set a metri
 spa
e: stri
t positiveness(d(x; y) = 0 , x = y), symmetry (d(x; y) = d(y; x))and triangle inequality (d(x; z) � d(x; y) + d(y; z)).The smaller the distan
e between two obje
ts, themore \similar" they are. We have a �nite databaseS � U , whi
h is a subset of the universe of obje
ts and
an be prepro
essed (to build an index, for example).Later, given a new obje
t from the universe (a queryq), we must retrieve all similar elements found in thedatabase. There are two typi
al queries of this kind:Range query: Retrieve all elements within distan
er to q in S. This is, fx 2 S ; d(x; q) � rg.Nearest neighbor query (k-NN): Retrieve the k
losest elements to q in S. That is, a set A � Ssu
h that jAj = k and 8x 2 A; y 2 S�A; d(x; q) �d(y; q).The distan
e is 
onsidered expensive to 
ompute(think, for instan
e, in 
omparing two �ngerprints).Hen
e, it is 
ustomary to de�ne the 
omplexity ofthe sear
h as the number of distan
e evaluations per-formed, disregarding other 
omponents su
h as CPUtime for side 
omputations, and even I/O time. Givena database of jSj = n obje
ts, queries 
an be triviallyanswered by performing n distan
e evaluations. Thegoal is to stru
ture the database su
h that we performless distan
e evaluations.



A parti
ular 
ase of this problem arises when thespa
e is a set of d-dimensional points and the dis-tan
e belongs to the Minkowski Lp family: Lp =(P1�i�d jxi � yijp)1=p. The best known spe
ial 
asesare p = 1 (Manhattan distan
e), p = 2 (Eu
lideandistan
e) and p = 1 (maximum distan
e), that is,L1 = max1�i�d jxi � yij.There are e�e
tive methods to sear
h on d-dimensional spa
es, su
h as kd-trees [2℄ or R-trees [13℄.However, for roughly 20 dimensions or more thosestru
tures 
ease to work well. We fo
us in this paper ingeneral metri
 spa
es, although the solutions are wellsuited also for d-dimensional spa
es.It is interesting to noti
e that the 
on
ept of \di-mensionality" 
an be translated to metri
 spa
es aswell: the typi
al feature in high dimensional spa
eswith Lp distan
es is that the probability distributionof distan
es among elements has a very 
on
entratedhistogram (with larger mean as the dimension grows),making the work of any similarity sear
h algorithmmore diÆ
ult [5, 10℄. In the extreme 
ase we have aspa
e where d(x; x) = 0 and 8y 6= x; d(x; y) = 1, whereit is impossible to avoid a single distan
e evaluation atsear
h time. We say that a general metri
 spa
e is highdimensional when its histogram of distan
es is 
on
en-trated.There are a number of methods to prepro
ess the setin order to redu
e the number of distan
e evaluations.All those stru
tures work on the basis of dis
ardingelements using the triangle inequality, and most usethe 
lassi
al divide-and-
onquer approa
h (whi
h is notspe
i�
 of metri
 spa
e sear
hing).The Spatial Approximation Tree (sa-tree) is a re-
ently proposed data stru
ture of this kind [16℄, whi
his based on a novel 
on
ept: rather than dividing thesear
h spa
e, approa
h the query spatially, that is,start at some point in the spa
e and get 
loser and
loser to the query. It has been shown that the sa-tree behaves better than the other existing stru
tureson metri
 spa
es of high dimension or queries with lowsele
tivity, whi
h is the 
ase in many appli
ations.The sa-tree, unlike other data stru
tures, does nothave parameters to be tuned by the user of ea
h ap-pli
ation. This makes it very appealing as a generalpurpose data stru
ture for metri
 sear
hing, sin
e anynon-expert seeking for a tool to solve his/her parti
ularproblem 
an use it as a bla
k box tool, without the needof understanding the 
ompli
ations of an area he/sheis not interested in. Other data stru
tures have manytuning parameters, hen
e requiring a big e�ort fromthe user in order to obtain an a

eptable performan
e.On the other hand, the main weakness of the sa-tree is that it is not dynami
. That is, on
e it is built,

it is diÆ
ult to add new elements to it. This makesthe sa-tree unsuitable for dynami
 appli
ations su
h asmultimedia databases.Over
oming this weakness is the aim of this paper.We propose and study several methods to handle inser-tions in the sa-tree. Some are 
lassi
al folklore solutionswell known in the data stru
tures 
ommunity, while themost promising ones have been spe
i�
ally developed
onsidering the parti
ular properties of the sa-tree. Asa result, we show that it is viable to modify the sa-treeso as to permit fast insertions while keeping its goodsear
h eÆ
ien
y. As a related byprodu
t of this study,we give new algorithmi
 insights in the behavior of thisdata stru
ture.2. Previous WorkAlgorithms to sear
h in general metri
 spa
es 
an bedivided in two large areas: pivot-based and 
lusteringalgorithms. (See [10℄ for a more 
omplete review.)Pivot-based algorithms. The idea is to use a setof k distinguished elements (\pivots") p1:::pk 2 Sand storing, for ea
h database element x, its dis-tan
e to the k pivots (d(x; p1):::d(x; pk)). Given thequery q, its distan
e to the k pivots is 
omputed(d(q; p1):::d(q; pk)). Now, if for some pivot pi it holdsthat jd(q; pi) � d(x; pi)j > r, then we know by the tri-angle inequality that d(q; x) > r and therefore do notneed to expli
itly evaluate d(x; p). All the other el-ements that 
annot be eliminated using this rule aredire
tly 
ompared against the query.Several algorithms [23, 15, 7, 18, 6, 8℄ are almostdire
t implementations of this idea, and di�er basi
allyin their extra stru
ture used to redu
e the CPU 
ost of�nding the 
andidate points, but not in their numberof distan
e evaluations.There are a number of tree-like data stru
tures thatuse this idea in a more indire
t way: they sele
t a pivotas the root of the tree and divide the spa
e a

ordingto the distan
es to the root. One sli
e 
orresponds toea
h subtree (the number and width of the sli
es di�ersa
ross the strategies). At ea
h subtree, a new pivot issele
ted and so on. The sear
h ba
ktra
ks on the treeusing the triangle inequality to prune subtrees, that is,if a is the tree root and b is a 
hildren 
orrespondingto d(a; b) 2 [x1; x2℄, then we 
an avoid entering in thesubtree of b whenever [d(q; a) � r; d(q; a) + r℄ has nointerse
tion with [x1; x2℄.Several data stru
tures use this idea [3, 22, 14, 24,4, 25℄.



Clustering algorithms. The se
ond trend 
onsistsin dividing the spa
e in zones as 
ompa
t as possible,normally re
ursively, and storing a representative point(\
enter") for ea
h zone plus a few extra data thatpermits qui
kly dis
arding the zone at query time. Two
riteria 
an be used to delimit a zone.The �rst one is the Voronoi area, where we sele
t aset of 
enters and put ea
h other point inside the zoneof its 
losest 
enter. The areas are limited by hyper-planes and the zones are analogous to Voronoi regionsin ve
tor spa
es. Let f
1 : : : 
mg be the set of 
en-ters. At query time we evaluate (d(q; 
1); : : : ; d(q; 
m)),
hoose the 
losest 
enter 
 and dis
ard every zonewhose 
enter 
i satis�es d(q; 
i) > d(q; 
) + 2r, as itsVoronoi area 
annot interse
t with the query ball.The se
ond 
riterion is the 
overing radius 
r(
i),whi
h is the maximum distan
e between 
i and an el-ement in its zone. If d(q; 
i)� r > 
r(
i), then there isno need to 
onsider zone i.The te
hniques 
an be 
ombined. Some te
hniquesusing only hyperplanes are [22, 19, 12℄. Some te
h-niques using only 
overing radii are [11, 9℄. One usingboth 
riteria [5℄.Nearest neighbor queries. To answer 1-NNqueries, we simulate a range query with a radius thatis initially r� =1, and redu
e r� as we �nd 
loser and
loser elements to q. At the end, we have in r� thedistan
e to the 
losest elements and have seen themall. Unlike a range query, we are now interested inqui
kly �nding 
lose elements in order to redu
e r� asearly as possible, so there are a number of heuristi
s toa
hieve this. One of the most interesting is proposed in[21℄, where the subtrees yet to be pro
essed are storedin a priority queue in a heuristi
ally promising order-ing. The traversal is more general than a ba
ktra
king.Ea
h time we pro
ess the root of the most promisingsubtree, we may add its 
hildren to the priority queue.At some point we 
an preempt the sear
h using a 
uto�
riterion given by the triangle inequality.k-NN queries are handled as a generalization of 1-NN queries. Instead of one 
losest element, the k 
los-est elements known are maintained, and r� is the dis-tan
e to the farthest to q among those k. Ea
h timea new 
andidate appears we insert it into the queue,whi
h may displa
e another element and hen
e redu
er�. At the end, the queue 
ontains the k 
losest ele-ments to q.3. The Spatial Approximation TreeWe des
ribe brie
y in this se
tion the sa-tree datastru
ture. It needs linear spa
e O(n), reasonable


onstru
tion time O(n log2 n= log logn) and sublinearsear
h time O(n1��(1= log logn)) in high dimensions andO(n�) (0 < � < 1) in low dimensions. It is experi-mentally shown to improve over other data stru
tureswhen the dimension is high or the query radius is large.For more details see the original referen
es [16, 17℄.3.1. Constru
tionWe sele
t a random element a 2 S to be the rootof the tree. We then sele
t a suitable set of neighborsN(a) satisfying the following property:Condition 1: (given a; S) 8x 2 S, x 2 N(a) ,8y 2 N(a)� fxg; d(x; y) > d(x; a).That is, the neighbors of a form a set su
h that anyneighbor is 
loser to a than to any other neighbor. The\only if" (() part of the de�nition guarantees that ifwe 
an get 
loser to any b 2 S then an element in N(a)is 
loser to b than a, be
ause we put as dire
t neigh-bors all those elements that are not 
loser to anotherneighbor. The \if" part ()) aims at putting as fewneighbors as possible.Noti
e that the set N(a) is de�ned in terms of itselfin a non-trivial way and that multiple solutions �t thede�nition. For example, if a is far from b and 
 andthese are 
lose to ea
h other, then both N(a) = fbgand N(a) = f
g satisfy the de�nition.Finding the smallest possible set N(a) seems to bea nontrivial 
ombinatorial optimization problem, sin
eby in
luding an element we need to take out others(this happens between b and 
 in the example of theprevious paragraph). However, simple heuristi
s whi
hadd more neighbors than ne
essary work well. We be-gin with the initial node a and its \bag" holding all therest of S. We �rst sort the bag by distan
e to a.Then, we start adding nodes to N(a) (whi
h is ini-tially empty). Ea
h time we 
onsider a new node b, we
he
k whether it is 
loser to some element of N(a) thanto a itself. If that is not the 
ase, we add b to N(a).At this point we have a suitable set of neighbors.Note that Condition 1 is satis�ed thanks to the fa
tthat we have 
onsidered the elements in order of in-
reasing distan
e to a. The \only if" part of Condition1 is 
learly satis�ed be
ause any element not satisfyingit is inserted in N(a). The \if" part is more deli
ate.Let x 6= y 2 N(a). If y is 
loser to a than x then y was
onsidered �rst. Our 
onstru
tion algorithm guaran-tees that if we inserted x inN(a) then d(x; a) < d(x; y).If, on the other hand, x is 
loser to a than y, thend(y; x) > d(y; a) � d(x; a) (that is, a neighbor 
annotbe removed by a new neighbor inserted later).



We now must de
ide in whi
h neighbor's bag weput the rest of the nodes. We put ea
h node not infag [ N(a) in the bag of its 
losest element of N(a)(best-�t strategy). Observe that this requires a se
ondpass on
e N(a) is fully determined.We are done now with a, and pro
ess re
ursively allits neighbors, ea
h one with the elements of its bag.Note that the resulting stru
ture is a tree that 
an besear
hed for any q 2 S by spatial approximation fornearest neighbor queries. The reason why this works isthat, at sear
h time, we repeat exa
tly what happenedwith q during the 
onstru
tion pro
ess (i.e. we enterinto the subtree of the neighbor 
losest to q), until werea
h q. This is is be
ause q is present in the tree, i.e.,we are doing an exa
t sear
h after all.Finally, we save some 
omparisons at sear
h time bystoring at ea
h node a its 
overing radius, i.e. the max-imum distan
e R(a) between a and any element in thesubtree rooted by a. The way to use this informationis made 
lear in Se
tion 3.2.Figure 1 depi
ts the 
onstru
tion pro
ess. It is�rstly invoked as BuildTree(a,S � fag) where a isa random element of S. Note that, ex
ept for the �rstlevel of the re
ursion, we already know all the distan
esd(v; a) for every v 2 S and hen
e do not need to re-
ompute them. Similarly, d(v; 
) at line 10 is alreadyknown from line 6. The information stored by the datastru
ture is the root a and the N() and R() values ofall the nodes.BuildTree (Node a, Set of nodes S)N(a)  ; /* neighbors of a */R(a)  0 /* 
overing radius */Sort S by distan
e to a (
loser first)for v 2 S doR(a)  max(R(a); d(v; a))if 8b 2 N(a); d(v; a) < d(v; b)then N(a)  N(a) [ fvgfor b 2 N(a) do S(b)  ;for v 2 S �N(a) doLet 
 2 N(a) be the one minimizing d(v; 
)S(
)  S(
) [ fvgfor b 2 N(a) do BuildTree (b, S(b))Figure 1. Algorithm to build the sa-tree.3.2. Sear
hingOf 
ourse it is of little interest to sear
h only for ele-ments q 2 S. The tree we have des
ribed 
an, however,be used as a devi
e to solve queries of any type for anyq 2 U . We start with range queries with radius r.

The key observation is that, even if q 62 S, the an-swers to the query are elements q0 2 S. So we use thetree to pretend that we are sear
hing for an elementq0 2 S. We do not know q0, but sin
e d(q; q0) � r, we
an obtain from q some distan
e information regard-ing q0: by the triangle inequality it holds that for anyx 2 U , d(x; q) � r � d(x; q0) � d(x; q) + r.Hen
e, instead of simply going to the 
losest neigh-bor, we �rst determine the 
losest neighbor 
 of qamong fag [ N(a). We then enter into all neighborsb 2 N(a) su
h that d(q; b) � d(q; 
) + 2r. This is be-
ause the virtual element q0 sought 
an di�er from q byat most r at any distan
e evaluation, so it 
ould havebeen inserted inside any of those b nodes. In the pro-
ess, we report all the nodes q0 we found 
lose enoughto q.Moreover, noti
e that, in an exa
t sear
h for a q0 2S, the distan
es between q0 and the nodes we traverseget redu
ed as we step down the tree. That is,Observation 1: Let a; b; 
 2 S su
h that b des
endsfrom a and 
 from b in the tree. Then d(
; b) � d(
; a).The same happens, allowing a toleran
e of 2r, in arange sear
h with radius r. That is, for any b in thepath from a to q0 it holds d(q0; b) � d(q0; a), so d(q; b) �d(q; a)+2r. Hen
e, while at �rst we need to enter intoall the neighbors b 2 N(a) su
h that d(q; b)� d(q; 
) �2r, when we enter into those b the toleran
e is not 2ranymore but it gets redu
ed to 2r � (d(q; b)� d(q; 
)).The 
overing radiusR(a) is used to further prune thesear
h, by not entering into subtrees su
h that d(q; a) >R(a) + r, sin
e they 
annot 
ontain useful elements.Figure 2 illustrates the sear
h pro
ess, starting fromthe tree root p11. Only p9 is in the result, but all thebold edges are traversed. Figure 3 gives the sear
h al-gorithm, initially invoked as RangeSear
h(a,q,r,2r),where a is the tree root. Note that in the re
ursiveinvo
ations d(a; q) is already 
omputed.Nearest neighbor sear
hing. We 
an also performnearest neighbor sear
hing by simulating a range sear
hwhere the sear
h radius is redu
ed, just as explained atthe end of Se
tion 2. We have a priority queue of sub-trees, most promising �rst. Initially, we insert the sa-tree root in the data stru
ture. Iteratively, we extra
tthe most promising subtree, pro
ess its root, and insertall its subtrees in the queue. This is repeated until thequeue gets empty or its most promising subtree 
an bedis
arded (i.e., its promise value is bad enough). Forla
k of spa
e we omit further details.
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Figure 2. An example of the sear
h pro
ess.RangeSear
h (Node a, Query q, Radius r,Toleran
e t)if d(a; q) � r then Report aif d(a; q) � R(a) + r thendmin  minfd(
; q); 
 2 fag [N(a)gfor b 2 N(a) doif d(b; q)� dmin � t thenRangeSear
h (b,q,r,t� (d(b; q)� dmin))Figure 3. Sear
hing q with radius r in a sa-tree.4. In
remental Constru
tionThe sa-tree is a stru
ture whose 
onstru
tion algo-rithm needs to know all the elements of S in advan
e.In parti
ular, it is diÆ
ult to add new elements un-der the best-�t strategy on
e the tree is already built.Ea
h time a new element is inserted, we must go downthe tree by the 
losest neighbor until the new elementmust be
ome a neighbor of the 
urrent node a. Allthe subtree rooted at a must be rebuilt from s
rat
h,sin
e some nodes that went into another neighbor 
ouldprefer now to get into the new neighbor.In this se
tion we dis
uss and empiri
ally evaluatedi�erent alternatives to permit insertion of new ele-ments into an already built sa-tree. For the experi-ments we have sele
ted two metri
 spa
es. The �rst isa di
tionary of 69,069 English words, from where werandomly 
hose queries. The distan
e in this 
ase isthe edit distan
e, that is, minimum number of 
har-a
ter insertions, deletions and repla
ements to makethe strings equal. The se
ond spa
e is the real unitary
ube in dimension 15 using Eu
lidean distan
e. Wegenerated 100,000 random points with uniform distri-bution. For the queries, we build the indexes with 90%of the points and use the other 10% (randomly 
hosen)

as queries. The results on these two spa
es are rep-resentative of those on many other metri
 spa
es wetested: NASA images, di
tionaries in other languages,Gaussian distributions, other dimensions, et
.As a 
omparison point for whi
h follows, a stati

onstru
tion 
osts about 5 million 
omparisons for thedi
tionary and 12.5 million for the ve
tor spa
e.4.1. Rebuilding the SubtreeThe naive approa
h rebuilds the whole subtreerooted at a on
e a new element x being inserted has tobe
ome a new neighbor of a. This has the advantageof preserving the same tree that is built stati
ally, but,as Figure 4 shows for the 
ase of the di
tionary, the dy-nami
 
onstru
tion be
omes too 
ostly in 
omparisonto a stati
 one (140 times more 
ostly in this example,almost 230 times more in our ve
tor spa
e).
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Figure 4. Constru
tion 
ost by rebuilding subtrees.4.2. Over
ow Bu
ketsWe 
an have an over
ow bu
ket per node with \ex-tra" neighbors that should go in the subtree but havenot been 
lassi�ed yet. When the new element x mustbe
ome a neighbor of a, we put it in the over
ow bu
ketof a. Ea
h time we rea
h a at query time, we also
ompare q against its over
ow bu
ket and report anyelement near enough.We must limit the size of the over
ow bu
kets inorder to maintain a reasonable sear
h eÆ
ien
y. Werebuild a subtree when its over
ow bu
ket ex
eeds agiven size. The main question is whi
h is the tradeo�in pra
ti
e between re
onstru
tion 
ost and query 
ost.As smaller over
ow bu
kets are permitted, we rebuildthe tree more often and improve the query time, butthe 
onstru
tion time raises.
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Figure 5. Constru
tion 
osts using over
ow bu
kets.Figure 5 shows the 
ost of the 
onstru
tion usingdi�erent bu
ket sizes, whi
h exhibits interesting 
u
-tuations and in some 
ases 
osts even less than a stati

onstru
tion. This is possible be
ause many un
lassi-�ed elements are left in the bu
kets. For example, forbu
ket size 1,000, almost all the elements are in over-
ow bu
kets in the di
tionary 
ase and almost 60%in the ve
tor 
ase. These 
u
tuations appear be
ausea larger bu
ket size may produ
e more rebuilds thana smaller one for a given set size n. The e�e
t is wellknown, for example it appears when studying the num-ber of splits as a fun
tion of the B-tree page size [1℄.Figure 6 shows the sear
h 
osts using over
ow bu
k-ets. We sear
hed with �xed radius 1 to 4 in the di
tio-nary example and with radii retrieving 0.01%, 0.1%and 1% of the set in the ve
tor example. We alsoperformed nearest neighbor sear
h experiments, whi
hyielded similar results and are omitted for la
k of spa
e.As 
an be seen by 
omparing the results to thoseof Figure 8, this te
hnique is 
ompetitive against the
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h 
osts using over
ow bu
kets.stati
 
onstru
tion provided the 
orre
t bu
ket size is
hosen. For example, with bu
ket size 500 we obtainalmost the same sear
h 
osts as for the stati
 version, atthe modest pri
e of 10% extra 
onstru
tion 
ost for thedi
tionary and 30% for the ve
tors. The main problemin this method is its high sensitivity to the 
u
tuations,whi
h makes it diÆ
ult to sele
t a good bu
ket size.The intermediate bu
ket size 500 works well be
auseat this point the elements in over
ow bu
kets are 30%in the di
tionary and 15% in the ve
tors.4.3. A First-Fit StrategyYet another solution is to 
hange our best-�t strategyto put elements inside the bags of the neighbors of aat 
onstru
tion time. An alternative, �rst-�t, is to putea
h node in the bag of the �rst neighbor 
loser thana to q. Determining N(a) and the bag of ea
h otherelement 
an now be done all in one pass.With the �rst-�t strategy, however, we 
an easilyadd more elements by pretending that the new in
om-
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Figure 7. Constru
tion 
osts using �rst-�t and usingtimestamps.ing element x was the last one in the bag, whi
h meansthat when it be
omes a neighbor of a it 
an be simplyadded as the last neighbor of a, and there were no laterelements that had the 
han
e of getting into x. Thisallows building the stru
ture by su

essive insertions.Figure 7 shows that the 
onstru
tion (stati
 or dy-nami
) using �rst-�t is mu
h 
heaper than using best-�t. Moreover, �rst-�t 
osts exa
tly the same and pro-du
es the same tree in the stati
 or the dynami
 
ase.Range sear
hing under the �rst-�t strategy is a lit-tle di�erent. We 
onsider the neighbors fv1; : : : ; vkgof a in order. We perform the minimization whilewe traverse the neighbors. That is, we enter intothe subtree of v1 if d(q; v1) � d(q; a) + 2r; into thesubtree of v2 if d(q; v2) � min(d(q; a); d(q; v1)) + 2r;and in general into the subtree of vi if d(q; vi) �min(d(q; a); d(q; v1); : : : ; d(q; vi�1)) + 2r. This is be-
ause vi+j 
an never take out an element from vi.
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TimestampFigure 8. Sear
h 
osts using �rst-�t and the twoversions of the timestamping te
hnique.Figure 8 shows sear
h times. As 
an be seen, thesear
h overhead of the �rst-�t strategy is too high, at apoint that makes the stru
ture not 
ompetitive againstother existing ones.4.4. TimestampingAn alternative that has resemblan
es with the twoprevious but is more sophisti
ated 
onsists in keeping atimestamp of the insertion time of ea
h element. Wheninserting a new element, we add it as a neighbor at theappropriate point using best-�t and do not rebuild thetree. Let us 
onsider that neighbors are added at theend, so by reading them left to right we have in
reasinginsertion times. It also holds that the parent is alwaysolder than its 
hildren.As seen in Figure 7, this alternative 
an 
ost a bitmore or a bit less than stati
 best-�t depending on the




ase. Two versions of this methods, labeled \up" and\down" in the plot, 
orrespond to how to handle the
ase of equal distan
es to the root and to the 
losestneighbor when inserting a new element. The formerinserts the element as a new neighbor and the lattersends it to the subtree of the 
losest neighbor. Thismakes a di�eren
e only in dis
rete distan
es.At sear
h time, we 
onsider the neighborsfv1; : : : ; vkg of a from oldest to newest. We performthe minimization while we traverse the neighbors, ex-a
tly as in Se
tion 4.3. This is be
ause between theinsertion of vi and vi+j there may have appeared newelements that preferred vi just be
ause vi+j was notyet a neighbor, so we may miss an element if we do notenter into vi be
ause of the existen
e of vi+j .Note that, although the sear
h pro
ess is the same asunder �rst-�t, the insertion puts the elements into their
losest neighbor, so the stru
ture is more balan
ed.Up to now we do not really need timestamps butjust to keep the neighbors sorted. Yet a more so-phisti
ated s
heme is to use the timestamps to re-du
e the work done inside older neighbors. Say thatd(q; vi) > d(q; vi+j) + 2r. We have to enter into vibe
ause it is older. However, only the elements withtimestamp smaller than that of vi+j should be 
onsid-ered when sear
hing inside vi; younger elements haveseen vi+j and they 
annot be interesting for the sear
hif they are inside vi. As parent nodes are older thantheir des
endants, as soon as we �nd a node inside thesubtree of vi with timestamp larger than that of vi+jwe 
an stop the sear
h in that bran
h, be
ause its sub-tree is even younger.An alternative view, equivalent as before but fo
us-ing on maximum allowed radius instead of maximumallowed timestamp, is as follows. Ea
h time we enterinto a subtree y of vi, we sear
h for the siblings vi+jof vi that are older than y. Over this set, we 
omputethe maximum radius that permits to avoid pro
essingy, namely ry = max(d(q; vi)� d(q; vi+j ))=2. If it holdsr < ry, we do not need to enter into the subtree y.Let us now 
onsider nearest neighbor sear
hing. As-sume that we are 
urrently pro
essing node vi and in-sert its 
hildren y in the priority queue. We 
omputery as before and insert it together with y in the priorityqueue. Later, when the time to pro
ess y 
omes, we
onsider our 
urrent sear
h radius r� and dis
ard y ifr� < ry. If we insert a 
hildren z of y, we put it thevalue min(ry ; rz).Figure 8 
ompares this te
hnique against the stati
one. As it 
an be seen, this is an ex
ellent alterna-tive to the stati
 
onstru
tion in the 
ase of our ve
-tor spa
e example, providing basi
ally the same 
on-stru
tion and sear
h 
ost with the added value of dy-

namism. In the 
ase of the di
tionary, the timestamp-ing te
hnique is signi�
antly worse than the stati
 one(although the \up" behaves slightly better for nearestneighbor sear
hing). The problem is that the \up" ver-sion is mu
h more 
ostly to build, needing more than3 times the stati
 
onstru
tion 
ost.4.5. Inserting at the FringeYet another alternative is as follows. We 
an relaxCondition 1 (Se
tion 3.1), whose main goal is to guar-antee that if q is 
loser to a than to any neighbor inN(a) then we 
an stop the sear
h at that point. Theidea is that, at sear
h time, instead of �nding the 
los-est 
 among fag[N(a) and entering into any b 2 N(a)su
h that d(q; b) � d(q; 
) + 2r, we ex
lude the sub-tree root fag from the minimization. Hen
e, we always
ontinue to the leaves by the 
losest neighbor and oth-ers 
lose enough. This seems to make the sear
h timeslightly worse, but the 
ost is marginal.The bene�t is that we are not for
ed anymore to puta new inserted element x as a neighbor of a, even whenCondition 1 would require it. That is, at insertion time,even if x is 
loser to a than to any element in N(a), wehave the 
hoi
e of not putting it as a neighbor of a butinserting it into its 
losest neighbor of N(a). At sear
htime we will rea
h x be
ause the sear
h and insertionpro
esses are similar.This freedom opens a number of new possibilitiesthat deserve a mu
h deeper study, but an immediate
onsequen
e is that we 
an insert always at the leavesof the tree. Hen
e, the tree is read-only in its top partand it 
hanges only in the fringe.However, we have to permit the re
onstru
tion ofsmall subtrees so as to avoid that the tree be
omesalmost a linked list. So we permit inserting x as aneighbor when the size of the subtree to rebuild is smallenough, whi
h leads to a tradeo� between insertion 
ostand quality of the tree at sear
h time.Figure 9 shows the 
onstru
tion 
ost for di�erentmaximum tree sizes that 
an be rebuilt. As 
an be seen,permitting a tree size of 50 yields the same 
onstru
tion
ost of the stati
 version.Finally, Figure 10 shows the sear
h times using thiste
hnique. As 
an be seen, using a tree size of 50 per-mits the same and even better sear
h time 
omparedto the stati
 version, whi
h shows that it may be benef-i
al to move elements downward in the tree. This fa
tmakes this alternative a very interesting 
hoi
e deserv-ing more study.
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Figure 9. Constru
tion 
osts inserting at the fringe.5. Con
lusionsWe have presented several te
hniques to modify thesa-tree in order to make it a dynami
 data stru
turesupporting insertions, without degrading its 
urrentperforman
e. We have shown that there are manymore alternatives than what appears at a �rst glan
e,and that the invariants of the sa-tree 
an be relaxed inways unforeseen before this study (e.g. the fa
t thatwe 
an de
ide whether or not to add neighbors).From the 
hoi
es we have 
onsidered, the use of over-
ow bu
kets shows that it is possible to obtain 
on-stru
tion and sear
h times similar to those of the stati
version, although the 
hoi
e of the bu
ket size deservesmore study. Timestamping has also shown 
ompetitivein some metri
 spa
es and not so attra
tive in others,a fa
t deserving more study. Finally, inserting at thefringe has shown the potential of even improving theperforman
e of the stati
 version, although studyingthe e�e
t of the size of the fringe is required.
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h 
osts using insertion in the fringe.Other alternatives, su
h as rebuilding and �rst-�t,proved to be not 
ompetitive, although the latter o�ersvery low 
onstru
tion 
osts, whi
h 
ould be interestingdespite its mu
h higher sear
h 
ost.It is 
lear now that making the sa-tree dynami
 is af-fordable and that the stru
ture 
an even be improved ina dynami
 setup, 
ontrary to our previous assumptionthat there would be a 
ost for the dynamism. On theother hand, we need to pursue more in the most promis-ing alternatives in order to understand them better.Moreover, we have not 
onsidered deletions yet. Theseseem more diÆ
ult but always 
an be treated by mark-ing the nodes as deleted and making periodi
 rebuilds.This work is a �rst step of a broader proje
t [20℄whi
h aims at a fully dynami
 data stru
ture for sear
h-ing in metri
 spa
es, whi
h 
an also work on se
ondarymemory. We have not tou
hed this last aspe
t in thispaper. A simple solution to store the sa-tree in se
-ondary storage is to try to store whole subtrees in diskpages so as to minimize the number of pages read at



sear
h time. This has an interesting relationship withinserting at the fringe (Se
tion 4.5), not only be
ausethe top part of the tree is read-only, but also be
ausewe 
an 
ontrol the maximum arity of the tree so as tomake the neighbors �t in a disk page.Referen
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