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Abstract

With a few exceptions, proximity search algorithms
in metric spaces based on the use of pivots select them
at random among the elements of the metric space.
However, it is well known that the way in which the
pivots are selected can affect the performance of the al-
gorithm. Between two sets of pivots of the same size,
better chosen pivots can reduce the search time. Alter-
natively, a better chosen small set of pivots (requiring
less space) can yield the same efficiency as a larger,
randomly chosen, set. We propose an efficiency mea-
sure to compare two pivot sets, combined with an op-
timization technique that allows selecting good sets of
pivots. We obtain abundant empirical evidence show-
ing that our technique is effective. We also show that
good pivots are outliers, but that selecting outliers does
not ensure that good pivots are selected.

1. Introduction

Many computational applications use proximity
searching in a vast number of fields, for example: mul-
timedia databases, machine learning and classification,
image quantization and compression, text retrieval,
computational biology, function prediction, etc.

All those applications have in common that the el-
ements of the database form a metric space [8], that
is, it is possible to define a positive real-valued func-
tion d among the elements, called distance or met-
ric, that satisfies the properties of strict positive-
ness (d(z,y) = 0 & = = y), symmetry (d(z,y) =
d(y,z)), and triangle inequality (d(z,z) < d(z,y) +
d(y,z)). For example, a vector space is a particu-
lar metric space, where the elements are tuples of
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real numbers and the distance function belongs to the
L, family, defined as L, ((z1,...,2%), (Y1,---, %)) =

1/s
(Zl<i<k |z; — yi|s> L, is the Manhattan dis-
tance, Lo is the Fuclidean distance and L, =
maxi<i<x |2 — ¥ is called the mazimum distance.

In general, the distance d is considered expensive to
compute. Think, for example, of a biometric device
that computes the distance between two fingerprints.

One of the typical queries that can be posed to re-
trieve similar objects from a database is a range query
(see Section 2). An easy way to answer range queries
is to make an exhaustive search on the database, but
this turns out to be too expensive for real-world appli-
cations.

Proximity search algorithms build an ¢ndex of the
database and perform range queries using this index,
avoiding the exhaustive search. Many of these algo-
rithms are based on the use of pivots, which are distin-
guished elements from the database. These pivots are
used, together with the triangle inequality, to filter out
elements of the database without measuring their ac-
tual distance to the query, hence saving distance com-
putations while answering the range query.

Almost all proximity search algorithms based on piv-
ots choose them randomly among the elements of the
database. However, it is well known that the way piv-
ots are selected dramatically affects the search perfor-
mance [10, 8, 9]. Some heuristics to choose the pivots
better than at random have been presented [12, 4], but
in general these heuristics only work in specific met-
ric spaces and have a bad behavior in others. In R*
with the Euclidean metric, it is shown in [9] that it is
possible to find an optimal set of k£ + 1 pivots selecting
them as the vertices of a sufficiently large regular k-
dimensional simplex containing all the elements of the
database [9], but this result does not apply to general
metric spaces.

In this paper we present an efficiency criterion to



compare two pivot sets, which is based on the distance
distribution of the metric space. Then, we present a
selection technique based on this criterion to select a
good set of pivots. We show empirically that this tech-
nique effectively selects good sets of pivots in a vari-
ety of synthetic and real-world metric spaces. Also,
we show that good pivots have the characterisitc to
be outliers, that is, good pivots are elements far away
from each other and from the rest of the elements of
the database, but an outlier does not always have the
property of being a good pivot.

Our technique is the first we are aware of in produc-
ing consistently good results in a wide variety of cases
and in being based on a formal theory.

2. Basic proximity search algorithm us-
ing pivots

There are many proximity search algorithms in
metric spaces that are based in the use of pivots,
such as Burkhard-Keller Tree (BKT) [5], Fized-Queries
Tree (FQT) [2], Fized-Height FQT (FHQT) [2], Fized
Queries Array (FQA) [7], Vantage Point Tree (VPT)
[12], Multi Vantage Point Tree (MVPT) [3], Ezcluded
Middle Vantage Point Forest (VPF) [13], Approzimat-
ing Eliminating Search Algorithm (AESA) [11], Linear
AESA (LAESA) [10] and Spaghettis [6].

All these algorithms use, directly or indirectly, the
following procedure to answer range queries: if the uni-
verse of objects is denoted by X, then the database
is a finite subset of objects U C X. Given a metric
space (U, d) (where d is the metric defined on U), an
object ¢ € X, called the query, and a tolerance range
r > 0,r € R, a range query is defined as the elements
in U that are whitin distance r to ¢, that is:

('J7 r) = {u ey, d(u, Q) < r}

Figure 1 shows an example of a range query in a
vector space of dimension 2.

Given a range query (¢,7) and a set of k pivots
{p1,..., Pk}, pi € U, by the triangle inequality it fol-
lows for any z € X that d(p;, z) < d(ps,q) + d(q, 2),
and also that d(p;, ¢) < d(pi, z) + d(2,q). From both
inequalities it follows that a lower bound on d(g, z) is
d(q,z) > |d(pi,z) — d(ps,q)|- The elements w € U of
interest are those that satisfy d(g,u) < r, so we can
exclude all the elements that satisfy the ezclusion con-
dition:

|d(p:, w) — d(pi, ¢)| > r for some pivot p; (1)

without actually evaluating d(q, ).
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Figure 1. Example of range query, where (g,7) =

{Ue, U10, U14}

If the space U has n elements, then the index con-
sists of the kn distances d(u, p;) between every element
and every pivot. Therefore, at query time it is neces-
sary to compute the k distances between the pivots and
the query ¢ in order to apply the exclusion condition
(1). Those distance calculations are known as the in-
ternal complezity of the algorithm, and this complexity
is fixed if there is a fixed number of pivots.

The list of elements {u1,...,uyn} C U that cannot
be excluded by the exclusion condition (1), known as
the element candidate list, must be checked directly
against the query. Those distance calculations d(u;, ¢)
are known as the external complezity of the algorithm.

The total complexity of the search algorithm is the
sum of the internal and external complexity, k& + m.
Since one increases and the other decreases with %, it
follows that there is an optimum %* that depends on the
tolerance range of the query. In practice, however, k*
is so large that one cannot store the £*n distances, and
the index simply uses as many pivots as space permits.

3. Efficiency criterion

Depending on how pivots are selected, they can filter
out less or more elements. We define in this section a
criterion to tell which from two pivot sets is expected to
filter out more and hence reduce the number of distance
evaluations carried out during a range query. Since the
internal complexity is fixed, only the external complex-
ity can be reduced, and this is achieved by making the
candidate element list as short as possible.

Let (U,d) be a metric space. A set of k pivots
{p1,P2,---,Pr}, 0i € U, defines a space P of distance
tuples between pivots and elements from U. The map-
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Figure 2. Mapping from a metric space onto a vector space under L, metric, using two pivots.

ping of an element u € U to P, which will be denoted
[u], is carried out in the following way:

[u] = (d(w, p1), d(u,p2), - - ., d(u, Px))

Defining the metric D = Dy, . .1 as D([z], [y]) =
max;<;<t |d(z, p;) — d(y, pi)|, it follows that (P, D) is
a metric space, which turns out to be (R¥, L,). Given
a range query (g,r), the exclusion condition (1) in the
original space U becomes:

D{Plvnypk}(['ﬂa [u]) > (2)

for the new metric space (P, D). Figure 2 shows
the mapping of the elements and the new exclusion
condition. To achieve a candidate element list as short
as possible, the probability of (2) should be as high as
possible. One way to do this is to maximize the mean
of the distance distribution of D, which will be denoted
HD-

Another way to maximize the probability of the ex-
clusion condition is minimizing the variance of the dis-
tribution of D at the same time, but in practice this
method did not work as well as just maximizing up.
Hence, we will say that {p1,...,px} is a better set of
pivots than {p},...,p}} when:

(3)

Estimation of up: An estimation of the value of up
is obtained in the following way:
o A pairs of

{(alv all)v (a27 aIZ)v sy (aAv a;l)}
chosen at random.

/‘LD{pl ~~~~~ Pyt

elements

from U are

e All the pairs of elements are mapped to space P,
obtaining the set {D1, D2, ..., D4} of distances D
between every pair of elements.

e The value of pup is estimated as

1 .
A ZlSiSA D;.

HD

It is easy to see that 2k distance evaluations are
needed to compute the distance D for each pair of el-
ements if there are k& pivots. Therefore, 2k A distance
evaluations are needed to estimate up.

4. Pivot selection techniques

Now we present three pivot selection techniques
based on the efficiency criterion (3). Each technique
has a cost measured in number of distance computa-
tions at index construction time. As we do more work
in optimizing the pivots, better pivots are obtained.
When comparing two techniques, we give them the
same amount of work to spend. We describe the opti-
mization cost of each technique.

These selection techniques can be directly adapted
to work with algorithms that use a fixed number of
pivots, such as FHQT [2], FQA [7], LAESA [10] and
Spaghettis [6]. They can also be adapted, with modifi-
cations, to the other pivot based algorithms.

4.1. Selection of N random groups

N groups of k pivots are chosen at random among
the elements of the database, and up is calculated for
each of this groups of pivots. The group that has the
maximum pp value is selected.

Optimization cost: Since the value of up is esti-
mated N times, the total optimization cost is 2kAN
distance evaluations.
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Figure 3. Comparison between selection techniques in random vector spaces of dimension 16 (left) and dimension

24 (right).

4.2. Incremental selection

A pivot p; is selected from a sample of N elements of
the database, such that that pivot alone has the maxi-
mum pp value. Then, a second pivot ps is chosen from
another sample of N elements of the database, such
that {p1, p2} has the maximum pp value, considering
p1 fixed. The third pivot p3 is chosen from another
sample of N elements, such that {p1, ps,ps} has the
maximum pp value, considering p; and p; fixed. The
process is repeated until & pivots have been chosen.

Optimization cost: If the distances
Dip,,.pio([ar] [ar]), Vr € 1...A are kept in
an array, it is not necessary to do all the work
to estimate pup when the 4-th pivot is added.
It is enough to calculate D, ([a,],[a]),Vr €
1...4, because Dip,,...pix([ar], [ar]) =
max(Dipy,...ps.3 ([ar], [a1]), Dy ([ar], [a2]))- Therefore,
only 2N A distance evaluations are needed to estimate
tp when a new pivot is added. Since the process
is reapeated k times, the total optimization cost is
2k AN distance evaluations.

4.3. Local optimum selection

A group of %k pivots are chosen at random among
the elements of the database. The matrix M(r,j) =
Dp.([ar],[ar])yr = 1...A,j = 1...k is calculated
using the A pairs of elements. It follows that
D([a,], [al]) = maxi<i<k (M(r, j)) for every r, and this
can be used to estimate up. Also, it must be kept for

each row of M the index of the pivot where the max-
imum value is, which will be denoted 7,4, and the
second maximum value, denoted 7,,452. The contribu-
tion of the pivot p; is the sum over the A rows of how
much does p; help increase the value of D([a,], [a]]),
that is M (7, Pmaz) — M (7, Pmaz2) if J = Pmas for that
row, and 0 otherwise.

The pivot whose contribution to the value of up
is minimal with respect to the other pivots is marked
as the victim, and it is replaced, when possible, by a
better pivot selected from a sample of X elements of
the database. The process is repeated N’ times.

Optimization cost: The construction cost of the
initial matrix M is 2Ak distance evaluations. The
search cost of the victim is 0, because no extra distance
evaluations are needed, all information is in M. Find-
ing a better pivot from the X elements sample costs
2AX distance evaluations, and the process is repeated
N times, so the total optimization cost is 24(k+ N'X)
distance evaluations. Considering kN = k + N'X, i.e.
N'X = k(N — 1), the optimization cost is 24kN dis-
tance evaluations.

Note that it is posible to exchange the values of
N’ and X while mantaining the optimization cost.
In the experiments we use two possible value selec-
tions: (N’ = k) A (X = N — 1) (called local opti-
mum A) and (N' = N — 1) A (X = k) (called local
optimum B). We also try with another value selection,
N' = X = /k(N — 1), but the obtained result does
not show any improvement on the algorithm perfor-
mance.
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the dimension (left) and the database size (right).

4.4. Some advantages of the incremental se-

lection

The only way to determine the optimum number of
pivots k*, for a fixed tolerance range, is calculating an
average of the total complexity of the algorithm for
different values of &k, where £* is equal to the value
of k£ which minimizes the total complexity. That is,
it is worth to add pivots to the index until the total
complexity does not improve.

The incremental selection technique for choosing
pivots allows us to add more pivots to the index at any
time without doing all the optimization work again,
if the distances Dy, . p.1([ar],[a,]), Vr € 1... A are
kept. On the other hand, selection of N random groups
and local optimum selection techniques must redo all
the optimization work to obtain a new set of pivots, be-
cause these techniques can not take advantage of the
work done previously.

For this reason, it is much easier to calculate the
optimum number of pivots k£* using the incremental
selection technique.

5. Experimental results

We have tested the selection techniques on a syn-
thetic set of random points in a k-dimensional vec-
tor space treated as a metric space, that is, we have
not used the fact that the space has coordinates, but
treated the points as abstract objects in an unknown
metric space. The advantage of this choice is that it
allows us to control the exact dimensionality we are
working with, which is very dificult to do in general

metric spaces. The points are uniformily distributed
in the unitary cube, our tests use the L, (Euclidean)
distance, the dimension of the vector space is in the
range 2...24, the database size is n = 10,000 (except
when otherwise stated) and we perform range queries
returning 0.01% of the total database size, taking an
average from 1,000 queries.

About the parameters A and N of the opti-
mization cost: Our experiments show that, given
an amount of work to spend, it is better to have a high
value of A and a low value of N. This indicates that it
is worth to make a good estimation of pp, while small
samples of candidate elements suffice to obtain good
sets of pivots. For the experiments in this section these
parameters have fixed values as follows: A = 10,000
and N = 20.

5.1. Comparison between the selection tech-

niques

Figure 3 shows the comparison between all the se-
lection techniques, when varying the number of pivots
and keeping the dimension of the space fixed. This re-
sults show that the incremental selection technique is
the one that obtains the best performance in practice,
but there is no big difference with local optimum A
selection, although this difference increases with larger
dimensions. Local optimum B and selection of N ran-
dom groups show no great improvement over random
selection even in low dimensions.

Since incremental and local optimum A selection
give the same efficiency, we choose the former tech-



nique as our method for choosing pivots. The reasons
are those stated in Section 4.4, and that incremental
selection is a much simpler technique.

5.2. Comparison between random selection

and incremental selection

Figure 4 shows a comparison for internal and total
complexity (see Section 2) between random and incre-
mental selection when using the optimum number of
pivots for each technique. The left plot shows a com-
parison when varying the dimension of the space. Since
k* is equal to the internal complexity of the algorithm,
it follows that not only the optimum number of pivots
is lower when using the incremental selection, but so is
also the total complexity of the algorithm. The right
plot shows a comparison in a vector space of dimension
8 and varying the database size. Again we obtain that
the optimum number of pivots and the total complexity
of the algorithm is lower when using the incremental
selection.

The profit when using k&* pivots with incremental se-
lection seems low in high dimensional spaces. However,
consider that much fewer pivots (i.e. less memory) are
needed to obtain the same result than with random se-
lection. Figure 5 shows an example of this in a vector
space of dimension 16. k£ = 500 is the optimum number
of pivots using random selection, while incremental se-
lection only needs 200 pivots to achieve the same total
complexity, hence saving 60% of the memory used in
the index.

The results obtained show that the incremental se-
lection technique effectively produces good sets of piv-
ots.

5.3. Properties of a good set of pivots

When studying the characteristics of the good sets
of pivots, we found that good pivots have the following
properties:

e Good pivots are far away from each other, i.e.,
the mean distance between pivots is higher than
the mean distance between random elements of the
metric space.

e Good pivots are far away from the rest of the ele-
ments of the metric space.

The elements that satisfy these properties are called
outliers. It is clear that pivots must be far away from
each other, because two very close pivots give almost
the same information for discarding elements. This is
in accordance with previous observations [9, 12, 4].
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Figure 5. Number of pivots needed to answer range
queries using random and incremental selection with

the same total complexity.

Then, it can be assumed that good pivots are out-
liers, so a new selection technique could be as follows:
use the same incremental selection method with the
new criterion of selecting elements which maximize the
sum of the distances between the pivots previously cho-
sen, selecting the first pivot at random. This tech-
nique will be called outliers selection. It carries out
(¢ — 1)N distance evaluations when the é-th pivot is
added, where N is the size of the sample of elements
from where a new pivot is selected. Hence, the opti-

mization cost of this selection technique is M@N .

It is important to note that outliers selection do not
use the effictency criterion described in Section 3, be-
cause this alternative selection technique maximizes
the mean distance in the original space and the ef-
ficiency criterion maximizes the mean of distance D.
These criteria do not always go together.

5.4. Comparison between incremental selec-

tion and outliers selection

Figure 6 shows the result obtained when comparing
incremental and outliers selection techniques in ran-
dom vector spaces. The figures show that the outliers
selection has better performance that the incremental
selection. This result can lead to think that outliers
selection is the best pivot selection technique, but in
the next section we will see that this assumption is not
true for general metric spaces.
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5.5. Real-world examples

Now we present three examples of the use of the
incremental selection and the outliers selection, where
the elements of the metric space are not uniformely
distributed.

Figure 7 (left) shows the results of the experiment
when the elements of the database are a set of 40,700
images from NASA archives [1]. Those images were
transformed into 20-dimensional vectors, and the 10%
of the database was defined as the query set. We used
a tolerance range which returns on average 0.01% of
the elements of the database per query. The figure
shows that for more than 25 pivots the outliers selec-
tion technique has worse performance that the random
selection, while incremental selections always performs
better. This result is in contrast with those obtained
on uniformly distributed vector spaces.

Figure 7 (right) shows the results of the experiment
when the elements of the database are points in a 30-
dimensional vector space, where the elements are not
uniformly distributed but have a Gaussian distribution,
that is, the elements form clusters. The result shows
that both incremental and outliers selection improve
the performance of the algorithm in comparison with
the random selection, but incremental selection per-
forms better for few pivots.

Figure 8 shows the results of the experiment over
a string space, that is, the elements of the database
were strings taken from a Spanish dictionary of about
80,000 terms, and a 10% of the database was used as
the query set. The distance function used was the edit
distance (the minimum number of character insertions,

deletions and substitutions to make two strings equal),
and the tolerance range was r = 2, which retrieves an
average of 0.02% of the database size per query. In
this case the incremental selection improves the per-
formance of the algorithm with respect to the random
selection, while the outliers selection obtained worse
performance than with random selection.

6. Conclusions

We have defined an efficiency criterion to compare
two sets of pivots, and have shown experimentally that
this criterion consistently selects good sets of pivots
in a variety of synthetic and real-world metric spaces,
reducing the total complexity of pivot-based proxim-
ity searching when answering range queries. We pre-
sented three different pivot selection techniques, which
use the efficiency criterion defined, and showed that the
so-called incremental selection technique is the best se-
lection method in practice. We have found that good
pivots have the property of being outliers, but outliers
are not necesarily good pivots. It is interesting to note
that outliers sets have good performance in uniformly
distributed vector spaces, but have bad performance in
general metric spaces, even worse than random selec-
tion in some cases. This result leads to questioning if it
is valid to test pivot selection techniques in uniformly
distributed vector spaces.

Future work involves testing some new heuristics for
pivots selection (e.g. select pivots from a set of outliers
previously chosen from the database), and testing al-
ternative efficiency estimators (e.g. select pivots that
maximize the minimum D distance of the histogram),
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always with the aim of maximizing the probability of
discarding elements (Eq. 2).
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