
Encoding Range Minima and Range Top-2 Queries
Pooya Davoodi1,∗, Gonzalo Navarro2,†, Rajeev Raman3, S. Srinivasa Rao4,‡

1NYU Polytechnic School of Engineering, 2University of Chile, 3University of Leicester,
4Seoul National University

We consider the problem of encoding range minimum queries (RMQs): given an array A[1..n]
of distinct totally ordered values, to pre-process A and create a data structure that can answer
the query RMQ(i, j), which returns the index containing the smallest element in A[i..j], without
access to the array A at query time. We give a data structure whose space usage is 2n+ o(n)
bits, which is asymptotically optimal for worst-case data, and answers RMQs inO(1) worst-case
time. This matches the previous result of Fischer and Heun, but is obtained in a more natural
way. Furthermore, our result can encode the RMQs of a random array A in 1.919n+ o(n) bits
in expectation, which is not known to hold for Fischer and Heun’s result. We then generalize
our result to the encoding range top-2 query (RT2Q) problem, which is like the encoding RMQ
problem except that the query RT2Q(i, j) returns the indices of both the smallest and second-
smallest elements ofA[i..j]. We introduce a data structure using 3.272n+ o(n) bits that answers
RT2Qs in constant time, and also give lower bounds on the effective entropy of RT2Q.

Key words: Succinct Data Structure, Range Minimum Query, Cartesian Tree, Transformation,
Representations of Ordinal Tree.

classification:

1. Introduction

Given an array A[1..n] of elements from a totally ordered set, the range minimum
query (RMQ) problem is to pre-process A and create a data structure so that the query
RMQ(i, j), which takes two indices 1≤ i≤ j ≤ n and returns argmini≤k≤jA[k], is
supported efficiently (both in terms of space and time). We consider the encoding version
of this problem: after pre-processing A, the data structure should answer RMQs without
access to A; in other words, the data structure should encode all the information about
A needed to answer RMQs. In many applications that deal with storing and indexing
massive data, the values in A have no intrinsic significance and A can be discarded
after pre-processing (for example, A may contain scores that are used to determine the
relative order of documents returned in response to a search query). As we now discuss,

An extended abstract of some of the results in Sections 1 and 2 appeared in Proc. 18th Annual International
Conference on Computing and Combinatorics (COCOON 2012), Springer LNCS 7434, pp. 396–407.
∗Research supported by NSF grant CCF-1018370 and BSF grant 2010437.
†Department of Computer Science (DCC). Partially funded by Millennium Nucleus Information and
Coordination in Networks ICM/FIC P10-024F, Chile.
‡Research partly supported by Basic Science Research Program through the National Research Foundation
of Korea funded by the Ministry of Education, Science and Technology (Grant number 2012-0008241).

Philosophical Transactions of the Royal Society A 1–17; doi: 10.1098/rspa.00000000
March 10, 2014

This journal is c© 2011 The Royal Society

Philosophical Transactions of the Royal Society A 2

the encoding of A for RMQs can often take much less space than A itself, so encoding
RMQs can facilitate the efficient in-memory processing of massive data.

It is well known [7] that the RMQ problem is equivalent to the problem of supporting
lowest common ancestor (LCA) queries on a binary tree, the Cartesian tree of A [21].
The Cartesian tree of A is a binary tree with n nodes, in which the root is labeled by
i where A[i] is the minimum element in A; the left subtree of the root is the Cartesian
tree of A[1..i− 1] and the right subtree of the root is the Cartesian tree of A[i+ 1..n].
The answer to RMQ(i, j) is the label of the LCA of the nodes labeled by i and j. Thus,
knowing the topology of the Cartesian tree of A suffices to answer RMQs on A.

Farzan and Munro [4] showed that an n-node binary tree can be represented in
2n+ o(n) bits, while supporting LCA queries in O(1) time1. Unfortunately, this does
not solve the RMQ problem. The difficulty is that nodes in the Cartesian tree are
labelled with the index of the corresponding array element, which is equal to the node’s
rank in the inorder traversal of the Cartesian tree. A common feature of succinct tree
representations, such as that of [4], is that they do not allow the user to specify the
numbering of nodes [19], and while existing succinct binary tree representations support
numberings such as level-order [13] and preorder [4], they do not support inorder.
Indeed, for this reason, Fischer and Heun [5] solved the problem of optimally encoding
RMQ via an ordered rooted tree, rather than via the more natural Cartesian tree.

Our first contribution is to describe how, using o(n) additional bits, we can add the
functionality below to the 2n+ o(n)-bit representation of Farzan and Munro:

• node-rankinorder(x): returns the position in inorder of node x.

• node-selectinorder(y): returns the node z whose inorder position is y.

Here, x and z are node numbers in the node numbering scheme of Farzan and Munro,
and both operations take O(1) time. Using this, we can encode RMQs of an array A
using 2n+ o(n) bits, and answer RMQs in O(1) time as follows. We represent the
Cartesian tree of A using the representation of Farzan and Munro, augmented with the
above operations, and answer RMQ(i, j) as

RMQ(i, j) = node-rankinorder(LCA(node-selectinorder(i), node-selectinorder(j))).

We thus match asymptotically the result of Fischer and Heun [5], while using a more
direct approach. Furthermore, using our approach, we can encode RMQs of a random
permutation using 1.919n+ o(n) bits in expectation and answer RMQs in O(1) time. It
is not clear how to obtain this result using the approach of Fischer and Heun.

Our next contribution is to consider a generalization of RMQs, namely, to pre-
process a totally ordered arrayA[1..n] to answer range top-2 queries (RT2Q). The query
RT2Q(i, j) returns the indices of the minimum as well as the second minimum values
in A[i..j]. Again, we consider the encoding version of the problem, so that the data
structure does not have access to A when answering a query. Encoding problems, such
as the RMQ and RT2Q, are fundamentally about determining the effective entropy of the
data structuring problem [9]. Given the input data drawn from a set of inputs S , and a set
of queries Q, the effective entropy of Q is dlog2 |C|e, where C is the set of equivalence
classes on S induced by Q, whereby two objects from S are equivalent if they provide
the same answer to all queries in Q. For the RMQ problem, it is easy to see that every

1 The time complexity of this result assumes the word RAM model with logarithmic word size, as do all
subsequent results in this paper.

Philosophical Transactions of the Royal Society A 3

binary tree is the Cartesian tree of some array A. Since there are Cn = 1
n+1

(
2n
n

)
n-node

binary trees, the effective entropy of RMQ is exactly dlog2Cne= 2n−O(log n) bits.
The effective entropy of the more general range top-k problem, or finding the indices

of the k smallest elements in a given range A[i, j], was recently shown to be Ω(n log k)
bits by Grossi et al. [11]. However, for k= 2, their approach only shows that the effective
entropy of RT2Q is ≥ n/2 – much less than the effective entropy of RMQ. Using an
encoding based upon merging paths in Cartesian trees, we show that the effective entropy
of RT2Q is at least 2.656n−O(log n) bits. We show that this effective entropy applies
also to the (apparently) easier problem of returning just the second minimum in an array
interval, R2M(i, j). We complement this result by giving a data structure for encoding
RT2Qs that takes 3.272n+ o(n) bits and answers queries in O(1) time. This structure
builds upon our new 2n+ o(n)-bit RMQ encoding by adding further functionality to the
binary tree representation of Farzan and Munro. We note that the range top-k encoding
of Grossi et al. [11] builds upon a encoding that answers RT2Q in O(1) time, but their
encoding for this subproblem uses 6n+ o(n) bits.

(a) Preliminaries

Given a bit vector B[1..m], rankB(1, i) returns the number of 1s in B[1..i], and
selectB(1, i) returns the position of the ith 1 in B. The operations rankB(0, i) and
selectB(0, i) are defined analogously for 0s. A data structure that supports the operations
rank and select is a building block of many succinct data structures. The following lemma
states a rank-select data structure that we use to obtain our results.

LEMMA 1. [1, 16] Given a bit vector B[1..m], there exists a data structure of size
m+ o(m) bits that supports rankB(1, i), rankB(0, i), selectB(1, i), and selectB(0, i) in
O(1) time.

We also utilize the following lemma, which states a more space-efficient rank-select
data structure that assumes the number of 1s in B is known.

LEMMA 2. [18] Given a bit vector B[1..m] that contains n 1s, there exists a
data structure of size log

(
m
n

)
+ o(m) bits, that supports rankB(1, i), rankB(0, i),

selectB(1, i), and selectB(0, i) in O(1) time.

2. Representation Based on Tree Decomposition

We now describe a succinct representation of binary trees that supports a
comprehensive list of operations [12, 3, 4].2. The structure of Farzan and
Munro [4] supports multiple orderings on the nodes of the tree including preorder,
postorder, and DFUDS order by providing the operations node-rankpreorder(v),
node-selectpreorder(v), node-rankpostorder(v), node-selectpostorder(v), node-rankDFUDS(v),
and node-selectDFUDS(v). We provide two additional operations node-rankinorder(v) and
node-selectinorder(v) thereby also supporting inorder numbering on the nodes.

2 This list includes left-child(v), right-child(v), parent(v), child-rank(v), degree(v), subtree-size(v),
depth(v), height(v), left-most-leaf(v), right-most-leaf(v), leaf-rank(v), leaf-select(j), level-ancestor(v, i),
LCA(u, v), distance(u, v), level-right-most(i), level-left-most(i), level-successor(v), and
level-predecessor(v), where v denotes a node, i denotes a level, and j is an integer. Refer to the
original articles [12, 4] for the definition of these operations.

Philosophical Transactions of the Royal Society A 4

Our data structure consists of two parts: (a) the data structure of Farzan and
Munro [4], and (b) an additional structure we construct to specifically support
node-rankinorder and node-selectinorder. In the following, we outline the first part (refer
to Farzan and Munro [4] for more details), and then we explain in detail the second part.

(a) Succinct cardinal trees of Farzan and Munro

Farzan and Munro [4] reported a succinct representation of cardinal trees (k-ary
trees). Since binary trees are a special case of cardinal trees (when k= 2), their data
structure can be used as a succinct representation of binary trees. The following lemma
states their result for binary trees:

LEMMA 3. [4] A binary tree with n nodes can be represented using 2n+ o(n) bits
of space, while a comprehensive list of operations [4, Table 2] (or see Footnote 2) can
be supported in O(1) time.

This data structure is based on a tree decomposition similar to previous ones [8,
12, 17]. An input binary tree is first partitioned into O(n/ log2 n) mini-trees each of
size at most dlog2 ne, that are disjoint aside from their roots. Each mini-tree is further
partitioned (recursively) into O(log n) micro-trees of size at most d lgn8 e, which are also
disjoint aside from their roots. A boundary node of a mini tree is a non-root node of the
mini-tree that has a child located in a different mini-tree (similarly, a boundary node is
defined for micro-trees).

The decomposition algorithm achieves the following prominent property: each mini-
tree has at most one boundary node and each boundary node has at most one child
located in a different mini-tree (similar property holds for micro-trees). This property
implies that aside from the edges on the mini-tree roots, there is at most one edge in
each mini-tree that connects a node of the mini-tree to its child in another mini-tree.
These properties also hold for micro-trees.

It is well-known that the topology of a tree with k nodes can be described with a
fingerprint of size 2k bits. Since the micro-trees are small enough, the operations within
the micro-trees can be performed by using a universal lookup-table of size o(n) bits,
where the fingerprints of micro-trees are used as indexes into the table.

The binary tree representation consists of the following parts (apart from the lookup-
table): 1) representation of each micro-tree: its size and fingerprint; 2) representation of
each mini-tree: links between the micro-trees within the mini-tree; 3) links between the
mini-trees. The overall space of this data structure is 2n+ o(n) bits [4].

(b) Data structure for node-rankinorder and node-selectinorder

We present a data structure that is added to the structure of Lemma 3 in order to
support node-rankinorder and node-selectinorder. This additional data structure contains
two separate parts, each to support one of the operations. In the following, we describe
each of these two parts. Notice that we have access to the succinct binary tree
representation of Lemma 3.

(b.1) Operation node-rankinorder

We present a data structure that can compute the inorder number of a node v, given
its preorder number. Our method is based on the fact that the difference between the
inorder number and the preorder number of v is equal to the the difference between the

Philosophical Transactions of the Royal Society A 5

following two values: 1) The number of nodes located in the left subtree of v, which can
be computer by subtree-size(vl), where vl is the left child of v; and 2) Ldepth(v): the
number of ancestors of v whose left child is also on the v-to-root path (in other words,
the number of left-turns in the v-to-root path). Formally, we use the following equation:
inorder(v) = preorder(v) + subtree-size(vl)− Ldepth(v).

In the following, we explain how to compute Ldepth(v), which is similar to
computing the depth of a node. This operation is also used in Section 3. For the
root rm of each mini-tree, we precompute and store Ldepth(rm) which requires
O((n/ log2 n) log n) = o(n) bits. Let mini-Ldepth(v) and micro-Ldepth(v) be the
number of left turns from a node v up to only the root of respectively the mini-tree and
micro-tree containing v. For the root rµ of each micro-tree, we precompute and store
mini-Ldepth(rµ). We use a lookup table to compute micro-Ldepth(v) for every node v.
Finally, to compute Ldepth(v), we simply calculate Ldepth(rm) + mini-Ldepth(rµ) +
micro-Ldepth(v), where rm and rµ are the root of respectively the mini-tree and micro-
tree containing v. The data structure of Lemma 3 can be used to find rm and rµ and the
calculation can be done in O(1) time.

(b.2) Operation node-selectinorder

We present a data structure that can compute the preorder number of a node v, given
its inorder number. To compute the preorder number of v, we compute 1) the preorder
number of the root rm of the mini-tree containing v; and 2) c(v, rm): the number of
nodes that are visited after rm and before v in preorder traversal, which may include
nodes both within and outside the mini-tree rooted at rm. Observe that the preorder
number of v is equal to the preorder number of rm plus c(v, rm). In the following, we
explain how to compute these two quantities:

(1) We precompute the preorder numbers of all the mini-tree roots and store
them in P [0..nm − 1] in some arbitrary order defined for mini-trees, where nm =
O(n/ log2 n) is the number of mini-trees. Notice that each mini-tree now has a rank
from [0..nm − 1]. Later on, when we want to retrieve the preorder number of the root
of the mini-tree containing v, we only need to determine the rank i of the mini-tree and
read the answer from P [i]. In the following, we explain a data structure that supports
finding the rank of the mini-tree containing any given node v.

In the preprocessing, we construct a bit-vector A and an array B of mini-tree ranks,
which are initially empty, by traversing the input binary tree in inorder as follows (see
Figure A.1 for an example):

For A, we append a bit for each visited node and thus the length of A is n. If the
current visited node and the previous visited node are in two different mini-trees, then
the appended bit is 1, and otherwise 0; if a mini-tree root is common among two mini-
trees, then its corresponding bit is 0 (i.e., the root is considered to belong to the mini-tree
containing its left subtree since a common root is always visited after its left subtree is
visited); the first bit of A is always a 1.

For B, we append the rank of each visited mini-tree; more precisely, if the current
visited node and the previous visited node are in two different mini-trees, then we append
the rank of the mini-tree containing the current visited node, and otherwise we append
nothing. Similarly, a common root is considered to belong to the mini-tree containing
its left subtree; the first rank in B is the rank of the mini-tree containing the first visited
node.

Philosophical Transactions of the Royal Society A 6

[Figure 1 about here.]

We observe that a node v with inorder number i belongs to the mini-tree with rank
B[rankA(1, i+ 1)], and thus P [B[rankA(1, i+ 1)]] contains the preorder number of the
root of the mini-tree containing v.

We representA using the data structure of Lemma 2, which supports rank in constant
time. In order to analyze the space, we prove that the number of 1s in A is at most 2nm:
each mini-tree has at most one edge leaving the mini-tree aside from its root, which
means that the traversal can enter or re-enter a mini-tree at most twice. Therefore, the
space usage is lg

(
n

2nm

)
+ o(n) = o(n) bits, as nm =O(n/ log2 n). We store P and B

explicitly with no preprocessing on them. The length of B is also at most 2nm by the
same argument. Thus, both P and B take O(n/ log2 n · log n) = o(n) bits.

(2) Let S be the set of nodes that are visited after rm and before v in the preorder
traversal of the tree. Notice that c(v, rm) = |S|. Let tm and tµ be respectively the mini-
tree and micro-tree containing v. We note that S = S1 ∪ S2 ∪ S3, where S1 contains the
nodes of S that are not in tm, S2 contains the nodes of S that are in tµ, and S3 contains
the nodes that are in tm and not in tµ. Observe that S1, S2, and S3 are mutually disjoint.
Therefore, c(v, rm) = |S1|+ |S2|+ |S3|. We now describe how to compute each size.

S1: If tm has a boundary node which is visited before the root of tµ, then |S1| is the
subtree size of the child of the boundary node that is out of tm; otherwise |S1|= 0.

S2: Since these nodes are within a micro-tree, |S2| can be computed using a lookup-
table.

S3: The local preorder number of the root of tµ, which results from traversing tm
while ignoring the edges leaving tm, is equal to |S3|. We precompute the local preorder
numbers of all the micro-tree roots. The method to store these local preorder numbers
and the data structure that we construct in order to efficiently retrieve these numbers
is similar to the part (1), whereas here a mini-tree plays the role of the input tree and
micro-trees play the role of the mini-trees. In other words, we construct P , A, and B of
part (1) for each mini-tree. The space usage of this data structure is o(n) bits by the same
argument, regarding the fact that each local preorder number takes O(log log n) bits.

THEOREM 1. A binary tree with n nodes can be represented with a succinct data
structure of size 2n+ o(n) bits, which supports node-rankinorder, node-selectinorder, plus
a comprehensive set of operations [4, Table 2], all in O(1) time.

(c) RMQs on Random Inputs

The following theorem gives a slight generalization of Theorem 1, which uses
entropy coding to exploit any differences in frequency between different types of nodes
(Theorem 1 corresponds to choosing all the αis to be 1/4 in the following):

THEOREM 2. For any positive constants α0, αL, αR and α2, such that α0 + αL +
αR + α2 = 1, a binary tree with n0 leaves, nL (nR) nodes with only a left (right) child
and n2 nodes with both children can be represented using

(∑
i∈{0,L,R,2} ni lg(1/αi)

)
+

o(n) bits of space, while a full set of operations [4, Table 2] including node-rankinorder,
node-selectinorder and LCA can be supported in O(1) time.

Proof. We proceed as in the proof of Theorem 1, but if α= mini∈{0,L,R,2} αi, we
choose the size of the micro-trees to be at most µ= lgn

2 lg(1/α) = Θ(log n). The 2n-bit

Philosophical Transactions of the Royal Society A 7

term in the representation of [4] comes from the representation of the microtrees. Given
a micro-tree with µi nodes of type i, for i∈ {0, L,R, 2} we encode it by writing the
node types in level order (cf. [13]) and encoding this string using arithmetic coding
with the probability of a node of type i taken to be αi. The size of this encoding is
at most

(∑
i∈{0,L,R,2} µi lg(1/αi)

)
+ 2 bits, from which the theorem follows. Note

that our choice of µ guarantees that each microtree fits in lgn
2 bits and thus can still be

manipulated using universal look-up tables. �

COROLLARY 1. If A is a random permutation over {1, . . . , n}, then RMQ queries
on A can be answered using (13 + lg 3)n+ o(n)< 1.919n+ o(n) bits in expectation.

Proof. Choose α0 = α2 = 1/3 and αR = αL = 1/6. The claim follows from the fact
that αin is the average value of ni on random binary trees, for any i∈ {0, L,R, 2} [10,
Theorem 1]. �

While both our representation and that of Fischer and Heun [5] solve RMQs in O(1)
time and use 2n+ o(n) bits in the worst case, ours allows an improvement in the average
case. However, we are unable to match the expected effective entropy of RMQs on
random arrays A, which is ≈ 1.736n+O(log n) bits [9, Thm. 1] (see also [15]).

It is natural to ask whether one can obtain improvements for the average case via
Fischer and Heun’s approach [5] as well. Their approach first converts the Cartesian tree
to an ordinal tree (an ordered, rooted tree) using the textbook transformation [2]. To the
best of our knowledge, the only ordinal tree representation able to use (2−Θ(1))n bits
is the so-called ultra-succinct representation [14], which uses

∑
a na lg n

na
+ o(n) bits,

where na is the number of nodes with a children. Our empirical simulations suggest that
the combination of [5] with [14] would not use (2− Ω(1))n bits on average on random
permutations. We generated random permutations of sizes 103 to 107 and measured
the entropy

∑
a na lg n

na
on the resulting Cartesian trees. The results, averaged over

100 to 1,000 iterations, are 1.991916, 1.998986, 1.999869, 1.999984 and 1.999998,
respectively. The results appear as a straight line on a log-log plot, which suggests
a formula of the form 2n− f(n) for a very slowly growing function f(n). Indeed,
using the model 2n−O(log n) we obtain the approximation 2n− 0.81 lg nwith a mean
squared error below 10−9.

To understand the observed behaviour, first note that when the Cartesian tree is
converted to an ordinal tree, the arity of each ordinal tree node u turns out to be, in
the Cartesian tree, the length of the path from the right child v of u to the leftmost
descendant of v (i.e., the node representing u+ 1 if we identify Cartesian tree nodes
with their positions in A). This is called ru (or Lv) in the next section. Next, note that:

LEMMA 4. The probability that a node v of the Cartesian tree of a random
permutation has a left child is 1

2 .

Proof. Consider the values A[v − 1] and A[v]. If A[v]<A[v − 1], then RMQ(v −
1, v) = v= LCA(v − 1, v), thus v − 1 descends from v and hence v has a left child. If
A[v]>A[v − 1], then RMQ(v − 1, v) = v − 1 = LCA(v − 1, v), thus v descends from
v − 1 and hence v is the leftmost node of the right subtree of v − 1, and therefore v
cannot have a left child. Therefore v has a left child iff A[v]<A[v − 1], which happens
with probability 1

2 in a random permutation. �

Philosophical Transactions of the Royal Society A 8

Thus, if we disregarded the dependencies between nodes in the tree, we could
regard Lv as a geometric variable with parameter 1

2 , and thus the expected value of
na would be E(na) = n

2a+1 . Taking the expectation as a fixed value, the space would
be
∑

a E(na) lg n
E(na)

=
∑

a≥0
n(a+1)
2a+1 = 2n. Although this is only a heuristic argument

(as we are ignoring both the dependencies between tree nodes and the variance of the
random variables), our empirical results nevertheless suggest that this simplified model
is asymptotically accurate, and thus, that no space advantage is obtained by representing
random Cartesian trees, as opposed to worst-case Cartesian trees, using this scheme.

3. Range Top-2 Queries

In this section we consider a generalization of the RMQ problem. Again, let A[1..n] be
an array of elements from a totally ordered set. Let R2M(i, j), for any 1≤ i < j ≤ n,
denote the position of the second smallest value in A[i..j]. More formally:

R2M(i, j) = argmin{A[k] : k ∈ ([i..j] \ RMQ(i, j))} .
The encoding RT2Q problem is to preprocess A into a data structure that, given i, j,
returns RT2Q(i, j) = (RMQ(i, j),R2M(i, j)), without accessing A at query time.

The idea is to augment the Cartesian tree of A, denoted TA, with some information
that allows us to answer R2M(i, j). If h is the position of the minimum element in
A[i..j] (i.e., h= RMQ(i, j)), then h divides [i..j] into two subranges [i..h− 1] and [h+
1..j], and the second minimum is the smaller of the elements A[RMQ(i, h− 1)] and
A[RMQ(h+ 1, j)]. Except for the case where one of the subranges is empty, the answer
to this comparison is not encoded in TA. We describe how to succinctly encode the
ordering between the elements ofA that are candidates for R2M(i, j). Our data structure
consists of this encoding together with the encoding of TA using the representation of
Theorem 1 (along with the operations mentioned in Section 2).

We define the left spine of a node u to be the set of nodes on the downward path
from u (inclusive) that follows left children until this can be done no further. The right
spine of a node is defined analogously. The left inner spine of a node u is the right spine
of u’s left child. If u does not have a left child then it has an empty left inner spine.
The right inner spine is defined analogously. We use the notations lspine(v)/rspine(v),
lispine(v)/rispine(v), Lv/Rv and lv/rv to denote the left/right spines of v, the left/right
inner spines of v, and the number of nodes in the spines and inner spines of v
respectively. We also assume that nodes are numbered in inorder and identify node
names with their inorder numbers.

As previously mentioned, our data structure encodes the ordering between the
candidates for R2M(i, j). We first identify locations for these candidates:

LEMMA 5. In TA, for any i, j ∈ [1..n], i < j, R2M(i, j) is located in lispine(v) or
rispine(v), where v= RMQ(i, j).

Proof. Let v= RMQ(i, j). The second minimum clearly lies in one of two subranges
[i..v − 1] and [v + 1..j], and it must be equal to either RMQ(i, v − 1) or RMQ(v + 1, j).
W.l.o.g. assume that [i..v − 1] is non-empty: in this case the node v − 1 is the bottom-
most node on lispine(v). Furthermore, since v= RMQ(i, j), imust lie in the left subtree
of v. Since the LCA of the bottom-most node on lispine(v) and any other node in the

Philosophical Transactions of the Royal Society A 9

left subtree of v is a node in lispine(v), RMQ(i, v − 1) is in lispine(v). The analogous
statement holds for rispine(v). �

Thus, for any node v, it suffices to store the relative order between nodes in lispine(v)
and rispine(v) to find R2M(i, j) for all queries for which v is the answer to the RMQ
query. As TA determines the ordering among the nodes of lispine(v) and also among the
nodes of rispine(v), we only need to store the information needed to merge lispine(v)
and rispine(v). We will do this by storingmv = max(lv + rv − 1, 0) bits associated with
v, for all nodes v, as explained later. We need to bound the total space required for the
‘merging’ bits, as well as to space-efficiently realize the association of v with the mv

merging bits associated with it. For this, we need the following auxiliary lemmas:

LEMMA 6. Let T be a binary tree withm nodes (of whichm0 are leaves) and root τ .
Then,

∑
v∈T (lv + rv) = 2m− Lτ −Rτ , and

∑
v∈T mv ≤m− Lτ −Rτ +m0.

Proof. The first part follows from the fact that the Rτ nodes in rspine(τ) do not
appear in lispine(v) for any v ∈ T , and all the other nodes in T appear exactly once in
a left inner spine. Similarly, the Lτ nodes in lspine(τ) do not appear in rispine(v) for
any v ∈ T , and the other nodes in T appear exactly once in a right inner spine. Then the
second part follows from the fact that mv = lv + rv − 1 iff lv + rv > 0, that is, v is not
a leaf. If v is a leaf, then lv + rv = 0 =mv. Thus we must subtract m−m0 from the
previous formula, which is the number of non-leaf nodes in T . �

In the following lemma, we utilize two operations Ldepth(v) and Rdepth(v) which
compute the number of nodes that have their left and right child, respectively, in the path
from root to v (recall that Ldepth(v) is also used in Section 2). Note that depth(v) =
Ldepth(v) + Rdepth(v) for any node v.

LEMMA 7. Let T be a binary tree with m nodes and root τ . Suppose that the nodes
of T are numbered 0, . . . ,m− 1 in inorder. Then, for any 0≤ u<m:∑

j<u

(lj + rj) = 2u− Lτ − lu + Ldepth(u)− Rdepth(u) + 1.

Proof. The proof is by induction onm. For the base casem= 1, τ = u= 0 is the only
possibility and the formula evaluates to 0 as expected: lu = Ldepth(u) = Rdepth(u) = 0
and Lτ = 1 (recall that τ is included in lspine(τ)).

Now consider a tree T with root τ and m> 1 nodes. We consider the three cases
u= τ , u< τ and u> τ in that order. If u= τ then Ldepth(τ) = Rdepth(τ) = 0. If τ has
no left child, the situation is the same as whenm= 1. Else, letting v be the left child of τ ,
note that Lv =Lτ − 1 and since lispine(τ) = rspine(v), lτ =Rv. As the subtree rooted
at v has size exactly τ , the formula can be rewritten as 2τ − Lv −Rv, its correctness
follows from Lemma 6 without recourse to the inductive hypothesis.

If u< τ then by induction on the subtree rooted at the left child v of τ , the formula
gives 2u− Lv − lu + Ldepth′(u)− Rdepth′(u) + 1, where Rdepth′ and Ldepth′ are
measured with respect to v. As Ldepth′(u) = Ldepth(u)− 1, Rdepth′(u) = Rdepth(u)
and Lv =Lτ − 1, this equals 2u− Lτ − lu + Ldepth(u)− Rdepth(u) + 1 as required.

Finally we consider the case u> τ . Letting v and w be the left and right children of
τ , and u′ = u− τ − 1, we note that u′ is the inorder number of u in the subtree rooted
at w. Applying the induction hypothesis to the subtree rooted at w, we get that:

Philosophical Transactions of the Royal Society A 10

∑
τ<j<u

(lj + rj) = 2u′ − Lw − lu + Ldepth′(u)− Rdepth′(u) + 1,

where Rdepth′ and Ldepth′ are measured with respect to w. Simplifying:∑
j<u(lj + rj) =

∑
j<τ (lj + rj) + lτ + rτ +

∑
τ<j<u(lj + rj)

= 2τ − Lv −Rv + lτ + rτ + 2u′ − Lw − lu + Ldepth′(u)− Rdepth′(u) + 1

= 2τ − Lv −Rv + lτ + rτ + 2u′ − Lw − lu + Ldepth(u)− Rdepth(u) + 2

= 2τ − Lv + 2u′ − lu + Ldepth(u)− Rdepth(u) + 2

= 2τ − (Lτ − 1) + 2(u− τ − 1)− lu + Ldepth(u)− Rdepth(u) + 2

= 2u− Lτ − lu + Ldepth(u)− Rdepth(u) + 1

Here we have made use (in order) of Lemma 6 and the facts Ldepth′(u) = Ldepth(u)
and Rdepth′(u) = Rdepth(u)− 1; Lw = rτ and Rv = lτ ; and finally Lv =Lτ − 1. �

COROLLARY 2. In the same scenario of Lemma 7, we have∑
j<u

mj = 2u− Lτ − lu + Ldepth(u)− Rdepth(u) + 1− (u− Lleaves(u)),

where Lleaves(u) denotes the number of leaves that appear before u in the inorder
traversal.

Proof. Note that
∑

j<umj =
∑

j<u max(lj + rj − 1, 0), and the latter is equal to∑
j<u(lj + rj)− (u− Lleaves(u)) using Lemma 7 (since max(lj + rj − 1, 0) = (lj +

rj − 1) if j is not a leaf, and also because there are (u− Lleaves(u)) non-leaf nodes that
appear before u in the inorder traversal). �

The Data Structure. For each node u in TA, we create a bit sequence Mu of length
mu to encode the merge order of lispine(u) and rispine(u). Mu is obtained by taking
the sequence of all the elements of lispine(u) ∪ rispine(u) sorted in decreasing order,
and replacing each element of this sorted sequence by 0 if the element comes from
lispine(u) and by 1 if the element comes from rispine(u) (the last bit is omitted, as it is
unnecessary). We concatenate the bit sequences Mu for all u∈ TA considered in inorder
and call the concatenated sequence M .

The data structure comprises M , augmented with rank and select operations and a
data structure for TA. If we use Theorem 1, then TA is represented in 2n+ o(n) bits,
and the (augmented) M takes at most 1.5n+ o(n) bits by Lemmas 6 and 1, since there
are at most (n+ 1)/2 leaves in an n-node binary tree. This gives a representation whose
space is 3.5n+ o(n) bits. A further improvement can be obtained by using Theorem 2
as follows. For some real parameter 0<x< 1, consider the concave function:

H(x) = 2x lg
1

x
+ 2

(1− 2x)

2
lg

2

1− 2x
+ x+ 1.

Differentiating and simplifying, we get the maximum of H(x) as the solution to the
equation 2(lg(1− 2x)− lg x) = 1, from which we get that H(x) is maximized at x=
1−
√

2/2≈ 0.293, and attains a maximum value of γ = 2 + lg(1 +
√

2)< 3.272.

Philosophical Transactions of the Royal Society A 11

Now let n0, nL(nR) and n2 be the numbers of leaves, nodes with only a left (right)
child and nodes with both children in TA. Letting x= n0/n, we apply Theorem 2 to
represent TA, using the parameters α0 = α2 to be equal to x, but capped to a minimum of
0.05 and a maximum of 0.45, i.e. α0 = α2 = max{min{0.45, x}, 0.05}, and αL = αR =
(1− 2α0)/2. Observe that the capping means that αL and αR lie in the range [0.05, 0.45]
as well, thus satisfying the condition in Theorem 2 requiring the αi’s to be constant.
Then the space used by the representation is

(∑
i∈{0,L,R,2} ni lg(1/αi)

)
+ n+ n0 +

o(n) bits. Provided capping is not applied, and since n0 = n2 + 1 and αL = αR, this
is easily seen to be nH(x) + o(n) bits, and is therefore bounded by γn+ o(n) bits. If
x> 0.45, then the representation takes 2n0 lg(1/0.45) + (n− 2n0) lg(1/0.05) + n+
n0 + o(n) bits. Since 2 lg(1/0.45)− 2 lg(1/0.05) + 1< 0, this is maximized with the
least possible n0 = 0.45n, where the space is precisely nH(0.45) + o(n)<γn+ o(n).
Similarly, for x< 0.05 the space is less than nH(0.05) + o(n)<γn+ o(n) bits.

We now explain how this data structure can answer RT2Q in constant time. We utilize
the data structure of Theorem 2 constructed on TA in order to find u= LCA(i, j) =
RMQ(i, j). Subsequently:

1. We determine the start of Mu within M by calculating
∑

j<umj .

2. We locate the appropriate nodes from lispine(u) and rispine(u) and the
corresponding bits within Mu and make the required comparison.

We now explain each of these steps. For step (1), we use Corollary 2. When evaluating
the formula, we use the O(1)-time support for Ldepth(u) and Rdepth(u) given by the
data structure of Section 2; there we explain how to compute Ldepth(u) in constant
time (computing Rdepth(u) can be done analogously). This leaves only the computation
of lu and Lleaves(u). The former is done as follows. We check if u has a left child:
if not, then lu = 0. Otherwise, if v is u’s left child, then v and u− 1 are respectively
the topmost and lowest nodes in lispine(u). We can then obtain lu in O(1) time as
depth(v)− depth(u) in O(1) time by Theorem 2. On the other hand, Lleaves(u) can
be computed as leaf-rank(v′ + subtree-size(v′)− 1),3 where v′ = node-selectinorder(v)
and v is the left child of u. If v does not exist then Lleaves(u) = leaf-rank(u′), where
u′ = node-selectinorder(u). All those operations take O(1) time by Theorem 2.

For step (2) we use Lemma 5 to locate the two candidates from A[i..u− 1] and
A[u+ 1..j] (assuming that i < u< j, if not, the problem is easier) in O(1) time as v=
LCA(i, u− 1) and w= LCA(u+ 1, j). Next we obtain the rank ρv of v in lispine(u)
in O(1) time as depth(u− 1)− depth(v). The rank ρw of w in rispine(u) is obtained
similarly. Now, letting ∆ =

∑
j<u(lj + rj), we compare selectM (0, rankM (0,∆) + ρv)

and selectM (1, rankM (1,∆) + ρw) in O(1) time to determine which of v and w is
smaller and return that as the answer to R2M(i, j).4 We have thus shown:

THEOREM 3. Given an array of n elements from a totally ordered set, there exists a
data structure of size at most γn+ o(n) bits that supports RT2Qs in O(1) time, where
γ = 2 + lg(1 +

√
2)< 3.272.

3 leaf-rank(u) denotes the number of leaves that appear before u in the preorder traversal for any preorder
number u.

4 If we select the last (non-represented) bit of Mu, the result will be out of the Mu area of M , but
nevertheless the result of the comparison will be correct.

Philosophical Transactions of the Royal Society A 12

Note that γn is a worst-case bound. The size of the encoding can be less for other
values of n0. In particular, since H(x) is convex and the average value of n0 on random
permutations is n/3 [10, Theorem 1], we have by Jensen’s inequality that the expected
size of the encoding is below H(1/3) = lg(3) + 5

3 < 3.252.

4. Effective Entropy of RT2Q and R2M

In this section we lower bound the effective entropy of RT2Q, that is, the number of
equivalence classes C of arrays distinguishable by RT2Qs. For this sake, we define
extended Cartesian trees, in which each node v indicates a merging order between its
left and right internal spines, using a number in a universe of size

(
lv+rv
rv

)
. We prove

that any distinct extended Cartesian tree can arise for some input array, and that any two
distinct extended Cartesian trees give a different answer for at least some RT2Q. Then
we aim to count the number of distinct extended Cartesian trees.

While unable to count the exact number of extended Cartesian trees, we provide a
lower bound by unrolling their recurrence a finite number of times (precisely, up to 8
levels). This effectively limits the lengths of internal spines we analyze, and gives us a
number of configurations of the form 1

0.160646n θ(n) for a polynomial θ(n), from where
we obtain a lower bound of 2.656n−O(log n) bits on the effective entropy of RT2Q.

We note that our bound on RT2Qs also applies to the weaker R2M operation, since
any encoding answering R2Ms has enough information to answer RT2Qs. Indeed,
it is easy to see that RMQ(i, j) is the only position that is not the answer of any
query R2M(i′, j′) for any i≤ i′ < j′ ≤ j. Then, with RMQ and R2M, we have RT2Q.
Therefore we can give our result in terms of the weaker R2M.

THEOREM 4. The effective entropy of R2M (and RT2Q) over an array A[1, n] is at
least 2.656n−O(log n).

(a) Modeling the Effective Entropy of R2M

Recall that to show that the effective entropy of RMQ is 2n−O(log n) bits, we
argue that (i) any two Cartesian trees will give a different answer to at least one
RMQ(i, j); (ii) any binary tree is the Cartesian tree of some permutation A[1, n]; (iii)

the number of binary trees of n nodes is 1
n+1

(
2n
n

)
, thus in the worst case one needs at

least lg
(

1
n+1

(
2n
n

))
= 2n−O(log n) bits to distinguish among them.

A similar reasoning can be used to establish a lower bound on the effective entropy
of RT2Q. We consider an extended Cartesian tree T of size n, where for any node v
having both left and right children we store a numberM(v) in the range [1..

(
lv+rv
rv

)
]. The

number M(v) identifies one particular merging order between the nodes in lispine(v)

and rispine(v), and
(
lv+rv
rv

)
is the exact number of different merging orders we can have.

Now we follow the same steps as before. For (i), let T and T ′ be Cartesian trees
extended with the corresponding numbers M(v) for v ∈ T and M ′(v′) for v′ ∈ T ′. We
already know that if the topologies of T and T ′ differ, then there exists an RMQ(i, j)
that gives different results on T and T ′. Assume now that the topologies are the same,
but there exists some node v where M(v) differs from M ′(v). Then there exists an
RT2Q(i, j) where the extended trees give a different result. W.l.o.g., let i and j be the first
positions of lispine(v) and rispine(v), respectively, where vl = lispine(v)[i] goes before

Philosophical Transactions of the Royal Society A 13

vr = rispine(v)[j] according to M(v), but after according to M ′(v). Then T answers
R2M(v1, v2) = v1 and T ′ answers R2M(v1, v2) = v2 (we interpret v1 and v2 as inorder
numbers here).

As for (ii), let T be an extended Cartesian tree, where u is the (inorder number of
the) root of T . Then we build a permutation A[1, n] whose extended tree is T as follows.
First, we set the minimum at A[u] = 0. Now, we recursively build the ranges A[1, u− 1]
(a permutation with values in [0..u− 1]) and A[u+ 1, n] (a permutation with values in
[0..n− u− 1]) for the left and right child of T , respectively. Assume, inductively, that
the permutations already satisfy the ordering given by the M(v) numbers for all the
nodes v within the left and right children of u. Now we are free to map the values of
A \A[u] to the interval [1, n− 1] in any way that maintains the relative ordering within
A[1, u− 1] and A[u+ 1, n]. We do so in such a way that the elements of lispine(u) and
rispine(u) compare according toM(u). This is always possible: We sortA[1, u− 1] and
A[u+ 1, n] from smallest to largest values, let A[ai] be the ith smallest cell of A[1, u−
1] and A[bj] the jth smallest cell of A[u+ 1, n]. Also, we set cursors at lispine(u)[l] and
rispine(u)[r], initially l= r= 1, and set c= i= j = 1. At each step, if M(u) indicates
that lispine(u)[l] comes before rispine(u)[r], we reassign A[ai] = c and increase i and c,
until (and including) the reassignment of ai = lispine(u)[l], then we increase l; otherwise
we reassign A[bj] = c and increase j and c, until (and including) the reassignment of
bj = rispine(u)[r], then we increase r. We repeat the process until reassigning all the
values in A \A[u].

For (iii), next we will lower bound the total number of extended Cartesian trees.

(b) Lower Bound on Effective Entropy

As explained, we have been unable to come up with a general counting method for
the lower bound, yet we give a method that can be extended with more and more effort
to reach higher and higher lower limits. The idea is to distinguish the first steps in the
generation of the Cartesian tree out of the root node, and charge the minimum value
for
(
lv+rv
rv

)
that we can ensure in each case. Let

T (x) =
∑
n>0

t(n)xn

where t(n) is the number of extended Cartesian trees with n nodes, counted using some
simple lower-bounding technique. For example, if we consider the simplest model for
T (x), we have that a (nonempty) tree is a root v either with no children, with a left child
rooting a tree, with a right child rooting a tree, or with left and right children rooting
trees, this time multiplied by 2 to account for

(
lv+rv
rv

)
≥
(
2
1

)
(see the levels 0 and 1 in

Figure A.2). Then T (x) satisfies

T (x) = x+ xT (x) + xT (x) + 2xT (x)2 = x+ 2xT (x) + 2xT (x)2,

which solves to

T (x) =
1− 2x−

√
1− 4x− 4x2

4x
,

which has two singularities at x= −1±
√
2

2 . The one closest to the origin is x=
√
2−1
2 .

Thus it follows that t(n) is of the form
(

2√
2−1

)n
θ(n) for some polynomial θ(n) [20],

Philosophical Transactions of the Royal Society A 14

and thus we need at least lg
((

2√
2−1

)n
θ(n)

)
= lg

(
2√
2−1

)
n−O(log n)≥ 2.271n−

O(log n) bits to represent all the possible extended Cartesian trees.

[Figure 2 about here.]

This result can be improved by unrolling the recurrence of T further, that is, replacing
each T by its four possible alternatives in the basic definition. Then the lower bound
improves because some left and right internal spines can be seen to have length two or
more. The results do not admit easy algebraic solutions anymore, but we can numerically
analyze the resulting functions with Maple and establish a safe numeric threshold from
where higher lower bounds can be derived. For example by doing a first level of
replacement in the simple recurrence, we obtain a recurrence with 25 cases, which yields
T (x) = x+ 2x2 + 4x2T (x) + 4x2T (x)2 + 2x3 + 10x3T (x) + 26x3T (x)2 + 36x3T (x)3 + 24x3T (x)4;

(see level 2 in Figure A.2) which Maple is able to solve algebraically, although the
formula is too long to display it here. While Maple could not algebraically find the
singularities of T (x), we analyzed the result numerically and found a singularity at
x= 0.190879... Therefore, we conclude that t(n)≥ 1

0.190880n θ(n), and thus that a lower
bound is n lg 1

0.190880 −O(log n)≥ 2.389n−O(log n).
To find the singularity we used the result [6, Thm. VII.3] that, under certain

conditions that are met in our case, the singularities of an equation of the form
T (x) =G(x, T (x)) can be found by numerically solving the system formed by the
equation T =G(x, T) and its derivative, 1 = ∂G(x,T)

∂T . If the positive solution is found
at (x= r, T = γ), then there is a singularity at x= r. If, further, T (x) is aperiodic (as
in our case), then r is the unique dominant singularity and t(n) = 1

rn θ(n) for some
polynomial θ(n).

To carry the idea further, we wrote a program that generates all the combinations of
any desired level, and builds a recurrence to feed Maple with. We use the program to
generate the recurrences of level 3 onwards. Table A.1 shows the results obtained up to
level 8, which is the one yielding the lower bound 2.656n−O(log n) of Theorem 4.
This was not without challenges; we describe the details in the Appendix.

[Table 1 about here.]

5. Conclusions

We obtained a succinct binary tree representation that extends the representation of
Farzan and Munro [4] by supporting navigation based on the inorder numbering of
the nodes, and a few additional operations. Using this representation, we describe
how to encode an array in optimal space in a more natural way than the existing
structures, to support RMQs in constant time. In addition, this representation reaches
1.919n+ o(n) bits on random permutations, thus breaking the worst-case lower bound
of 2n−O(log n) bits. This is not known to hold on any alternative representation. It is an
open question to find a data structure that answers RMQs in O(1) time using 2n+ o(n)
bits in the worst case, while also achieving the expected effective entropy bound of about
1.736n bits for random arrays A.

Then, we obtain another structure that encodes an array of n elements from a total
order using 3.272n+ o(n) bits to support RT2Qs in O(1) time. This uses almost half of

Philosophical Transactions of the Royal Society A 15

the 6n+ o(n) bits used for this problem in the literature [11]. Our structure can possibly
be plugged in their solution, thus reducing their space.

While the effective entropy of RMQs is known to be precisely 2n−O(log n) bits,
the effective entropy for range top-k queries is only known asymptotically: it is at least
n lg k −O(n) bits, and at most O(n log k) bits [11]. We have shown that, for k= 2, the
effective entropy is at least 2.656n−O(log n) bits. Determining the precise effective
entropy for k≥ 2 is an open question.

Acknowledgment

Many thanks to Jorge Olivos and Patricio Poblete for discussions (lectures) on extracting asymptotics from
generating functions.

References

[1] D. Clark. Compact Pat Trees. PhD thesis, University of Waterloo, Canada, 1996.

[2] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. The MIT Press, 2 edition, 2001.

[3] Arash Farzan and J. Ian Munro. A uniform approach towards succinct
representation of trees. In Proc. 11th Scandinavian Workshop on Algorithm Theory,
volume 5124 of LNCS, pages 173–184. Springer-Verlag, 2008.

[4] Arash Farzan and J. Ian Munro. A uniform paradigm to succinctly encode various
families of trees. Algorithmica, to appear, 2012.

[5] Johannes Fischer and Volker Heun. Space-efficient preprocessing schemes for
range minimum queries on static arrays. SIAM Journal on Computing, 40(2):465–
492, 2011.

[6] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University
Press, 2009.

[7] Harold N. Gabow, Jon Louis Bentley, and Robert E. Tarjan. Scaling and related
techniques for geometry problems. In Proc. 16th annual ACM Symposium on
Theory of Computing, pages 135–143. ACM Press, 1984.

[8] Richard F. Geary, Rajeev Raman, and Venkatesh Raman. Succinct ordinal trees
with level-ancestor queries. ACM Transactions on Algorithms, 2(4):510–534, 2006.

[9] M. Golin, J. Iacono, D. Krizanc, R. Raman, S. Srinivasa Rao, and S. Shende.
Encoding 2D range maximum queries. CoRR, 1109.2885v2, 2012.

[10] M. J. Golin, John Iacono, Danny Krizanc, Rajeev Raman, and S. Srinivasa Rao.
Encoding 2D range maximum queries. In Proc. 22nd International Symposium on
Algorithms and Computation, volume 7074 of LNCS, pages 180–189. Springer-
Verlag, 2011.

Philosophical Transactions of the Royal Society A 16

[11] R. Grossi, J. Iacono, G. Navarro, R. Raman, and S. Srinivasa Rao. Encodings for
range selection and top-k queries. In Proc. 21st Annual European Symposium on
Algorithms (ESA), LNCS 8125, pages 553–564, 2013.

[12] Meng He, J. Ian Munro, and S. Srinivasa Rao. Succinct ordinal trees based on tree
covering. In Proc. 34th International Colloquium on Automata, Languages and
Programming, pages 509–520. Springer-Verlag, 2007.

[13] Guy Jacobson. Succinct Static Data Structures. PhD thesis, Carnegie Mellon
University, Pittsburgh, PA, USA, 1989.

[14] J. Jansson, K. Sadakane, and W.-K. Sung. Ultra-succinct representation of ordered
trees. In Proc. 18th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 575–584, 2007.

[15] John C. Kieffer, En-Hui Yang, and Wojciech Szpankowski. Structural complexity
of random binary trees. In Proc. IEEE International Symposium on Information
Theory (ISIT), pages 635–639, 2009.

[16] I. Munro. Tables. In Proc. 16th Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS), LNCS 1180, pages 37–42, 1996.

[17] J. Ian Munro, Venkatesh Raman, and Adam J. Storm. Representing dynamic
binary trees succinctly. In Proc. 12th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 529–536. SIAM, 2001.

[18] Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct indexable
dictionaries with applications to encoding k-ary trees, prefix sums and multisets.
ACM Transactions on Algorithms, 3(4):Article 43, 2007.

[19] Rajeev Raman and Srinivasa Rao Satti. Succinct representations of ordinal trees.
In Proc. Conference on Space Efficient Data Structures, Streams and Algorithms,
volume 8066 of LNCS, pages 319–332. Springer-Verlag, 2013.

[20] R. Sedgewick and P. Flajolet. An Introduction to the Analysis of Algorithms.
Addison-Wesley, 1995.

[21] Jean Vuillemin. A unifying look at data structures. Communications of the ACM,
23(4):229–239, 1980.

Philosophical Transactions of the Royal Society A 17

Unrolling the Lower Bound Recurrence

The main issue to unroll further levels of the recurrence is that it grows very fast. The
largest tree at level ` has 2` leaves labeled T . Each such leaf is expanded in 4 possible
ways to obtain the trees of the next level. Let A(`) be the number of trees generated at
level `. If all the A(`− 1) trees had 2`−1 leaves labeled T , then we would have A(`) =

A(`− 1) · 42`−1 ≤ 22
`+1

. If we consider just one tree of level ` with 2` leaves labeled T ,
we haveA(`) = 42

`−1
= 22

`
. Thus the number of trees to generate is 22

` ≤A(`)≤ 22
`+1

.
For levels 3 and 4 we could just generate and add up all the trees, but from level 5
onwards we switched to a dynamic programming based counting that performs O(`4 ·
16`) operations, which completed level 5 in 40 seconds instead of 4 days of the basic
method. It also completed level 6 in 20 minutes, level 7 in 10 hours, and level 8 in
10 days. We had to use unbounded integers,5 since 64-bit numbers overflow already
in level 5 and their width doubles every new level. Apart from this, the degree of the
generated polynomials doubles at every new level and the number of terms grows by a
factor of up to 4, putting more pressure on Maple. In level 3, with polynomials of degree
8, Maple is already unable to algebraically solve the equations related to G(x, T), but
they can still be solved numerically. Since level 5, Maple was unable to solve the system
of two equations, and we had to find the singularity by plotting the implicit function and
inspecting the axis x∈ [−1, 1].6 Since level 6, Maple could not even plot the implicit
function, and we had to manually find the solution of the two equations on G(x, T). At
this point even loading the equation into Maple is troublesome; for example in level 7
we had to split the polynomial into 45 chunks to avoid Maple to crash, and in level 8 we
used 100 chunks.

Level 9 is expected to take about one year, and in addition we cannot compile, as
we reach an internal limit of the library to handle large integers: The space usage of the
dynamic programming tables grows as O(`2 · 4`) and for level 9 it surpasses 230 large
integers. Thus we are very close to reaching various limits of practical applicability of
this technique. A radically different model is necessary to account for every possible
internal spine length and thus obtain the exact lower bound.

5 With the GNU Multiple Precision Arithmetic Library (GMP), at http://gmplib.org.
6 Note that, in principle, there is a (remote) chance of us missing the dominant singularity by visual

inspection, finding one farther from the origin instead. Even in this case, each singularity implies a
corresponding exponential term in the growth of the function, and thus we would find a valid lower bound.

Philosophical Transactions of the Royal Society A 18

List of Figures

A.1 Figure depicts a part of a binary tree where t1, t2, and t3 are its three
mini-trees. Node labels are in inorder ordering of these nodes. Each
node has a corresponding bit in A and each mini-tree has one or two
corresponding labels (`i is the label of ti) in B. 19

A.2 Our scheme to enumerate extended Cartesian trees T with increasing
detail, where the x stands for a node and T for any subtree.
We indicate the numbers

(
lv+rv
rv

)
below nodes having left and

right internal spines. Level 0 corresponds just to T (x). In level
1 we have four possibilities, which lead to the equation T (x) =
x+ 2xT (x) + 2xT (x)2. For level 2, each of the T s in level 1 is
expanded in all the four possible ways, leading to 25 possibilities
and to the equation T (x) = x+ 2x2 + 4x2T (x) + 4x2T (x)2 + 2x3 +
10x3T (x) + 26x3T (x)2 + 36x3T (x)3 + 24x3T (x)4. 20

FIGURES 19

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
... 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 ...

t1

t2

t3

t1 t1t2 t3

A:
node labels:

B: ...`1`2`1`3...

Figure A.1. Figure depicts a part of a binary tree where t1, t2, and t3 are its three mini-trees. Node labels
are in inorder ordering of these nodes. Each node has a corresponding bit in A and each mini-tree has one
or two corresponding labels (`i is the label of ti) in B.

FIGURES 20

T T T T T T TT

22

T TT T T T T TT T T T

2 2 2 2

2

3333

2

T TTT T TT T T T T T TTT TTT TT

2 22222

3 3 3 36 66 6

3xxxT

3xxxT

xxxT T6

xxxT T6

6xxxT T T

xxxT T6xxxT T T12 xxxT T T12 xxxT T6

TT T T

2

x x T TTxTx+ + + 2

level 1

T

level 0

3xxxT

x + xx + xxT + xxT + 2xxT T + xx + xxT + xxT + Tx Tx2 +

2 xxx + + 2xxxT + 2xxxT + 3xxxT T + 2xxxT T + +

+ +

+

+ + + +

level 2

T T xxxT T T24 T+

Figure A.2. Our scheme to enumerate extended Cartesian trees T with increasing detail, where the x stands
for a node and T for any subtree. We indicate the numbers

(
lv+rv

rv

)
below nodes having left and right

internal spines. Level 0 corresponds just to T (x). In level 1 we have four possibilities, which lead to the
equation T (x) = x+ 2xT (x) + 2xT (x)2. For level 2, each of the T s in level 1 is expanded in all the four
possible ways, leading to 25 possibilities and to the equation T (x) = x+ 2x2 + 4x2T (x) + 4x2T (x)2 +
2x3 + 10x3T (x) + 26x3T (x)2 + 36x3T (x)3 + 24x3T (x)4.

FIGURES 21

List of Tables

A.1 Our results for increasing number of levels. The second column gives the
number of cases generated, the third the number of terms in the resulting
polynomial, the fourth the degree of the polynomial in x and T , the
fifth the x value of the singularity found, and the last column gives the
implied lower bound. 22

TABLES 22

Level # of cases # of terms degree singularity lower bound
1 4 3 2 0.207107 2.271n−O(log n)
2 25 9 4 0.190879 2.389n−O(log n)
3 675 63 8 0.179836 2.474n−O(log n)
4 ∼ 4.6× 105 119 16 0.172288 2.537n−O(log n)
5 ∼ 2.1× 1011 479 32 0.167053 2.581n−O(log n)
6 ∼ 4.4× 1022 1951 64 0.163343 2.621n−O(log n)
7 ∼ 1.9× 1045 7935 128 0.160646 2.638n−O(log n)
8 ∼ 3.8× 1090 32127 256 0.158634 2.656n−O(log n)

Table A.1. Our results for increasing number of levels. The second column gives the number of cases
generated, the third the number of terms in the resulting polynomial, the fourth the degree of the polynomial
in x and T , the fifth the x value of the singularity found, and the last column gives the implied lower bound.

