Fast and simple character classes and bounded gaps
pattern matching, with application to protein searching

[Extended Abstract]

*
Gonzalo Navarro
Dept. of Computer Science
University of Chile
Blanco Encalada 2120
Santiago, Chile

gnavarro@dcc.uchile.cl

ABSTRACT

The problem of fast searching of a pattern that contains
Classes of characters and Bounded size Gaps (CBG) in a
text has a wide range of applications, among which a very
important one is protein pattern matching (for instance, one
PROSITE protein site is associated with the CBG [RK] —
x(2,3)—[DE]—x(2,3)—Y, where the brackets match any of
the letters inside, and z(2, 3) a gap of length between 2 and
3). Currently, the only way to search a CBG in a text is to
convert it into a full regular expression (RE). However, a RE
is more sophisticated than a CBG, and searching it with a
RE pattern matching algorithm complicates the search and
makes it slow. This is the reason why we design in this
article two new practical CBG matching algorithms that are
much simpler and faster than all the RE search techniques.
The first one looks exactly once at each text character. The
second one does not need to consider all the text characters
and hence it is usually faster than the first one, but in bad
cases may have to read the same text character more than
once. We then propose a criterion based on the form of
the CBG to choose a-priori the fastest between both. We
performed many practical experiments using the PROSITE
database, and all them show that our algorithms are the
fastest in virtually all cases.

Categories and Subject Descriptors
F.2.2 [Analysis of algorithms and problem complex-

ity]: Nonnumerical algorithms and problems— Pattern match-
ing, Computations on discrete structures; H.3.3 [Information

storage and retrieval]: Information search and retrieval

*Work developed while the author was at postdoctoral
stay at the Institut Gaspard-Monge, Univ. de Marne-la-
Vallée, France, partially supported by Fundacién Andes and
ECOS/Conicyt.

Mathieu Raffinot
Equipe génome, cellule et informatique
Université de Versailles
45 avenue des Etats-Unis
78035 Versailles Cedex

raffinot@genome.uvsq.fr

Search process

General Terms
Algorithms

Keywords
Pattern matching, bit-parallelism, information retrieval, com-
putational biology, PROSITE

1. INTRODUCTION

This paper deals with the problem of fast searching of pat-
terns that contain Classes of characters and Bounded size
Gaps (CBG) in texts. This problem occurs in various fields,
like information retrieval, data mining and computational
biology. We are particularly interested in the latter one.

In computational biology, this problem has many applica-
tions, among which the most important is protein matching.
These last few years, huge protein site pattern databases
have been developed, like PROSITE [6, 9]. These databases
are collections of protein site descriptions. For each protein
site, the database contains diverse information, notably the
pattern. This is an expression formed with classes of char-
acters and bounded size gaps on the amino acid alphabet
(of size 20). This pattern is used to search a possible oc-
currence of this protein in a longer one. For example, the
protein site number PS00007 has as its pattern the expres-
sion [RK|—x(2,3) — [DE] — z(2,3) — Y, where the brackets
mean that the position can match any of the letters inside,
and x(2,3) means a gap of length between 2 and 3.

Currently, these patterns are considered as full regular ex-
pressions (REs) over a fixed alphabet X, i.e generalized
patterns composed of (i) basic characters of the alphabet
(adding the empty word e and also a special symbol z that
can match all the letters of), (ii) concatenation (denoted
-), (ii) union (|) and (iii) Kleene closure (*). This latter op-
eration L£* on a set of words £ means that we accept all the
words made by a concatenation of words of £. For instance,
our previous pattern can be considered as the regular ex-
pression (R|K) -z -z -(z|e)- (D|E)-z-z-(z|e)-Y. We note
|RE| the length of an RE, that is the number of symbols
in it. The search is done with the classical algorithms for
RE searching, that are however quite complicated. The RE

needs to be converted into an automaton and then searched
in the text. It can be converted into a deterministic automa-
ton (DFA) in worst case time O(2/#F!), and then the search
is linear in the size n of the text, giving a total complexity
of O(2'FE! £ n). Tt can also be converted into a nondeter-
ministic automaton (NFA) in linear time O(|RE|) and then
searched in the text in O(n x |RE]) time, giving a total
of O(n x |RE|) time. We give a review of these methods
in Appendix A. The majority of the PROSITE matching
softwares use these techniques [11, 18].

None of the presented techniques are fully adequate for CBGs.

First, the algorithms are intrinsically complicated to under-
stand and to implement. Second, all the techniques perform
poorly for certain types of REs. The “difficult” REs are in
general those whose DFAs are very large, a very common
case when translating CBGs to REs. Third, especially with
regard to the sizes of the DFAs, the simplicity of CBGs is
not translated into their corresponding REs. At the very
least, resorting to REs implies solving a simple problem by
converting it into a more complicated one. Indeed, the ex-
perimental time results when applied to our CBG expres-
sions are far from reasonable in regard of the simplicity of
CBGs and compared to the search of expressions that just
contain classes of characters [15].

This is the motivation of this paper. We present two new
simple algorithms to search CBGs in a text, that are also ex-
perimentally much faster than all the previous ones. These
algorithms make plenty use of “bit-parallelism”, that con-
sists in using the intrinsic parallelism of the bit manipula-
tions inside computer words to perform many operations in
parallel. Competitive algorithms have been obtained using
bit parallelism for exact string matching [2, 22], approxi-
mate string matching [2, 22, 23, 3, 14], and REs matching
[12, 21, 17]. Although these algorithms generally work well
only on patterns of moderate length, they are simpler, more
flexible (e.g. they can easily handle classes of characters),
and have very low memory requirements.

We performed two different types of experiments, compar-
ing our algorithms against the fastest known ones for RE
searching. We use as CBGs the patterns of the PROSITE
database. We first compared them as “pure pattern match-
ing”, i.e. searching the CBGs in a compilation of 6 megabytes
of protein sequences (from the TIGR Microbial database).
We then compared them as “library matching”, that is search
a large set of PROSITE patterns in a protein sequence of 300
amino acids. Our algorithms are by far the fastest in both
cases. Moreover, in the second case, the search time im-
provements are dramatic, as our algorithms are about 100
times faster than the best RE matching algorithms when
pattern preprocessing times become important.

The two algorithms we present are patented by the French
Centre National de la Recherche Scientifique (CNRS)*.

We use the following definitions throughout the paper. ¥ is
the alphabet, a word on ¥ is a finite sequence of characters
of ¥. X" means the set of all the words build on ¥. A
word w € X" is a factor (or substring) of p € X" if p can be

!French priority patent application n® 0011093 filed on Au-
gust 8th , 2000 by the CNRS.

written p = uwv, u,v € L*. A factor w of p is called a suffiz
of pis p=wuw, u € X%, and a prefiz of pis p = wu, u € T*.

We note with brackets a subset of elements of 3: [ART)]
means the subset {A, R,T'} (a single letter can be expressed
in this way too). We add the special symbol z to denote a
subset that corresponds to the whole alphabet. We also add
a symbol z(a,b), a < b, for a bounded size gap of minimal
length a and maximal b, and use x(a) as a short for z(a,a)
(so z = z(1) = z(1,1)). A CBG on X is formally a finite
sequence of symbols that can be (i) brackets, (ii) z and (iii)
bounded size gaps z(a,b). We define m as the total number
of such symbols in a CBG.

We use the notation T' = ti1ts...t, for the text of n char-
acters of ¥ in which we are searching the CBGs. A CBG
matches T at position j if there is an alignment of £;_;...%;
with the CBG, considering that (i) a bracket matches with
any text letter that appears inside brackets; (ii) an = matches
any text letter; and (iii) a bounded gap =z(a,b) matches
at minimum ¢ and at maximum b arbitrary characters of
T. We denote by ¢ the minimum size of a possible align-
ment and L the size of a maximum one. For example,
[RK]—2(2,3) —[DE]—2(2,3) —Y (where £ =7 and L = 9)
matches the text T = AHLRKDEDATY at position 11 by
3 different alignments K ——D ——-Y, R— ——D ——-Y and
R——-E——-Y.

DEFINITION 1. Searching a CBG in a text T = tita...t,
consists in finding all the positions j of T in which there is
an alignment of the CBG with a suffix of t1...¢;.

We use some notation to describe the operations on bits. We
use exponentiation to denote bit repetition, e.g. 031 = 0001.
We denote as b, ...b1 the bits of a mask of length ¢, which
is stored somewhere inside the computer word of length w.
We use C-like syntax for operations on the bits of computer
words, i.e. “|” is the bitwise-or, “&” is the bitwise-and, “~”
complements all the bits, and “<<” moves the bits to the
left and enters zeros from the right, e.g. bebs—1...bab1 <<
3 = bs_3...b2b1000. We can also perform arithmetic oper-
ations on the bits, such as addition and subtraction, which
operate the bits as if they formed a number, for instance
be...by10000 — 1 =b,...b,01111.

2. PREVIOUSWORK

Bit-parallelism for simple pattern matching

The bit-parallelism technique [1] consists in taking advan-
tage of the intrinsic parallelism of the bit operations inside
a computer word. By using cleverly this fact, the number
of operations that an algorithm performs can be cut down
by a factor of at most w, where w is the number of bits in
the computer word. Since in current architectures w is 32
or 64, the speedup is very significative in practice.

We present now the Shift-And algorithm [2, 22]. Figure 1
shows a non-deterministic automaton that searches a pat-
tern in a text. Given a pattern P = pi1ps...pm € X7 and a
text T = t1ts...t, € X7, the algorithm builds first a table
B which for each character stores a bit mask b,, ...b1. The

mask in B[c] has the i-th bit set if and only if p; = ¢. The
state of the search is kept in a machine word D = d,, .. .d,
where d; is set whenever pips...p; matches the end of the
text read up to now (another way to see it is to consider that
d; tells whether the state numbered i in Figure 1 is active).
Therefore, we report a match whenever d,, is set.

(% b b b a a
@ DD DD DO

Figure 1: A nondeterministic automaton to search
the pattern P = baabbaa in a text.

We set D = 0™ originally, and for each new text charac-
ter t;, we update D using the formula D' <+« ((D <<
1) | 0™~ '1) & BIt;] which mimics the movement that oc-
curs in the automaton.

It is very easy to extend to handle classes of characters,
where each pattern position may not only match a single
character but a set of characters. If C; is the set of characters
that match the position ¢ in the pattern, we set the i-th bit
of BJc] for all ¢ € C;. No other change is necessary to the
algorithm.

Combining bit-parallelism and suffix automata

The BNDM pattern matching algorithm [15], a combination
of Shift-Or and BDM [8, 7], has all the advantages of the
bit-parallel forward scan algorithm, and in addition it is able
to skip some text characters.

BNDM is based on a suffiz automaton. A suffiz automaton
on a pattern P = pip>...pn, is an automaton that recog-
nizes all the suffixes of P. The nondeterministic version of
this automaton is shown in Figure 2. Note that the automa-
ton will not run out of active states as long as it has read a
factor of P. In the original BDM this automaton is made de-
terministic. BNDM, instead, simulates the automaton using
bit-parallelism. Just as for Shift-And, we keep the state of
the search using m bits of a computer word D = d,, ...d:.

ISR RSN

Figure 2: A nondeterministic suffix automaton for
the pattern P = baabbaa. Dashed lines represent e-
transitions (i.e. they occur without consuming any
input).

To search a pattern P = pip2...pm inatext T =tita... Ly,
the suffix automaton of P" = pmpm—1 ...p1 (i.e the pattern
read backwards) is built. A window of length m is slid along
the text, from left to right. The algorithm searches back-
ward inside the window for a factor of the pattern P using
the suffix automaton, i.e. the suffix automaton of the re-
verse pattern is fed with the characters in the text window
read backward. This backward search ends in two possible
forms: (A) We fail to recognize a factor, i.e we reach a win-
dow letter o that makes the automaton run out of active

states. This means that the suffix of the window we have
read is not anymore a factor of P. We then shift the window
to the right, its starting position corresponding to the po-
sition following the letter o (we cannot miss an occurrence
because in that case the suffix automaton would have found
a factor of it in the window). (B) We reach the beginning
of the window, therefore recognizing the pattern P since the
length-m window is a factor of P (indeed, it is equal to P).
We report the occurrence, and shift the window by 1.

This algorithm is O(mn) worst case time, but optimal on
average (O(nlog, m/m) time).

The bit-parallel simulation works as follows. Each time we
position the window in the text we initialize D = 1™ and
scan the window backward. For each new text character
read in the window we update D. If we run out of 1’s in
D then there cannot be a match and we suspend the scan-
ning and shift the window. If we can perform m iterations
then we report the match. We use a mask B which for each
character c stores a bit mask. This mask sets the bits cor-
responding to the positions where the reversed pattern has
the character ¢ (just as in the Shift-And algorithm). The
formula to update D is D' «+ (D & BJt;]) << 1.

BNDM is not only faster than Shift-Or and BDM (for 5 <
m < 100 or so), but it can accommodate all the extensions
mentioned. Of particular interest to this work is that it
can easily deal with classes of characters by just altering the
preprocessing, and it is by far the fastest algorithm to search
this type of patterns [15, 16].

Regular expression searching
Many algorithms have been designed to search a regular

expression in a text. A survey of the different techniques
and automata built is given in the Appendix A.

3. AFORWARD SEARCHALGORITHM FOR

CBG PATTERNS

We express the search problem of a pattern with classes of
characters and gaps using a non-deterministic automaton.
Compared to the automaton for simple patterns (Section 2),
this one permits the existence of gaps between consecutive
positions, so that each gap has a minimum and a maximum
length. The automaton we use does not correspond to any
of those obtained with the regular expression simulations
(see Appendix A), although the functionality is the same.

Figure 3 shows an example for the pattern a—b—c—x(1,3)—
d — e. Between the letters ¢ and d we have inserted three
transitions that can be followed by any letter, which corre-
sponds to the maximum length of the gap. Two e-transitions
leave the state where abc has been recognized and skip one
and two subsequent edges, respectively. This allows skipping
one to three text characters before finding the de at the end
of the pattern. The initial self-loop allows the match to
begin at any text position.

We are now interested in an efficient simulation of the above
automaton. Despite that this is a particular case of a regular
expression, its simplicity permits a more efficient simulation.
In particular, a fast bit-parallel simulation is possible.

€

z £

.
e

m b c ’I X ; x* X d e
o=~~~ O—~0—0—0

Figure 3: Our non-deterministic automaton for the
pattern a —b—c—z(1,3) —d —e.

We represent each automaton state by a bit in a computer
word. The initial state is not represented because it is always
active. As with the normal Shift-And, we shift all the bits
to the left and use a table of masks B indexed by the current
text character. This accounts for all the arrows that go from
states S; to Sj41.

The remaining problem is how to represent the e-transitions.
For this sake, we chose? to represent active states by 1 and
inactive states by 0. We call “gap-initial” states those states
S; from where an e-transition leaves. For each gap-initial
state S; corresponding to a gap z(a,b), we define its “gap-
final” state to be Sitp—a+1, i.e. the one following the last
state reached by an e-transition leaving S;. In the example
of Figure 3, we have one gap-initial state (S3) and one gap-
final state (Se).

We create a bit mask I which has 1 in the gap-initial states,
and another mask F' that has 1 in the gap-final states. Then,
if we keep the state of the search in a bit mask D, then after
performing the normal Shift-And step, we simulate all the
e-moves with the operation

D« D | (F-(D&I)& ~F)

The rationale is as follows. First, D & I isolates the active
gap-initial states. Subtracting this from F has two possible
results for each gap-initial state S;. First, if it is active
the result will have 1 in all the states from S; to Sitp—a,
successfully propagating the active state S; to the desired
target states. Second, if S; is inactive the result will have 1
only in Siy4_q+1. This undesired 1 is removed by operating
the result with “& ~ F”. Once the propagation has been
done, we or the result with the already active states in D.
Note that the propagations of different gaps do not interfer
with each other, since all the subtractions have local effect.

The complete algorithm is given in Appendix B. The prepro-
cessing takes O(L|X|) time, while the scanning needs O(n)
time. If L > w, however, we need several machine words for
the simulation, which thus takes O(n[L/w]) time.

4. A BACKWARD SEARCH ALGORITHM
FOR CBG PATTERNS

When the searched patterns contain just classes of char-
acters, the backward bit-parallel approach (see Section 2)
leads to the fastest algorithm BNDM [15, 16]. The search is
done by sliding over the text (in forward direction) a window
that has the size of the minimum possible alignment (£). We
read the window backwards trying to recognize a factor of
the pattern. If we reach the beginning of the window, then

2Tt is possible to devise a formula for the opposite case, but
unlike Shift-Or, it is not faster.

we found an alignment. Else, we shift the window to the
beginning of the longest factor found.

We extend now BNDM to deal with CBGs. To recognize
all the reverse factors of a CBG, we use quite the same
automaton built in Section 3 on the reversed pattern, but
without the initial self-loop, and considering that all the
states are active at the beginning. We create an initial state
I and e-transitions from I to each state of the automaton.
Figure 4 shows the automaton for the pattern a —b — ¢ —
z(1,3) —d — e. A word read by this automaton is a factor
of the CBG as long as there exists at least one active state.

€

// //‘ \\\
@%(a ;)L @é@ﬂx ;)gx éﬂx ORnOn
| | | | | | | | i
(I (I [[[[[[e
\ \ . \ \ . \ \ \
. N . N N S NN N Ci

Figure 4: The non-deterministic automaton built in
the backward algorithm to recognize all the reversed
factors of the CBG a—b—c—z(1,3) —d —e.

The bit-parallel simulation of this automaton is quite the
same as that of the forward automaton (see Section 3). The
only modifications are (a) that we build it on P", the re-
versed pattern; (b) that the the bit mask D that registers
the state of the search has to be initialized with D = 17 to
perform the initial e-transitions; and (c) that we do not or
D with 0X7'1 when we shift it, for there is no more initial
self-loop.

The backward CBG matching algorithm shifts a window
of size ¢ along the text. Inside each window, it traverses
backward the text trying to recognize a factor of the CBG
(this is why the automaton that recognizes all the factors
has to be built on the reverse pattern P").

If the backward search inside the window fails (i.e. there
are no more active states in the backward automaton) be-
fore reaching the beginning of the window, then the search
window is shifted to the beginning of the longest factor rec-
ognized, exactly like in the first case of the classic BNDM
(see Section 2).

If the begining of the window is reached with the automa-
ton still holding active states, then some factor of length ¢
of the CBG is recognized in the window. Unlike the case of
exact string matching, where all the occurrences have the
same length of the pattern, this does not automatically im-
ply that we have recognized the whole pattern. We need
a way to verify a possible alignment (that can be longer
than ¢) starting at the beginning of the window. So we read
the characters again from the beginning of the window with
the forward automaton of Section 3, but without the initial
self-loop. This forward verification ends when (1) the au-
tomaton reaches its final state, in which case we found the
pattern; (2) there are no more active states in the automa-
ton, in which case there is no pattern occurrence starting at
the window. As there is no initial loop, the forward verifi-
cation surely finishes after reading at most L characters of
the text. We then shift the search window one character to

the right and resume the search.

The complete algorithm is given in Appendix C. The worst
case complexity of the backward scanning algorithm is O(nL),
which is quite bad in theory. However, on the average, the
backward algorithm is expected to be faster than the forward
one. The next section gives a good experimental criterion to
know in which cases the backward algorithm is faster than
the forward one. The experimental search results (see Sec-
tion 6) on the PROSITE database shows that the backward
algorithm is almost always the fastest.

5. WHICH ALGORITHM TO USE ?

We have now two different algorithms, a forward and a back-
ward one, so a natural question is which one should be cho-
sen for a particular problem. We seek for a simple criterion
that enables us to choose the best algorithm.

In particular, let us consider the maximum gap length G
in the CBG. If G > /¢, then every text window of length
¢ is a factor of the CBG, so we will surely traverse all the
window during the backward scan and always shift in 1, for
a complexity of Q(nf) at least. Consequently, the backward
approach we have presented must be restricted at least to
CBGs in which G < /.

This can be carried on further. Each time we position a
window in the text, we know that at least G + 1 characters
in the window will be inspected before shifting. Moreover,
the window will not be shifted by more than £ — G positions.
Hence the total number of character inspections across the
search is at least (G + 1)n/(¢ — G), which is larger than
n (the number of characters inspected by a forward scan)
whenever £ < 2G + 1.

Hence, we define (G + 1)/¢ as a simple parameter governing
most of the performance of the backward scan algorithm,
and predict that 0.5 is the point above which the backward
scanning is worse than forward scanning. Of course this
measure is not perfect, as it disregards the effect of other
gaps, classes of characters and the cost of forward check-
ing in the backward scan, but a full analysis is extremely
complicated and, as we see in the next section, this simple
criterion gives good results.

According to this criterion, we can design an optimized ver-
sion of our backward scanning algorithm. The idea is that
we can choose the “best” prefix of the pattern, i.e. the prefix
that minimizes (G + 1)/¢. The backward scanning can be
done using this prefix, while the forward verification of po-
tential matches is done with the full pattern. This could be
extended to selecting the best factor of the pattern, but the
code would be more complicated (as the verification phase
would have to scan in both directions, buffering would be
complicated, and, as we see in the next section, the differ-
ence is not so large.

6. EXPERIMENTAL RESULTS

We have tested our algorithms over an example of 1,168
PROSITE patterns [11, 9] and a 6 megabytes (Mb) text
containing a concatenation of protein sequences taken from
the TIGR Microbial database. The set had originally 1,316
patterns from which we selected the 1,230 whose L (maxi-

mum length of a match) does not exceed w, the number of
bits in the computer word of our machine. This leaves us
with 93% of the patterns. From them, we excluded the 62
(5%) for which G > £, which as explained cannot be reason-
ably searched with backward scanning (we had to resort to
forward scanning for them). This leaves us with the 1,168
patterns.

We have used an Intel Pentium IIT machine of 500 MHz
running Linux. We show user times averaged over 10 trials.
Three different algorithms are tested: Fwd is the forward-
scan algorithm described in Section 3, Bwd is the backward-
scan algorithm of Section 4 and Opt is the same Bwd where
we select for the backward searching the best prefix of the
pattern, according to the criterion of the previous section.

A first experiment aims at measuring the efficiency of the
algorithms with respect to the criterion of the previous sec-
tion. Figure 5 shows the results, where the patterns have
been classified along the = axis by their (G + 1)/¢ value. As
predicted, 0.5 is the value from which Bwd starts to be worse
than Fwd except for a few exceptions (where the difference
is not so big anyway). It is also clear that Opt avoids many
of the worst cases of Bwd. Finally, the plot shows that the
time of Fwd is very stable. While the forward scan runs al-
ways at around 5 Mb/sec, the backward scan can be as fast
as 20 Mb/sec.

Fwd |

secsMb

0.1 0.2 03 0.4 0.5 0.6 0.7 0.8

(G+1)/l
L T T B A B e
Bwd
— Opt

secsMb

03 04 0.5 0.6 0.7 0.8

(G+1)/1

Figure 5: Search times (in seconds per Mb) for all
the patterns classified by their (G + 1)/ value.

What Figure 5 fails to show is that in fact most PROSITE
patterns have a very low (G + 1)/¢ value. Figure 6 plots
the number of patterns achieving a given search time, after
removing a few outliers (the 12 that took more than 0.4 sec-
onds for Bwd). Fwd has a large peak because of its stable
time, while the backward scanning algorithms have a wider
histogram whose main body is well before the peak of Fwd.
Indeed, 95.6% of the patterns are searched faster by Bwd
than by Fwd, and the percentage raises to 97.6% if we con-
sider Opt. The plot also shows that there is little statistical
difference between Bwd and Opt. Rather, Opt is useful to
remove some very bad cases of Bwd.

600

Fwd

Bwd

rrrrrrrr Opt
500
400
300

frequency

0.05 01 0.15 0.2 0.25 0.3 0.35

secsMb

Figure 6: Histogram of search times for our different
algorithms.

Our third experiment aims at comparing our search method
against converting the pattern to a regular expression and
resorting to general regular expression searching. From the
existing algorithms to search for regular expressions we have
selected the following:

o Dfa: Builds a deterministic finite automaton and
uses it to search the text.

e Nfa: Builds a non-deterministic finite automaton
and uses it to search the text, updating all the states
at each text position.

e Myers: Is an intermediate between Dfa and Nfa
[12], a non-deterministic automaton formed by a few
blocks (up to 4 in our experiments) where each block is
a deterministic automaton over a subset of the states.

e Agrep: Is an existing software [22, 21] that im-
plements another intermediate between Dfa and Nfa,
where most of the transitions are handled using bit-
parallelism and the e-transitions with a deterministic
table.

e Grep: Is Gnu Grep with the option "-E" to make
it accept regular expressions. This software uses a
heuristic that, in addition to (lazy) deterministic au-
tomaton searching, looks for long enough literal pat-
tern substrings and uses them as a fast filter for the
search.

¢ BNDM: Uses the backward approach we have ex-
tended to CBGs, but adapted to general REs instead
[17]. It needs to build to deterministic automata, one
for backward search and another for forward verifica-
tion.

e Multipattern: Reduces the problem to multipat-
tern Boyer-Moore searching of all the strings of length
£ that match the RE [20]. We have used “agrep -f”
as the multipattern search algorithm.

To these, we have added our Fwd and Opt algorithms. Fig-
ure 7 shows the results. From the forward scanning algo-
rithms (i.e. Fwd, Dfa, Nfa and Myers, unable to skip text
characters), the fastest is our Fwd algorithm thanks to its
simplicity. Agrep has about the same mean but much more
variance. Dfa suffers from high preprocessing times and
large generated automata. Nfa needs to update many states
one by one for each text character read. Myers suffers from
a combination of both and shows two peaks that come from
its specialized code to deal with small automata.

The backward scanning algorithms Opt and Grep (able to
skip text characters) are faster than the previous ones in
almost all cases. Among them, Opt is faster on average
and has less variance, while the times of Grep extend over
a range that surpasses the time of our Fwd algorithm for a
non-negligible portion of the patterns. This is because Grep
cannot always find a suitable filtering substring and in that
case it resorts to forward scanning. Note that BNDM and
Multipattern have been excluded from the plots due to their
poor performance on this set of patterns.

Apart from the faster text scanning, our algorithms also
benefit from lower preprocessing times when compared to
the algorithms that resort to regular expression searching.
This is barely noticeable in our previous experiment, but it
is important in a common scenario of the protein searching
problem: all the patterns from a set are searched inside a
new short protein. In this case the preprocessing time for
all the patterns is much more important than the scanning
time over the (normally rather short) protein.

We have simulated this scenario by selecting 100 random
substrings of length 300 from our text and running the pre-
vious algorithms on all the 1,168 patterns. Table 1 shows
the time averaged over the 100 substrings and accumulated
over the 1,168 patterns. The difference in favor of our new
algorithms is drastic. Note also that this problem is an
interesting field of research for multipattern CBG search al-
gorithms.

7. CONCLUSIONS

We have presented two new search algorithms for CBGs; i.e.
expressions formed by a sequence of classes of characters and
bounded gaps. CBGs are of special interest to computa-
tional biology applications. Our algorithms are specifically
designed for CBGs and are based on BNDM, a combina-
tion of bit-parallelism and backward searching with suffix
automata.

We have presented experiments showing that our new algo-
rithms are much faster and more predictable than all the

300 T T T T T T T
250
200

150

frequency

100

50

n
=
o

L

9
o
|

zZ

—-

o}
Lo

>

Q

8
|

lllllllllllllll

|
P
I

1

secsMb

Figure 7: Histogram of search times for our best algorithms and for regular expression searching algorithms.

Fwd reaches 600.

Algorithm | Time]

Fwd 0.058
Bwd 0.056
Opt 0.050
Dfa 125.91
Nfa 4.43
Myers 7.84
Agrep 10.22
Grep 9.42

Table 1: Search time in seconds for all the 1,168
patterns over a random protein of length 300.

other algorithms based on regular expression searching. In
addition, we have presented a criterion to select the best
among the two that has experimentally shown to be very
reliable. This makes the algorithms of special interest for
practical applications, such as protein searching.

We plan to extend the present work by allowing negative
gaps and errors in the matches (see, e.g. [13]). Our algo-
rithms are especially easy to extend to permit errors and we
are pursuing in that direction.

8. REFERENCES

[1] R. Baeza-Yates. Text retrieval: Theory and practice. In
12th IFIP World Computer Congress, volume I, pages
465-476. Elsevier Science, September 1992.

[2] R. Baeza-Yates and G. Gonnet. A new approach to text

(6

(11]

searching. CACM, 35(10):74-82, October 1992.

R. Baeza-Yates and G. Navarro. Faster approximate string
matching. Algorithmica, 23(2):127 158, 1999.

G. Berry and R. Sethi. From regular expression to
deterministic automata. Theor. Comput. Sci.,
48(1):117-126, 1986.

A. Briiggemann-Klein. Regular expressions into finite
automata. Theoretical Computer Science, 120(2):197 213,
November 1993.

P. Bucher and A. Bairoch. A generalized profile syntax for
biomolecular sequences motifs and its function in automatic
sequence interpretation. In Proceedings 2nd International
Conference on Intelligent Systems for Molecular Biology,
pages 53—61, AAAIPress, Menlo Park,, 1994.

Maxime Crochemore and W. Rytter. Tezt algorithms.
Oxford University Press, 1994.

A. Czumaj, Maxime Crochemore, L. Gasieniec,

S. Jarominek, Thierry Lecroq, W. Plandowski, and

W. Rytter. Speeding up two string-matching algorithms.
Algorithmica, 12:247-267, 1994.

K. Hofmann, P. Bucher, L. Falquet, and A. Bairoch. The
PROSITE database, its status in 1999. Nucleic Acids Res.,
27:215 219, 1999.

Juraj Hromkovic, Sebastian Seibert, and Thomas Wilke.
Translating regular expression into small e-free
nondeterministic automata. In STACS 97, Lecture Notes in
Computer Science, pages 55-66. Springer-Verlag, 1997.

L.F. Kolakowski Jr., J.A.M. Leunissen, and J.E. Smith.
ProSearch: fast searching of protein sequences with regular
expression patterns related to protein structure and
function. Biotechniques, 13:919 921, 1992.

[12]

13]

[14]

[15]

[16]

(17]

(18]

21]

(22]

[23]

E. Myers. A four-russian algorithm for regular expression
pattern matching. J. of the ACM, 39(2):430 448, 1992.

E. Myers. Approximate matching of network expressions
with spacers. Journal of Computational Biology,
3(1):33-51, 1996.

G. Myers. A fast bit-vector algorithm for approximate
string matching based on dynamic programming. Journal
of the ACM, 46(3):395-415, 1999.

G. Navarro and M. Raffinot. A bit-parallel approach to
suffix automata: Fast extended string matching. In Proc.
CPM’98, LNCS v. 1448, pages 14 33. Springer-Verlag,
1998.

G. Navarro and M. Raffinot. Fast and flexible string
matching by combining bit-parallelism and suffix automata.
Technical Report TR/DCC-98-4, Dept. of Computer
Science, Univ. of Chile, August 1998. To appear in ACM
Journal of Experimental Algorithmics (JEA).

G. Navarro and M. Raffinot. Fast regular expression search.
In Proc. WAE’99, LNCS 1668, pages 198 212, 1999.

R. Staden. Screening protein and nucleic acid sequences
against libraries of patterns. DNA Sequence, 1:369-374,
1991.

K. Thompson. Regular expression search algorithm.
CACM, 11(6):419 422, 1968.

B. Watson. Tazonomies and toolkits of reqular language
algorithms. PhD thesis, Eindhoven Univ. of Technology,
The Netherlands, 1995.

S. Wu and U. Manber. Agrep a fast approximate
pattern-matching tool. In Proc. of USENIX Technical
Conference, pages 153-162, 1992.

S. Wu and U. Manber. Fast text searching allowing errors.
CACM, 35(10):83 91, October 1992.

S. Wu, U. Manber, and E. Myers. A sub-quadratic
algorithm for approximate limited expression matching.
Algorithmica, 15(1):50-67, 1996.

APPENDIX
A. REGULAR EXPRESSION SEARCHING

The usual way of dealing with an expression with character
classes and bounded gaps is actually to search it as a full
regular expression (RE) [11, 18]. A gap of the form z(a,b)
is converted into a letters x followed by b — a subexpressions
of the form (z|e).

The traditional technique [19] to search an RE of length
O(m) in a text of length n is to convert the expression into a
nondeterministic finite automaton (NFA) with O(m) nodes.
Then, it is possible to search the text using the automa-
ton at O(mn) worst case time, or to convert the NFA into
a deterministic finite automaton (DFA) in worst case time
0O(2™) and then scan the text in O(n) time.

Some techniques have been proposed to obtain a good trade-
off between both extremes. In 1992, Myers [12] presented
a four-russians approach which obtains O(mn/ logn) worst-
case time and extra space. Other simulation techniques that
aim at good tradeoffs based on combinations of DFAs and
bit-parallel simulation of NFAs are given in [22, 17].

There exist currently many different techniques to build an
NFA from a regular expression R. The most classical one
is Thompson’s construction [19], which builds an NFA with
at most 2m states and 4m transitions (where m is counted
as the number of letters and ¢’s in the RE). A second one is
Glushkov’s construction, popularized by Berry and Sethi in
[4]. The NFA resulting of this construction has the advan-
tage of having just m + 1 states (where m is counted as the
number of letters in the RE).

A lot of research on Gluskov’s construction has been pur-
sued, like [5], where it is shown that the resulting NFA is
quadratic in the number of edges in the worst case. In [10],
a long time open question about the minimal number of
edges of an NFA (without e-transition) with linear number
of states was answered, showing a construction with O(m)
states and O(m(logm)?) edges, as well as a lower bound
of O(mlogm) edges. Hence, Glushkov construction is not
space-optimal.

We show in Figure 8 the Thompson and Gluskov automata
for an example CBG a — b — ¢ — z(1,3) — d — e, which we
translate into the regular expression a-b-c-z-(z|e)- (z|e)-d-e.

Both Thompson and Gluskov automata present some par-
ticular properties. Some algorithms like [12, 22] make use
of Thompson’s automaton properties and some others, like
[17], make use of Gluskov’s ones.

Finally, some work has been pursued in skipping characters
when searching for an RE. A simple heuristic that has very
variable success is implemented in Gnu Grep, where they try
to find a plain substring inside the RE; so as to use the search
for that substring as a filter for the search of the complete
RE. In [20] they propose to reduce the search of a RE to a
multipattern search for all the possible strings of some length
that can match the RE (using a multipattern Boyer-Moore
like algorithm). In [17] they propose the use of an automaton
that recognizes reversed factors of strings accepted by the
RE (in fact a manipulation of the original automaton) using

5/®7§7>@\§ E/”E’)@*S\
YO0 -@) Oy -
€ *@ . ;./s € *@ - ;()s

(a) Thompson construction

(b) Gluskov construction

Figure 8: The two classical NFA constructions on
our example a-b-c -z (z|e)- (z|e) - d-e. We recall that
z matches the whole alphabet 3. The Gluskov au-
tomaton is ¢ free, but both present some difficulties
to perform an efficient bit-parallelism on them.

a BNDM-like scheme to search those factors (see Section 2).

However, none of the presented techniques seems fully ad-
equate for CBGs. First, the algorithms are intrinsequely
complicated to understand and to implement. Second, all
the techniques perform poorly for a certain type of REs.
The “difficult” REs are in general those whose DFAs are
very large, a very common case when translating CBGs to
REs. Third, especially with regard to the sizes of the DFAs,
the simplicity of CBGs is not translated into their corre-
sponding REs. For example, the CBG “[RK] — z(2,3) —
[DE] —x(2,3) —Y” considered in the Introduction yields a
DFA which needs about 600 pointers to be represented.

At the very least, resorting to REs implies solving a sim-
ple problem by converting it into a more complicated one.
Indeed, the experimental time results when applied to our
CBG expressions are far from reasonable in regard of the
simplicity of CBGs, as seen in Section 6. As we show in
that section, CBGs can be searched much faster by design-
ing specific algorithms for them. This is what we do in the
next sections.

B. FORWARD SEARCH PSEUDOCODE

Figure 9 shows the complete algorithm. For simplicity the
code assumes that there cannot be gaps at the beginning or
at the end of the pattern (which are meaningless anyway).
The value L (maximum length of a match) is obtained in
O(m) time by a simple pass over the pattern P, summing
up the maximum gap lengths and individual classes (recall
that m is the number of symbols in P).

C. BACKWARD SEARCH PSEUDOCODE

Figure 10 shows the complete algorithm. Some optimiza-
tions are not shown for clarity, for example many tests can
be avoided by breaking loops from inside, some variables can
be reused, etc.

Search (Pi..m,T1..n)
/* Preprocessing */

L < maximum length of a match
for c€ X do B[] « 0"
I « 0", F « 0"
1« 0
for jel...m
if P; is of the form z(a,b) then /* a gap */
I « I | (1<<(i—-1))
F « F|(1<<(@i+b—a))
for ceX, k€i...i+b—1 do
Blc] « Bl | (1<<k)
i < i+b
else /* P; is a class of characters */
for ¢ € P; do B¢] « Bl | (1<<1i)
1+ i+
nF < ~F
M + 1<<(L-1) /* final state */
/* Scanning */

D « 0"
for jel...n
if D & M # 0" then
report a match ending at j —1
D « ((D<<1) | 0" "1) & BJtj]
D « D| ((F—(D & I)) & nF)

Figure 9: Forward search pseudocode

D. MULTIPLE WORD EXTENSION

The two previous algorithms can be used for longest word by
simulating the computer words operations on table of words.
All the commands used to update the state of the search in
one computer word D are trivially extended to a sequence of
words D1 ... D4 (where the lowest bits are in D1). The only
exception is the subtraction operation, where the operation
on D; can affect D;11. Let us say that we have two computer
multi-words A = A; ... Ay and B = B; ... By, and we want
to compute C = A — B = (C1...C4q. The algorithm is as
follows (we assume that the numbers are unsigned)

carry + 0
for i€l...d
C; <« A,—B;—carry
if A; < B; + carry or B; + carry < B;
then carry < 1
else carry <+ 0

where the fourth line has two checks: a first one covers the
normal cases and the second one covers the special case B; =
1.

Backward search (Pi_ ..,T1.)
/* Preprocessing */

+ maximum length of a match
< minimum length of a match
for c€ X do Byc] « 07, By[c] « 0"
Ip « 0", Ff « 0", I, « 0", i, « 0"
1« 0
for jel...m
if P; is of the form z(a,b) then /* a gap */
Iy « Iy | (1<<(i—1))
I, « I, | (1<<(L—-(i+0b)—1))
Ff +— Ff ‘ (1 << (1;+b7(1,))
F, « F, | 1<<(L—i—a))
for c€X, k€i...i+b—1 do
Byl « Byld | (1<<k)
Byle] < Bulc] | Q<< (L—-k—-1))
i i+b
else /* P; is a class of characters */
for c € P; do
Byle] « Byle] | (1 <<i)
Byle] < Bulc] | 1 << (L—i—-1))
i i+1
nFy + ~Fy, nF, < ~F,
M « 1<<(L-1)

L
i

/* Scanning */

pos <+ 0
while pos < mn—/{ do
j « €, D, « 1%
while Dy # 0% and j >0
Dy, < Dy & Bb[tp05+j}
Dy, < Dy | ((be(Db & Ib)) & an)
Jg o= J-1
if Dy #0F and j=0 /* forward scan */
Dy « 0", v « 1
while D; # 0" and pos+v <n
Dy « Dy & Byltposto]
Dy « Dy | (Ff = (Dy & Iy)) & nFy)
if Dy & M # 0% then
report a match beginning at pos+1
Dy« 0"
Dy « (Dy<<1)
v<ov+1
Dy, « (Dp<<1)
pos <+ pos+j+1

Figure 10: The backward scanning algorithm.

