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ABSTRACTThe problem of fast sear
hing of a pattern that 
ontainsClasses of 
hara
ters and Bounded size Gaps (CBG) in atext has a wide range of appli
ations, among whi
h a veryimportant one is protein pattern mat
hing (for instan
e, onePROSITE protein site is asso
iated with the CBG [RK℄ �x(2; 3)� [DE℄�x(2; 3)�Y , where the bra
kets mat
h any ofthe letters inside, and x(2; 3) a gap of length between 2 and3). Currently, the only way to sear
h a CBG in a text is to
onvert it into a full regular expression (RE). However, a REis more sophisti
ated than a CBG, and sear
hing it with aRE pattern mat
hing algorithm 
ompli
ates the sear
h andmakes it slow. This is the reason why we design in thisarti
le two new pra
ti
al CBG mat
hing algorithms that aremu
h simpler and faster than all the RE sear
h te
hniques.The �rst one looks exa
tly on
e at ea
h text 
hara
ter. These
ond one does not need to 
onsider all the text 
hara
tersand hen
e it is usually faster than the �rst one, but in bad
ases may have to read the same text 
hara
ter more thanon
e. We then propose a 
riterion based on the form ofthe CBG to 
hoose a-priori the fastest between both. Weperformed many pra
ti
al experiments using the PROSITEdatabase, and all them show that our algorithms are thefastest in virtually all 
ases.
Categories and Subject DescriptorsF.2.2 [Analysis of algorithms and problem 
omplex-ity℄: Nonnumeri
al algorithms and problems|Pattern mat
h-ing, Computations on dis
rete stru
tures; H.3.3 [Informationstorage and retrieval℄: Information sear
h and retrieval|�Work developed while the author was at postdo
toralstay at the Institut Gaspard-Monge, Univ. de Marne-la-Vall�ee, Fran
e, partially supported by Funda
i�on Andes andECOS/Coni
yt.
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1. INTRODUCTIONThis paper deals with the problem of fast sear
hing of pat-terns that 
ontain Classes of 
hara
ters and Bounded sizeGaps (CBG) in texts. This problem o

urs in various �elds,like information retrieval, data mining and 
omputationalbiology. We are parti
ularly interested in the latter one.In 
omputational biology, this problem has many appli
a-tions, among whi
h the most important is protein mat
hing.These last few years, huge protein site pattern databaseshave been developed, like PROSITE [6, 9℄. These databasesare 
olle
tions of protein site des
riptions. For ea
h proteinsite, the database 
ontains diverse information, notably thepattern. This is an expression formed with 
lasses of 
har-a
ters and bounded size gaps on the amino a
id alphabet(of size 20). This pattern is used to sear
h a possible o
-
urren
e of this protein in a longer one. For example, theprotein site number PS00007 has as its pattern the expres-sion [RK℄�x(2; 3)� [DE℄�x(2; 3)�Y , where the bra
ketsmean that the position 
an mat
h any of the letters inside,and x(2; 3) means a gap of length between 2 and 3.Currently, these patterns are 
onsidered as full regular ex-pressions (REs) over a �xed alphabet �, i.e generalizedpatterns 
omposed of (i) basi
 
hara
ters of the alphabet(adding the empty word " and also a spe
ial symbol x that
an mat
h all the letters of �), (ii) 
on
atenation (denoted� ), (ii) union (j) and (iii) Kleene 
losure (�). This latter op-eration L� on a set of words L means that we a

ept all thewords made by a 
on
atenation of words of L. For instan
e,our previous pattern 
an be 
onsidered as the regular ex-pression (RjK) � x � x � (xj") � (DjE) � x � x � (xj") � Y . We notejREj the length of an RE, that is the number of symbolsin it. The sear
h is done with the 
lassi
al algorithms forRE sear
hing, that are however quite 
ompli
ated. The RE



needs to be 
onverted into an automaton and then sear
hedin the text. It 
an be 
onverted into a deterministi
 automa-ton (DFA) in worst 
ase time O(2jREj), and then the sear
his linear in the size n of the text, giving a total 
omplexityof O(2jREj + n). It 
an also be 
onverted into a nondeter-ministi
 automaton (NFA) in linear time O(jREj) and thensear
hed in the text in O(n � jREj) time, giving a totalof O(n � jREj) time. We give a review of these methodsin Appendix A. The majority of the PROSITE mat
hingsoftwares use these te
hniques [11, 18℄.None of the presented te
hniques are fully adequate for CBGs.First, the algorithms are intrinsi
ally 
ompli
ated to under-stand and to implement. Se
ond, all the te
hniques performpoorly for 
ertain types of REs. The \diÆ
ult" REs are ingeneral those whose DFAs are very large, a very 
ommon
ase when translating CBGs to REs. Third, espe
ially withregard to the sizes of the DFAs, the simpli
ity of CBGs isnot translated into their 
orresponding REs. At the veryleast, resorting to REs implies solving a simple problem by
onverting it into a more 
ompli
ated one. Indeed, the ex-perimental time results when applied to our CBG expres-sions are far from reasonable in regard of the simpli
ity ofCBGs and 
ompared to the sear
h of expressions that just
ontain 
lasses of 
hara
ters [15℄.This is the motivation of this paper. We present two newsimple algorithms to sear
h CBGs in a text, that are also ex-perimentally mu
h faster than all the previous ones. Thesealgorithms make plenty use of \bit-parallelism", that 
on-sists in using the intrinsi
 parallelism of the bit manipula-tions inside 
omputer words to perform many operations inparallel. Competitive algorithms have been obtained usingbit parallelism for exa
t string mat
hing [2, 22℄, approxi-mate string mat
hing [2, 22, 23, 3, 14℄, and REs mat
hing[12, 21, 17℄. Although these algorithms generally work wellonly on patterns of moderate length, they are simpler, more
exible (e.g. they 
an easily handle 
lasses of 
hara
ters),and have very low memory requirements.We performed two di�erent types of experiments, 
ompar-ing our algorithms against the fastest known ones for REsear
hing. We use as CBGs the patterns of the PROSITEdatabase. We �rst 
ompared them as \pure pattern mat
h-ing", i.e. sear
hing the CBGs in a 
ompilation of 6 megabytesof protein sequen
es (from the TIGR Mi
robial database).We then 
ompared them as \library mat
hing", that is sear
ha large set of PROSITE patterns in a protein sequen
e of 300amino a
ids. Our algorithms are by far the fastest in both
ases. Moreover, in the se
ond 
ase, the sear
h time im-provements are dramati
, as our algorithms are about 100times faster than the best RE mat
hing algorithms whenpattern prepro
essing times be
ome important.The two algorithms we present are patented by the Fren
hCentre National de la Re
her
he S
ienti�que (CNRS)1.We use the following de�nitions throughout the paper. � isthe alphabet, a word on � is a �nite sequen
e of 
hara
tersof �. �� means the set of all the words build on �. Aword w 2 �� is a fa
tor (or substring) of p 2 �� if p 
an be1Fren
h priority patent appli
ation n0 0011093 �led on Au-gust 8th , 2000 by the CNRS.

written p = uwv, u; v 2 ��. A fa
tor w of p is 
alled a suÆxof p is p = uw, u 2 ��, and a pre�x of p is p = wu, u 2 ��.We note with bra
kets a subset of elements of �: [ART ℄means the subset fA;R; Tg (a single letter 
an be expressedin this way too). We add the spe
ial symbol x to denote asubset that 
orresponds to the whole alphabet. We also adda symbol x(a; b); a < b, for a bounded size gap of minimallength a and maximal b, and use x(a) as a short for x(a; a)(so x = x(1) = x(1; 1)). A CBG on � is formally a �nitesequen
e of symbols that 
an be (i) bra
kets, (ii) x and (iii)bounded size gaps x(a; b). We de�ne m as the total numberof su
h symbols in a CBG.We use the notation T = t1t2 : : : tn for the text of n 
har-a
ters of � in whi
h we are sear
hing the CBGs. A CBGmat
hes T at position j if there is an alignment of tj�i : : : tjwith the CBG, 
onsidering that (i) a bra
ket mat
hes withany text letter that appears inside bra
kets; (ii) an xmat
hesany text letter; and (iii) a bounded gap x(a; b) mat
hesat minimum a and at maximum b arbitrary 
hara
ters ofT . We denote by ` the minimum size of a possible align-ment and L the size of a maximum one. For example,[RK℄�x(2; 3)� [DE℄�x(2; 3)�Y (where ` = 7 and L = 9)mat
hes the text T = AHLRKDEDATY at position 11 by3 di�erent alignments K��D��Y , R���D��Y andR��E ��� Y .Definition 1. Sear
hing a CBG in a text T = t1t2 : : : tn
onsists in �nding all the positions j of T in whi
h there isan alignment of the CBG with a suÆx of t1 : : : tj.We use some notation to des
ribe the operations on bits. Weuse exponentiation to denote bit repetition, e.g. 031 = 0001.We denote as b` : : : b1 the bits of a mask of length `, whi
his stored somewhere inside the 
omputer word of length w.We use C-like syntax for operations on the bits of 
omputerwords, i.e. \j" is the bitwise-or, \&" is the bitwise-and, \�"
omplements all the bits, and \<<" moves the bits to theleft and enters zeros from the right, e.g. b`b`�1 : : : b2b1 <<3 = b`�3 : : : b2b1000. We 
an also perform arithmeti
 oper-ations on the bits, su
h as addition and subtra
tion, whi
hoperate the bits as if they formed a number, for instan
eb` : : : bx10000 � 1 = b` : : : bx01111.
2. PREVIOUS WORKBit-parallelism for simple pattern mat
hingThe bit-parallelism te
hnique [1℄ 
onsists in taking advan-tage of the intrinsi
 parallelism of the bit operations insidea 
omputer word. By using 
leverly this fa
t, the numberof operations that an algorithm performs 
an be 
ut downby a fa
tor of at most w, where w is the number of bits inthe 
omputer word. Sin
e in 
urrent ar
hite
tures w is 32or 64, the speedup is very signi�
ative in pra
ti
e.We present now the Shift-And algorithm [2, 22℄. Figure 1shows a non-deterministi
 automaton that sear
hes a pat-tern in a text. Given a pattern P = p1p2 : : : pm 2 �� and atext T = t1t2 : : : tn 2 ��, the algorithm builds �rst a tableB whi
h for ea
h 
hara
ter stores a bit mask bm : : : b1. The



mask in B[
℄ has the i-th bit set if and only if pi = 
. Thestate of the sear
h is kept in a ma
hine word D = dm : : : d1,where di is set whenever p1p2 : : : pi mat
hes the end of thetext read up to now (another way to see it is to 
onsider thatdi tells whether the state numbered i in Figure 1 is a
tive).Therefore, we report a mat
h whenever dm is set.
b a a b b a a

Σ

1 2 3 4 5 6 70Figure 1: A nondeterministi
 automaton to sear
hthe pattern P = baabbaa in a text.We set D = 0m originally, and for ea
h new text 
hara
-ter tj , we update D using the formula D0  ((D <<1) j 0m�11) & B[tj ℄ whi
h mimi
s the movement that o
-
urs in the automaton.It is very easy to extend to handle 
lasses of 
hara
ters,where ea
h pattern position may not only mat
h a single
hara
ter but a set of 
hara
ters. If Ci is the set of 
hara
tersthat mat
h the position i in the pattern, we set the i-th bitof B[
℄ for all 
 2 Ci. No other 
hange is ne
essary to thealgorithm.Combining bit-parallelism and suÆx automataThe BNDM pattern mat
hing algorithm [15℄, a 
ombinationof Shift-Or and BDM [8, 7℄, has all the advantages of thebit-parallel forward s
an algorithm, and in addition it is ableto skip some text 
hara
ters.BNDM is based on a suÆx automaton. A suÆx automatonon a pattern P = p1p2 : : : pm is an automaton that re
og-nizes all the suÆxes of P . The nondeterministi
 version ofthis automaton is shown in Figure 2. Note that the automa-ton will not run out of a
tive states as long as it has read afa
tor of P . In the original BDM this automaton is made de-terministi
. BNDM, instead, simulates the automaton usingbit-parallelism. Just as for Shift-And, we keep the state ofthe sear
h using m bits of a 
omputer word D = dm : : : d1.
b a a b b a a
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ε ε ε ε ε ε ε εFigure 2: A nondeterministi
 suÆx automaton forthe pattern P = baabbaa. Dashed lines represent "-transitions (i.e. they o

ur without 
onsuming anyinput).To sear
h a pattern P = p1p2 : : : pm in a text T = t1t2 : : : tn,the suÆx automaton of P r = pmpm�1 : : : p1 (i.e the patternread ba
kwards) is built. A window of length m is slid alongthe text, from left to right. The algorithm sear
hes ba
k-ward inside the window for a fa
tor of the pattern P usingthe suÆx automaton, i.e. the suÆx automaton of the re-verse pattern is fed with the 
hara
ters in the text windowread ba
kward. This ba
kward sear
h ends in two possibleforms: (A) We fail to re
ognize a fa
tor, i.e we rea
h a win-dow letter � that makes the automaton run out of a
tive

states. This means that the suÆx of the window we haveread is not anymore a fa
tor of P . We then shift the windowto the right, its starting position 
orresponding to the po-sition following the letter � (we 
annot miss an o

urren
ebe
ause in that 
ase the suÆx automaton would have founda fa
tor of it in the window). (B) We rea
h the beginningof the window, therefore re
ognizing the pattern P sin
e thelength-m window is a fa
tor of P (indeed, it is equal to P ).We report the o

urren
e, and shift the window by 1.This algorithm is O(mn) worst 
ase time, but optimal onaverage (O(n log�m=m) time).The bit-parallel simulation works as follows. Ea
h time weposition the window in the text we initialize D = 1m ands
an the window ba
kward. For ea
h new text 
hara
terread in the window we update D. If we run out of 1's inD then there 
annot be a mat
h and we suspend the s
an-ning and shift the window. If we 
an perform m iterationsthen we report the mat
h. We use a mask B whi
h for ea
h
hara
ter 
 stores a bit mask. This mask sets the bits 
or-responding to the positions where the reversed pattern hasthe 
hara
ter 
 (just as in the Shift-And algorithm). Theformula to update D is D0  (D & B[tj ℄) << 1.BNDM is not only faster than Shift-Or and BDM (for 5 �m � 100 or so), but it 
an a

ommodate all the extensionsmentioned. Of parti
ular interest to this work is that it
an easily deal with 
lasses of 
hara
ters by just altering theprepro
essing, and it is by far the fastest algorithm to sear
hthis type of patterns [15, 16℄.Regular expression sear
hingMany algorithms have been designed to sear
h a regularexpression in a text. A survey of the di�erent te
hniquesand automata built is given in the Appendix A.
3. A FORWARD SEARCH ALGORITHM FOR

CBG PATTERNSWe express the sear
h problem of a pattern with 
lasses of
hara
ters and gaps using a non-deterministi
 automaton.Compared to the automaton for simple patterns (Se
tion 2),this one permits the existen
e of gaps between 
onse
utivepositions, so that ea
h gap has a minimum and a maximumlength. The automaton we use does not 
orrespond to anyof those obtained with the regular expression simulations(see Appendix A), although the fun
tionality is the same.Figure 3 shows an example for the pattern a�b�
�x(1; 3)�d � e. Between the letters 
 and d we have inserted threetransitions that 
an be followed by any letter, whi
h 
orre-sponds to the maximum length of the gap. Two "-transitionsleave the state where ab
 has been re
ognized and skip oneand two subsequent edges, respe
tively. This allows skippingone to three text 
hara
ters before �nding the de at the endof the pattern. The initial self-loop allows the mat
h tobegin at any text position.We are now interested in an eÆ
ient simulation of the aboveautomaton. Despite that this is a parti
ular 
ase of a regularexpression, its simpli
ity permits a more eÆ
ient simulation.In parti
ular, a fast bit-parallel simulation is possible.
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1 2 3 4 5 6 7 80Figure 3: Our non-deterministi
 automaton for thepattern a� b� 
� x(1; 3)� d� e.We represent ea
h automaton state by a bit in a 
omputerword. The initial state is not represented be
ause it is alwaysa
tive. As with the normal Shift-And, we shift all the bitsto the left and use a table of masks B indexed by the 
urrenttext 
hara
ter. This a

ounts for all the arrows that go fromstates Sj to Sj+1.The remaining problem is how to represent the "-transitions.For this sake, we 
hose2 to represent a
tive states by 1 andina
tive states by 0. We 
all \gap-initial" states those statesSi from where an "-transition leaves. For ea
h gap-initialstate Si 
orresponding to a gap x(a; b), we de�ne its \gap-�nal" state to be Si+b�a+1, i.e. the one following the laststate rea
hed by an "-transition leaving Si. In the exampleof Figure 3, we have one gap-initial state (S3) and one gap-�nal state (S6).We 
reate a bit mask I whi
h has 1 in the gap-initial states,and another mask F that has 1 in the gap-�nal states. Then,if we keep the state of the sear
h in a bit mask D, then afterperforming the normal Shift-And step, we simulate all the"-moves with the operationD0  D j ((F � (D & I)) & � F )The rationale is as follows. First, D & I isolates the a
tivegap-initial states. Subtra
ting this from F has two possibleresults for ea
h gap-initial state Si. First, if it is a
tivethe result will have 1 in all the states from Si to Si+b�a,su

essfully propagating the a
tive state Si to the desiredtarget states. Se
ond, if Si is ina
tive the result will have 1only in Si+b�a+1. This undesired 1 is removed by operatingthe result with \& � F". On
e the propagation has beendone, we or the result with the already a
tive states in D.Note that the propagations of di�erent gaps do not interferwith ea
h other, sin
e all the subtra
tions have lo
al e�e
t.The 
omplete algorithm is given in Appendix B. The prepro-
essing takes O(Lj�j) time, while the s
anning needs O(n)time. If L > w, however, we need several ma
hine words forthe simulation, whi
h thus takes O(ndL=we) time.
4. A BACKWARD SEARCH ALGORITHM

FOR CBG PATTERNSWhen the sear
hed patterns 
ontain just 
lasses of 
har-a
ters, the ba
kward bit-parallel approa
h (see Se
tion 2)leads to the fastest algorithm BNDM [15, 16℄. The sear
h isdone by sliding over the text (in forward dire
tion) a windowthat has the size of the minimum possible alignment (`). Weread the window ba
kwards trying to re
ognize a fa
tor ofthe pattern. If we rea
h the beginning of the window, then2It is possible to devise a formula for the opposite 
ase, butunlike Shift-Or, it is not faster.

we found an alignment. Else, we shift the window to thebeginning of the longest fa
tor found.We extend now BNDM to deal with CBGs. To re
ognizeall the reverse fa
tors of a CBG, we use quite the sameautomaton built in Se
tion 3 on the reversed pattern, butwithout the initial self-loop, and 
onsidering that all thestates are a
tive at the beginning. We 
reate an initial stateI and "-transitions from I to ea
h state of the automaton.Figure 4 shows the automaton for the pattern a � b � 
 �x(1; 3) � d� e. A word read by this automaton is a fa
torof the CBG as long as there exists at least one a
tive state.
a b c x x x d e
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IFigure 4: The non-deterministi
 automaton built inthe ba
kward algorithm to re
ognize all the reversedfa
tors of the CBG a� b� 
� x(1; 3)� d� e.The bit-parallel simulation of this automaton is quite thesame as that of the forward automaton (see Se
tion 3). Theonly modi�
ations are (a) that we build it on P r, the re-versed pattern; (b) that the the bit mask D that registersthe state of the sear
h has to be initialized with D = 1L toperform the initial "-transitions; and (
) that we do not orD with 0L�11 when we shift it, for there is no more initialself-loop.The ba
kward CBG mat
hing algorithm shifts a windowof size ` along the text. Inside ea
h window, it traversesba
kward the text trying to re
ognize a fa
tor of the CBG(this is why the automaton that re
ognizes all the fa
torshas to be built on the reverse pattern P r).If the ba
kward sear
h inside the window fails (i.e. thereare no more a
tive states in the ba
kward automaton) be-fore rea
hing the beginning of the window, then the sear
hwindow is shifted to the beginning of the longest fa
tor re
-ognized, exa
tly like in the �rst 
ase of the 
lassi
 BNDM(see Se
tion 2).If the begining of the window is rea
hed with the automa-ton still holding a
tive states, then some fa
tor of length `of the CBG is re
ognized in the window. Unlike the 
ase ofexa
t string mat
hing, where all the o

urren
es have thesame length of the pattern, this does not automati
ally im-ply that we have re
ognized the whole pattern. We needa way to verify a possible alignment (that 
an be longerthan `) starting at the beginning of the window. So we readthe 
hara
ters again from the beginning of the window withthe forward automaton of Se
tion 3, but without the initialself-loop. This forward veri�
ation ends when (1) the au-tomaton rea
hes its �nal state, in whi
h 
ase we found thepattern; (2) there are no more a
tive states in the automa-ton, in whi
h 
ase there is no pattern o

urren
e starting atthe window. As there is no initial loop, the forward veri�-
ation surely �nishes after reading at most L 
hara
ters ofthe text. We then shift the sear
h window one 
hara
ter to



the right and resume the sear
h.The 
omplete algorithm is given in Appendix C. The worst
ase 
omplexity of the ba
kward s
anning algorithm is O(nL),whi
h is quite bad in theory. However, on the average, theba
kward algorithm is expe
ted to be faster than the forwardone. The next se
tion gives a good experimental 
riterion toknow in whi
h 
ases the ba
kward algorithm is faster thanthe forward one. The experimental sear
h results (see Se
-tion 6) on the PROSITE database shows that the ba
kwardalgorithm is almost always the fastest.
5. WHICH ALGORITHM TO USE ?We have now two di�erent algorithms, a forward and a ba
k-ward one, so a natural question is whi
h one should be 
ho-sen for a parti
ular problem. We seek for a simple 
riterionthat enables us to 
hoose the best algorithm.In parti
ular, let us 
onsider the maximum gap length Gin the CBG. If G � `, then every text window of length` is a fa
tor of the CBG, so we will surely traverse all thewindow during the ba
kward s
an and always shift in 1, fora 
omplexity of 
(n`) at least. Consequently, the ba
kwardapproa
h we have presented must be restri
ted at least toCBGs in whi
h G < `.This 
an be 
arried on further. Ea
h time we position awindow in the text, we know that at least G+ 1 
hara
tersin the window will be inspe
ted before shifting. Moreover,the window will not be shifted by more than `�G positions.Hen
e the total number of 
hara
ter inspe
tions a
ross thesear
h is at least (G + 1)n=(` � G), whi
h is larger thann (the number of 
hara
ters inspe
ted by a forward s
an)whenever ` < 2G+ 1.Hen
e, we de�ne (G+1)=` as a simple parameter governingmost of the performan
e of the ba
kward s
an algorithm,and predi
t that 0.5 is the point above whi
h the ba
kwards
anning is worse than forward s
anning. Of 
ourse thismeasure is not perfe
t, as it disregards the e�e
t of othergaps, 
lasses of 
hara
ters and the 
ost of forward 
he
k-ing in the ba
kward s
an, but a full analysis is extremely
ompli
ated and, as we see in the next se
tion, this simple
riterion gives good results.A

ording to this 
riterion, we 
an design an optimized ver-sion of our ba
kward s
anning algorithm. The idea is thatwe 
an 
hoose the \best" pre�x of the pattern, i.e. the pre�xthat minimizes (G + 1)=`. The ba
kward s
anning 
an bedone using this pre�x, while the forward veri�
ation of po-tential mat
hes is done with the full pattern. This 
ould beextended to sele
ting the best fa
tor of the pattern, but the
ode would be more 
ompli
ated (as the veri�
ation phasewould have to s
an in both dire
tions, bu�ering would be
ompli
ated, and, as we see in the next se
tion, the di�er-en
e is not so large.
6. EXPERIMENTAL RESULTSWe have tested our algorithms over an example of 1,168PROSITE patterns [11, 9℄ and a 6 megabytes (Mb) text
ontaining a 
on
atenation of protein sequen
es taken fromthe TIGR Mi
robial database. The set had originally 1,316patterns from whi
h we sele
ted the 1,230 whose L (maxi-

mum length of a mat
h) does not ex
eed w, the number ofbits in the 
omputer word of our ma
hine. This leaves uswith 93% of the patterns. From them, we ex
luded the 62(5%) for whi
h G � `, whi
h as explained 
annot be reason-ably sear
hed with ba
kward s
anning (we had to resort toforward s
anning for them). This leaves us with the 1,168patterns.We have used an Intel Pentium III ma
hine of 500 MHzrunning Linux. We show user times averaged over 10 trials.Three di�erent algorithms are tested: Fwd is the forward-s
an algorithm des
ribed in Se
tion 3, Bwd is the ba
kward-s
an algorithm of Se
tion 4 and Opt is the same Bwd wherewe sele
t for the ba
kward sear
hing the best pre�x of thepattern, a

ording to the 
riterion of the previous se
tion.A �rst experiment aims at measuring the eÆ
ien
y of thealgorithms with respe
t to the 
riterion of the previous se
-tion. Figure 5 shows the results, where the patterns havebeen 
lassi�ed along the x axis by their (G+1)=` value. Aspredi
ted, 0.5 is the value from whi
h Bwd starts to be worsethan Fwd ex
ept for a few ex
eptions (where the di�eren
eis not so big anyway). It is also 
lear that Opt avoids manyof the worst 
ases of Bwd. Finally, the plot shows that thetime of Fwd is very stable. While the forward s
an runs al-ways at around 5 Mb/se
, the ba
kward s
an 
an be as fastas 20 Mb/se
.
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Figure 5: Sear
h times (in se
onds per Mb) for allthe patterns 
lassi�ed by their (G+ 1)=` value.



What Figure 5 fails to show is that in fa
t most PROSITEpatterns have a very low (G + 1)=` value. Figure 6 plotsthe number of patterns a
hieving a given sear
h time, afterremoving a few outliers (the 12 that took more than 0.4 se
-onds for Bwd). Fwd has a large peak be
ause of its stabletime, while the ba
kward s
anning algorithms have a widerhistogram whose main body is well before the peak of Fwd.Indeed, 95.6% of the patterns are sear
hed faster by Bwdthan by Fwd, and the per
entage raises to 97.6% if we 
on-sider Opt. The plot also shows that there is little statisti
aldi�eren
e between Bwd and Opt. Rather, Opt is useful toremove some very bad 
ases of Bwd.
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Figure 6: Histogram of sear
h times for our di�erentalgorithms.Our third experiment aims at 
omparing our sear
h methodagainst 
onverting the pattern to a regular expression andresorting to general regular expression sear
hing. From theexisting algorithms to sear
h for regular expressions we havesele
ted the following:� Dfa: Builds a deterministi
 �nite automaton anduses it to sear
h the text.� Nfa: Builds a non-deterministi
 �nite automatonand uses it to sear
h the text, updating all the statesat ea
h text position.� Myers: Is an intermediate between Dfa and Nfa[12℄, a non-deterministi
 automaton formed by a fewblo
ks (up to 4 in our experiments) where ea
h blo
k isa deterministi
 automaton over a subset of the states.� Agrep: Is an existing software [22, 21℄ that im-plements another intermediate between Dfa and Nfa,where most of the transitions are handled using bit-parallelism and the "-transitions with a deterministi
table.� Grep: Is Gnu Grep with the option "-E" to makeit a

ept regular expressions. This software uses aheuristi
 that, in addition to (lazy) deterministi
 au-tomaton sear
hing, looks for long enough literal pat-tern substrings and uses them as a fast �lter for thesear
h.

� BNDM: Uses the ba
kward approa
h we have ex-tended to CBGs, but adapted to general REs instead[17℄. It needs to build to deterministi
 automata, onefor ba
kward sear
h and another for forward veri�
a-tion.� Multipattern: Redu
es the problem to multipat-tern Boyer-Moore sear
hing of all the strings of length` that mat
h the RE [20℄. We have used \agrep -f"as the multipattern sear
h algorithm.To these, we have added our Fwd and Opt algorithms. Fig-ure 7 shows the results. From the forward s
anning algo-rithms (i.e. Fwd, Dfa, Nfa and Myers, unable to skip text
hara
ters), the fastest is our Fwd algorithm thanks to itssimpli
ity. Agrep has about the same mean but mu
h morevarian
e. Dfa su�ers from high prepro
essing times andlarge generated automata. Nfa needs to update many statesone by one for ea
h text 
hara
ter read. Myers su�ers froma 
ombination of both and shows two peaks that 
ome fromits spe
ialized 
ode to deal with small automata.The ba
kward s
anning algorithms Opt and Grep (able toskip text 
hara
ters) are faster than the previous ones inalmost all 
ases. Among them, Opt is faster on averageand has less varian
e, while the times of Grep extend overa range that surpasses the time of our Fwd algorithm for anon-negligible portion of the patterns. This is be
ause Grep
annot always �nd a suitable �ltering substring and in that
ase it resorts to forward s
anning. Note that BNDM andMultipattern have been ex
luded from the plots due to theirpoor performan
e on this set of patterns.Apart from the faster text s
anning, our algorithms alsobene�t from lower prepro
essing times when 
ompared tothe algorithms that resort to regular expression sear
hing.This is barely noti
eable in our previous experiment, but itis important in a 
ommon s
enario of the protein sear
hingproblem: all the patterns from a set are sear
hed inside anew short protein. In this 
ase the prepro
essing time forall the patterns is mu
h more important than the s
anningtime over the (normally rather short) protein.We have simulated this s
enario by sele
ting 100 randomsubstrings of length 300 from our text and running the pre-vious algorithms on all the 1,168 patterns. Table 1 showsthe time averaged over the 100 substrings and a

umulatedover the 1,168 patterns. The di�eren
e in favor of our newalgorithms is drasti
. Note also that this problem is aninteresting �eld of resear
h for multipattern CBG sear
h al-gorithms.
7. CONCLUSIONSWe have presented two new sear
h algorithms for CBGs, i.e.expressions formed by a sequen
e of 
lasses of 
hara
ters andbounded gaps. CBGs are of spe
ial interest to 
omputa-tional biology appli
ations. Our algorithms are spe
i�
allydesigned for CBGs and are based on BNDM, a 
ombina-tion of bit-parallelism and ba
kward sear
hing with suÆxautomata.We have presented experiments showing that our new algo-rithms are mu
h faster and more predi
table than all the
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Figure 7: Histogram of sear
h times for our best algorithms and for regular expression sear
hing algorithms.Fwd rea
hes 600.Algorithm TimeFwd 0.058Bwd 0.056Opt 0.050Dfa 125.91Nfa 4.43Myers 7.84Agrep 10.22Grep 9.42Table 1: Sear
h time in se
onds for all the 1,168patterns over a random protein of length 300.other algorithms based on regular expression sear
hing. Inaddition, we have presented a 
riterion to sele
t the bestamong the two that has experimentally shown to be veryreliable. This makes the algorithms of spe
ial interest forpra
ti
al appli
ations, su
h as protein sear
hing.We plan to extend the present work by allowing negativegaps and errors in the mat
hes (see, e.g. [13℄). Our algo-rithms are espe
ially easy to extend to permit errors and weare pursuing in that dire
tion.
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APPENDIX
A. REGULAR EXPRESSION SEARCHINGThe usual way of dealing with an expression with 
hara
ter
lasses and bounded gaps is a
tually to sear
h it as a fullregular expression (RE) [11, 18℄. A gap of the form x(a; b)is 
onverted into a letters x followed by b�a subexpressionsof the form (xj").The traditional te
hnique [19℄ to sear
h an RE of lengthO(m) in a text of length n is to 
onvert the expression into anondeterministi
 �nite automaton (NFA) with O(m) nodes.Then, it is possible to sear
h the text using the automa-ton at O(mn) worst 
ase time, or to 
onvert the NFA intoa deterministi
 �nite automaton (DFA) in worst 
ase timeO(2m) and then s
an the text in O(n) time.Some te
hniques have been proposed to obtain a good trade-o� between both extremes. In 1992, Myers [12℄ presenteda four-russians approa
h whi
h obtains O(mn= log n) worst-
ase time and extra spa
e. Other simulation te
hniques thataim at good tradeo�s based on 
ombinations of DFAs andbit-parallel simulation of NFAs are given in [22, 17℄.There exist 
urrently many di�erent te
hniques to build anNFA from a regular expression R. The most 
lassi
al oneis Thompson's 
onstru
tion [19℄, whi
h builds an NFA withat most 2m states and 4m transitions (where m is 
ountedas the number of letters and "'s in the RE). A se
ond one isGlushkov's 
onstru
tion, popularized by Berry and Sethi in[4℄. The NFA resulting of this 
onstru
tion has the advan-tage of having just m+1 states (where m is 
ounted as thenumber of letters in the RE).A lot of resear
h on Gluskov's 
onstru
tion has been pur-sued, like [5℄, where it is shown that the resulting NFA isquadrati
 in the number of edges in the worst 
ase. In [10℄,a long time open question about the minimal number ofedges of an NFA (without �-transition) with linear numberof states was answered, showing a 
onstru
tion with O(m)states and O(m(logm)2) edges, as well as a lower boundof O(m logm) edges. Hen
e, Glushkov 
onstru
tion is notspa
e-optimal.We show in Figure 8 the Thompson and Gluskov automatafor an example CBG a � b � 
 � x(1; 3) � d � e, whi
h wetranslate into the regular expression a�b�
�x�(xj")�(xj")�d�e.Both Thompson and Gluskov automata present some par-ti
ular properties. Some algorithms like [12, 22℄ make useof Thompson's automaton properties and some others, like[17℄, make use of Gluskov's ones.Finally, some work has been pursued in skipping 
hara
terswhen sear
hing for an RE. A simple heuristi
 that has veryvariable su

ess is implemented in Gnu Grep, where they tryto �nd a plain substring inside the RE, so as to use the sear
hfor that substring as a �lter for the sear
h of the 
ompleteRE. In [20℄ they propose to redu
e the sear
h of a RE to amultipattern sear
h for all the possible strings of some lengththat 
an mat
h the RE (using a multipattern Boyer-Moorelike algorithm). In [17℄ they propose the use of an automatonthat re
ognizes reversed fa
tors of strings a

epted by theRE (in fa
t a manipulation of the original automaton) using



a b c x
1 2 30

x

ε

ε ε

εε
x

ε

ε ε

εε

d e

13

14 15 16

10

11

127

9

86

5

4(a) Thompson 
onstru
tion
a b c x x x d e

1 2 3 4 5 6 7 80

d

d(b) Gluskov 
onstru
tionFigure 8: The two 
lassi
al NFA 
onstru
tions onour example a � b � 
 �x � (xj") � (xj") � d � e. We re
all thatx mat
hes the whole alphabet �. The Gluskov au-tomaton is " free, but both present some diÆ
ultiesto perform an eÆ
ient bit-parallelism on them.a BNDM-like s
heme to sear
h those fa
tors (see Se
tion 2).However, none of the presented te
hniques seems fully ad-equate for CBGs. First, the algorithms are intrinsequely
ompli
ated to understand and to implement. Se
ond, allthe te
hniques perform poorly for a 
ertain type of REs.The \diÆ
ult" REs are in general those whose DFAs arevery large, a very 
ommon 
ase when translating CBGs toREs. Third, espe
ially with regard to the sizes of the DFAs,the simpli
ity of CBGs is not translated into their 
orre-sponding REs. For example, the CBG \[RK℄ � x(2; 3) �[DE℄� x(2; 3)� Y " 
onsidered in the Introdu
tion yields aDFA whi
h needs about 600 pointers to be represented.At the very least, resorting to REs implies solving a sim-ple problem by 
onverting it into a more 
ompli
ated one.Indeed, the experimental time results when applied to ourCBG expressions are far from reasonable in regard of thesimpli
ity of CBGs, as seen in Se
tion 6. As we show inthat se
tion, CBGs 
an be sear
hed mu
h faster by design-ing spe
i�
 algorithms for them. This is what we do in thenext se
tions.
B. FORWARD SEARCH PSEUDOCODEFigure 9 shows the 
omplete algorithm. For simpli
ity the
ode assumes that there 
annot be gaps at the beginning orat the end of the pattern (whi
h are meaningless anyway).The value L (maximum length of a mat
h) is obtained inO(m) time by a simple pass over the pattern P , summingup the maximum gap lengths and individual 
lasses (re
allthat m is the number of symbols in P ).
C. BACKWARD SEARCH PSEUDOCODEFigure 10 shows the 
omplete algorithm. Some optimiza-tions are not shown for 
larity, for example many tests 
anbe avoided by breaking loops from inside, some variables 
anbe reused, et
.

Sear
h (P1:::m,T1:::n)/* Prepro
essing */L  maximum length of a mat
hfor 
 2 � do B[
℄  0LI  0L, F  0Li  0for j 2 1 : : :mif Pj is of the form x(a; b) then /* a gap */I  I j (1 << (i� 1))F  F j (1 << (i+ b� a))for 
 2 �, k 2 i : : : i+ b� 1 doB[
℄  B[
℄ j (1 << k)i  i+ belse /* Pj is a 
lass of 
hara
ters */for 
 2 Pj do B[
℄  B[
℄ j (1 << i)i  i+ 1nF  � FM  1 << (L� 1) /* final state *//* S
anning */D  0Lfor j 2 1 : : : nif D & M 6= 0L thenreport a mat
h ending at j � 1D  ((D << 1) j 0L�11) & B[tj ℄D  D j ((F � (D & I)) & nF )Figure 9: Forward sear
h pseudo
ode
D. MULTIPLE WORD EXTENSIONThe two previous algorithms 
an be used for longest word bysimulating the 
omputer words operations on table of words.All the 
ommands used to update the state of the sear
h inone 
omputer word D are trivially extended to a sequen
e ofwords D1 : : : Dd (where the lowest bits are in D1). The onlyex
eption is the subtra
tion operation, where the operationonDi 
an a�e
t Di+1. Let us say that we have two 
omputermulti-words A = A1 : : : Ad and B = B1 : : : Bd, and we wantto 
ompute C = A � B = C1 : : : Cd. The algorithm is asfollows (we assume that the numbers are unsigned)
arry  0for i 2 1 : : : dCi  Ai �Bi � 
arryif Ai < Bi + 
arry or Bi + 
arry < Bithen 
arry  1else 
arry  0where the fourth line has two 
he
ks: a �rst one 
overs thenormal 
ases and the se
ond one 
overs the spe
ial 
ase Bi =1w.



Ba
kward sear
h (P1:::m,T1:::n)/* Prepro
essing */L  maximum length of a mat
h`  minimum length of a mat
hfor 
 2 � do Bf [
℄  0L; Bb[
℄  0LIf  0L, Ff  0L, Ib  0L, Fb  0Li  0for j 2 1 : : :mif Pj is of the form x(a; b) then /* a gap */If  If j (1 << (i� 1))Ib  Ib j (1 << (L� (i+ b)� 1))Ff  Ff j (1 << (i+ b� a))Fb  Fb j (1 << (L� i� a))for 
 2 �, k 2 i : : : i+ b� 1 doBf [
℄  Bf [
℄ j (1 << k)Bb[
℄  Bb[
℄ j (1 << (L� k � 1))i  i+ belse /* Pj is a 
lass of 
hara
ters */for 
 2 Pj doBf [
℄  Bf [
℄ j (1 << i)Bb[
℄  Bb[
℄ j (1 << (L� i� 1))i  i+ 1nFf  � Ff ; nFb  � FbM  1 << (L� 1)/* S
anning */pos  0while pos � n� ` doj  `, Db  1Lwhile Db 6= 0L and j > 0Db  Db & Bb[tpos+j℄Db  Db j ((Fb � (Db & Ib)) & nFb)j  j � 1if Db 6= 0L and j = 0 /* forward s
an */Df  0L�11, v  1while Df 6= 0L and pos+ v � nDf  Df & Bf [tpos+v℄Df  Df j ((Ff � (Df & If )) & nFf )if Df & M 6= 0L thenreport a mat
h beginning at pos+ 1Df  0LDf  (Df << 1)v  v + 1Db  (Db << 1)pos  pos+ j + 1Figure 10: The ba
kward s
anning algorithm.


