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Abstract. We present a pattern matching approach to the problem of
misuse detection in a computer system, which is formalized as the prob-
lem of multiple approximate pattern matching. This permits very fast
searching of potential attacks. We study the probability of matching of
the model and its relation to the filtering efficiency of potential attacks
within large audit trails. Experimental results show that in a worst case,
up to 85 % of an audit trail may be filtered out when searching a set of
attacks without probability of false negatives. Moreover, by filtering 98
% of the audit trail, up to 50 % of the attacks may be detected.

Introduction

Research in intrusion detection has emerged in recent years as a major subject
in the computer security field because of the difficulty of ensuring that informa-
tion systems are free from security flaws. Computer systems suffer from security
vulnerabilities regardless of their purpose, manufacturer or origin. It is both tech-
nically hard and economically costly to ensure that systems are not susceptible
to attacks.

Two approaches have been proposed to address the problem: anomaly de-
tection (see for example [1,2]) and misuse detection (see for example [3]). The
former suggests that user’s activity in the system can be characterized so that a
profile of “normal utilization” of the system is established and excursions from
this profile are flagged as potential intrusions, or attacks in a more general sense.
The latter assumes that attacks are well-known sequences of actions, called sce-
narios or attack signatures, and that the activity of the system (in the form of
logs, network traffic, etc.) may be audited in order to determine the presence of
such scenarios in the system.

Anomaly detection leads to some difficulties: a flow of alarms is generated
in the case of a noticeable systems environment modification and a user can
slowly change his behavior in order to cheat the IDS. On the other hand, mis-
use detection becomes an increasingly demanding task in terms of semantics



and processing, as more sophisticated attacks are discovered every day (which
implies an increasing number of sophisticated scenarios to search for in audit
trails). These challenges have lead to a research trend aimed to a simplified rep-
resentation of the problem in order to improve performance and efficiency of
detection. In the short term, effective intrusion detection systems will incorpo-
rate a number of techniques rather than a “one-strategy-fits-all” approach. The
greater the variety of available tools is, the better the IDS is.

In this spirit, we introduce an original intrusion detection model inspired by
the misuse detection approach. Its main goal is to provide an intrusion detection
system for fast detection of potential attacks rather that accurate (i.e., exhaus-
tive) detection of actual attacks. The results of such a detection (i.e., filtered
audit trails, in which attacks may be present) would be used in turn as input for
a more accurate detection algorithm. This idea was already at the root of the
GASSATA IDS, which use a genetic algorithm with this aim in view [4].

We formalize a concrete instance of the misuse detection problem as a pattern
matching problem which permits very fast searching of potential attacks. We
then study the statistics of this model and their relation to filtering efficiency of
potential attacks in the resulting system.

Section 1 explains our proposed intrusion detection model and the constraints
of the problem. Section 2 gives analytical and experimental results on the prob-
ability of matching. Section 3 presents our testing system and experimental
results. Finally, conclusions and future works are presented.

1 Intrusion Detection as a Pattern Matching Problem

In general terms, the misuse detection problem is to detect the existence of a
priori known series of events within the traces of activity of a system to protect.

Traces widely differ in their origin, form and content, depending on the type
of potential attacks that they attempt to cover. For example, traces in the form
of network traffic collected by a firewall or a sniffer may be used to detect well-
known attacks to implementations of a TCP/IP protocol stack. Another example
are the logs of commands typed by users of a multi-user computer. In both
cases, traces may be collected at a single place (e.g., an ethernet segment, a host
computer) or at multiple locations simultaneously. We consider the detection of
attacks using logs (audit trails) of commands typed by users of a distributed
computer system. In this context, attacks appear to be typically short sequences
of no more than 8 commands.

We propose to model the misuse detection problem as a pattern matching
problem in the following way: auditable commands in the system can be seen
as letters of an alphabet X and the audit trail as a large string of letters in ¥
(i.e., the text). The sequences of events representing attacks to be detected are
then substrings (i.e., patterns) to be located in the main string. Since attackers
may introduce spurious commands among those that represent an actual attack
in order to disperse their evidence, a limited number of spurious letters must
be allowed when searching the pattern. We are interested in simultaneously
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Fig. 1. Attack signature searching as a multiple approximate pattern matching prob-
lem.

searching a set of patterns. Thus, the misuse detection problem can be regarded
as a particular case of the multiple approzimate pattern matching problem, where
insertionin the pattern is the only allowed edit operation. Figure 1 illustrates our
proposed model to map the misuse detection problem as a multiple approximate
pattern matching problem. The set of commands in the audit trail and attack
signatures is translated into letters of . The resulting string and patterns are
passed to a multiple approximate pattern matching algorithm which in turn
searches for the occurrences of substrings in the main string. Matches represent
potential attacks in the audit trail.

We formalize the above problem as follows: Our text, T3 ,, is a sequence of
n characters from an alphabet ¥ of size 0. Our patterns, P1...P", are (short)
sequences of characters from Y. Let us consider such a pattern P;_,, of length
m. We want to report all the text positions that match P, where at most &
insertions between characters of P are allowed in its occurrence in 7. We call
a = k/m the “error level”.

Our problem can be modeled using the concept of insertion distance. The
insertion distance from a to b, denoted id(a, ), is the number of insertions neces-
sary to convert a into b. We say that ¢d(a, b) = oo if this is not possible. Clearly,
id(a, b) = |b] — |a| if @ is a subsequence of b, and oo otherwise.

We search for the pattern P in a text T allowing insertions. At each text
position j € 1..n we are interested in the minimum number of insertions needed



to convert P into some suffix of T7. ;. This is defined as

lid(P, Ty ;) = jain_ id(P, Ty 5) -

The search problem can therefore be formalized as follows: given P1...P", T
and k, report all text positions j such that lid(P?, Ti.;) < kforsomeiel...r.

In [5], two different multipattern search algorithms specifically tailored for
this pattern matching problem are presented. They are based on “bit-parallelism”,
a technique to represent the state of the search using the bits of a computer word
of w bits (typically w = 32 or 64). The basic algorithm takes O(nmlog(k)/w)
time to scan the text for one pattern. A first multipattern search algorithm 1is
O(nr(1+ a)1*t*/(ca®)), which is better than r applications of the basic algo-
rithm whenever o < (0/e) — 1. A second multipattern search algorithm takes
O(nrlog(m + k)/w) time and is useful for o < (o/m) — 1.

It is shown in [5] that the algorithms can achieve impressive scanning speeds
in practice. For example, they show the case of 4-letters patterns searched allow-
ing 4 insertions, which is a case of interest in intrusion detection applications. On
a Sun Enterprise 450 server, these algorithms allow searching for 100 patterns
at a rate of 4 megabytes per second.

The focus of this paper lies in the probabilistic model for the occurrences of
patterns in text when insertions are allowed, and its relation to the problem of
false detection of nonexistent attacks (i.e., “false positives”) and misdetection
of existing attacks (i.e., “false negatives”). By characterizing this relation, the
optimal filtering efficiency of the model may be determined.

2 Probability of Matching

We start by giving an upper bound on the matching probability of a random
pattern of length m at a random text position, with up to %k insertions. Consider
a random text position j. The pattern P appears with %k insertions at a text
position ending at j if and only if the text window T;_,,_r41..; contains the m
pattern letters in order. The window positions that match the pattern letters
can be chosen in (m:;k) ways. Those letters are fixed but the other k& can take
any value. Therefore the probability that the text window matches the pattern
with % insertions is at most

m+k\ oF m+k\ 1

I g
where we are overestimating because not all the selections of window positions
give different windows. For instance the pattern "abcd" matches in text window
"abced" with £ = 1 in two ways, but only one text window should be counted.
In particular, our overestimation includes the case of k' < k insertions, which is
obtained by selecting the first k — k' characters of the text window as insertions
and distributing the k' remaining insertions in the remaining text window of
length m + &'.
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Fig. 2. On the left, matching probability for increasing k values and fixed m = 300.
On the right, the o* limit as m grows.

An asymptotic simplification (for large m and oo = k/m considered constant)
of the cost can be obtained using Stirling’s approximation to the factorial m! =

(m/e)™vV2rm(1+ O(1/m)):
<(1 + a)1+°‘>m
— (2)

oo

which, as o moves from zero, grows from 1/0™ to 1. To determine where the
probability reaches 1, we require that ca® < (14 a)'**, ie., 0 < (1 +a)(1 +
1/)®. A sufficient condition can be obtained by noticing that 1 < (1+1/a)* < e,
and therefore o > (o/e) — 1 suffices.

This means that a model based on insertions can be useful only if we keep &
reasonably low, i.e., k < m((o/e) — 1). However, this is a pessimistic analytical
model that needs experimental verification.

We test experimentally the probability that a random pattern matches at a
random text position. We generated a random text and 100 random patterns for
each experimental value shown. Figure 2 (left) shows the probability of matching
in a text of 3 Mb for a pattern with m = 300, where pattern and text were
randomly generated over an alphabet of size ¢ = 68. The reason to choose such
a long pattern is given shortly.

As can be seen, there is a k value from where the matching probability starts
to grow abruptly, moving from almost 0 to almost 1 in a short range of values.
This phenomenon is sharp enough to make this k& value the most important
parameter governing the behavior of the algorithm. We call £* this point, and
a* = k™ /m the corresponding error level.

On the right part of figure 2 we have shown this limiting o* value for different
pattern lengths, showing that o™ tends to a constant for large m, despite that it
is smaller for short patterns. The fact that o* tends to a constant limit when m
grows motivated us to use m = 300 to show the process at a stable point. On the
other hand, it must be noted that the limit is much lower for short patterns than



Fig. 3. The " limit as o grows.

its asymptotic value, and therefore the exact combinatorial formula of Eq. (1)
should be preferred, leaving Eq. (2) just as a conceptual tool to understand how
the process behaves in general.

Finally, we show in figure 3 how the alphabet size o affects the o™ value. As
can be seen, the curve looks as a straight line, where least squares estimation
yields a® = (0/1.0856) — 0.8878. Again, this corresponds to long patterns, while
the real values for short patterns should be obtained from the exact formula.

All this matches our analytical results in the sense that (a) there is a clear
error level a* where the matching probability goes almost from 0 to 1; (b) this
point does not depend on m asymptotically; and (c) it depends on ¢ linearly
as predicted by the analysis (a* = (o/e) — 1) except because the e has been
changed to about 1.09. Interestingly, this is similar to the result obtained for the
k differences problem in [6,7] when relating their analytical predictions (a* =
1 — e/+/o) with the experiments (a* = 1 — 1.09/4/0) and shows a consistent
behavior of the pessimistic analytical model used in both cases.

3 Experimental Results

We experimentally studied how the probabilistic model of string matching al-
lowing insertions relates to the problem of false negatives and positives. Our
interest is to determine how o relates to the ratio between false negatives and
positives and the total number of reported attacks and, consequently, to the
filtering efficiency of the model.

The experimental input data consists of an audit trail and an attack database.
Both of them are very simple. The audit trail was collected using the G*sSATA
IDS in a real environment. The format of events given to G*sSATA is for the
moment an extension of the one proposed in [8]:

#S#version=suntradb. 6#system=SO0LARIS#deamon=system#tahost=amstel#no=28#
event=AUE_EXECVE#date=2000.3.14014.29.41#program=/var/audit/ls#



file=/var/audit/ls#euid=root#egid=other#ruid=root#rgid=other#pid=13949%#
error=-1#return=KO#E#I1#

#S#version=suntradb. 6#system=SO0LARIS#deamon=system#tahost=lancelot#no=29%
event=AUE_EXECVE#date=2000.3.14@14.29.41#program=/usr/bin/ls#
file=/usr/bin/ls#arg=ls,-als#euid=root#egid=other#ruid=rooti#rgid=otheri
pid=13949#error=0#return=0K#E#I#

The attack database consists of attacks signatures with the following format:

>>> Attack_login

rulel

rulel

rulel

>>> Attack_file_creation
rule2

>>> Attack_ps_cmd

rule3

rule7

Rules are defined in the following way:

rulel ::= ( (event=AUE_login) || (event=AUE_rlogin) ) && (return=K0) ;
rule2 ::= (event=AUE_CREAT) && ( (file co 1ls)||(file co cd) ) ;
rule3 ::= (event=AUE_EXECVE) && (program=/usr/bin/ps) ;

rule4 ::= (event=AUE_EXECVE) && (program co crack) ;

rule5 ::= (event=AUE_su);

where the co operator stands for “contains”.

The audit trail and attack signatures are translated into a pattern matching
representation in three steps. First, a different letter is assigned to each rule (e.g.,
rulel = ’a’). Attack signatures are then translated into patterns by mapping
their rules to the corresponding letters. Finally, the audit trail is scanned and its
events are matched against the rules. Events which match more than one rule
are assigned the corresponding letters. Events which do not match a rule are
assigned arbitrary letters. The final string is constructed by concatenating the
sequence of letters corresponding to matches of rules and the arbitrary letters.

We used an audit file of 24,847 events and studied three different series of
actions!:

Chained who: represented as a pattern of four events of a "who' command.
The probability of the corresponding letter in our audit file is 0.004382 and
there are four real attacks of this kind in the audit file.

! These are not really attacks, but it makes no difference from the algorithmic point
of view.



Attack m|Occs.|Prob. letter|Nec. k|Max. k|Fract. of text
Chained who 4 4 0.004382 225 500 8.21%
Sensitive commands|10| 2 0.007187 580 620 14.50%
Chained whois 4 1 0.001402 1425 | 1570 5.74%

Table 1. Main parameters for the three search patterns.

Sensitive commands: represented as a pattern of ten events of any command
in the set { "last", "ps", "who", "whois" }. The probability of the corre-
sponding letter in our audit file is 0.007187 and there are two real attacks of
this kind in the audit file.

Chained whois: represented as a pattern of four events of a ""whois' command.
The probability of the corresponding letter in our audit file is 0.001402 and
there is one real attack of this kind in the audit file.

We have searched the three patterns in our audit file allowing an increasing
number of insertions k. Our goal is to determine the effectiveness of the proposed
filtering algorithm?. That is: how much text is it able to filter out in order to
retrieve what fraction of the real attacks that occur in the audit file?

By applying the analytical predictions of Section 2 to our real data, we com-
puted the maximum k£ value for which the matching probability does not reach
1 (recall that the model is pessimistic). To compute that maximum value, we
have used the most precise formula (Eq. (1)) for the matching probability. Given
that the text is biased we have replaced 1/¢™ by p™, where p is the relative fre-
quency of the letter that forms the pattern (all the attacks are repetitions of a
single letter, otherwise we can just multiply the probabilities of the participating
letters).

Together with the maximum & recommended by the model we have com-
puted the fraction of the text that the filter selects (for that k) as a candidate
for further evaluation. This is simply the m—+% characters preceding every match,
avoiding to count multiple times the overlapping areas.

Table 1 shows that using the maximum %k recommended by the model selects
Jjust 6% to 15% of the text to be processed by a more costly algorithm. Moreover,
we show in the column of “necessary k” the minimum % value that is necessary
to detect all the attacks present in the audit file. This turns out to be below (and
generally close to) the maximum & recommended by the model. Therefore, the
model can be used to obtain a good estimator of the k& value to use in order to
detect all the real attacks. Of course, it is also possible to use specific knowledge

2 The text that our filter is not able to discard has to be processed by a more so-
phisticated algorithm in order to determine the presence of a real attack. As those
algorithms are much slower than our pattern matching based approach, the effec-
tiveness of the filter is crucial.
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Fig. 4. Fraction of attacks detected versus fraction of text left for further processing.

of the application to determine the appropriate k.

Regarding the false negatives, we evaluated, for our three particular patterns,
the fraction of text filtered as a function of the fraction of attacks detected (see
figure 4). As can be seen, the curve is concave, which suggests that considering
a very small fraction of the text permits to detect most of the attacks. For ex-
ample, with a k value that leaves just 2% of the text for further evaluation we
get 50% of the attacks (and thus 50% of false negatives). We have here a way to
balance the false negatives rate and the speed of detection. Of course, in many
cases, no false negative is required. In that situation, the value of & determined
by the model is an upper bound of the value to be used for the corresponding
pattern.

Regarding the false positives, we studied the evolution of the number of
matches as a function of k for the three patterns (se figure 5). Of course, for
some patterns, using a too large %k value leads to many false positives. Let’s
note that these false positives may be discarded by the more accurate detection
algorithm which may analyse the output of our pattern matching mechanism
(recall that we give a part of the trail containing a potential attack). To limit
false positives without allowing false negatives, the value of & determined by the
model appears as a near-optimum.
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Conclusions and Future Work

We have addressed a performance problem in intrusion detection. The problem is
that the algorithms that accurately detect attacks in audit trails are complex and
slow, and therefore can not cope with huge amounts of data that are generated
when a system or a network is monitored.

We have presented a pattern matching based filter for intrusion detection.
The idea is that, despite that it may be difficult and slow to determine that an
attack has occurred, it is possible to quickly determine that there is no attack
in large portions of the audit trail.

The pattern matching model is based on the concept of insertion distance,
where the attack is seen as a sequence of letters (events) and the algorithms
detect the text portions where all the events of the attack appear in order within
a window of k other events. Recent pattern matching algorithms [5] specialized
for this problem are able to spot the suspicious areas of the audit trail by scanning
millions of events per second. In this way, the pattern matching algorithm quickly
filters out a large portion of the text, leaving the rest to be examined by a more
sophisticated (and slower) algorithm.

We have presented an analytical model and preliminary experimental results
about the fitness of the insertion distance model to detect attacks in a real
application. We have shown that the k& value predicted by the model is large
enough to detect virtually all the relevant attacks, yet it still filters out most of
the text (85% to 94%). This means that only 6% to 15% of the original text needs
to be analyzed by a more sophisticated algorithm. Moreover, we have shown that
most of the attacks are indeed found with a much smaller k value, so that speed
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can be traded for precision. For example, leaving just 2% of the text to examine
we were able to detect 50% of the attacks. An optimal value for k& can be found
which minimizes false negatives and false positives for groups of patterns with
specific characteristics.

Some work to undergo to improve the proposed approach follows.

Further experiments with larger and more realistic data sets must be carried
out in order to provide more accurate estimations of the filtering efficiency.

The algorithm is assumed to take a random text with uniform distribution
as input, which is not the case of our converted audit trails. The study of the
implications of that fact is to be done.

Our experiments were conducted off-line. We now need to conduct some on-
line experiments. In that context, the efficiency of the mapping process will have
to be studied with care.

To conclude, the proposed approach was used for misuse detection. It could
be also used for anomaly detection. The algorithm may then be used to verify
that a process behaves as during a training period, as proposed by [9].
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