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ABSTRACT
As nowadays Machine Learning (ML) techniques are generating

huge data collections, the problem of how to efficiently engineer

their storage and operations is becoming of paramount importance.

In this article we propose a new lossless compression scheme for

real-valued matrices which achieves efficient performance in terms

of compression ratio and time for linear-algebra operations. Ex-

periments show that, as a compressor, our tool is clearly superior

to gzip and it is usually within 20% of xz in terms of compression

ratio. In addition, our compressed format supports matrix-vector

multiplications in time and space proportional to the size of the

compressed representation, unlike gzip and xz that require the full
decompression of the compressed matrix. To our knowledge our

lossless compressor is the first one achieving time and space com-

plexities which match the theoretical limit expressed by the k-th
order statistical entropy of the input.

To achieve further time/space reductions, we propose column-

reordering algorithms hinging on a novel column-similarity score.

Our experiments on various data sets of ML matrices show that our

column reordering can yield a further reduction of up to 16% in the

peak memory usage during matrix-vector multiplication.

Finally, we compare our proposal against the state-of-the-art

Compressed Linear Algebra (CLA) approach showing that ours runs

always at least twice faster (in a multi-thread setting), and achieves

better compressed space occupancy and peak memory usage. This

experimentally confirms the provably effective theoretical bounds

we show for our compressed-matrix approach.
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1 INTRODUCTION
Matrix operations have always been important in scientific com-

puting and engineering, and they have become even more so with

the widespread adoption of ML and deep-learning tools. Very large

matrices do not just present scalability challenges for their stor-

age: they also consume a large amount of bandwidth resources

in server-to-client transmissions, as well as in CPU/GPU-memory

communications. Hence matrix compression appears as an attrac-

tive choice. Common simple heuristics for shrinking ML models

are generally based on lossy compression, like low and ultra-low

precision storage, sparsification (i.e., reduction of the number of

non-zero values), and quantisation (i.e., reduction of the value do-

main). Unfortunately, lossy compression schemes often impair the

ML model accuracy in a data — and algorithm — specific manner,

thus requiring an attentive and manual application.

For this reason lossless compression represents a better alterna-

tive for achieving “automated” space savings. It is data-independent

and does not require any a priori knowledge about the input data.
In addition, if some problem domain is not sensitive to the use of

a particular lossy technique, we can apply lossy compression fol-

lowed by the lossless one, therefore getting the best of both worlds.

Unfortunately, traditional one-dimensional lossless compression

techniques such as Huffman, Lempel-Ziv, bzip, Run-Length Encod-

ing (RLE) often perform poorly on matrices, in that they are not able

to unfold the (sometimes hidden) dependencies or redundancies

between rows and columns. Moreover, they usually require the full-

matrix decompression for performing the needed linear-algebra

operations, thus the space reduction is only achieved in the storage

or transmission, but not in the more critical computation phase.
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Recently, some authors [12–14] proposed new lossless compres-

sion schemes for matrices which not only save space, but also

manage to speed up linear-algebra operations, and matrix multi-

plication in particular. These results apply mainly to large, sparse

matrices: the algorithms in [12, 13] are designed for matrices com-

ing from ML domains, while the ones in [14] are specialised in

representing binary adjacency matrices of web and social graphs.

In this paper we continue the line of research introduced in [12,

13], called Compressed Linear Algebra (CLA). The authors use rela-
tively simple compression techniques (e.g., Offset-List Encoding,

Run-Length Encoding, Direct Dictionary Coding) preceded by a

compression-planning phase partitioning the columns of the input

matrix into groups that can be effectively compressed together.

Since ML matrices often exhibit hidden correlations (see, for in-

stance, [13]), the combination of a careful compression planning,

which is done only once, together with simple compression tech-

niques yield good compression and fast linear-algebra operations.

To improve performances, the CLA system also deploys row- and

column-partitioning techniques to make the compression more

cache-friendly and suitable for multithreading.

We design and experiment new lossless compression schemes

for large matrices, which get the best performance when the input

matrices are either sparse or contain a relatively small number of

distinct values. A fundamental feature of our contribution is that

our lossless compression algorithms guarantee that:

• the compression ratio is bounded in terms of the k-th or-

der empirical entropy of the compressed sparse row/value

(CSRV) representation of the input matrix; and

• the cost of the right and left matrix-vector multiplication is

proportional to the size of the compressed matrix.

As we just mentioned, achieving simultaneously a saving in

time and space is not new [12–14, 22], but to our knowledge our

algorithmic approach is the first one achieving bounds for the time

and space complexities that match the theoretical limit expressed

by the k-th order statistical entropy. Given its theoretical properties,
our grammar-based algorithm could be also used not only as stand-

alone compression tools for matrices but also as a new powerful

compression option within the CLA framework, or a similar system,

in place of its simpler compressors.

Technically speaking, our starting point is the CSRV representa-

tion of a matrix, which is a simple modification to the well-known

compressed sparse row (CSR) representation [31]. The CSRV repre-

sentation is more effective than CSRwhen the input matrix contains

relatively few distinct values. In Section 3 we show that we can

compress this representation using a grammar compressor [21] so

that we can later compute the right and left matrix-vector mul-

tiplication by working directly upon the compressed matrix, and

within time and working space proportional to the compressed size

of that matrix. We tested our proposal in practice with a prototype

described in Section 4 using the RePair [28] grammar compressor

over eight matrices coming from real ML problems. In terms of

attained compression ratios, the experiments show that our tool is

clearly superior to gzip, and that it is usually within 20% of xz; in
addition, our solution is designed to offer support for matrix-vector

multiplication operations directly over the compressed file, whereas

gzip and xz cannot.

To measure the space usage of our matrix-multiplication algo-

rithms, we tested a sequence of left and right vector-matrix mul-

tiplications and found that the peak memory usage for our multi-

threaded algorithms is for most inputs between 6% and 50% of the

size of the uncompressed matrix. These results confirm the theoreti-

cal finding that grammar compression can indeed save a significant

amount of space during the computation, and therefore allows us

to work with larger data sets in internal memory.

In the second part of the paper we add an algorithmic step to

our grammar-based compression scheme to obtain an even greater

space saving. As pointed out in [12], ML matrices often exhibit cor-

relations between columns; this phenomenon is likely to make the

same combination of values appear in the same columns in multiple

rows. Most compressors are able to exploit the presence of identical

values only when they occur in contiguous columns. Nonetheless,

in real-world data sets correlated columns often appear far apart

from each other. For this reason, the matrix compression scheme of

CLA [12] features a preliminary step aimed at discovering groups of

correlated columns; at a later stage, such groups get compressed in-

dependently one another, possibly choosing a different compressor

for each group. We hence study the problem of column reordering

under the hypothesis that the subsequent compression phase is

implemented via a grammar compressor. The column-reordering

problem for binary, categorical, and general matrices attracted a

lot of interest in the past because of its applications to compress-

ing tables arising from several contexts, such as data warehouses

[5, 6, 35], biological experiments [1], mobile data [17], and graph

DBs [20], just to cite a few. Discovering dependency relations among

matrix columns and finding the order that guarantees the small-

est compressed output is an NP-hard problem in its general form

(cf. e.g. [5]). Thus, all above papers use heuristics to efficiently find

appropriate column permutations. In all cases, the key step lies in

defining a proper measure of column similarity accounting for the

special features of the problem and of the compressor at hand.

In Section 5, we present a column-similarity score designed to

work with our lossless grammar-based compressors for matrices.

Then, we describe four new column-reordering algorithms that

hinge on this score and, in order to boost compression, we apply

them to blocks of rows which are finally compressed individually.

We test the effectiveness of this combination over the same eightML

matricesmentioned before. Experimental figures show that, without

worsening the running time, we can get a further reduction of up to

16% of the peak memory usage during matrix-vector multiplication.

As a final contribution of this paper, we compare our matrix

compressor against the compressor used by the Compressed Linear

Algebra (CLA) system, which constitutes the state-of-the-art in this

setting [12, 13]. Experiments show that, in terms of compression,

our approach is more effective than CLA over 7 matrices (out of

the 8 we tested), with an (absolute) space improvement of up to

10%. The space improvement is even greater if we consider the

peak memory usage during the matrix-vector multiplication, being

a factor between 3.14 and 19.12. In terms of running time, CLA is

always at least twice slower than our compressors. These results

were obtained using 16 threads for our compressors, whereas CLA

was set to use all the available threads (the testing machine supports

up to 80 independent threads).

2



Summing up, our experiments show that: (1) our grammar-based

compressors for matrices are indeed able to achieve a better space

reduction than the state of the art, and (2) our theoretical results

ensuring that the number of operations is bounded by the size of

the compressed matrix translate into algorithms that are also fast

in practice; indeed for the most compressible matrices experiments

show that our algorithms are even faster than the algorithm work-

ing directly on the uncompressed matrix. As a final note, we point

out that CLA is a general framework offering compressed linear

algebra for ML systems which, by design, is not tied to a particular

compression technique. Hence, we envision that our compressors

could be adopted not only as stand-alone compression tools for

matrices but also as a new powerful compression option within the

CLA framework.

1.1 Transparency and Reproducibility
All source files of our algorithms, as well as the scripts to reproduce

the experimental results, are available at the repository https://

gitlab.com/manzai/mm-repair. The data sets are available at the

public Kaggle repository [26].

2 THE COMPRESSED SPARSE ROW/VALUE
REPRESENTATION

Given a matrix M ∈ Rn,m with n rows andm columns, the com-

pressed sparse row (CSR) representation [31] is a classical scheme

taking advantage of the matrix sparsity. If the matrixM contains t
non-zero elements, the CSR representation consists of 1) a length-t
array nz listing the non-zero elements row-by-row; 2) a length-

t array idx storing for each element in nz its column index; 3) a

length-n array first such that first[1] = 0, and first[i]with 2 ≤ i ≤ n
equals the number of non-zero terms in the first i − 1 rows (this

information is used for partitioning the elements of nz by rows).

If the number of distinct non-zero values is relatively small, then

it is more space efficient to introduce an additional array V [1,k]
containing the distinct non-zero elements ofM and to store in nz
not the actual non-zero values but their indices in V . If there are,
say, fewer than 2

16
distinct non-zero elements, then each entry in

nz only takes 2 bytes instead of the 8 bytes of a double: this saving
can more than compensate for the extra cost of storing the arrayV .

This representation as a whole is called CSR-IV in [22].

In this paper we introduce a new representation, called Com-
pressed Sparse Row/Value (CSRV), by making two minor modifica-

tions to the above scheme. Firstly, we combine the two length-t ar-
rays nz and idx in a single vector of pairs S , such that for i = 1, . . . , t ,
entry S[i] contains the pair of integers (nz[i], idx[i]). Secondly, in-
stead of storing a separate array first we include its information in

S by storing a special symbol $ immediately after the last non-zero

entry of each row. As a result, the array S now has got length t + n
and can be obtained by scanning the matrix M row-by-row: for

each entry M[i][j] , 0 we append to S the pair ⟨ℓ,j⟩, where ℓ is
the index in V such that V [ℓ] = M[i][j]. In addition, at the end of

each row we append to S the special symbol $. During the scan-

ning, for each nonzeroM[i][j] we need to retrieve the index ℓ such

that V [ℓ] = M[i][j], or to add M[i][j] to V if no such index exists.

Storing the association between values in V and their index in a

hash table with constant amortised time per operation, we have

the following result.

Lemma 2.1. The construction of the CSRV representation of a ma-
trixM ∈ Rn,m takes O(mn) time. □

Figure 1 reports an example in which the elements ofV are sorted

according to their size, but any other ordering (or no ordering at

all) would have worked equally well. Also, the elements of S within

the same row can be reordered without loss of information; this

latter property will be used in Section 5 to improve compression.

Given the CSRV representation of matrixM and a vector x[1,m],

it is straightforward to compute the matrix-vector multiplication

y = Mx with a single scan of S . To begin with, we initialise the

vector y[1,n] to zero. Then, during the scan of row i , when we

encounter the pair ⟨ℓ,j⟩ we add the value V [ℓ] · x[j] to the entry

y[i]. The occurrences of the symbol $ allow us to keep track of

the current row. We can similarly compute with a single scan of

S the left-multiplication xt = ytM : firstly, we initialise x[1,m] to

zero; then, during the scan of row i , when we encounter the pair

⟨ℓ,j⟩ we add the value y[i] · V [ℓ] to the entry x[j]. Hence, either
right and left multiplications can be computed in O(|S |) = O(n + t)
time. Hereinafter we use the notation (S,V ) to denote the CSRV

representation outlined above.

3 GRAMMAR-COMPRESSED MATRICES
We show how to compress the CSRV representation (S,V ) of a ma-

trixM with an algorithm that, for compressible matrices, provably

yields a reduction in both the space occupancy and in the cost of

the left and right matrix-vector multiplication operations.

Recall that a grammar-compressed representation for a string T
over an alphabet of terminal symbols Σ is a context-free grammar

that generates onlyT [7]. For the sake of simplicity, we assume that

the grammar is a so-called straight-line program [24] (SLP), that is,

it consists of a set of rules of the form Li → Ri1Ri2 , where Li is a
nonterminal and each of Ri1 and Ri2 can be either a terminal (i.e.,

an element of the base alphabet Σ), or a nonterminal. The grammar

generates only T , implying that each nonterminal appears as the

left-hand side of a single rule, so that one can identify each rule

with the nonterminal on its left-hand size. Given a nonterminal

Nj , its expansion, denoted by exp(Nj ), is defined as the (unique)

sequence we obtain by repeatedly applying the substitution rules

of the SLP grammar until we are left with a string over Σ. Thus
one can leverage a SLP to represent T as a succinct sequence C of

nonterminals; when needed,T can be obtained fromC by evaluating

the expansion of its nonterminals.

The output of the grammar compressor is a set of rules and

a special nonterminal whose expansion generates only the input

string T . If the grammar has q rules, and therefore q nonterminals

N1, . . . ,Nq , we can number them so that if Ni appears in the right-

hand side of Nj , then i < j.
One can define the size of a grammar as the sum of the lengths

of the right-hand sides of the rules. The same text T can be gen-

erated by many different grammars, and finding the smallest one

is NP-complete [7, 33]. Yet, the compressors producing irreducible

grammars, among them Greedy, LongestMatch [21], RePair [23],
and Sequential [21], are guaranteed to produce an output whose size
in bounded by |T |Hk (T ) + o(|T |Hk (T )) bits for any k ∈ o(logσ |T |),
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

1.2 3.4 5.6 0 2.3

2.3 0 2.3 4.5 1.7

1.2 3.4 2.3 4.5 0

3.4 0 5.6 0 2.3

2.3 0 2.3 4.5 0

1.2 3.4 2.3 4.5 3.4



V = [1.2 1.7 2.3 3.4 4.5 5.6]

S = ⟨1,1⟩ ⟨4,2⟩ ⟨6,3⟩ ⟨3,5⟩ $ ⟨3,1⟩ ⟨3,3⟩ ⟨5,4⟩ ⟨2,5⟩ $

⟨1,1⟩ ⟨4,2⟩ ⟨3,3⟩ ⟨5,4⟩ $ ⟨4,1⟩ ⟨6,3⟩ ⟨3,5⟩ $

⟨3,1⟩ ⟨3,3⟩ ⟨5,4⟩ $ ⟨1,1⟩ ⟨4,2⟩ ⟨3,3⟩ ⟨5,4⟩ ⟨4,5⟩ $

Figure 1: A matrix and its CSRV representation. In the array S the symbol ⟨3,1⟩ stands for an occurrence of the valueV [3] = 2.3

in column 1. Note that the same value in column 3, is represented instead by ⟨3,3⟩. Only the same values in the same column
are represented by the same pair ⟨i,j⟩.

R = {N1 → ⟨3,3⟩ ⟨5,4⟩ N2 → ⟨1,1⟩ ⟨4,2⟩ N3 → ⟨3,1⟩ N1

N4 → ⟨6,3⟩ ⟨3,5⟩ N5 → N2 N4 N6 → N3 ⟨2,5⟩

N7 → N2 N1 N8 → ⟨4,1⟩ N4 N9 → N7 ⟨4,5⟩ }

C = N5 $N6 $N7 $N8 $N3 $N9 $

Figure 2: The set of rules R and the final string C whose ex-
pansion is the sequence S from Figure 1.

where σ is the size of the input alphabet and Hk (T ) is the order-k
statistical entropy of the input T [30]. Up to lower order terms,

then, these grammar compressors are as good as the best statistical

encoders that compress the input on the basis of the frequencies of

k-tuples of symbols. Grammar compressors are very effective also

for compressing strings with many repetitions: in this case their

output size can be within a logarithmic factor from the output of

the best compressors based on LZ-parsing; see [29] for details.

To compress a CSRV representation (S,V ) we apply a grammar

compressor to the sequence S . We modify the compressor so that it

never uses the special terminal symbol $ in any rule. This guarantees

that the expansion of any nonterminal Nk only contains pairs ⟨i,j⟩.
As a result, the output of the grammar compressor applied to S
consists of a set of rules R and a string

C = Ni1 $Ni2 $ · · ·Nin $ (1)

such that each Ni j is a nonterminal whose expansion is the se-

quence of pairs representing the non-zero elements of row j. In
the same sense, the expansion of the string C (i.e., expanding each

of its nonterminals) is the sequence S . An example of a grammar

representing the string S of Figure 1 is given in Figure 2. In the

following we write (C,R,V ) to denote the grammar representation

of (the CSRV representation of) a matrixM .

3.1 Right Multiplication for
Grammar-Compressed Matrices

In this section we show that, given a grammar representation

(C,R,V ) of a matrix M , we can compute the right multiplication

y = Mx in O(|R| + |C|) time using O(|R|) words of auxiliary space.

In the following we use S to denote the expansion of C, so that

(S,V ) is the CSRV representation ofM .

Definition 3.1. Given a vector x[1,m] and a pair ⟨ℓ,j⟩ ∈ S we

define

evalx (⟨ℓ,j⟩) = V [ℓ] · x[j];

(recall that the pair ⟨ℓ,j⟩ represents the valueV [ℓ] stored in column j
of matrixM). Similarly, for a nonterminal Ni whose expansion is

⟨ℓ1,j1⟩ ⟨ℓ2,j2⟩ · · · ⟨ℓh,jh⟩ we define

evalx (Ni ) =

h∑
k=1

evalx (⟨ℓk ,jk ⟩) =
h∑

k=1

V [ℓk ] x[jk ]. (2)

From the above definition we immediately get

Lemma 3.2. If the grammar contains the rule Ni → AB, then
evalx (Ni ) = evalx (A) + evalx (B). □

Lemma 3.3. Given the representation (C,R,V ) of a matrix M ∈

Rn,m with C = Ni1 $ · · ·Nin $, if y = Mx then it holds that y[r ] =
evalx (Nir ), for r = 1, . . . ,n.

Proof. We have y[r ] =
∑m
i=1

M[r ][i] · x[i]. By construction,

the expansion of the nonterminal Nir is the sequence of pairs

⟨ℓ1,j1⟩ · · · ⟨ℓh,jh⟩ representing all the non-zero elements of row r
where, for k = 1, . . . ,h, ℓk denotes the position inV containing the

valueM[r ][jk ]. Thus

y[r ] =
h∑

k=1

M[r ][jk ] · x[jk ] =
h∑

k=1

V [ℓk ] · x[jk ] = evalx (Nir ).

□

Theorem 3.4. Given the grammar-compressed CSRV represen-
tation (C,R,V ) of a matrix M ∈ Rn×m and a vector x ∈ Rm , we
can compute y = Mx in O(|C| + |R |) time using O(|R|) words of
auxiliary space.

Proof. To compute y = Mx , we introduce an auxiliary array

W [1,q], where q = |R |, such thatW [i] = evalx (Ni ). Because of

Lemma 3.2 and of the rule ordering, we can fillW with a single pass

over R in time O(q): the valueW [i] = evalx (Ni ) is the sum of two

terms that can be either of the form evalx (⟨h,k⟩) or evalx (Nj ) with

j < i . In the former case evalx (⟨h,k⟩) = V [h] ·x[k]; in the latter case

evalx (Nj ) = W [j] for some already-computed entry, since j < i .
One may indeed observe that Ni ’s are ranked by the time when

they get computed. After fillingW , we use Lemma 3.3 to get the

components of the output vector y. □

3.2 Left multiplication for
grammar-compressed matrices

We now show that, given the grammar representation (C,R,V ) of

a matrixM , we can compute the left multiplication xt = ytM with

4



an algorithm symmetrical to the one for the right multiplication

and within the same time and space bounds.

Definition 3.5. For any ⟨ℓ,j⟩ ∈ S we define rows(⟨ℓ,j⟩) as the
set of rows whose CSRV representation contains ⟨ℓ,j⟩. Note that
k ∈ rows(⟨ℓ,j⟩) if, and only if, the expansion of the nonterminal

Nik ∈ C contains the pair ⟨ℓ,j⟩ or, equivalently,M[k][j] = V [ℓ].

For the example in Figure 1, we have rows(⟨1,1⟩) = {1, 3, 6} since

⟨1,1⟩ represents the value 1.2 that appears in column 1 of those

three rows. Similarly, rows(⟨3,1⟩) = {2, 5}.

Definition 3.6. Given a vector y[1,n], for any ⟨i,j⟩ ∈ S we define

sumy (⟨i,j⟩) as

sumy (⟨i,j⟩) =
∑

k ∈rows(⟨i ,j ⟩)
y[k]

Lemma 3.7. Given the CSRV representation (S,V ) of matrixM ∈

Rn×m , let S ′ be the set of distinct symbols in S (i.e., without duplicates).
If xt = ytM then, for j = 1, . . . ,m, it holds

x[j] =
∑

⟨i ,j ⟩∈S ′
V [i] · sumy (⟨i,j⟩)

(note the summation involves only pairs in S ′ with second compo-
nent j).

Proof. Since

x[j] =
∑n

ℓ=1

y[ℓ] ·M[ℓ][j],

the value x[j] depends only upon the non-zero elements in column j .
Each nonzero in column j gets represented by a symbol ⟨i,j⟩ and has
its corresponding value encoded by some entryV [i]. If ⟨i,j⟩ occurs at
row r in column j , then y[r ] is multiplied byV [i], and this holds for
all rows containing ⟨i,j⟩. One can aggregate these multiplications

and write them asV [i] ·sumy (⟨i,j⟩). The lemma follows by iterating

this argument over all distinct non-null values V [i] occurring in

column j, and therefore over all pairs ⟨i,j⟩ ∈ S ′. □

We now show that the notions of rows and sum can be naturally

extended to nonterminals.

Definition 3.8. Given the representation (C,R,V ) of a matrix

M ∈ Rn×m , for each nonterminal Nj we define rows(Nj ) as the set

of row indices ℓ such that Nj appears in the expansion of Niℓ . In

other words, rows(Nj ) denotes the rows whose compression makes

use of Nj . We also define sumy (Nj ) =
∑

ℓ∈rows(Nj ) y[ℓ].

In the following we make the natural assumption that the gram-

mar does not contain useless rules, that is, if the grammar contains

the rule Ni → AB, then Ni appears in the right-hand side of some

other rule (whose left-hand side will be some Nj with j > i), or Ni
appears in the final string C (or both).

Lemma 3.9. For any symbol α (terminal or nonterminal), let Rα
denote the set of nonterminals Nj ’s such that their defining rule Nj →

AB contains α in their right-hand side (i.e., A = α or B = α ), and let
Iα denote the set of row indices ℓ such that Niℓ = α (hence ℓ ∈ Iα iff

the expansion of α coincides with the ℓ-th row). Then,

sumy (α) =
∑

Nj ∈Rα
sumy (Nj ) +

∑
ℓ∈Iα

y[ℓ]. (3)

Proof. Since each occurrence of α is either the right-hand side

of a single rule, or coincides with some Niα , we have

rows(α) =
{⋃

Nj ∈Rα
rows(Nj )

} ⋃
α

Iα

and the lemma follows by induction on the number of steps in the

derivation of α . □

In view of Lemma 3.7, to compute xt = ytM , we need to compute

V [i] · sumy (⟨i,j⟩) for all ⟨i,j⟩ ∈ S ′. To this end we first compute

sumy for nonterminals and then we use Lemma 3.9 to derive the

values sumy (⟨i,j⟩).
In our implementation we introduce an auxiliary arrayW [1,q],

where q = |R |, such that at the end of the computationW [i] con-
tains sumy (Ni ). More in detail, we initially set x[1,m] to zero, and

we setW [1,q] to zero as well, except for the entriesW [iℓ] that we
initialise toy[ℓ] for every nonterminal Niℓ in the final string C (this

accounts for the terms in the second summation of (3)). Next, we

scan the set of rules backwards from q to 1; for every rule Nj → AB
we proceed as follows:

• if A (or B) is equal to another nonterminal Ni (necessarily

with i < j) we increaseW [i] by the valueW [j];
• if A (or B) is equal to a terminal ⟨h,k⟩ we increase x[k] by
V [h] ·W [j].

The crucial observation is that when we reach the ruleNj → AB we

have already computed inW [j] the correct value sumy (Nj ) since

we have already accounted for all terms in Lemma 3.9, namely

the nonterminals in the final string C and all rules containing Nj
in their right-hand side (by our assumptions these rules will be

numbered higher than j). Using our strategy, the value sumy (Nj )

is added to sumy (A) and sumy (B), affecting their corresponding

values inW if they are nonterminal, or being accumulated in the

proper entry of x if they are terminals.

Theorem 3.10. Given the grammar-compressed CSRV represen-
tation (C,R,V ) of a matrixM ∈ Rn×m and a vector y ∈ Rn , we can
compute xt = ytM within O(|C| + |R |) time using O(|R|) words of
auxiliary space. □

We point out that we do not require that in the array S , which
is compressed to C and R, the pairs relative to the same row are

ordered according to column index, as we arranged them in Fig-

ure 1. For helping the compression, we could instead reorder the

pairs in other ways: this would not impact upon the design of our

multiplication algorithms. In Section 5, we analyse the improve-

ment in compression obtained by reordering the columns of M
globally: namely, reordering the elements in each row according to

the same permutation. As for future work, we plan to analyse the

general problem in which the elements in each row are reordered

independently of all other rows.

4 IMPLEMENTATION AND EXPERIMENTS
Wenow describe a prototype of ourmatrix-multiplication algorithm

for grammar-compressed matrices. We derive different represen-

tations with different time/space trade-offs, so that in the end we

will eventually get a family of grammar-compression algorithms.

Given a matrixM ∈ Rn,m we first build the CSRV representation

(S,V ) as described in Section 2.We implemented this representation
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by storing the sequence S as an array of 32-bit unsigned integers: the
symbol $ is encoded by the integer 0, while the pair ⟨i,j⟩ is encoded
by the integer 1+ im + j (recall that 0 ≤ j < m is the column index).

The entries of V are represented as 8-byte doubles, so the total

space usage amounts to 4|S | + 8|V | bytes. In the following we call

this representation csrv and we use it as a baseline for our tests.

To build the grammar representation (C,R,V ) we compress the

32-bit integer sequence S using the RePair algorithm [23], which

runs inO(|S |) time, usingO(|S |)words of space, and achieves a com-

pression ratio bounded by the high-order statistical entropy of S
(see Sect. 3). RePair works by repeatedly finding the most frequent

pair of consecutive symbols AB, replacing all their occurrences by

a new nonterminal Ni , and appending the rule Ni → AB to the

current rule set. We modified RePair so that it never builds a rule

involving the symbol $, as required by our construction. RePair

stops when there are no more pairs of consecutive symbols appear-

ing more than once. Thus, the final string C has not necessarily

the form Ni1 $Ni2 $ · · ·Nin $ discussed in the previous section; in-

stead C is usually longer and may even include terminals ⟨i,j⟩. We

could add additional rules to obtain a final string C with exactly

2n symbols as above; but since this does not help compression or

running times we use RePair’s final string as C, adding the (simple)

necessary modifications to the multiplication algorithm.

In addition to the final string C, RePair produces a set of rules R

where, as we saw, each rule is represented by a pair of symbols. In its

naïve representation, RePair outputs |C|+ 2|R | 32-bit integers over-

all.
1
However, this is quite a wasteful representation: if the largest

nonterminal is represented by the integer Nmax, we can represent C

and R using packed arrays with entries ofw = 1+
⌊
log

2
Nmax

⌋
bits.

What is more, some symbols might be more frequent than others

in C or R, so we can save additional space by using a variable-

length representation via an entropy coder. Therefore we have

experimented the following variants of RePair compression, which

induce three corresponding variants of our matrix compression

algorithm:

re_32: C and R are represented as 32-bit integer arrays. This

is the fastest, but less space-efficient representation.

re_iv: C and R are represented as packed arrays, with entries

of 1 +
⌊
log

2
Nmax

⌋
bits as described above. In our imple-

mentation we used the class int_vector from the sdsl-lite

library [16].

re_ans: R is represented via a packed array as above, whereas C

is compressed using the ans-fold entropy coder from [28].

All the above variants store the array V uncompressed. Clearly,

more complex representations are possible, offering even larger

compression achievements. However, the reader should notice two

important points. Firstly, we want to efficiently support matrix-

vector multiplication: looking at the algorithms in Section 3 we

see that the left-multiplication algorithm scans the rules in R back-

wards, and only a few compressors provide fast right-to-left access

to uncompressed data. In addition, the compression of C and R is

secondary: we expect the largest saving from the use of the gram-

mar compressor and reordering techniques introduced in Section 5.

1
Notice that for a rule Ni → AB , we have to encode only A and B because the

nonterminals Ni get increasing ids.

4.1 Multi-threaded implementation
To take advantage of modern multi-core architectures, matrix mul-

tiplication algorithms usually split the input matrices into blocks.

Indeed, most operations on the individual blocks can be easily

carried out in parallel on a multi-thread machine. Since for ML

matrices the number of observations (rows) is much larger than the

number of features (columns), we implemented a representation in

which the input matrix gets partitioned into blocks of rows. Given a

parameter b > 1, a r ×c matrixM is partitioned into b blocks of size

⌈r/b⌉ ×c (except for the last block might get fewer rows). With this

setting, the right multiplication y = Mx consists of b independent

right multiplications each one involving a single block. The b left

multiplications computing xt = ytM are independent as well; in a

final step the b resulting row vectors are summed together.

Our grammar-based representations can be easily adapted to

work with distinct blocks of rows. After computing the CSRV

representation (S,V ), we partition the vector S into b subvectors

S1, . . . , Sb , so that Si contains the encoding of the non-zero ele-

ments of the i-th row block. We thereby grammar-compress each

subvector Si using RePair; the resulting string Ci and rule set Ri
are then further compressed as described before. Notice that the

value array V is unique and shared by all matrix blocks.

4.2 Some experimental figures
We executed all our experiments on a machine equipped with 80

Intel(R) Xeon Gold 6230 CPUs running @ 2.10 GHz, with 360 GB

of RAM. We measured running times and peak space usages with

the Unix tool time. Table 1 reports the features of our data set; it
includes all the matrices from [12, 13] and two other matrices (Susy
and Optical) coming from the ML repository [11] thus offering a

wide spectrum ofmatrix-types that allow us to better investigate the

algorithmic features and performance of all algorithms we tested.

For uniformity’s sake, we represent the entries of all matrices as

8-byte doubles, so the uncompressed and full representation of a

matrix takes a total of rows × cols × 8 bytes. If such representation

is compressed with gzip and xz, with their default compression level,

the resulting compressed files have the sizes reported in columns 6

and 7 of Table 1. Column 8 reports the size of the csrv representation,
whilst the last three columns report the sizes of the three variants

of our RePair compressor described above. All sizes are given as

percentage of the ratio between the size of the compressed and

the uncompressed matrix representations (rows × cols × 8 bytes),

hence a smaller percentage corresponds to a better compression.

We emphasise that some of the matrices, namely Susy, Higgs,
and Optical, are not really sparse, having more than 92% non-zero

elements. The classical CSR representation, where each non-zero

entry takes 12 bytes, would take on these data sets more space

than the uncompressed representation. Our csrv representation,

that takes advantage of repeated values, is already obtaining some

compression; in particular for Optical, which has fewer distinct

nonzeros, csrv shows a reduced space footprint compared to gzip.
Further space reduction is obtained by our advanced grammar-

based compressors, even for non-sparse matrices, thus achieving

space reduction on a larger class of matrices with some structure.

The comparison between the csrv and re_32 output sizes is of
interest to get some indication of the effectiveness of grammar
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Table 1: Matrices used in our experiments and the compression ratio achieved by the tools described in the text; a smaller
percentage corresponds to a better compression. The column nonzero reports the percentage of non-zero elements over the
total, while column #|nonzero| reports the number of distinct non-zero values.

matrix rows cols nonzeros #|nonzeros| gzip xz csrv re_32 re_iv re_ans

Susy [11] 5 000 000 18 98.82% 20 352 142 53.27% 43.94% 74.80% 74.80% 69.91% 66.63 %

Higgs [11] 11 000 000 28 92.11% 8 083 943 48.38% 31.47% 50.46% 46.91% 41.38% 38.05 %

Airline78 [2] 14 462 943 29 72.66% 7 794 13.27% 7.01% 38.06% 14.84% 11.13% 9.27 %

Covtype [11] 581 012 54 22.00% 6 682 6.25% 3.34% 11.95% 7.21% 4.52% 3.87 %

Census [11] 2 458 285 68 43.03% 45 5.54% 2.79% 22.25% 3.24% 2.02% 1.53 %

Optical [11] 325 834 174 97.50% 897 176 53.54% 27.13% 50.62% 40.70% 35.81% 34.31 %

Mnist2m [4] 2 000 000 784 25.25% 255 6.46% 4.25% 12.69% 7.47% 5.84% 5.33 %

ImageNet [8] 1 262 102 900 30.99% 824 5.52% 3.63% 11.72% 6.41% 4.00% 3.86%

compression. At one extreme, we see that re_32 does not provide
for Susy any additional compression to the csrv representation,

suggesting that there are notmany pairs of adjacent non-zero values

occurring many times in different rows. At the other extreme, re_32
provides for Census a six-fold better compression, and re_iv and
re_ans achieve a compression even better than the state-of-the-

art tool xz. Moreover, our most sophisticated encoder, re_ans, is
significantly better than gzip, with the only exception of Susy.

Let us now turn our attention to our main interest, namely reduc-

ing both space usage and running time for the matrix multiplication

operations. Standard compressors, like gzip and xz, need to fully

decompress the compressed matrix in order to do any operation

on it. Hence, the cost of any operation is at least proportional to

the size of the uncompressed matrix; conversely, in the previous

section we proved that using grammar compression left and right

multiplications can be carried out in time proportional to the size

of the compressed matrix. To measure the practical impact of this

theoretical result, we considered 500 iterations of the computation

yi = M xi , zti = y
t
i M, xi+1 =

zi
∥zi ∥∞

(4)

where ∥zi ∥∞ is the largest modulus of the components of zi . The
above computation consists of 500 alternated left and right ma-

trix multiplications and mimics, e.g., the most costly operations of

conjugate gradient method used for least square computations.

For the above iterative scheme we report in Table 2 and Figure 3

the average time per iteration and the peak memory usage, as mea-

sured by the Unix tool time. The results are reported in . In addition
to the single-threaded algorithms, we tested the algorithms using

4, 8, 12, and 16 threads; in this case, we split the input matrix into

a number of row-blocks equal to the number of threads, see Sec-

tion 4.1. The first two columns in Table 2 report the peak memory

usage and average iteration time for the single-threaded version of

the re_iv and re_ans algorithms, for which the input matrix is not

partitioned and then is grammar-compressed as a single unit.

As expected for both algorithms the peak memory usage of the

single-threaded version of re_iv and re_ans is somewhat larger than

the compressed size reported in Table 1. Indeed, according to Theo-

rems 3.4 and 3.10 in addition to the space for the input and output

vectors our algorithms use as a working space an (uncompressed)

array of |R | 8-byte doubles. However, the difference between peak

memory usage and compressed matrix size is less than 7% of the

uncompressed matrix size, with the only exception of Higgs (≈ 9%).

Unfortunately, the time per iteration of the single-threaded version

is disappointing especially for the larger matrices. Hence, we have

investigated the use of multiple threads by partitioning the matrix

into blocks of consecutive rows as mentioned above.

Figure 3 shows the increase of the peak memory usage (first

row) and the decrease of the running time (second row) as the

number of threads increases for re_ans and re_iv. We see that, with

the exception of the most compressible inputs (i.e. Covtype and
Census), with 16 threads the peak memory usage is always less than

1.5 times the peak memory usage of the single-threaded version

(for the most compressible inputs the overheads of the computation

dominate over the storage of the compressed matrix). Notice also

that for Higgs the space usage of the multi-threaded versions of

re_iv and re_ans is smaller than for the single-threaded version: the

reason is that this file is better compressed when split into distinct

blocks (this usually happens when the blocks have little structure in

common). Comparing the plots at the top of Figure 3, we see that for

re_iv the memory overhead of using multiple threads grows slower

than for re_ans. Hence, although re_iv is a simpler and usually less

effective compressor, it uses less space than re_ans when working

with 16 threads as shown by the last two columns of Table 2.

As far as time efficiency is concerned, Figure 3 (bottom left)

shows that for re_ans using 4 threads the speedup is close to 100%

(time ratio is 1/4), when using 8 threads the speedup is still close

to the optimal (i.e. 1/8) except for Census and Susy. As expected, a
larger number of threads only helps re_ans with the largest inputs:

for Higgs, Airline78 and Mnist2m with 16 threads the speedup is

still within 12.66 and 14.90. On the other hand, for Covtype, which
is the smallest input, re_ans does not achieve any improvement by

going from 8 to 16 threads. For re_iv the speedup follows a similar

trend (Figure 3 bottom right). We notice that for 4 and 8 threads the

speedup is smaller than for re_ans, but for 16 threads the speedup
is larger than 11 for all inputs except, again, for the small Covtype.

Table 2 summarises the statistics for the iterative computation

of Eq. (4) with csrv and our grammar compressors using 16 threads.

The results show that even for a multi-threaded computation the

overall space usage can be still a small fraction of the uncompressed

size. Indeed, the peak memory usage of the grammar compressors
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Table 2: Peak memory usage and average time per iteration in seconds for the computation of 500 iterations of Eq. (4). The
memory usage is expressed as the percentage of the size of the full uncompressed matrix.

re_iv 1 thread re_ans 1 thread csrv 16 threads re_32 16 threads re_iv 16 threads re_ans 16 threads

matrix peak mem time peak mem time peak mem time peak mem time peak mem time peak mem time

Susy 76.15% 3.89 73.40% 4.88 80.66% 0.26 80.63% 0.27 77.45% 0.35 82.67% 0.45

Higgs 50.30% 8.28 47.12% 11.03 54.12% 0.36 52.04% 0.42 47.01% 0.62 44.90% 0.74

Airline78 17.16% 2.88 15.40% 3.94 41.57% 0.17 24.72% 0.15 19.21% 0.25 19.28% 0.31

Covtype 9.42% 0.05 10.16% 0.07 14.60% 0.01 13.09% 0.01 17.10% 0.01 17.29% 0.01

Census 4.37% 0.12 4.11% 0.19 23.88% 0.05 6.70% 0.01 6.14% 0.01 8.03% 0.02

Optical 39.83% 0.73 39.23% 1.08 51.70% 0.04 46.56% 0.04 45.00% 0.06 56.72% 0.09

Mnist2m 7.33% 7.09 6.85% 9.87 12.83% 0.20 11.31% 0.42 8.19% 0.60 8.30% 0.78

ImageNet 5.21% 4.56 5.21% 4.58 6.95% 0.38 6.95% 0.39 6.95% 0.41 6.95% 0.39
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Figure 3: Peak memory usage (up) and running time (bottom) of the multi-threaded version of the matrix multiplication
algorithm using the re_ans (left) and re_iv (right) compressors. The Y -axis reports the ratio between time and space of the
multi-threaded version of re_ans or re_iv versus the single-threaded version of the same algorithm.

is up to 3× smaller than for csrv (i.e. for Census) and for 5 inputs

it is less than 20% of the original uncompressed size. As we will

discuss in Section 5.4, such impressive compression rates come

together with a reduced average time per iteration compared to

the state-of-the-art tool CLA; in some cases we operate even faster

than over the uncompressed (dense) matrix representation.

The combined analysis of the peak memory usage versus run-

ning time highlights some interesting points. Considering all the

algorithms running with 16 threads we see that, not surprisingly,

the simpler compressed representations usually lead to faster ma-

trix multiplications. Among the grammar compressors, the fastest

algorithm is re_32 in which the string C and the rule set R are

represented with 32 bit integers. The more sophisticated encoders

re_iv and re_ans achieve better compression but they are slower.

This is in accordance with the theoretical results: according to

Theorems 3.4 and 3.10 the cost of matrix-vector multiplication is

O(|C| + |R |) time; re_iv and re_ans use compressed representa-

tions of C and R: this reduces the peak memory usage but not the
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Table 3: Compression times in seconds for the 16-thread ver-
sion of our algorithms and CLA.

matrix csrv re_32 re_iv re_ans CLA
Susy 58.97 61.79 62.14 112.10 —

Higgs 136.99 148.34 149.21 223.73 39.86

Airline78 42.65 58.33 58.85 71.29 5.45

Covtype 1.55 1.77 1.83 2.23 8.52

Census 10.94 13.22 13.29 14.12 8.52

Optical 15.84 17.81 18.01 34.38 12.25

Mnist2m 82.95 104.75 105.68 147.10 118.97

Imagenet 63.66 84.87 85.44 104.44 177.39

number of arithmetic operations. As for the csrv representation

(see column 3 in Table 2), we notice that different input matrices

can have very different behaviours. For Airline78, e.g., re_32 uses
much less space than csrv but shows only a modest improvement

in running time. For Mnist2m, re_32 shows a modest reduction in

space but an increase in running time; the most sophisticated re_iv
and re_ans tools get more compression but they are significantly

slower. Finally, for Census we have a four-times reduction in space

for re_32 and re_iv with a five-fold improvement in running time.

Since users want the fastest algorithm than can run in the available

memory, we conclude that all compressors should be considered;

indeed an interesting problem would be the design of a mechanism

for selecting the best options given the user’s constraints.

Table 3 reports the compression-time performance of our ap-

proaches using 16 threads. Comparing the running times for csrv
and re_32 we see that the computation of the CSRV representa-

tion is more costly than the computation of the grammar. The

explanation is that the former takes O(mn) time, while the latter

takes time proportional to the number of non-zero elements. In

addition, the computation of the CSRV representation involves the

whole matrix and it is done by a single thread, while the grammar

compression is done in parallel using a thread for each row block.

Comparing the running times for re_32, re_iv and re_ans we see
that, non surprisingly, computing the packed-array representation

of C and R is relatively inexpensive, while compressing C with

the ans-fold entropy coder may take more time (see Susy and

Higgs). As a reference we also report compression times for CLA

(discussed in Section 5.3) which is usually faster than our proposals.

However, it is worth saying that compression is done once while
the compressed matrix is later used many times, so construction

speed was actually not a main goal of this paper.

Finally, we point out that there are avenues for improving our

algorithms. For example, in our tests we used the same compres-

sor for each row block of the input matrix: we could use different

compressors to compress different blocks, or use the CSRV repre-

sentation for the blocks which are hard to compress (a similar idea,

applied to blocks of columns, is used within CLA). Another avenue

for improvement is the reordering of the elements of the array S
as discussed at the end of Section 3: some promising results in this

direction are presented in the next section.

5 COLUMN REORDERING FOR GRAMMAR
COMPRESSION

In this section we show how the reordering of the columns of the

input matrix improves the performance of our grammar compressor.

As we mentioned at the end of Section 3, reordering the columns

is only one of the possible preprocessing operations that can be

applied to the input matrix without affecting our multiplication

algorithms. We start our investigation with this technique as it was

already studied in the related area of table compression [5, 35].

Grammar compression for the CSRV representation works by

replacing pairs of symbols appearing adjacent and in many rows

with a single nonterminal. Therefore, we aim at reordering matrix

columns so that correlated columns appear adjacent to each other.

To this end, we define the similarity between two columns by count-

ing the identical pairs they form (cf. the formal definition in the next

subsection). In a sense, this similarity score estimates the compress-

ible fraction of every column pair. This models the compression

performance of a tool like RePair when the two columns are placed

one adjacent to the other in the final ordering. This conservative,

yet simple idea, achieves an effective performance as proved by our

experiments. After defining a notion of similarity between pairs of

columns, we use it with four novel column-reordering algorithms

and measure their impact on the performance of our compressed

matrix-vector multiplication algorithm.

5.1 The column-column similarity matrix
Given the input matrix M ∈ Rn,m we define them ×m column-

column similarity matrix CSM as follows. For each pair of column

indices i and j, with 1 ≤ i , j ≤ m, we build the sequence of pairs

Pi j = ⟨M[1][i],M[1][j]⟩, ⟨M[2][i],M[2][j]⟩ . . .

. . . ⟨M[n][i],M[n][j]⟩

and we define RPNZ
i j as the number of repetitions of pairs of non-

zero elements in the sequence Pi j (note we only consider pairs in

which both elements are nonzeros). For example for the matrix

of Fig. 1 it holds RPNZ
12
= 2 because P12 contains only one non-

zero pair, i.e. ⟨1.2, 3.4⟩, which has two repetitions; and RPNZ
13
= 1

because P24 contains two non-zero pairs, i.e. ⟨1.2, 5.6⟩ and ⟨1.2, 2.3⟩,

but only one repetition of ⟨1.2, 2.3⟩.

So, we define the similarity between columns i and j as the ratio

CSM[j][i] = CSM[i][j] =
RPNZ

i j

n
.

From the previous example we have CSM[1][2] = 2/6 = 0.3̄, and

CSM[1][3] = 1/6 = 0.16̄.

The computation ofCSM[i][j] can be done inO(n) expected time

by inserting each pair in a hash table, thus takingO(m2n) time over

all column pairs. An alternative procedure takingO(m2n logn) time

consists in collecting all pairs and sorting them in order to easily

count duplicates. The sorting-based approach turned out to be very

fast in practice and was the method of choice for our experiments.

The storage of CSM takes Θ(m2) words if we use a full-sized

representation. We also experimented with two heuristics as for

reducing that space bound to O(mk), where k is a user-defined

sparsity parameter. The first heuristic consists of building a sparse
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CSMmatrix, called locally-pruned column-column similaritymatrix

CSMP , in which we maintain only the k greatest column-column

similarity scores for each column. The second heuristic builds a

globally-pruned column-column similarity matrix CSMP by keep-

ing the top-(mk) similarity scores among all the entries ofCSM. The

space complexity is still O(mk), but now the pruning is performed

globally over all entries of the original matrix.

5.2 Column-reordering approaches
Once we have computed the column-similarity matrix CSM either

in its full or sparse version, we leverage it to find a column reorder-

ing that helps grammar compression. We investigated four different

column-reordering algorithms working upon the weighted graphG
whose adjacency matrix is either CSM (consisting of Θ(m2) edges)

or CSMP (consisting of Θ(mk) edges). They are described below.

TheLin-Kernighanheuristic (LKH) is a heuristic for the Trav-
elling Salesman Problem (TSP). Though the algorithm is approxi-

mate, the implementation in [18, 19] computes the best known

solution for a series of large-scale instances with unknown optima.

Wemodel column reordering as an instance of a (symmetric) TSP

stated on the graphG above. Each of them columns in the original

matrix M corresponds to a different city in the TSP; the distance

between pairs of cities (columns) is given by the corresponding

entry in the matrices CSM or CSMP (negated, since the TSP is a

minimisation problem and we want to maximise total similarity).

The TSP solution will specify an ordering ofM ’s columns. We used

the ANSI C implementation of LKH available at: http://webhotel4.

ruc.dk/~keld/research/LKH/ (version 2.0.9).

The PathCover approach reduces column reordering to the

problem of finding a set ofmaximumweighted paths in theweighted

undirected graph G mentioned above; it requires that these paths

“cover” all of its nodes and they are disjoint. We introduce this

approach since TSP is NP-hard, but we do not necessarily need

to impose its strong constraint of forming a single Hamiltonian

path. We may indeed concentrate our algorithmic effort upon the

subset of compressible columns [32], leaving aside those columns

that do not exhibit significant redundancies and correlations. Path-
Cover returns a set of partial reorderings (induced by the found

paths), which yield a full reordering if concatenated together. The

approach is a reminiscence of the single linkage algorithm used

in hierarchical clustering [25, Ch. 17]. We implement PathCover
using a variant of the Kruskal’s algorithm for Minimum Spanning

Trees [9]. We scan G’s edges by decreasing weights, and add edges

to the solution only if they form disjoint paths. Our implementation

is written in Python, yet it is very fast in practice.

PathCover+ is a variant of PathCover in which the column-

column similarity matrix is dynamically updated as follows. Let

(ur−1,ur ) be the heaviest edge selected by the PathCover algo-
rithm, and assume that it extends a covering path to form P =

(u1, ...,ur−1,ur ). Then, for each node v adjacent to some node

uj ∈ P, we recompute the new weight w(v,uj ) as the minimum

among the weights from v to any node in P. Thus, the weighting

corresponds to coalescing the path P into a macro-node and mak-

ing the link from v to P as the minimum weighted edge from v to

any node u ∈ P. We implemented PathCover+ in Python following

a procedure similar to Sybein’s MST algorithm [27].

TheMaximumWeighted Matching (MWM) approach deter-

mines a weighted matching M of the graph G . By definition, M is

a subgraph ofG such that no two edges share common vertices and

the sum of the edge weights is maximum among all possible match-

ings in G. The best exact MWM algorithm exhibits Θ(m3) time

complexity [15]. For our column-reordering purpose, we generate a

bipartite graph BG with 2m nodes and

(m
2

)
edges weighted accord-

ing to the column-column similarity entries. More in detail, for each

column pair i , j, with i < j, we insert an edge in BG that connects

the i-th node to the j-th node and assign to it weight CSM[i][j] or
CSMP [i][j]. Choosing that edge corresponds to assuming that the

i-th column precedes the j-th column in the reordering. After the

MWM is computed, we use this predecessor-successor relation to

determine the final column reordering. Notice we cannot induce

cycles, as we assumed that edges (i, j) are oriented, namely i < j . If
the matching size |M| is lower than the number of columnsm inM ,

then MWM does not induce a single column-reordering sequence,

but rather a set of shorter disjoint column-reordering sequences: we

thus concatenate these partial reordering sequences in an arbitrary

order to get a full reordering. We implementedMWM in C++ using

the Boost library (https://www.boost.org).

5.3 Experimenting with column reordering
We conducted a set of experiments using the matrices reported in

Table 1 to analyse the time and space performance of the column-

reordering approaches described above. After applying the column-

reordering algorithm we compressed the reordered matrix using

re_ans from Section 4. We report the results only for the methods

LKH, PathCover, and MWM, since the application of the Path-
Cover+method always resulted in worse compression performance.

The three column-reordering algorithms exhibit quite differ-

ent time performance. PathCover is faster thanMWM, and their

time performance is dominated by the construction of the column-

similarity matrix. LKH is the most time-consuming one and its run-

ning time slightly varies with the setting of LKH heuristic (faster

solutions correspond to worse results), but in any case LKH is orders

of magnitude slower than the other approaches.

In terms of space performance, we found that the locally-pruned

version of the CSMmatrix usually performs better than the full ma-

trix or the globally-pruned matrix. Table 4 reports the compression

achieved by this approach for the three reordering algorithms and

for three different values of the sparsity parameter k . Compression

ratios are relative to the size of the uncompressed matrix and thus

can be compared against those in Table 1. We see from Table 4 that

for Susy the three reordering algorithms exhibit the same perfor-

mance, and LKH slightly wins over ImageNet. PathCover is superior
over three matrices, whileMWM is the winner for the remaining

three. LKH is often very close to the best compression but, given

its larger computational cost, we conclude that it is not a competi-

tive solution. Overall, reordering columns is advantageous up to

16.35% over Covtype, and up to 10.26% over Airline78, as indicated
in column “gain”, where we report the space reduction induced by

column-reordering with respect to the version without reordering.

Next, to measure the effectiveness of the reordering techniques

for thematrixmultiplication operationswe performed the following

experiment. We partitioned each input matrix in 16 blocks of rows
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Table 4: Compression achieved by our column-reordering al-
gorithms, with the locally-pruned CSM matrix, followed by
the algorithm re_ans. Compression ratios can be compared
against those in Table 1, which are also reported in the col-
umn “n.r.” (no reordering) to facilitate reading; red values
represent the best results. The last column reports the rel-
ative space reduction compared to the version without re-
ordering.

matrix n.r. LKH PathCover MWM gain

S
u
s
y

k=4

6
6
.6
3
% 66.57% 66.57% 66.57%

0.09%k=8 66.57% 66.57% 66.57%

k=16 66.57% 66.57% 66.57%

H
i
g
g
s k=4

3
8
.0
5
% 38.03% 38.00% 37.99%

0.36%k=8 37.92% 38.00% 37.98%

k=16 38.02% 38.04% 37.92%

A
i
r
l
. k=4

9
.2
7
%

9.63% 9.21% 10.17%

10.26%k=8 8.65% 9.52% 8.32%
k=16 9.43% 8.34% 9.63%

C
o
v
t
. k=4

3
.8
7
%

3.74% 3.30% 4.19%

16.35%k=8 3.51% 3.24% 3.72%

k=16 3.25% 3.26% 3.72%

C
e
n
s
u
s

k=4

1
.5
3
%

1.37% 1.39% 1.37%

3.40%k=8 1.33% 1.37% 1.41%

k=16 1.31% 1.30% 1.39%

O
p
t
i
c
a
l

k=4

3
4
.3
1
% 33.23% 32.60% 33.19%

4.99%k=8 32.68% 33.03% 33.26%

k=16 33.22% 32.89% 32.95%

M
n
.2
m k=4

5
.3
3
%

5.29% 5.31% 5.32%

0.73%k=8 5.29% 5.31% 5.29%
k=16 5.30% 5.31% 5.30%

I
m
.N
e
t

k=4

3
.8
6
%

3.84% 3.87% 3.90%

2.14%k=8 3.82% 3.84% 3.88%

k=16 3.78% 3.81% 3.86%

as described in Section 4.1. Then, we applied to each block of rows

the best column-reordering according to Table 4 (in either case with

sparsity parameter k = 16) followed by re_ans, and selected the

column-reordering algorithms yielding the best compression (so

each block can be subjected to a different permutation).
2
With such

reordered-and-compressed matrix, we performed our benchmark

computation (Eq. 4) and recorded the peak memory usage and the

average time per iteration. We reiterated the same procedure for

re_iv and reported the results in Table 5. Comparing these results

with those in Table 2 we see that reordering helps to reduce the

peak space and, to a lesser degree, the average running time too.

Although the benefits of reordering might appear small in ab-

solute terms they can be again significant in relative terms with
respect to the size of the compressed matrix. To see this, Figure 4

shows, for the two algorithms and for each input matrix, the per-

centage improvements in the peak memory usage, computed as

2
As we observed at the end of Section 3.2, we do not need to store the column permu-

tation because every pair in S stores the original column of each element.

(po −pr )/po where po and pr are respectively the peak memory us-

age for the original and for the reordered matrix. We see that there

is an interesting memory-usage reduction for half of the inputs: for

Airline78, Covtype, Census and ImageNet compressed by re_iv and
re_answe observed a memory usage reduction between roughly 5%

and 15% of the original memory usage. The running times for these

experiments are reported in Table 5. Remarkably, for Airline78 such
memory reduction translates to a 25% reduction in the average

running time. Note also that sometimes reordering does not help:

for Mnist2m reordering does not change the peak memory usage

but instead induces a small (5%) increase in the running time for

both algorithms; and for Susy, the reordering slightly increases the

peak memory, with no significant changes in the running time.

Figure 4: Percentage (relative) improvements in terms of the
peak memory usage for the reordered matrices as resulting
from the data reported in Table 5 for re_iv and re_ans.

5.4 Matrix-vector multiplication efficiency
In this section we are interested in evaluating the peak memory

usage versus the speed of matrix-vector multiplication over five

approaches: two based on our compressors re_iv and re_ans applied
over the block-wise optimally reordered matrix (described in the

previous section), CLA [12, 13], and two baselines storing in RAM

the gzip-compressed matrix or the uncompressed matrix. In our

experiments CLA was set to use all the available threads (80 in our

test machine) while the other approaches used 16 threads partition-

ing the input matrix into 16 row-blocks as in Section 4.1. Results

are reported in Table 5. Columns size and PM are respectively the

size of the compressed matrix and the peak memory usage during

the multiplication algorithm expressed as percentage with respect

to the size of the uncompressed matrix (we omitted the size for the

“uncompressed” algorithm since it was obviously 100%). Column

time is the time in seconds for a single iteration of Eq. (4) averaged

over 500 iterations. PM and time were measured using the Unix

tool time except for CLA as discussed below.

The comparison with CLA faces some technical hurdles: we

implemented our tools in small self-contained C/C++ programs,

while CLA is available inside Apache SystemDS [34], a complete

ML system written in Java and designed to run possibly on top of

Apache Spark. SystemDS’s algorithms are expressed in a high-level

languagewith an R-like syntax: such scripts are parsed and analysed
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Table 5: Performance comparison considering compressed space, peak memory usage (PM), and average running time in sec-
onds for matrix-vector multiplication, see text for details.

re_iv 16 threads re_ans 16 threads CLA multithread gzip 16 threads uncompressed

16 threads

matrix size PM time size PM time size PM time size PM time PM time

Susy 68.99% 77.53% 0.35 65.99% 82.77% 0.45 76.14% — — 53.27% 63.09% 2.22 106.14% 0.17

Higgs 41.63% 46.68% 0.58 37.44% 44.63% 0.71 32.74% 146.68% 2.09 48.38% 54.56% 5.48 103.74% 0.51

Airline78 9.35% 16.06% 0.17 8.13% 16.43% 0.23 12.34% 120.27% 1.17 13.27% 17.53% 6.27 103.57% 0.75

Covtype 4.78% 16.25% 0.01 4.17% 16.11% 0.01 4.55% 70.15% 0.05 6.25% 10.26% 0.41 103.51% 0.03

Census 2.00% 5.70% 0.01 1.55% 7.25% 0.02 3.77% 108.96% 0.16 5.54% 7.92% 1.89 101.77% 0.12

Optical 36.05% 44.50% 0.06 34.93% 56.39% 0.09 40.44% 176.90% 0.20 53.55% 57.26% 1.00 101.47% 0.04

Mnist2m 6.24% 8.19% 0.64 5.88% 8.30% 0.82 6.22% 47.09% 1.98 6.46% 6.76% 24.96 100.16% 0.57

ImageNet 4.70% 6.59% 0.48 4.28% 6.59% 0.48 6.67% 56.80% 0.97 5.52% 5.89% 10.91 100.16% 0.46

before the actual computation starts. In addition, SystemDS does not

store the compressed matrix on disk: matrices are compressed from

scratch at every execution; since the compression algorithm has a

randomised component the compressed representation can change

from one execution to the next one. For these technical reasons, the

time for CLA includes compression time, the compressed matrix

size was derived from SystemDS logs, and the peak memory usage

for the matrix-vector multiplication phase alone has been computed

“forcing” the Java garbage collector using a procedure suggested by

CLA’s authors. Note that for the matrix Susy, CLA was unable to

complete the computation due to a Java runtime exception.

In terms of compression, CLA is less effective than re_ans with
the only exception of Higgs. Compared to re_iv, CLA is clearly

superior for Higgs, marginally superior for Covtype and Mnist2m,

and less effective for all the other inputs. The PM of CLA exceeded

in some cases the dimension of the uncompressed representation

and it was always larger than our approaches by a factor from 3.14

(Higgs) to 19.12 (Census). In terms of running time, CLA is always

at least twice slower than re_ans, and at least three times slower

than re_iv (but recall CLA time includes construction).

The gzip-based approach decompress each row block at each

iteration and multiply it for the current vector. The whole computa-

tion is done completely in RAM using a thread for each row block;

anyway, this was by far the slowest algorithm though having the

best PM together with our algorithms (no clear winner here), which

however are much faster (more than 40× for the most compressible

matrices). Finally, the approach storing the uncompressed matrix in

RAM has naturally a PM slightly larger than 100% and it is usually

the fastest algorithm, except for some highly-compressible files (i.e.

Covtype, Census and Airline78) where our approaches are faster.
Summing up, from the above comparisons we can draw some

important conclusions about our grammar compressors: (1) they

are able to save disk space and PM, thus providing experimental

evidence to the theoretical space bounds in terms of the k-th order

statistical entropy; (2) they are the fastest among the compressed

approaches, and for the most compressible matrices even faster

than the uncompressed algorithm, thus providing experimental

evidence to the theoretical results ensuring that the number of

operations is bounded by the size of the compressed matrix.

6 CONCLUSIONS AND FUTUREWORK
We have presented a grammar-based lossless compression scheme

for real-valued matrices that guarantees the size of the compressed

matrix is proportional to the k-th order statistical entropy of the

Compressed Sparse Row/Value representation. We have shown how

to perform left and right matrix-vector multiplications in time and

space linear in the size of the compressed matrix representation.

These remarkable properties of our approach open the related

problem of reordering the matrix elements for maximising com-

pression. This requires discovering and exploiting the hidden de-

pendencies between elements in ML matrices. As a first step in this

direction we have introduced and tested four column-reordering

algorithms based upon a new column-similarity score, which takes

into account the subsequent grammar-compression stage.

As a future work, we plan to investigate how much row permu-

tation and co-clustering techniques [3, 10, 17] can contribute to

achieve even better compression ratios. Moreover, it seems possible

to extend the proposed grammar-compressed techniques to deal

with semiring-annotated data, thereby computing binary/unary

joins efficiently. We can indeed operate upon logical matrices and

simulate binary joins by replacing “+” withOR and “∗” withAND. It
would be of interest also to adapt and test our matrix-compression

scheme in the context of columnar DBs, which feature multiple

data types, such as strings, integers, categorical data, etc.. Finally,

web and social graphs offer another relevant opportunity for the

application of our new compression schemes.
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