
FM-KZ: An Even Simpler Alphabet-IndependentFM-IndexRafa l Przywarski1, Szymon Grabowski1, Gonzalo Navarro2, and Alejandro Salinger31 Computer Engineering Dept., Te
h. Univ. of  L�od�z, Poland.2 Dept. of Computer S
ien
e, Univ. of Chile, Chile.3 David R. Cheriton S
hool of Computer S
ien
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t. In an earlier work [7℄ we presented a simple FM-index variant, based on the idea ofHu�man-
ompressing the text and then applying the Burrows-Wheeler transform over it. The maindrawba
k of using Hu�man was its la
k of syn
hronizing properties, for
ing us to supply anotherbit stream indi
ating the Hu�man 
odeword boundaries. In this way, the resulting index neededO(n(H0 + 1)) bits of spa
e but with the 
onstant 2 (
on
erning the main term). There are severaloptions aiming to mitigate the overhead in spa
e, with various e�e
ts on the query handling speed.In this work we propose Kautz-Ze
kendorf 
oding as a both simple and pra
ti
al repla
ement forHu�man. We dub the new index FM-KZ. We also present an eÆ
ient implementation of the rankoperation, whi
h is the main building bri
k of the FM-KZ. Experimental results show that our indexprovides an attra
tive spa
e/time tradeo� in 
omparison with existing su

in
t data stru
tures, andin the DNA test it even wins both in sear
h time and spa
e use. An additional asset of our solutionis its relative simpli
ity.1 Introdu
tionA full-text index is a data stru
ture that enables to determine the o

 o

urren
es of ashort pattern P = p1p2 : : : pm in a large text T = t1t2 : : : tn without a need of s
anningover the whole text T . Text and pattern are sequen
es of 
hara
ters over an alphabet �of size �. The pattern may appear at any position in T , and its length is also arbitrary.In pra
ti
e one wants to know not only the value o

, i.e., how many times the patternappears in the text (
ounting query) but also the text positions of those o

 o

urren
es(reporting query, and usually also a text 
ontext around them (display query).Classi
 full-text indexes, albeit powerful and versatile, need spa
e several times greaterthan the text itself. Hen
e, a natural interest in su

in
t full-text indexes has been ob-served in re
ent years. A 
omprehensive survey of existing te
hniques in this very a
tiveresear
h area 
an be found in [13℄.A truly ex
iting perspe
tive has been originated in the work of Ferragina and Manzini[3℄; they showed a full-text index may dis
ard the original text, as it 
ontains enoughinformation to re
over the text. We denote a stru
ture with su
h a property with theterm self-index.The FM-index of Ferragina and Manzini [3℄ was the �rst self-index with spa
e 
om-plexity expressed in terms of kth order (empiri
al) entropy and pattern sear
h time linearonly in the pattern length. Its spa
e 
omplexity, however, 
ontains an exponential depen-den
e on the alphabet size; a weakness eliminated in a pra
ti
al implementation [4℄ forthe pri
e of not a
hieving the optimal sear
h time anymore. Therefore, it has been in-teresting both from the point of theory and pra
ti
e to 
onstru
t an index with ni
elybound both spa
e and time 
omplexities, preferably with no (or mild) dependen
e on thealphabet size.



The large alphabet dependen
e of the original FM-index shows up not only in thespa
e usage, but also in the time to show an o

urren
e position and display text sub-strings. The FM-index needs up to 5Hkn + O �(� log � + log logn) nlog n + n
��+1� bits ofspa
e, where 0 < 
 < 1. The time to sear
h for a pattern and obtain the number of itso

urren
es in the text is the optimal O(m). The text position of ea
h o

urren
e 
anbe found in O �� log1+" n� time, for some " > 0 that appears in the sublinear termsof the spa
e 
omplexity. Finally, the time to display a text substring of length L isO �� (L + log1+" n)�. The last operation is important not only to show a text 
ontextaround ea
h o

urren
e, but also be
ause a self-index repla
es the text and hen
e it mustprovide the fun
tionality of retrieving any desired text substring.One of the proposals to eliminate an exponential dependen
e on the alphabet size wasHu�man FM-index [7℄: It was based on the ba
kward sear
h idea of [4℄ but the noveltywas to Hu�man en
ode the text (and the pattern) so as to redu
e the alphabet to binary.As a result, any dependen
e on the alphabet size was removed. We showed that our index
an operate using n(2H0 + 3 + ")(1 + o(1)) bits, for any " > 0. No alphabet dependen
eis hidden in the sublinear terms.At sear
h time, our index �nds the number of o

urren
es of the pattern in O(m(H0+1)) average time. The text position of ea
h o

urren
e 
an be reported in worst 
ase timeO �1" (H0 + 1) logn�. Any text substring of length L 
an be displayed in O ((H0 + 1) L)average time, in addition to the mentioned worst 
ase time to �nd a text position.Sin
e the original presentation, its implementation has been optimized and also avariant with 4-ary Hu�man has been 
he
ked [6℄. Albeit not among the most su

in
t,the 4-ary Hu�man FM-index appears to be among the fastest and thus pra
ti
al indi
es.In this paper we present an alternative to Hu�man 
oding variants. Instead, we useKautz-Ze
kendorf 
oding [11, 17℄, 
apable of instant dete
tion of 
odeword boundaries.To give the 
avor of this idea, we note that in its basi
 variant, the Kautz-Ze
kendorf
ode has no 
odeword with any two adja
ent 1's.2 The FM-index Stru
tureThe FM-index [3℄ is based on the Burrows-Wheeler transform (BWT) [1℄, whi
h produ
esa permutation of the original text, denoted by T bwt = bwt(T ). String T bwt is a result ofthe following forward transformation: (1) Append to the end of T a spe
ial end marker $,whi
h is lexi
ographi
ally smaller than any other 
hara
ter; (2) form a 
on
eptual matrixM whose rows are the 
y
li
 shifts of the string T$, sorted in lexi
ographi
 order; (3)
onstru
t the transformed text L by taking the last 
olumn of M. The �rst 
olumn isdenoted by F .The suÆx array (SA) A of text T$ is essentially the matrix M: A[i℄ = j i� the ithrow ofM 
ontains string tjtj+1 � � � tn$t1 � � � tj�1. Given the suÆx array, the sear
h for theo

urren
es of the pattern P = p1p2 � � � pm is trivial. The o

urren
es form an interval[sp; ep℄ in A su
h that suÆxes tA[i℄tA[i℄+1 � � � tn, sp � i � ep, 
ontain the pattern as apre�x. This interval 
an be sear
hed for by using two binary sear
hes in time O(m logn).The suÆx array of text T is represented impli
itly by T bwt. The novel idea of theFM-index is to store T bwt in 
ompressed form, and to simulate the sear
h in the suÆxarray. To des
ribe the sear
h algorithm, we need to introdu
e the ba
kward BWT thatprodu
es T given T bwt: 2



1. Compute the array C[1 : : : �℄ storing in C[
℄ the number of o

urren
es of 
hara
tersf$; 1; : : : ; 
�1g in the text T . Noti
e that C[
℄+1 is the position of the �rst o

urren
eof 
 in F (if any).2. De�ne the LF-mapping LF [1 : : : n + 1℄ as LF [i℄ = C[L[i℄℄ + O

(L; L[i℄; i), whereO

(X; 
; i) equals the number of o

urren
es of 
hara
ter 
 in the pre�x X[1; i℄.3. Re
onstru
t T ba
kwards as follows: set s = 1 and T [n℄ = L[1℄ (be
ause M[1℄ = $T );then, for ea
h n� 1; : : : ; 1 do s LF [s℄ and T [i℄ L[s℄.We are now ready to des
ribe the sear
h algorithm given in [3℄ (Fig. 1). It �nds theinterval ofA 
ontaining the o

urren
es of the pattern P . It uses the array C and fun
tionO

(X; 
; i) de�ned above. Using the properties of the ba
kward BWT, it is easy to seethat the algorithm maintains the following invariant [3℄: At the ith phase, the variable sppoints to the �rst row ofM pre�xed by P [i;m℄ and the variable ep points to the last rowofM pre�xed by P [i;m℄. The 
orre
tness of the algorithm follows from this observation.Algorithm FM Sear
h(P ,T bwt)(1) i = m;(2) sp = 1; ep = n;(3) while ((sp � ep) and (i � 1) do(4) 
 = P [i℄;(5) sp = C[
℄ +O

(T bwt; 
; sp� 1)+1;(6) ep = C[
℄ +O

(T bwt; 
; ep);(7) i = i� 1;(8) if (ep < sp) then return \not found" else return \found (ep� sp+ 1) o

s".Figure 1. Algorithm for 
ounting the number of o

urren
es of P [1 : : :m℄ in T [1 : : : n℄.Ferragina and Manzini [3℄ des
ribe an implementation of O

(T bwt; 
; i) that uses a
ompressed form of T bwt. They show how to 
ompute O

(T bwt; 
; i) for any 
 and i in
onstant time. However, to a
hieve this they need exponential spa
e (in the size of thealphabet). In a pra
ti
al implementation [4℄ this was avoided, but the 
onstant timeguarantee for answering O

(T bwt; 
; i) was no longer valid.The FM-index 
an also show the text positions where P o

urs, and display any textsubstring. The details are deferred to Se
tion 5.3 Rank and Sele
t Queries on Bit ArraysA 
ru
ial building blo
k we use is a data stru
ture to perform rank operations over abit array. Given a bit sequen
e B[1 : : : n℄, rank(B; i) is the number of 1's in B[1 : : : i℄,rank(B; 0) = 0. This fun
tion 
an be 
omputed in 
onstant time using only o(n) extrabits [10, 12, 2℄. The solution, as well as its more pra
ti
al implementation variants, aredes
ribed in [5℄; here we present a novel implementation, whi
h seems to be fastest inpra
ti
e.For an input bit array B of size n and a given parameter bs we 
reate a lookup ta-ble N with dn=2bse entries. Namely, for ea
h k = 0 : : : bn=2bs
 � 1 we 
ompute: N [k℄ =rank(B; (k+1)�2bs). If dn=2bse > bn=2bs
, then we also 
ompute: N [bn=2bs
℄ = rank(B; n).3



The above stru
ture needs 32� dn=2bse = O(n) bits, where the 
onstant 32 is the numberof bits per entry of N .Now, we 
al
ulate rank(B; i) as follows. If i < 2bs, then rank(B; i) = pop
ount(B; 0 : : : i).Otherwise, rank(B; i) = N [bi=2bs
 � 1℄ + pop
ount(B; (bi=2bs
 � 2bs) : : : i). The operationpop
ount(B; a : : : b) returns the number of set bits in the interval B[a : : : b℄, a � b, makinguse of a pre
omputed table. As long as the interval width is on the order of ma
hine word,this is a 
onstant time operation.Sometimes we need to 
al
ulate the inverse fun
tion, sele
t(B; j), whi
h gives theposition of the j-th bit set in B. It 
an also be implemented in 
onstant time usingo(n) additional spa
e [10, 12, 2℄. More pra
ti
al implementations exist [5℄, but it is alwayssigni�
antly slower than rank, and also more rarely needed.4 First Hu�man, then Burrows-WheelerWe fo
us now on our index representation, starting from the original variant. Imaginethat we 
ompress our text T$ using Hu�man. The resulting bit stream will be of lengthn0 < (H0 + 1)n, sin
e (binary) Hu�man poses a maximum representation overhead of 1bit per symbol4. Let us 
all T 0 this sequen
e. Let us also de�ne a se
ond bit array Th,of the same length of T 0, su
h that Th[i℄ = 1 i� i is the starting position of a Hu�man
odeword in T 0. Th is also of length n0. (We will not, however, represent T 0 nor Th in ourindex.)The idea is to sear
h the binary text T 0 instead of the original text T . Let us applythe Burrows-Wheeler transform over text T 0, so as to obtain B = (T 0)bwt. The terminator
hara
ter, \$", is ex
luded from T 0 so as to have a binary alphabet.More pre
isely, let A0[1 : : : n0℄ be the suÆx array for text T 0, that is, a permutationof the set 1 : : : n0 su
h that T 0[A0[i℄ : : : n0℄ < T 0[A0[i + 1℄ : : : n0℄ in lexi
ographi
 order, forall 1 � i < n0. In a lexi
ographi
 
omparison, if a string x is a pre�x of y, assumex < y. SuÆx array A0 will not be expli
itly represented. Rather, we represent bit arrayB[1 : : : n0℄, su
h that B[i℄ = T 0[A0[i℄ � 1℄ (ex
ept that B[i℄ = T [n0℄ if A0[i℄ = 1). We alsorepresent another bit array Bh[1 : : : n0℄, su
h that Bh[i℄ = Th[A0[i℄℄. This tells whetherposition i in A0 points to the beginning of a 
odeword.Our goal is to sear
h B exa
tly like the FM-index. For this sake we need array Cand fun
tion O

. Sin
e the alphabet is binary, however, O

 
an be easily 
omputed:O

(B; 1; i) = rank(B; i) and O

(B; 0; i) = i� rank(B; i). Also, array C is so simple forthe binary text that we 
an do without it: C[0℄ = 0 and C[1℄ = n0 � rank(B; n0), thatis, the number of zeros in B (of 
ourse value n0 � rank(B; n0) should be pre
omputed inpra
ti
e). Therefore, C[
℄ + O

(T bwt; 
; i) is repla
ed in our index by i � rank(B; i) if
 = 0 and n0 � rank(B; n0) + rank(B; i) if 
 = 1.There is a small twist, however, due to the fa
t that we are not putting a terminatorto our binary sequen
e T 0 and hen
e no terminator appears in B. Let us 
all \#" theterminator of the binary sequen
e so that it is not 
onfused with the terminator \$" ofT$. In the position p# su
h that A0[p#℄ = 1, we should have B[p#℄ = #. Instead, we aresetting B[p#℄ to the last bit of T 0. This is the last bit of the Hu�man 
odeword assigned tothe terminator \$" of T$. Sin
e we 
an freely swit
h left and right siblings in the Hu�man4 Note that these n and H0 refer to T$, not T . However, the di�eren
e between both is only O(logn),and will be absorbed by the o(n) terms that will appear later.4




ode, we will ensure that this last bit is zero. Hen
e the 
orre
t B sequen
e would be oflength n0 + 1, starting with 0 (whi
h 
orresponds to T 0[n0℄, the 
hara
ter pre
eding theo

urren
e of \#", sin
e # < 0 < 1), and it would have B[p#℄ = #. To obtain the rightmapping to our binary B, we must 
orre
t C[0℄ +O

(B; 0; i) = i� rank(B; i) + [i < p#℄,that is, add 1 to the original value when i < p#. The 
omputation of C[1℄ + O

(B; 1; i)remains un
hanged.Therefore, by prepro
essing B to solve rank queries, we 
an sear
h B exa
tly asthe FM-index. The extra spa
e required by the rank stru
ture is o(H0n), without anydependen
e on the alphabet size. Overall, we have used at most n(2H0 + 2)(1 + o(1))bits for our representation. This will grow slightly in the next se
tions due to additionalrequirements.Our sear
h pattern is not the original P , but its binary 
oding P 0 using the Hu�man
ode we applied to T . Converting P to P 0 takes O(m) time. If we assume that the
hara
ters in P have the same distribution of T , then the length of P 0 is < m(H0 + 1).This is the number of steps to sear
h B using the FM-index sear
h algorithm.The answer to that sear
h, however, is di�erent from that of the sear
h of T for P . Thereason is that the sear
h of T 0 for P 0 returns the number of suÆxes of T 0 that start withP 0. Certainly these in
lude the suÆxes of T that start with P , but also other super
uouso

urren
es may appear. These 
orrespond to suÆxes of T 0 that do not start a Hu�man
odeword, yet they start with P 0.This is the reason why we have marked the suÆxes that start a Hu�man 
odewordin Bh. In the range [sp; ep℄ found by the sear
h for P 0 in B, every bit set in Bh[sp : : : ep℄represents a true o

urren
e. Hen
e the true number of o

urren
es 
an be 
omputed asrank(Bh; ep)� rank(Bh; sp� 1).Figure 2 depi
ts the sear
h algorithm.Algorithm Hu�-FM Sear
h(P 0,B,Bh)(1) i = m0;(2) sp = 1; ep = n0;(3) while ((sp � ep) and (i � 1)) do(4) if P 0[i℄ = 0 thensp = (sp� 1)� rank(B; sp� 1) + 1 + 1� [sp� 1 � p#℄;ep = ep� rank(B; ep) + 1� [ep � p#℄;else sp = n0 � rank(B; n0) + rank(B; sp� 1) + 1;ep = n0 � rank(B; n0) + rank(B; ep);(7) i = i� 1;(8) if ep < sp then o

 = 0 else o

 = rank(Bh; ep)� rank(Bh; sp� 1);(9) if o

 = 0 then return \not found" else return \found (o

) o

s".Figure 2. Algorithm for 
ounting the number of o

urren
es of P 0[1 : : : m0℄ in T 0[1 : : : n0℄.Therefore, the sear
h 
omplexity is O(m(H0+1)), assuming that the zero-order distri-butions of P and T are similar. It is well-known that the longest Hu�man 
odeword doesnot ex
eed O(m logn) bits. From this we immediately obtain the worst 
ase sear
h 
ostof O(m logn) for our index. This mat
hes the worst 
ase sear
h time of the 
ompressedsuÆx array (CSA) of Sadakane [16℄. An ex
eptional situation o

urs when P 
ontains a5




hara
ter not present in T . This is easier, however, as we immediately know that P doesnot o

ur in T .Is it in fa
t possible to a
hieve O(m logn) sear
h 
omplexity also for the worst 
ase, forthe pri
e of 2n extra bits. Basi
ally, the idea is to use a length-limited Hu�man 
odingvariant but we omit the details and analysis due to la
k of spa
e. This idea, however,does not have mu
h importan
e in pra
ti
e be
ause extremely skew symbol distributionsalmost never happen and thus optimizing the worst 
ase is hardly worth any e�ort.5 Reporting O

urren
es and Displaying the TextUp to now we have fo
used on the sear
h time, that is, the time to determine the suÆxarray interval 
ontaining all the o

urren
es. In pra
ti
e, one needs also the text positionswhere they appear, as well as a text 
ontext. Sin
e self-indexes repla
e the text, in generalone needs to extra
t any text substring from the index.Given the suÆx array interval that 
ontains the o

 o

urren
es found, the FM-indexreports ea
h su
h position in O(� log1+" n) time, for any " > 0 (whi
h appears in thesublinear spa
e 
omponent). The CSA 
an report ea
h in O(log" n) time, where " is paidin the nH0=" spa
e. Similarly, a text substring of length L 
an be displayed in timeO(�(L + log1+" n)) by the FM-index and O(L + log" n) by the CSA.Our index 
an do better than the FM-index in this respe
t, although not as well as theCSA. Using (1 + ")n additional bits, we 
an report ea
h o

urren
e position in O(1"(H0 +1) logn) time and display a text 
ontext in time O(L log� + logn) in addition to thetime to �nd an o

urren
e position. On average, assuming that random text positions areinvolved, the overall 
omplexity to display a text interval be
omes O((H0+1)(L+ 1" logn)).Those 
omplexities hold for all the variants of our solution: based on the binary or higherarity Hu�man, or on the Kautz-Ze
kendorf 
oding. Still, the overall idea of reportingand displaying via sampling sorted suÆxes at regular intervals was �rst presented in theseminal work on the FM-index, and is now widely used in the �eld. Details 
an be founde.g., in [6℄.A related query type 
on
erns displaying the text around ea
h pattern o

uren
e. Moregenerally, we want to display a text substring T [l : : : r℄ of length L = r� l+ 1. Again, wemake use of a known te
hnique, on the overall obtaining the following time 
omplexities[6℄: O((H0 + 1)(L + 1" logn)) in the average 
ase, and O(L log� + (H0 + 1)1" logn) in theworst 
ase.6 K-ary Hu�manThe purpose of the idea of 
ompressing the text before 
onstru
ting the index is toremove the sharp dependen
e of the alphabet size of the FM index. This 
ompression isdone using a binary alphabet. In general, we 
an use Hu�man over a 
oding alphabet ofk > 2 symbols and use dlog ke bits to represent ea
h symbol. We 
all this generalizationthe k-ary FM-Hu�man. Varying the value of k yields interesting time/spa
e tradeo�s.We use only powers of 2 for k values, so ea
h symbol 
an be represented without wastingspa
e.The spa
e usage varies in di�erent aspe
ts. Array B in
reases its size sin
e the
ompression ratio gets worse. B has length n0 < (H(k)0 + 1)n symbols, where H(k)0 is6



the zero order entropy of the text 
omputed using base k logarithm, that is, H(k)0 =�P�i=1 nin logk �nin � = H0= log2 k. Therefore, the size of B is bounded by n0 log k = (H0 +log k)n bits. The size of Bh is redu
ed sin
e it needs one bit per symbol, and hen
e its sizeis n0. The total spa
e used by these stru
tures is then n0(1+log k) < n(H(k)0 +1)(1+logk),whi
h is not larger than the spa
e requirement of the binary version, 2n(H0 + 1), for1 � log k � H0.The rank stru
tures also 
hange their size. The rank stru
tures for Bh are 
omputedin the same way of the binary version, and therefore they redu
e their size, using o(H(k)0 n)bits. For B, we no longer 
an use the rank fun
tion to simulate O

. Instead, we needto 
al
ulate the o

urren
es of ea
h of the k symbols in B. For this sake, we pre
al
ulatesublinear stru
tures for ea
h of the symbols, in
luding k tables that 
ount the o

urren
esof ea
h symbol in a 
hunk of b = dlogk(n)=2e symbols. Hen
e, we need o(kH(k)0 n) bits forthis stru
tures. In total, we need n(H(k)0 + 1)(1 + log k) + o(H(k)0 n(k + 1)) bits.Regarding the time 
omplexities, the pattern has length < m(H(k)0 + 1) symbols, sothis is the sear
h 
omplexity, whi
h is redu
ed as we in
rease k. For reporting queries anddisplaying text, we need the same additional stru
tures TS, ST and S that for the binaryversion. The k-ary version 
an report the position of an o

urren
e in O�1� (H(k)0 +1) logn�time, whi
h is the maximum distan
e between two sampled positions. Similarly, the timeto display a substring of length L be
omes O((H(k)0 + 1)(L + 1� logn)) on average andO(L log� + (H(k)0 + 1)1� logn) in the worst 
ase.7 Kautz-Ze
kendorf CodingThe 
ondition for getting rid of the Bh array is to have a 
oding for whi
h the bitstream enables instant syn
hronization at 
odeword boundaries. A solution 
ould be basedon the representation of integers, �rst advo
ated by Kautz [11℄ for its syn
hronizationproperties, whi
h presents ea
h number in a unique form as a sum of Fibona

i numbers.This te
hnique is better known from a work by Ze
kendorf [17℄, therefore we will 
all itKautz-Ze
kendorf 
oding.Consider the Fibona

i sequen
e f1 = 1, f2 = 2, and fi+2 = fi+1 + fi. The resultingsequen
e of Fibona

i numbers is 1, 2, 3, 5, 8, 13, : : : It is easy to prove by indu
tion thatany integer number N 
an be uniquely de
omposed into a sum of Fibona

i numbers,where ea
h number is summed at most on
e and no two 
onse
utive numbers are used inthe de
omposition. (If two 
onse
utive numbers fi and fi and fi+1 appear in the de
om-position we 
an use fi+2 instead.) Thus we 
an represent N as a bit ve
tor, whose i-th bitis set i� the i-th Fibona

i number is used to represent N . No two 
onse
utive bits 
an beset in this representation be
ause this would mean that we used two 
onse
utive numbersin the de
omposition. This 
an be generalized to k 
onse
utive ones [11℄. The re
urren
eis now fi = i for i � k and fi+k = fi+k�1 + fi+k�2 + : : :+ fi+1 + fi. In this representationwe do not permit a sequen
e of k 
onse
utive numbers in the de
omposition, and thus nostream of k 1's appears in the bit ve
tor.We use this en
oding as follows. We sort the sour
e symbols by frequen
y and thenassign the binary en
oding of number N to the N -th most frequent symbol. In addition,all the en
odings are prepended with a sequen
e of k 1's followed by one 0. Note thatnowhere else in the en
oding are there k adja
ent 1's.7



If, during the LF-mapping, we read a 0 and then k su

essive 1's from T 0, we knowthat we are at a 
odeword beginning. Thus, Bh is no longer needed. A pra
ti
al side-e�e
tis also that there is no need for sele
t to �nd the su

essive mat
hes: they all are in a
ontiguous range of the matrix rows. All the rest of the operatory remains un
hanged.Let us 
onsider the performan
e of Kautz-Ze
kendorf 
oding with the two most pra
ti-
al (at least for natural languages) parameters, k = 2 and k = 3. The regular expressionsfor all valid 
odewords in those 
ases are 110(0j10) � ("j1) and 1110(0j10j110) � ("j1j11),respe
tively. We 
al
ulated the average 
odeword length for the 80 MB English text usedin Se
tion 8. Note that all we needed to know for this estimation was the knowledge ofzero-order symbol distribution in the text. For k = 2 and k = 3 the average lengths were5:696 and 6:420 bits per symbol, respe
tively. The only 
omponent of the index, apartfrom the B array, is the rank stru
ture for B. The fastest rank in the new implementa-tion needs 25% of the text size. Taking this �gure, we obtain approximately 0:89n and1:00n overall spa
e o

upan
y, respe
tively. Those results are better than of any othervariant of our index, but the pri
e is a longer sear
h time. Note that even less spa
e 
anbe obtained with a rank implementation using 10% of the text size [5℄, for a relativelylittle slow-down. Other options 
an be better for other text types, e.g., for DNA usingk = 1 (a
tually a unary 
ode) is a better 
hoi
e.8 Experimental ResultsWe implemented our indexes, both the original, the k-ary and the KZ versions, makingsome pra
ti
al 
onsiderations that di�er from the theoreti
al ones. The main di�eren
eis the 
al
ulation of rank and O

, where we used the solution des
ribed in [5℄, for theolder index variants, or the new rank implementation des
ribed in Se
tion 3. The newindexes will be 
alled FM-KZ1 and FM-KZ2, 
orresponding to the parameters k = 1 andk = 2, respe
tively.In this se
tion we show experimental results on 
ounting, reporting and displayingqueries and 
ompare the eÆ
ien
y to existing indexes. The indexes used for the experi-ments were the FM-index implemented by Navarro [15℄, Sadakane's CSA [16℄, the RLFMindex [14℄, the SSA index [14℄ and the LZ index [15℄. Other indexes whose implementa-tions are available were not in
luded be
ause they are not 
omparable to the FM Hu�man/ FM-KZ index due either to their large spa
e requirement or their high sear
h times .We 
onsidered three types of text for the experiments: 80 MB of English text obtainedfrom the TREC-3 
olle
tion 5 (�les WSJ87-89), 60 MB of DNA and 55 MB of protein se-quen
es, both obtained from the BLAST database of the NCBI6 (�les month.est_othersand swissprot respe
tively).Our experiments were run on an Intel(R) Xeon(TM) pro
essor at 3.06 GHz, 2 GB ofRAM and 512 KB 
a
he, running Gentoo Linux 2.6.10. We 
ompiled the 
ode with g

3.3.5 using optimization option -O9.Now we show the results regarding the spa
e used by our index and later the resultsof the experiments divided in query type.5 Text Retrieval Conferen
e, http://tre
.nist.gov6 National Center for Biote
hnology Information, http://www.n
bi.nlm.nih.gov8



8.1 Spa
e resultsFor the experiments we 
onsidered the binary, the 4-ary, and the KZ versions of our index.It is interesting to know how the spa
e requirement of the Hu�man-based index variesa

ording to the parameter k. Table 1 (left) shows the spa
e that the index takes as afra
tion of the text for di�erent values of k and the three types of �les 
onsidered. Thesevalues do not in
lude the spa
e required to report positions and display text.We 
an see that the spa
e requirements are lowest for k = 4. For higher values thisspa
e in
reases, although staying reasonable until k = 16. With higher values the spa
esare too high for these indexes to be 
omparable to the rest. It would be interesting tostudy the time performan
e to the versions of the index with k = 8 and k = 16. Withk = 8 we do not expe
t an improvement on the query time sin
e log k is not a power(reasons omitted) of 2 and therefore the 
omputation of O

 is slower. The version withk = 16 
ould lead to a redu
tion in query time, but the a

ess to 4 ma
hine words forthe 
al
ulation of O

 
ould negatively a�e
t it. It is important to say that this valuesare only relevant for the English text and proteins, sin
e it does not make sense to usethem for DNA.It is also interesting to see how the spa
e requirement of the index is divided amongits di�erent stru
tures. Table 1 (right) shows the spa
e used by ea
h of the stru
tures forthe index with k = 2 and k = 4 for the three types of texts 
onsidered.k Fra
tion of textEnglish DNA Proteins2 1,68 0,76 1,454 1,52 0,74 1,308 1,60 0,91 1,4316 1,84 | 1,5732 2,67 | 1,9264 3,96 | |
FM-Hu�man k = 2 FM-Hu�man k = 4Stru
ture Spa
e [MB℄ Spa
e [MB℄English DNA Proteins English DNA ProteinsB 48:98 16:59 29:27 49:81 18:17 29:60Bh 48:98 16:59 29:27 24:91 9:09 14,80Rank(B) 18,37 6,22 10,97 37,36 13,63 22,20Rank(Bh) 18,37 6,22 10,97 9,34 3,41 5,55Total 134,69 45,61 80,48 121,41 44,30 72,15Text 80,00 60,00 55,53 80,00 60,00 55,53Fra
tion 1:68 0:76 1:45 1:52 0:74 1:30Table 1. On the left, spa
e requirement of our index for di�erent values of k. The value 
orresponding to therow k = 8 for DNA a
tually 
orresponds to k = 5, sin
e this is the total number of symbols to 
ode in this�le. Similarly, the value of row k = 32 for the protein sequen
e 
orresponds to k = 24. On the right, detailed
omparison of k = 2 versus k = 4. We omit the spa
es used by the Hu�man table, the 
onstant-size tables forRank, and array C, sin
e they are negligible.For higher values of k the spa
e used by B will in
rease sin
e the use of more symbolsfor the Hu�man 
odes in
reases the resulting spa
e. On the other hand, the size of Bhde
reases at a rate of log k and so do its rank stru
tures. However, the spa
e of the rankstru
tures of B in
reases rapidly, as we need k stru
tures for an array that redu
es itssize at a rate of log k, whi
h is the reason of the large spa
e requirement for high valuesof k.Now, let us take a look at the FM-KZ1 and FM-KZ2 spa
e/time behavior. For DNA,the FM-KZ1 is a 
lear winner: among the fastest and de�nitely the most su

in
t, also itis hard to imagine a simpler full-text index (as the en
oding is merely the unary 
ode).On the English text, FM-KZ2 is takes about 1:0n spa
e, mu
h less than other indexesfrom our family, but is also 
onsiderably slower, e.g. more than 1:5 times slower than FMHu�man with k = 4. 9



8.2 Counting queriesFor the three �les, we show the sear
h time as a fun
tion of the pattern length, varyingfrom 10 to 100, with a step of 10. For ea
h length we used 1000 patterns taken fromrandom positions of ea
h text. Ea
h sear
h was repeated 1000 times. We obtained anaverage error of 2.6% with a 
on�den
e of 95%. Figure 3 (left) shows the time for 
ountingthe o

urren
es for ea
h index and for the three �les 
onsidered. As the CSA index needsa parameter to determine its spa
e for this type of queries, we adjusted it so that it woulduse approximately the same spa
e that the binary FM-Hu�man index.We also show the average sear
h time per 
hara
ter along with the minimum spa
erequirement of ea
h index to 
ount o

urren
es. Unlike the CSA, the other indexes do notneed a parameter to spe
ify their size for 
ounting queries. Therefore, we show a pointas the value of the spa
e used by the index and its sear
h time per 
hara
ter. For theCSA index we show a line to resemble the spa
e-time tradeo� for 
ounting queries. Thetime per 
hara
ter for ea
h pattern length is the sear
h time divided by the value of thelength. The time per 
hara
ter shown on the plot is the average of these times for ea
hlength. Figure 3 (right) shows the sear
h time per 
hara
ter for ea
h index and for ea
htype of text.8.3 Reporting queriesWe measured the time that ea
h index took to sear
h for a pattern and report the positionsof the o

urren
es found. From the English text and the DNA sequen
e we took 1000random patterns of length 10. From the protein sequen
e we used patterns of length 5.We measured the time per o

urren
e reported varying the spa
e requirement for everyindex ex
ept the LZ, whi
h has a �xed size. For the CSA we set the two parameters,namely the size of the stru
tures to report and the stru
tures to 
ount, to the same value,sin
e this turns out to be optimal. Our measures have a 2:2% error with 95% 
on�den
e.Figure 4 shows the times per o

urren
e reported for ea
h index as a fun
tion of its size.8.4 Displaying textWe measured the time that ea
h index took to show the �rst 
hara
ter of a text 
ontextaround the o

urren
es found. More pre
isely, this is the time of sear
hing for a pattern,lo
ating the position of an o

urren
e and showing one 
hara
ter of the text in the
ontext area of the position lo
ated. Usually this 
hara
ter is the one at the position ofthe o

urren
e, but it 
an also be a di�erent 
lose one, depending on ea
h index. Wemeasured this time as a fun
tion of the size used by ea
h index. We used the same 1000patterns used for the reporting experiment, obtaining an average error of 1:6% with 95%
on�den
e. Figure 5 (left) shows the time to display the �rst 
hara
ter as a fun
tion ofthe spa
e requirement for ea
h index and for ea
h type of text.In addition, we measured the time to display a 
ontext per 
hara
ter displayed. Thatis, we sear
hed for the 1000 patterns and displayed 100 
hara
ters around ea
h of thepositions of the o

urren
es found. We subtra
ted from this time the time to display the�rst 
hara
ter and divided it by the amount of 
hara
ters displayed. For this experiment,we obtained an average error of 6% with 95% 
on�den
e. Figure 5 (right) shows this timealong with the minimum spa
e required for ea
h index for the 
ounting fun
tionality,10
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Figure 3. On the left, sear
h time as a fun
tion of the pattern length over, English (80 MB), DNA (60 MB),and a proteins (55 MB). The times of the LZ index do not appear on the English text plot, as they range from0:5 to 4:6 ms. In the DNA plot, the time of the LZ index for m = 10 is 2:6. The reason of this in
rease is thelarge number of o

urren
es of these patterns, whi
h in
uen
es the 
ounting time for this index. On the right,average sear
h time per 
hara
ter as a fun
tion of the size of the index.
11



 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2  2.2  2.4  2.6  2.8  3

tim
e 

pe
r 

oc
ur

re
nc

e 
(m

ili
se

co
nd

s)

space (fraction of the text)

Time to report an occurrence on English text (80 Mb)

FM
LZ

RLFM
CSA
SSA

FM-Huffman
FM-Huffman k=4

FM-Huffman k=16
FM-KZ2

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

tim
e 

pe
r 

oc
cu

rr
en

ce
 (

m
ili

se
co

nd
s)

space (fraction of the text)

Time to report an occurrence on DNA (60 Mb)

FM
LZ

RLFM
CSA
SSA

FM-Huffman
FM-Huffman k=4

FM-KZ1
FM-KZ2

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2  2.2  2.4  2.6  2.8  3

tim
e 

pe
r 

oc
cu

rr
en

ce
 (

m
ili

se
co

nd
s)

space (fraction of the text)

Time to report an occurrence on proteins (55 Mb)

FM
LZ

RLFM
CSA
SSA

FM-Huffman
FM-Huffman k=4

FM-Huffman k=16
FM-KZ2Figure 4. Time to report the positions of the o

urren
es as a fun
tion of the size of the index. We show theresults of sear
hing on 80 MB of English text, 60 MB of DNA and �nally 55 MB of proteins.sin
e the display time per 
hara
ter does not depend on the size of the index. This is nottrue for the CSA index, whose time to display per 
hara
ter does depend on its size. Forthis index we show the time measured as a fun
tion of its size.8.5 Analysis of ResultsWe 
an see that our FM-Hufman k = 4 and k = 16 indexes are among the fastest for
ounting queries for the three types of �les. The binary FM-Hu�man index takes thesame time that k = 4 version for DNA and it is a little bit slower that the FM-indexfor the other two �les. As expe
ted, all those versions are faster than CSA, RLFM andLZ, the latter not being 
ompetitive for 
ounting queries. Regarding the spa
e usage, theFM-index turns out to be a better tradeo� alternative for the English text and proteinsequen
es, sin
e it uses less spa
e than our index and has low sear
h times. For DNA,all the Hu�man based versions of our index are good alternatives, 
onsidering their lowspa
e requirement and sear
h time.Still, the new player, FM-KZ index, is a parti
ularly good 
hoi
e for DNA. It is wayahead of the 
ompetition in the spa
e use, while belonging to the fastest. At the sametime its simpli
ity is striking.Considering both speed and spa
e use, for the English text and the proteins, the SSAindex is the best 
hoi
e, still, our variants 
ome 
lose, espe
ially for proteins.12
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Figure 5. On the left, time to show the �rst 
hara
ter of a text 
ontext around the positions of the o

urren
esas a fun
tion of the size of the index. From top to bottom, we show the results of sear
hing 80 MB of Englishtext, 60 MB of DNA and 55 MB of proteins. In the plot of the DNA sequen
e, the point 
orresponding to theLZ index is 
overed. Its value is: spa
e=1.18, time=0.03. On the right, time per 
hara
ter displayed around ano

urren
e and spa
e for ea
h index.
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For reporting queries, our index loses to the FM-index for English and proteins, mainlybe
ause of its large spa
e requirement. Also, it only surpasses the RLFM and CSA forlarge spa
e usages. For DNA, however, our index, with the two versions, is better thanthe FM-index. This redu
tion in spa
e is due to the low zero-order entropy of the DNA,whi
h makes our index 
ompa
t and fast.Regarding the time for displaying the �rst 
hara
ter, the FM-index is faster than ourindex. Again, our index takes more spa
e than the other indexes to get 
ompetitive timefor English and proteins, and redu
es its spa
e for DNA. Regarding display time per
hara
ter, our index with k = 4 is the fastest for DNA with a low spa
e requirement,be
oming an interesting alternative for this type of query.The version of our index with k = 4 improved both the spa
e and time with respe
tto the binary version and it be
ame a very good alternative for 
ounting and reportingqueries, espe
ially for DNA, due to the low zero-order entropy of this text.9 Con
lusionsWe have fo
used in this paper on a pra
ti
al data stru
ture inspired by the FM-index [3℄,whi
h removes its sharp dependen
e on the alphabet size �. Our key idea is to en
odethe text with the Kautz-Ze
kendorf 
oding, o�ering instant syn
hronization at 
odewordboundaries (a property missing in Hu�man 
oding, thus implying a signi�
ant spa
epenalty in FM indexes), at still being quite su

in
t. While not 
ompetitive to the bestsu

in
t indexes in theory, our solutions fare well in pra
ti
e, and are simpler 
on
eptuallyand easier to implement than the other stru
tures.A
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