A 1Vl i f4e /211 RHJV VU111 L)J.JJ.J.PJ.CL ﬂlPllaUCU_Lllucycllucllb

FM-Index

Rafal Przywarski', Szymon Grabowski', Gonzalo Navarro?, and Alejandro Salinger?

! Computer Engineering Dept., Tech. Univ. of Léd#, Poland.
2 Dept. of Computer Science, Univ. of Chile, Chile.
* David R. Cheriton School of Computer Science, University of Waterloo, Canada.

Abstract. In an earlier work [7] we presented a simple FM-index variant, based on the idea of
Huffman-compressing the text and then applying the Burrows-Wheeler transform over it. The main
drawback of using Huffman was its lack of synchronizing properties, forcing us to supply another
bit stream indicating the Huffman codeword boundaries. In this way, the resulting index needed
O(n(Ho + 1)) bits of space but with the constant 2 (concerning the main term). There are several
options aiming to mitigate the overhead in space, with various effects on the query handling speed.
In this work we propose Kautz-Zeckendorf coding as a both simple and practical replacement for
Huffman. We dub the new index FM-KZ. We also present an efficient implementation of the rank
operation, which is the main building brick of the FM-KZ. Experimental results show that our index
provides an attractive space/time tradeoff in comparison with existing succinct data structures, and
in the DNA test it even wins both in search time and space use. An additional asset of our solution
is its relative simplicity.

1 Introduction

A full-text index is a data structure that enables to determine the occ occurrences of a
short pattern P = p1py...p, in a large text T = tty ... ¢, without a need of scanning
over the whole text 7. Text and pattern are sequences of characters over an alphabet Y
of size 0. The pattern may appear at any position in 7', and its length is also arbitrary.
In practice one wants to know not only the value oce, i.e., how many times the pattern
appears in the text (counting query) but also the text positions of those occ occurrences
(reporting query, and usually also a text context around them (display query).

Classic full-text indexes, albeit powerful and versatile, need space several times greater
than the text itself. Hence, a natural interest in succinct full-text indexes has been ob-
served in recent years. A comprehensive survey of existing techniques in this very active
research area can be found in [13].

A truly exciting perspective has been originated in the work of Ferragina and Manzini
[3]; they showed a full-text index may discard the original text, as it contains enough
information to recover the text. We denote a structure with such a property with the
term self-index.

The FM-index of Ferragina and Manzini [3] was the first self-index with space com-
plexity expressed in terms of kth order (empirical) entropy and pattern search time linear
only in the pattern length. Its space complexity, however, contains an exponential depen-
dence on the alphabet size; a weakness eliminated in a practical implementation [4] for
the price of not achieving the optimal search time anymore. Therefore, it has been in-
teresting both from the point of theory and practice to construct an index with nicely
bound both space and time complexities, preferably with no (or mild) dependence on the
alphabet size.

41 11T ldlgﬁ dlplldUUL UUPCIIUUIICU Ul uliicc Ullgllldl L Ivi—11HIUcXx dSlIUWwWD Llp 1HOu Ulll')/ 111 v
space usage, but also in the time to show an occurrence position and display text sub-
strings. The FM-index needs up to 5Hyn + O ((a log o + loglogn) ogn T n"’a”“) bits of
space, where 0 < v < 1. The time to search for a pattern and obtain the number of its

occurrences in the text is the optimal O(m). The text position of each occurrence can
14

be found in O (a log n) time, for some £ > 0 that appears in the sublinear terms
of the space complexity. Finally, the time to display a text substring of length L is
0 ((J’ (L + log'** n)) The last operation is important not only to show a text context
around each occurrence, but also because a self-index replaces the text and hence it must
provide the functionality of retrieving any desired text substring.

One of the proposals to eliminate an exponential dependence on the alphabet size was
Huffman FM-index [7]: Tt was based on the backward search idea of [4] but the novelty
was to Huffman encode the text (and the pattern) so as to reduce the alphabet to binary.
As a result, any dependence on the alphabet size was removed. We showed that our index
can operate using n(2Hy + 3 + €)(1 + o(1)) bits, for any £ > 0. No alphabet dependence
is hidden in the sublinear terms.

At search time, our index finds the number of occurrences of the pattern in O (m(Hy+
1)) average time. The text position of each occurrence can be reported in worst case time
@) (%(H{] +1) log n) Any text substring of length L can be displayed in O ((Hy + 1) L)
average time, in addition to the mentioned worst case time to find a text position.

Since the original presentation, its implementation has been optimized and also a
variant with 4-ary Huffman has been checked [6]. Albeit not among the most succinct,
the 4-ary Huffman FM-index appears to be among the fastest and thus practical indices.

In this paper we present an alternative to Huffman coding variants. Instead, we use
Kautz-Zeckendorf coding [11,17], capable of instant detection of codeword boundaries.
To give the flavor of this idea, we note that in its basic variant, the Kautz-Zeckendorf
code has no codeword with any two adjacent 1’s.

2 The FM-index Structure

The FM-index [3] is based on the Burrows- Wheeler transform (BWT) [1], which produces
a permutation of the original text, denoted by T = bwt(T). String T**! is a result of
the following forward transformation: (1) Append to the end of T" a special end marker §$,
which is lexicographically smaller than any other character; (2) form a conceptual matrix
M whose rows are the cyclic shifts of the string T'$, sorted in lexicographic order; (3)
construct the transformed text L by taking the last column of M. The first column is
denoted by F'.

The suffix array (SA) A of text T$ is essentially the matrix M: A[i] = j iff the ith
row of M contains string t;t;4; - - - £,$t; - - - t;_1. Given the suffix array, the search for the
occurrences of the pattern P = pips - - - p,, is trivial. The occurrences form an interval
[sp,ep] in A such that suffixes ¢ aptap)+1 -+ tn, sp < @ < ep, contain the pattern as a
prefix. This interval can be searched for by using two binary searches in time O(mlogn).

The suffix array of text T is represented implicitly by T°%. The novel idea of the
FM-index is to store T in compressed form, and to simulate the search in the suffix
array. To describe the search algorithm, we need to introduce the backward BW'T that
produces T given T

L. ouliiputilt vl altltay L/l_l PR UJ SLULLIE 111 L/l_(,J LT Hulnipcoct Ul oLteuriciiees vl Ullal avucls
{$,1,...,¢—1} in the text T". Notice that C[c]+1 is the position of the first occurrence
of ¢ in F (if any).

2. Define the LF-mapping LF[1...n + 1] as LF[i] = CI[L[i]| + Oce(L, L[i],i), where
Occ(X, ¢, 1) equals the number of occurrences of character ¢ in the prefix X[1,1].

3. Reconstruct T' backwards as follows: set s = 1 and T'[n] = L[1] (because M[1] = $T);
then, for each n —1,...,1 do s < LF[s] and Ti] + Lis].

We are now ready to describe the search algorithm given in [3] (Fig. 1). It finds the
interval of A containing the occurrences of the pattern P. It uses the array C' and function
Occ(X, ¢,i) defined above. Using the properties of the backward BWT, it is easy to see
that the algorithm maintains the following invariant [3]: At the ith phase, the variable sp
points to the first row of M prefized by Pli, m| and the variable ep points to the last row
of M prefized by P[i,m]. The correctness of the algorithm follows from this observation.

Algorithm FM _Search(P,T%v?)

(1) i=m;

(2) sp=T1;ep=m;

(3) while ((sp <ep) and (i > 1) do

(1) c=Pli]

(5) sp = Clc] + Oce(T" ¢, sp — 1)+1;

(6) ep = Clc] + Oce(T?t, ¢, ep);

(7) i=i 1

(8) if (ep < sp) then return “not found” else return “found (ep — sp + 1) oces”.

Figure 1. Algorithm for counting the number of occurrences of P[1...m] in T[1...n].

Ferragina and Manzini [3] describe an implementation of Occ(T"¢, c,4) that uses a
compressed form of T"*!. They show how to compute Occ(T®, ¢, i) for any ¢ and i in
constant time. However, to achieve this they need exponential space (in the size of the
alphabet). In a practical implementation [4] this was avoided, but the constant time
guarantee for answering Oce(T", ¢, i) was no longer valid.

The FM-index can also show the text positions where P occurs, and display any text
substring. The details are deferred to Section 5.

3 Rank and Select Queries on Bit Arrays

A crucial building block we use is a data structure to perform rank operations over a
bit array. Given a bit sequence B[1...n|, rank(B,i) is the number of 1’s in B[1...1],
rank(B,0) = 0. This function can be computed in constant time using only o(n) extra
bits [10,12,2]. The solution, as well as its more practical implementation variants, are
described in [5]; here we present a novel implementation, which seems to be fastest in
practice.

For an input bit array B of size n and a given parameter bs we create a lookup ta-
ble N with [n/2%] entries. Namely, for each k = 0...|n/2%] — 1 we compute: N[k] =
rank(B, (k+1)%20%). If [n/2%] > |n/2% |, then we also compute: N[|n/2%|] = rank(B,n).

3

1 11T abuUVO duirutluul© 11ccus 94 + |'IL/A | — l/\'ll;) Pits, WICLT LT LOLISLAllL 94 15 LT HUulllpol
of bits per entry of N.

Now, we calculate rank(B, 1) as follows. If i < 2% then rank(B, i) = popcount(B,0...1).
Otherwise, rank(B,i) = N|[|i/2"] — 1] + popcount(B, (|i/2%] % 2*) ...4). The operation
popcount(B, a...b) returns the number of set bits in the interval Bla...b], a < b, making
use of a precomputed table. As long as the interval width is on the order of machine word,
this is a constant time operation.

Sometimes we need to calculate the inverse function, select(B,j), which gives the
position of the j-th bit set in B. It can also be implemented in constant time using
o(n) additional space [10, 12, 2]. More practical implementations exist [5], but it is always
significantly slower than rank, and also more rarely needed.

4 First Huffman, then Burrows-Wheeler

We focus now on our index representation, starting from the original variant. Imagine
that we compress our text T'$ using Huffman. The resulting bit stream will be of length
n' < (Hp + 1)n, since (binary) Huffman poses a maximum representation overhead of 1
bit per symbol*. Let us call T" this sequence. Let us also define a second bit array Th,
of the same length of 7", such that Th[i] = 1 iff i is the starting position of a Huffman
codeword in T". Th is also of length n'. (We will not, however, represent 7" nor Th in our
index.)

The idea is to search the binary text 7" instead of the original text T'. Let us apply
the Burrows-Wheeler transform over text 7, so as to obtain B = (T")""*. The terminator
character, “$”, is excluded from 7" so as to have a binary alphabet.

More precisely, let A'[1...n'] be the suffix array for text 7”, that is, a permutation
of the set 1...n' such that T'[A'[i]...n'] < T'[A'[i + 1]...n'] in lexicographic order, for
all 1 < i < n'. In a lexicographic comparison, if a string z is a prefix of y, assume
x < y. Suffix array A" will not be explicitly represented. Rather, we represent bit array
B[1...n'], such that B[i| = T"[A'[i] — 1] (except that B[i] = T'[n'] if A'[i] = 1). We also
represent another bit array Bh[l...n'], such that Bh[i] = Th[A'[i]]. This tells whether
position i in A" points to the beginning of a codeword.

Our goal is to search B exactly like the FM-index. For this sake we need array C
and function Oce. Since the alphabet is binary, however, Occ can be easily computed:
Occ(B, 1,i) = rank(B,i) and Occ(B,0,1) = i — rank(B,). Also, array C' is so simple for
the binary text that we can do without it: C[0] = 0 and C[1] = n’ — rank(B,n'), that
is, the number of zeros in B (of course value n' — rank(B,n') should be precomputed in
practice). Therefore, Clc] + Occ(T*, ¢, i) is replaced in our index by i — rank(B,i) if
c¢=0and n' —rank(B,n') + rank(B,i) if ¢ = 1.

There is a small twist, however, due to the fact that we are not putting a terminator
to our binary sequence T’ and hence no terminator appears in B. Let us call “#” the
terminator of the binary sequence so that it is not confused with the terminator “$” of
T'$. In the position py such that A’'[p4] = 1, we should have Blpy] = #. Instead, we are
setting B[py] to the last bit of 7". This is the last bit of the Huffman codeword assigned to
the terminator “$” of T'$. Since we can freely switch left and right siblings in the Huffman

4 Note that these n and Hy refer to T'$, not T. However, the difference between both is only O(logn),
and will be absorbed by the o(n) terms that will appear later.

coug, wo will ©lisult uvilal uills 1ast Viy 15 4010, 11Tl LT COLICLL D styubict woulu Vo UL
length n' 4+ 1, starting with 0 (which corresponds to T"[n'], the character preceding the
occurrence of “#” since # < 0 < 1), and it would have B[py| = #. To obtain the right
mapping to our binary B, we must correct C[0]+ Oce(B,0,i) =i —rank(B, i) +[i < pgl,
that is, add 1 to the original value when i < py. The computation of C[1] + Oce(B, 1,1)
remains unchanged.

Therefore, by preprocessing B to solve rank queries, we can search B exactly as
the FM-index. The extra space required by the rank structure is o(Hyn), without any
dependence on the alphabet size. Overall, we have used at most n(2H, + 2)(1 + o(1))
bits for our representation. This will grow slightly in the next sections due to additional
requirements.

Our search pattern is not the original P, but its binary coding P’ using the Huffman
code we applied to T. Converting P to P' takes O(m) time. If we assume that the
characters in P have the same distribution of 7', then the length of P’ is < m(Hy + 1).
This is the number of steps to search B using the FM-index search algorithm.

The answer to that search, however, is different from that of the search of T for P. The
reason is that the search of 7' for P’ returns the number of suffixes of 7" that start with
P'. Certainly these include the suffixes of T that start with P, but also other superfluous
occurrences may appear. These correspond to suffixes of 7" that do not start a Huffman
codeword, yet they start with P’.

This is the reason why we have marked the suffixes that start a Huffman codeword
in Bh. In the range [sp, ep| found by the search for P' in B, every bit set in Bh[sp...ep]
represents a true occurrence. Hence the true number of occurrences can be computed as
rank(Bh,ep) — rank(Bh, sp — 1).

Figure 2 depicts the search algorithm.

Algorithm Huff-FM_Search(P',B,Bh)
(1) i=m;
(2) sp=1;ep=n';
(3) while ((sp < ep) and (i > 1)) do
(4) if P'[i] = 0 then

sp=(sp—1) —rank(B,sp—1)+1+1—[sp—1> pxl;

ep = ep —rank(B,ep) + 1 — [ep > px];

else sp =n' —rank(B,n') + rank(B,sp — 1) + 1;

ep=n' —rank(B,n') + rank(B, ep);
(7) i=i- 1
(8) if ep < sp then occ = 0 else occ = rank(Bh, ep) — rank(Bh, sp — 1);
(9) if occ =0 then return “not found” else return “found (occ) occs”.

Figure 2. Algorithm for counting the number of occurrences of P'[1...m'] in T'[1...7n/].

Therefore, the search complexity is O(m(Hy+1)), assuming that the zero-order distri-
butions of P and T are similar. It is well-known that the longest Huffman codeword does
not exceed O(mlogn) bits. From this we immediately obtain the worst case search cost
of O(mlogn) for our index. This matches the worst case search time of the compressed
suffix array (CSA) of Sadakane [16]. An exceptional situation occurs when P contains a

CllaldaLil UL plosclliy il £ . L1115 15 Tasltch, LHUWLCvVeL, 45 wU 111ictUlaitly K11OW uvilatu 1 U0OCs
not occur in 7.

Is it in fact possible to achieve O(m logn) search complexity also for the worst case, for
the price of 2n extra bits. Basically, the idea is to use a length-limited Huffman coding
variant but we omit the details and analysis due to lack of space. This idea, however,
does not have much importance in practice because extremely skew symbol distributions
almost never happen and thus optimizing the worst case is hardly worth any effort.

5 Reporting Occurrences and Displaying the Text

Up to now we have focused on the search time, that is, the time to determine the suffix
array interval containing all the occurrences. In practice, one needs also the text positions
where they appear, as well as a text context. Since self-indexes replace the text, in general
one needs to extract any text substring from the index.

Given the suffix array interval that contains the occ occurrences found, the FM-index
reports each such position in O(clog'**n) time, for any ¢ > 0 (which appears in the
sublinear space component). The CSA can report each in O(log®n) time, where ¢ is paid
in the nHy/e space. Similarly, a text substring of length L can be displayed in time
O(o(L +log'™ n)) by the FM-index and O(L + log® n) by the CSA.

Our index can do better than the FM-index in this respect, although not as well as the
CSA. Using (1+¢)n additional bits, we can report each occurrence position in O(2(H, +
1)logn) time and display a text context in time O(Llogo + logn) in addition to the
time to find an occurrence position. On average, assuming that random text positions are
involved, the overall complexity to display a text interval becomes O((Hy+1)(L+1 logn)).
Those complexities hold for all the variants of our solution: based on the binary or higher
arity Huffman, or on the Kautz-Zeckendorf coding. Still, the overall idea of reporting
and displaying via sampling sorted suffixes at regular intervals was first presented in the
seminal work on the FM-index, and is now widely used in the field. Details can be found
e.g., in [6].

A related query type concerns displaying the text around each pattern occurence. More
generally, we want to display a text substring T'[[...r] of length L = r — [+ 1. Again, we
make use of a known technique, on the overall obtaining the following time complexities
[6]: O((Ho + 1)(L + £logn)) in the average case, and O(Llogo + (Hy + 1) logn) in the
worst case.

6 K-ary Huffman

The purpose of the idea of compressing the text before constructing the index is to
remove the sharp dependence of the alphabet size of the FM index. This compression is
done using a binary alphabet. In general, we can use Huffman over a coding alphabet of
k > 2 symbols and use [logk]| bits to represent each symbol. We call this generalization
the k-ary FM-Huffman. Varying the value of & yields interesting time/space tradeoffs.
We use only powers of 2 for k£ values, so each symbol can be represented without wasting
space.

The space usage varies in different aspects. Array B increases its size since the
compression ratio gets worse. B has length n' < (Hék) + 1)n symbols, where Hék) is

6

Lue 42l ULUcL CLULlopy OL Llle LeAalL COLLPpULEU uUslily vast i 1Usalltlllll, tilab 15, Ll —

—>7 %log, (%) = H,/log, k. Therefore, the size of B is bounded by n'logk = (H, +

i=1p
log k)n bits. The size of Bh is reduced since it needs one bit per symbol, and hence its size
is n'. The total space used by these structures is then n’(1+logk) < n(Hék) +1)(1+logk),
which is not larger than the space requirement of the binary version, 2n(Hy + 1), for
1 <logk < H,.

The rank structures also change their size. The rank structures for Bh are computed
in the same way of the binary version, and therefore they reduce their size, using O(Hék)n)
bits. For B, we no longer can use the rank function to simulate Occ. Instead, we need
to calculate the occurrences of each of the k£ symbols in B. For this sake, we precalculate
sublinear structures for each of the symbols, including & tables that count the occurrences
of each symbol in a chunk of b = [log,(n)/2] symbols. Hence, we need o(kH(()k)n) bits for
this structures. In total, we need n(H{" + 1)(1 + logk) + o(H{”n(k + 1)) bits.

Regarding the time complexities, the pattern has length < m(Hék) + 1) symbols, so
this is the search complexity, which is reduced as we increase k. For reporting queries and
displaying text, we need the same additional structures T'S, ST and S that for the binary
version. The k-ary version can report the position of an occurrence in O(%(Hék) +1)log n)
time, which is the maximum distance between two sampled positions. Similarly, the time
to display a substring of length L becomes O((Hék) + 1)(L + Llogn)) on average and

O(Llogo + (H(()k) + 1)Llogn) in the worst case.

7 Kautz-Zeckendorf Coding

The condition for getting rid of the Bh array is to have a coding for which the bit
stream enables instant synchronization at codeword boundaries. A solution could be based
on the representation of integers, first advocated by Kautz [11] for its synchronization
properties, which presents each number in a unique form as a sum of Fibonacci numbers.
This technique is better known from a work by Zeckendorf [17], therefore we will call it
Kautz-Zeckendorf coding.

Consider the Fibonacci sequence f; = 1, fo = 2, and fi1o = fix1 + fi- The resulting
sequence of Fibonacci numbersis 1, 2, 3, 5, 8, 13, ... It is easy to prove by induction that
any integer number N can be uniquely decomposed into a sum of Fibonacci numbers,
where each number is summed at most once and no two consecutive numbers are used in
the decomposition. (If two consecutive numbers f; and f; and f;,; appear in the decom-
position we can use f;, instead.) Thus we can represent N as a bit vector, whose i-th bit
is set iff the i-th Fibonacci number is used to represent N. No two consecutive bits can be
set in this representation because this would mean that we used two consecutive numbers
in the decomposition. This can be generalized to k consecutive ones [11]. The recurrence
isnow f; =1 fori < kand fi = fizk1+ fizk—o+ ...+ fiz1 + fi- In this representation
we do not permit a sequence of k consecutive numbers in the decomposition, and thus no
stream of k£ 1’s appears in the bit vector.

We use this encoding as follows. We sort the source symbols by frequency and then
assign the binary encoding of number N to the N-th most frequent symbol. In addition,
all the encodings are prepended with a sequence of k 1’s followed by one 0. Note that
nowhere else in the encoding are there k adjacent 1’s.

1L, uuuug Lvil© L —lllbtl)})lllg7 wo 1tdu a U 4llll vtHCIL A sutlLcsslvo 1o 1ol £, Wb KllUW
that we are at a codeword beginning. Thus, Bh is no longer needed. A practical side-effect
is also that there is no need for select to find the successive matches: they all are in a
contiguous range of the matrix rows. All the rest of the operatory remains unchanged.

Let us consider the performance of Kautz-Zeckendorf coding with the two most practi-
cal (at least for natural languages) parameters, k¥ = 2 and k = 3. The regular expressions
for all valid codewords in those cases are 110(0]/10) = (¢|1) and 1110(0[10]110) * (¢|1|11),
respectively. We calculated the average codeword length for the 80 MB English text used
in Section 8. Note that all we needed to know for this estimation was the knowledge of
zero-order symbol distribution in the text. For £k = 2 and k£ = 3 the average lengths were
5.696 and 6.420 bits per symbol, respectively. The only component of the index, apart
from the B array, is the rank structure for B. The fastest rank in the new implementa-
tion needs 25% of the text size. Taking this figure, we obtain approximately 0.89n and
1.00n overall space occupancy, respectively. Those results are better than of any other
variant of our index, but the price is a longer search time. Note that even less space can
be obtained with a rank implementation using 10% of the text size [5], for a relatively
little slow-down. Other options can be better for other text types, e.g., for DNA using
k =1 (actually a unary code) is a better choice.

8 Experimental Results

We implemented our indexes, both the original, the k-ary and the KZ versions, making
some practical considerations that differ from the theoretical ones. The main difference
is the calculation of rank and Oce, where we used the solution described in [5], for the
older index variants, or the new rank implementation described in Section 3. The new
indexes will be called FM-KZ1 and FM-KZ2, corresponding to the parameters £ = 1 and
k = 2, respectively.

In this section we show experimental results on counting, reporting and displaying
queries and compare the efficiency to existing indexes. The indexes used for the experi-
ments were the FM-index implemented by Navarro [15], Sadakane’s CSA [16], the RLFM
index [14], the SSA index [14] and the LZ index [15]. Other indexes whose implementa-
tions are available were not included because they are not comparable to the FM Huffman
/ FM-KZ index due either to their large space requirement or their high search times .

We considered three types of text for the experiments: 80 MB of English text obtained
from the TREC-3 collection * (files WSJ87-89), 60 MB of DNA and 55 MB of protein se-
quences, both obtained from the BLAST database of the NCBI® (files month.est_others
and swissprot respectively).

Our experiments were run on an Intel(R) Xeon(TM) processor at 3.06 GHz, 2 GB of
RAM and 512 KB cache, running Gentoo Linux 2.6.10. We compiled the code with gcc
3.3.5 using optimization option -09.

Now we show the results regarding the space used by our index and later the results
of the experiments divided in query type.

® Text Retrieval Conference, http://trec.nist.gov
6 National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov

O.1 LD pPAlLc 1ooulus

For the experiments we considered the binary, the 4-ary, and the KZ versions of our index.
It is interesting to know how the space requirement of the Huffman-based index varies
according to the parameter k. Table 1 (left) shows the space that the index takes as a
fraction of the text for different values of k£ and the three types of files considered. These
values do not include the space required to report positions and display text.

We can see that the space requirements are lowest for k¥ = 4. For higher values this
space increases, although staying reasonable until £ = 16. With higher values the spaces
are too high for these indexes to be comparable to the rest. It would be interesting to
study the time performance to the versions of the index with £ = 8 and k£ = 16. With
k = 8 we do not expect an improvement on the query time since logk is not a power
(reasons omitted) of 2 and therefore the computation of Oce is slower. The version with
k = 16 could lead to a reduction in query time, but the access to 4 machine words for
the calculation of Oce could negatively affect it. It is important to say that this values
are only relevant for the English text and proteins, since it does not make sense to use
them for DNA.

It is also interesting to see how the space requirement of the index is divided among
its different structures. Table 1 (right) shows the space used by each of the structures for
the index with £ = 2 and k& = 4 for the three types of texts considered.

FM-Huffman k =2 FM-Huffman k£ =4
k Fraction of text Structure Space [MB] Space [MB]

English| DNA | Proteins English | DNA |Pr0teins English | DNA |Pr0teins
2| 1,68 0,76 1,45 B 48.98 16.59| 29.27 49.81 18.17| 29.60
4] 1,52 0,74 1,30 Bh 48.98 16.59| 29.27 24.91 9.09] 14,80
8| 1,60 0,91 1,43 Rank(B) 18,37 6,22| 10,97 37,36 13,63| 22,20
16| 1,84 1,57 Rank(Bh) 18,37 6,22| 10,97 9,34 3,41 5,55
32| 267 | — 1,92 Total 134,69 45,61 80,48 121 41 4430 72,15
64| 3,96 — — Text 80,00 60,00 55,53 80,00 60,00 55,53

Fraction 1.68 0.76 1.45 1.52 0.74 1.30

Table 1. On the left, space requirement of our index for different values of k. The value corresponding to the
row k = 8 for DNA actually corresponds to k = 5, since this is the total number of symbols to code in this
file. Similarly, the value of row k = 32 for the protein sequence corresponds to k = 24. On the right, detailed
comparison of k = 2 versus k = 4. We omit the spaces used by the Huffman table, the constant-size tables for
Rank, and array C, since they are negligible.

For higher values of k£ the space used by B will increase since the use of more symbols
for the Huffman codes increases the resulting space. On the other hand, the size of Bh
decreases at a rate of log k and so do its rank structures. However, the space of the rank
structures of B increases rapidly, as we need k structures for an array that reduces its
size at a rate of log k, which is the reason of the large space requirement for high values
of k.

Now, let us take a look at the FM-KZ1 and FM-KZ2 space/time behavior. For DNA,
the FM-KZ1 is a clear winner: among the fastest and definitely the most succinct, also it
is hard to imagine a simpler full-text index (as the encoding is merely the unary code).

On the English text, FM-KZ2 is takes about 1.0n space, much less than other indexes
from our family, but is also considerably slower, e.g. more than 1.5 times slower than FM
Huffman with k£ = 4.

O.4& woullviilyg yuctiics

For the three files, we show the search time as a function of the pattern length, varying
from 10 to 100, with a step of 10. For each length we used 1000 patterns taken from
random positions of each text. Each search was repeated 1000 times. We obtained an
average error of 2.6% with a confidence of 95%. Figure 3 (left) shows the time for counting
the occurrences for each index and for the three files considered. As the CSA index needs
a parameter to determine its space for this type of queries, we adjusted it so that it would
use approximately the same space that the binary FM-Huffman index.

We also show the average search time per character along with the minimum space
requirement of each index to count occurrences. Unlike the CSA, the other indexes do not
need a parameter to specify their size for counting queries. Therefore, we show a point
as the value of the space used by the index and its search time per character. For the
CSA index we show a line to resemble the space-time tradeoff for counting queries. The
time per character for each pattern length is the search time divided by the value of the
length. The time per character shown on the plot is the average of these times for each
length. Figure 3 (right) shows the search time per character for each index and for each
type of text.

8.3 Reporting queries

We measured the time that each index took to search for a pattern and report the positions
of the occurrences found. From the English text and the DNA sequence we took 1000
random patterns of length 10. From the protein sequence we used patterns of length 5.
We measured the time per occurrence reported varying the space requirement for every
index except the LZ, which has a fixed size. For the CSA we set the two parameters,
namely the size of the structures to report and the structures to count, to the same value,
since this turns out to be optimal. Our measures have a 2.2% error with 95% confidence.
Figure 4 shows the times per occurrence reported for each index as a function of its size.

8.4 Displaying text

We measured the time that each index took to show the first character of a text context
around the occurrences found. More precisely, this is the time of searching for a pattern,
locating the position of an occurrence and showing one character of the text in the
context area of the position located. Usually this character is the one at the position of
the occurrence, but it can also be a different close one, depending on each index. We
measured this time as a function of the size used by each index. We used the same 1000
patterns used for the reporting experiment, obtaining an average error of 1.6% with 95%
confidence. Figure 5 (left) shows the time to display the first character as a function of
the space requirement for each index and for each type of text.

In addition, we measured the time to display a context per character displayed. That
is, we searched for the 1000 patterns and displayed 100 characters around each of the
positions of the occurrences found. We subtracted from this time the time to display the
first character and divided it by the amount of characters displayed. For this experiment,
we obtained an average error of 6% with 95% confidence. Figure 5 (right) shows this time
along with the minimum space required for each index for the counting functionality,

10

0.3

0.25

0.2

0.15

time (miliseconds)

0.1

0.05

0.3

0.25

0.2

0.15

time (miliseconds)

0.3

0.25

0.2

0.15

time (miliseconds)

0.1

0.05

Search time on English text (80 Mb)

T T T T T T T T T
FM ——
LZ ——
RLFM —*—
r CSAL=8 —=—
SSA —=—
FM-Huffman —e—
[| FM-Huffman k=4 —e— i
FM-Huffman k=16 —-—
FM-KZ2 ——
0
m
Search time on DNA (60 Mb)
T T T T T T T
FM ——
LZ —>—
RLFM —*—
[CSAL=20 —=— |
SSA —=—
FM-Huffman —e—
L FM-Huffman k=4 —e— | |
M-KZ1 —=—
FM-KZ2 y‘z

Search time on proteins (55 Mb)

T

T

T

T

T

T
FM

LZ

RLFM
CSAL=12
SSA
FM-Huffman
FM-Huffman k=4
FM-Huffman k=16
FM-KZ2

time per character (miliseconds) time per character (miliseconds)

time per character (miliseconds)

0.002

0.0015

0.001

0.0005

0.003

0.0025

0.002

0.0015

0.001

0.0005

0.002

0.0015

0.001

0.0005

Space V/s search time per character on English text (80 Mb)

T T T

T

T

T T T

T

12

™M+
* LZ x
RLFM *
CSA —8—
SSA []
[FM-Huffman © 7
FM-Huffman k=4 e
FM-Huffman k=16 2
FM-KZ2 A
a
L [o]
]
A
L L L L L L L L L
0 02 04 06 08 1 1.2 14 16 18
space (fraction of the text)
Space V/s search time per character on DNA (60 Mb)
r T T T T T T T T T
FM +
LZ X
RLFM *
r CSA —8— 7
SSA []
FM-Huffman o
FM-Huffman k=4 e]
M-KZ1 v
FM-KZ2 A
L «]
L R N]
v u [o}
L L L L L L L L L L L
0O 01 02 03 04 05 06 07 08 09 1 11
space (fraction of the text)
Space Vv/s search time per character on proteins (55 Mb)
T T T T T T T T T T T
FM +
LZ X
RLFM *
CSA —8—
SSA =
[FM-Huffman © 1
FM-Huffman k=4 e *
FM-Huffman k=16 &
FM-KZ2 A
a
L - N R]
.
A
P S S S S S S S S S S S S S
0 010203040506070809 1 1.112131415161.718

space (fraction of the text)

Figure 3. On the left, search time as a function of the pattern length over, English (80 MB), DNA (60 MB),
and a proteins (55 MB). The times of the LZ index do not appear on the English text plot, as they range from
0.5 to 4.6 ms. In the DNA plot, the time of the LZ index for m = 10 is 2.6. The reason of this increase is the
large number of occurrences of these patterns, which influences the counting time for this index. On the right,
average search time per character as a function of the size of the index.

11

ime 10 report an occurrence on =nglisn text (U VD) lime 10 report an occurrence on DINA (U VID)

0.045 T T T T T T T T T T T T T T 0.045 T T T T T T T T T
M —— M ——
LZ —— LZ —%—
004 1 RLFM —%— |1 0.04 - RLFM —%— |1
& CSA —8— 7 CSA —B8—
2 0035 SSA —=— | 2 0035 SSA —=— |
<} FM-Huffman —e— 8 FM-Huffman —e—
8 0.03 L FM-Huffman k=4 —e— | | 2 003 L FM-Huffman k=4 —e— | |
2 . FM-Huffman k=16 —&— = : FM-KZ1 —s—
E E FM-KZ2 —a—
o 0025 @ 0025
e e
g o002t £ oo2f
g g
S 0015 S 0015 |
2 @
3 o
b [} |
g 0.01 £ 0.01
0.005 0.005
0 P S S S S S S S S S ST S 0
0O 02040608 1 12 1416 18 2 22 24 26 28 3 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
space (fraction of the text) space (fraction of the text)

Time to report an occurrence on proteins (55 Mb)

0.04 T T T T T T T T T T T T T T T
0.035 | 1
g
c 0.03 1
o
3 X
2 L 4
E 0.025
@
E 0.02 1
3
§ 0015 FM —— 1
5 LZ —<—
=% RLFM —*—
[0.01 CSA —8— T
£ SSA —a—
FM-Huffman —e—
0.005 | FM-Huffman k=4 —e— 1
FM-Huffman k=16 —&—
Bwkzp] —

0O 02 04 06 08 1 12 14 16 18 2 22 24 26 28 3
space (fraction of the text)

Figure 4. Time to report the positions of the occurrences as a function of the size of the index. We show the
results of searching on 80 MB of English text, 60 MB of DNA and finally 55 MB of proteins.

since the display time per character does not depend on the size of the index. This is not
true for the CSA index, whose time to display per character does depend on its size. For
this index we show the time measured as a function of its size.

8.5 Analysis of Results

We can see that our FM-Hufman £ = 4 and £ = 16 indexes are among the fastest for
counting queries for the three types of files. The binary FM-Huffman index takes the
same time that £ = 4 version for DNA and it is a little bit slower that the FM-index
for the other two files. As expected, all those versions are faster than CSA, RLFM and
LZ, the latter not being competitive for counting queries. Regarding the space usage, the
FM-index turns out to be a better tradeoff alternative for the English text and protein
sequences, since it uses less space than our index and has low search times. For DNA,
all the Huffman based versions of our index are good alternatives, considering their low
space requirement and search time.

Still, the new player, FM-KZ index, is a particularly good choice for DNA. It is way
ahead of the competition in the space use, while belonging to the fastest. At the same
time its simplicity is striking.

Considering both speed and space use, for the English text and the proteins, the SSA
index is the best choice, still, our variants come close, especially for proteins.

12

Time to display the first character on English text (80 Mb) Space v/s time of display on English text (80 Mb)

0.3 T T T T T T T T T T — T T T T 0.007 T T T T T T T T T T T T
M —— M+
LZ —%— % Lz x
RLFM —%— 0.006 L RLFM x |]
% 025r CSA —&5— [— CSA —5—
k! SSA —m— 8 SSA m
S FM-Huffman —e— & 0005 | FM-Huffman o ||
o 02 | FM-Huffman k=4 —e— | | 2 : FM-Huffman k=4 e
%) FM-Huffman k=16 —&— 2 FM-Huffman k=16~ &
g FM-KZ2 —a— E 0004 FM-KZ2 & ||
@ =
§ 015r %
5 S 0003 L] B
8 =4
o 0.1 | -
= " [
g S 0002 F
o [
£ £
= 0.05 - 0.001 |
0 L L L L L *A\'\A*—I_F L L L L L L L L 0 L L L L L L L L L L L L
0 02040608 1 12141618 2 22242628 3 32 0O 02 04 06 08 1 12 14 16 18 2 22 24
space (fraction of the text) space (fraction of the text)
Time to display the first character on DNA (60 Mb) Space Vv/s display time on DNA (60 Mb)
— T T T T T T T——r—T— FvM — 0.0035 T T T T T T T VFM v+
0.14 LZ —x— |1 * Lz x
RLFM —%— 0003 L RLFM ¥]
2 o012t CSA —5— || @ CSA —B—
e . SSA —=— c SSA =
S FM-Huffman —e— S 0.0025 - FM-Huffman o ||
2 o1l FM-Huffman k=4 —e— | | 2 . FM-Huffman k=4 e
= : FM-KZ1 —<— = FM-KZ1 v
E FM-KZ2 £ FM-KZ2 &
s - 0002 :
o 0.08 %
g g
= [| B
3 0086 £ o005 B\B\
° @
H o
& o004t g 0o01F » 1
o g a
= g +
0.02 F h 0.0005 | v .O % b
0 P S S S P S S S S S R 0 L L L L L L L L L
0 02040608 1 12141618 2 22242628 3 3234 0 02 04 06 08 1 1.2 1.4 1.6 1.8 2
space (fraction of the text) space (fraction of the text)
Time to display the first character on proteins (55 Mb) Space v/s display time on proteins (55 Mb)
0.2 T T T T T T T T T 0.006 T T T T T T T T T T T T T T
FM —— M+
LZ —x— LZ X
RLFM —%— * RLFM *
- CSA —a— . 0.005 - CSA —8— |1
2 SSA —m— 38 SSA m
g 0151 FM-Huffman —e— |7 IS FM-Huffman ©
o FM-Huffman k=4 —e— 2 0.004 | FM-Huffman k=4 e]
= FM-Huffman k=16 —&— 2 : FM-Huffman k=16 A
£ FM-KZ2 E FM-KZ2 &
8 g
s o1f £ 0003 g
£ ©
3 ©
£ -
° 5 0002 | R
[
a Q
S o005t o . BN
£ £
= 0.001 . e % :
A
) L P S L L L L L 0 L L L L L L L L L L L L L L
0 0.5 1 15 2 25 3 35 4 4.5 0 02040608 1 12 14 16 18 2 22 24 26 28 3
space (fraction of the text) space (fraction of the text)

Figure 5. On the left, time to show the first character of a text context around the positions of the occurrences
as a function of the size of the index. From top to bottom, we show the results of searching 80 MB of English
text, 60 MB of DNA and 55 MB of proteins. In the plot of the DNA sequence, the point corresponding to the
LZ index is covered. Its value is: space=1.18, time=0.03. On the right, time per character displayed around an
occurrence and space for each index.

13

LUl 1CPUL Llllg Yutlics, Oul 1HHUCA 10505 LU LHC 1 IVI—1HHUCTA 1UL Dllgllﬁll allu prolcliils, lalllly
because of its large space requirement. Also, it only surpasses the RLFM and CSA for
large space usages. For DNA, however, our index, with the two versions, is better than
the FM-index. This reduction in space is due to the low zero-order entropy of the DNA,
which makes our index compact and fast.

Regarding the time for displaying the first character, the FM-index is faster than our
index. Again, our index takes more space than the other indexes to get competitive time
for English and proteins, and reduces its space for DNA. Regarding display time per
character, our index with k& = 4 is the fastest for DNA with a low space requirement,
becoming an interesting alternative for this type of query.

The version of our index with £ = 4 improved both the space and time with respect
to the binary version and it became a very good alternative for counting and reporting
queries, especially for DNA, due to the low zero-order entropy of this text.

9 Conclusions

We have focused in this paper on a practical data structure inspired by the FM-index [3],
which removes its sharp dependence on the alphabet size o. Our key idea is to encode
the text with the Kautz-Zeckendorf coding, offering instant synchronization at codeword
boundaries (a property missing in Huffman coding, thus implying a significant space
penalty in FM indexes), at still being quite succinct. While not competitive to the best
succinct indexes in theory, our solutions fare well in practice, and are simpler conceptually
and easier to implement than the other structures.

Acknowledgements

This work was partially funded by Fondecyt Grant-1-050493, Chile (Gonzalo Navarro).

References

1. M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm. DEC SRC Research
Report 124, 1994.

2. D. Clark. Compact Pat Trees. PhD thesis, University of Waterloo, 1996.

3. P. Ferragina and G. Manzini. Opportunistic data structures with applications. In Proc. FOCS’00, pp.
390 398, 2000.

4. P. Ferragina and G. Manzini. An experimental study of an opportunistic index. In Proc. SODA’01, pp.
269 278, 2001.

5. R. Gonzalez, Sz. Grabowski, V. Makinen, and G. Navarro. Practical implementation of rank and select
queries. In Poster Proc. WEA’05, pp. 27-38, 2005.

6. Sz. Grabowski, V. Miakinen, G. Navarro, and A. Salinger. A Simple Alphabet-Independent FM-index. In
Proc. PSC’05, pp. 230-244, 2005.

7. Sz. Grabowski, V. Makinen, and G. Navarro. First Huffman, then Burrows-Wheeler: an alphabet-independent
FM-index. In Proc. SPIRE’04, pp. 210 211, 2004. Poster.

8. R. Grossi and J. Vitter. Compressed suffix arrays and suffix trees with applications to text indexing and
string matching. In Proc. STOC’00, pp. 397 406, 2000.

9. D. Harman. Overview of the Third Text REtrieval Conference. In Proc. TREC-3, pages 1 19, 1995. NIST
Special Publication 500-207.

10. G. Jacobson. Swuccinct Static Data Structures. PhD thesis, CMU-CS-89-112, Carnegie Mellon University,
1989.

11. W. H. Kautz. Fibonacci codes for synchronization control. IEEE Trans. on Inf. Th., 11, pp. 284-292, 1965.

14

1.

13

14.

15.
16.

17.

1. viunro. 1Lables. 1n rroc. rotL £ vo J0, pp. 9i—%4, 1JJ0.

G. Navarro and V. Maékinen. Compressed Full-Text Indexes (2nd version). Techni-
cal Report TR/DCC-2006-6. Dept. of Computer Science, Univ. of Chile, April 2006.
ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/survcompr?2.ps.gz.

V. Makinen and G. Navarro. Succinct suffix arrays based on run-length encoding. Nordic J. of Computing
12(1):40-66, 2005.

G. Navarro. Indexing text using the Ziv-Lempel trie. J. of Discrete Algorithms 2(1):87-114, 2004.

K. Sadakane. Compressed text databases with efficient query algorithms based on the compressed suffix
array. In Proc. ISAAC’00, LNCS 1969, pp. 410-421, 2000.

E. Zeckendorf. Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres
Lucas. Bull. Soc. Roy. Sci. Liege, 41, pp. 179 182, 1972.

15

