
Bit-Parallel Computation of Local Similarity Score

Matrices with Unitary Weights

Heikki Hyyrö1 and Gonzalo Navarro2 ∗

1 Department of Computer Sciences, University of Tampere, Finland.
e-mail: heikki.hyyro@gmail.com

2 Department of Computer Science, University of Chile.
e-mail: gnavarro@dcc.uchile.cl

Abstract. Local similarity computation between two sequences permits de-
tecting all the relevant alignments present between subsequences thereof. A
well-known dynamic programming algorithm works in time O(mn), m and n be-
ing the lengths of the subsequences. The algorithm is rather slow when applied
over many sequence pairs. In this paper we present the first bit-parallel compu-
tation of the score matrix, for a simplified choice of scores. If the computer word
has w bits, then the resulting algorithm works in O(mn log min(m,n,w)/w)
time, achieving up to 8-fold speedups in practice. Some DNA comparison ap-
plications use precisely the simplified scores we handle, and thus our algorithm
is directly applicable. In others, our method can be used as a raw filter to
discard most of the strings, so the classical algorithm can be focused only on
the substring pairs that can yield relevant results.

1 Introduction and Related Work

Sequence comparison is a fundamental task in Computational Biology, in order to
detect relevant similarities between a pair of genetic or protein sequences [3]. Three
kinds of similarities are of interest: (i) global similarity compares two strings as a
whole, (ii) semiglobal (or semilocal) similarity looks for substrings of a given string
that are similar to a second given string, (iii) local similarity looks for similar sub-
strings of two given strings.

Similarity is usually expressed using a score function, which gives prizes or penal-
ties to operations on the strings and to pairings of characters of the two strings.
Usually pairing the same character in both strings involves a prize because we have
found a similarity. Pairing different characters, inserting or removing characters, in-
volves penalties. The specific values for prizes and penalties depend on the biological
model used for the similarity (for example, logarithms of mutation probabilities). The
similarity is then expressed as the highest possible score of a sequence of operations
that align one string to the other.

Global and semiglobal similarity find applications in other areas such as text
searching. Global similarity computation is then seen as a distance computation. The

∗Partially funded by Millennium Nucleus Center for Web Research, Grant P04-067-F, Mideplan,
Chile.

1

Paper Submitted to PSC

distance is never negative, and the smaller it is, the more similar the sequences are.
Semiglobal similarity can be converted into an approximate search problem, namely
to find the approximate occurrences of a short pattern inside a long text. Local
similarity, on the other hand, is more specific to computational biology applications.

All these sorts of similarity computations can be easily carried out in O(mn) time
using dynamic programming. Given strings A1...m and B1...n, the general method
is to compute an (m + 1) × (n + 1) matrix C whose cell Ci,j gives the maximum
score/minimum distance to align/convert A...i to B...j. The cells of row 0 and column
0 form initially known boundary cases, and the remaining m× n cells are computed
using a recurrence. For example, for global similarity score computation we may have
Ci,0 = −i, C0,j = −j, and for i, j > 0

Ci,j = max(Ci−1,j−1 + δ(Ai, Bj), Ci,j−1 − 1, Ci−1,j − 1)

where δ(Ai, Bj) = if Ai = Bj then 1 else − 1

where we have assumed that all penalties are −1 and prizes are +1. More compli-
cated score functions can be real-valued and depend on the characters involved. The
maximum score for the strings A and B is Cm,n.

If we are instead computing distance, we may have Ci,0 = i, C0,j = j, and for
i, j > 0

Ci,j = min(Ci−1,j−1 + δ(Ai, Bj), Ci,j−1 + 1, Ci−1,j + 1)

where δ(Ai, Bj) = if Ai = Bj then 0 else 1

where we have assumed that all costs are 1. The minimum distance between A and
B is Cm,n.

Semiglobal similarity computation is obtained by using the above formulas except
that C0,j = 0, so that an alignment of A can start afresh at any position in B. High
score/low distance at cell Cm,j tells us that an interesting alignment ends at position
j in B.

Local similarity computation needs a somewhat different arrangement and, curi-
ously, it seems not expressible using the distance model, but just the score model. In
this case we have Ci,0 = C0,j = 0, and for i, j > 0

Ci,j = max(0, Ci−1,j−1 + δ(Ai, Bj), Ci,j−1 − 1, Ci−1,j − 1)

where δ(Ai, Bj) = if Ai = Bj then 1 else − 1

where we remark the 0 value involved in the maximum. The objective of this zero
is that if an alignment in progress has given us more penalties than prizes, then it
is better to start afresh from that position. Any cell value Ci,j that is high enough
indicates that similar substrings end at position i in A and j in B.

Much effort has been carried out in order to efficiently compute the distance ma-
trix, both for global and semiglobal alignments. In particular, bit-parallelism has
given the best results in practice. Bit-parallelism packs several values inside a com-
puter word and updates them all in one shot. The bit-parallel algorithm that best
“parallelizes” the matrix computation is from Myers [8], which computes semiglobal
similarity and is easily adapted to compute global similarity [4, 5, 6]. Using Myers’
algorithm, both similarities can be computed in O(mn/w) time using a computer

2

Bit-Parallel Computation of Local Similarity Score Matrices with Unitary Weights

word of w bits, which is the optimal bit-parallel speedup. Myers’ algorithm strongly
relies on the fact that consecutive cells of Ci,j differ only by −1, 0, or 1. Several other
bit-parallel algorithms exploiting the same property have been proposed [9].

Other approaches to speed up the computation exist. Different Four-Russians
techniques [7, 11] obtain O(mn/ log(mn)) time. The same complexity is obtained by
using a Ziv-Lempel factoring [2], which generalizes to local similarity with arbitrary
weights. In practice, when applicable, bit-parallel algorithms are faster.

Bit-parallel computation of score matrices, however, has not been attempted.
Bergeron and Hamel [1] have extended Myers’ scheme to handle arbitrary integer
weights for substitutions, as well as a fixed weight c for insertions and deletions.
Their algorithm is O(mnc log(c)/w) time. This scheme cannot be used to compute
local similarity.

In general, global and semiglobal score computation can be converted into dis-
tance computation. However, local similarity is of different nature and cannot be
easily mapped to a known distance computation scheme. In this paper we present
a bit-parallel algorithm inspired on Myers’ scheme (and more precisely on Hyyrö’s
version [4]), which obtains O(mn log min(m, n, w)/w) time. The algorithm assumes
that aligning two characters yields a prize of +1 when they are equal and a penalty
of −1 otherwise, and that inserting or deleting characters has a penalty of −1.

The main obstacles to obtain the algorithm are (1) that the recurrence is more
complicated than the one afforded by Myers (in particular, differences of +2 among
contiguous cells are possible), and (2) that the zero in the maximization involves
knowing absolute cell values, while the whole philosophy of Myers’ scheme relies on
storing differential values.

We implemented the algorithm and compared it against plain dynamic program-
ming, which is currently the only alternative. We show that up to 8-fold speedups
are obtained using our algorithm.

Our algorithm cannot replace dynamic programming because it cannot handle
other prize and penalty values. On the other hand, while score computations on
protein sequences are always weighted, there are many cases of score computations
on DNA sequences where our simplified model is actually used [3]. It may also be
feasible to use our method as a fast filter to discard most of the matrix and let the
weighted dynamic programming algorithm concentrate only on the matrix areas that
look promising.

2 A Bit-Parallel Design

Let us focus on the simple score function depicted in the Introduction, that is,

Ci,0 = C0,j = 0 and, for i, j > 0,

Ci,j = max(0, Ci−1,j−1 + δ(Ai, Bj), Ci,j−1 − 1, Ci−1,j − 1)

where δ(Ai, Bj) = if Ai = Bj then 1 else − 1

We prove now some properties of matrix C. Note, to start, that C contains no
negative values.
Lemma 1: Given the above definition of matrix C, it holds

Ci,j − Ci−1,j−1 ∈ −1, 0, +1 for any i, j > 0

3

Paper Submitted to PSC

Ci,j − Ci,j−1 ∈ −1, 0, +1, +2 for any i ≥ 0, j > 0

Ci,j − Ci−1,j ∈ −1, 0, +1, +2 for any i > 0, j ≥ 0

Proof: We proceed inductively, so we assume it proved for any (i′, j′) such that j′ < j,
or j′ = j and i′ < i. The base cases are immediate. Now, for the inductive case, let us
start with the first proposition. The option Ci−1,j−1+δ(Ai, Bj) in the “max” clause of
the formula for Ci,j guarantees that Ci,j−Ci−1,j−1 ≥ −1. Inductive Hypothesis tells us
that Ci−1,j ≤ Ci−1,j−1+2 and Ci,j−1 ≤ Ci−1,j−1+2, and thus Ci,j = max(0, Ci−1,j−1+
δ(Ai, Bj), Ci,j−1−1, Ci−1,j−1) ≤ max(Ci−1,j−1+δ(Ai, Bj), Ci−1,j−1+1, Ci−1,j−1+1) =
Ci−1,j−1 + 1. Here we removed the zero from the “max” clause as it is known that
Ci−1,j−1 + 1 ≥ 1 > 0. By combining the two previous observations, we have that
−1 ≤ Ci,j − Ci−1,j−1 ≤ 1.

Let us now consider the second proposition. First we note that Ci,j − Ci,j−1 ≥
−1 because of the option Ci,j−1 − 1 inside the “max” clause. From our Inductive
Hypothesis and the above-proved first proposition we have that Ci,j−1 ≥ Ci−1,j−1−1 ≥
Ci,j−1−1 = Ci,j−2. Thus −1 ≤ Ci,j−Ci,j−1 ≤ 2. The third proposition is symmetric
with the second and comes out similarly. �

Given the ranges of values proved for consecutive differences, we will represent matrix
C incrementally using the following bit matrices:

Mi,j ≡ Ai = Bj DPi,j ≡ Ci,j − Ci−1,j−1 = +1
Zi,j ≡ Ci,j = 0 DZi,j ≡ Ci,j − Ci−1,j−1 = 0

DMi,j ≡ Ci,j − Ci−1,j−1 = −1
HTi,j ≡ Ci,j − Ci,j−1 = +2 V Ti,j ≡ Ci,j − Ci−1,j = +2
HPi,j ≡ Ci,j − Ci,j−1 = +1 V Pi,j ≡ Ci,j − Ci−1,j = +1
HZi,j ≡ Ci,j − Ci,j−1 = 0 V Zi,j ≡ Ci,j − Ci−1,j = 0
HMi,j ≡ Ci,j − Ci,j−1 = −1 V Mi,j ≡ Ci,j − Ci−1,j = −1

Here M and Z stand for “match” and “zero”, respectively. D, H , and V stand for
“diagonal”, “horizontal”, and “vertical”, respectively. T , P , Z, and M stand for
“plus two”, “plus one”, “zero”, and “minus one”, respectively. When a cell refers to
a value out of bounds, such as HPi,0, its value is not really important.

The above information clearly represents the cells of matrix C. For example,

Ci,j =

i
∑

r=1

(2× V Tr,j + 1× V Pr,j − 1× V Mr,j)

The next step is to derive logical properties that relate those bit matrices, so as
to permit an efficient bit-parallel implementation.

DPi,j ≡ Mi,j ∨ V Ti,j−1 ∨ HTi−1,j :
It is clear that if either Ai = Bj , Ci,j−1 = Ci−1,j−1 + 2, or Ci−1,j = Ci−1,j−1 + 2,
then Ci,j = Ci−1,j−1 + 1. Moreover, if none of them hold, there is no way for
Ci,j to get the value Ci−1,j−1 + 1.

DZi,j ≡ ∼ DPi,j ∧ (Zi−1,j−1 ∨ V Pi,j−1 ∨ HPi−1,j) :
From the score recurrence we can easily derive the rule that Ci,j = Ci−1,j−1 if and
only if Ci,j 6= Ci−1,j−1+1 and max(0, Ci,j−1−1, Ci−1,j−1) = Ci−1,j−1. Moreover,

4

Bit-Parallel Computation of Local Similarity Score Matrices with Unitary Weights

since 0 ≤ Ci−1,j−1 and the condition Ci,j 6= Ci−1,j−1 + 1 implies that Ci,j−1 <
Ci−1,j−1 + 2 and Ci−1,j < Ci−1,j−1 + 2, it turns out that already Ci−1,j−1 ≥
max(0, Ci,j−1 − 1, Ci−1,j − 1), so the condition max(0, Ci,j−1 − 1, Ci−1,j − 1) =
Ci−1,j−1 can be changed into the form Ci−1,j−1 ∈ {0, Ci,j−1 − 1, Ci−1,j − 1}.
This results in the above formula for DZi,j.

DMi,j ≡ ∼ (DPi,j ∨DZi,j) : As it is the only remaining choice.

HTi,j ≡ DPi,j ∧ V Mi,j−1 :
From now on we build on D∗ and the other bit matrices, by exhaustively exam-
ining all the choices for Ci,j − Ci−1,j−1 using submatrices where the lower right
cell is Ci,j = x and the upper left can thus have a value x− 1, x or x + 1. The
lower left cell is Ci,j−1, which in this particular item must have the value x− 2.
We discard cases that are not possible according to Lemma 1 and express the
remaining cases as logical conditions. We put “×” in the remaining corner to
signal impossible cases.

x− 1
x− 2 x

x ×
x− 2 x

x + 1 ×
x− 2 x

HPi,j ≡ (DPi,j ∧ V Zi,j−1) ∨ (DZi,j ∧ V Mi,j−1) :

x− 1
x− 1 x

x
x− 1 x

x + 1 ×
x− 1 x

HMi,j ≡ V Ti,j−1 ∨ (DZi,j ∧ V Pi,j−1) ∨ (DMi,j ∧ V Zi,j−1) :

x− 1
x + 1 x

x
x + 1 x

x + 1
x + 1 x

Note the simplification in the first condition since V Ti,j−1 ⇒ DPi,j.

HZi,j ≡ ∼ (HTi,j ∨HPi,j ∨HMi,j) : As it is the only remaining choice.

V Ti,j ≡ DPi,j ∧HMi−1,j:
Now we focus on the upper right corner.

x− 1 x− 2
x

x x− 2
× x

x + 1 x− 2
× x

V Pi,j ≡ (DPi,j ∧HZi−1,j) ∨ (DZi,j ∧HMi−1,j) :

x− 1 x− 1
x

x x− 1
x

x + 1 x− 1
× x

V Mi,j ≡ HTi−1,j ∨ (DZi,j ∧HPi−1,j) ∨ (DMi,j ∧HZi−1,j) :

x− 1 x + 1
x

x x + 1
x

x + 1 x + 1
x

V Zi,j ≡ ∼ (V Ti,j ∨ V Pi,j ∨ V Mi,j) : As it is the only remaining choice.

5

Paper Submitted to PSC

3 A Bit-Parallel Algorithm

Up to now we have focused on how to compute the C matrix without regard for which
should be the output of the algorithm. As explained, computational biologists are
interested in matrix positions where the local score exceeds some threshold k. Those
positions are then subject of further analysis.

Hence our algorithm will receive two strings A and B, as well as a threshold value
k, and will point out all the positions (i, j) of matrix C where the score of the local
alignment between A...i and B...j is at least k, that is, where Ci,j ≥ k.

The idea of the bit-parallel algorithm is to process C column by column (just like
the standard dynamic programming algorithm). However, the bit-parallel algorithm
will process all the column in one shot, not row by row. In this section we assume
m ≤ w, that is, we can pack all bits of a column Gj = G1...m,j in a single computer
word, for any matrix G. Note that row zero is not represented. When needed, the
ith bit of vector Gj will be written as Gj(i) = Gi,j.

Therefore, our computation will proceed with column bit vectors DPj, DMj,
DZj, and so on, for j = 0 . . . n, each packed in a computer word. After step j of the
algorithm, the vectors will hold the bits corresponding to column j of the matrix.

We will use the usual C instructions to handle bits: “&” as the bitwise-and, “|” as
the bitwise-or, “∧” as the bitwise-xor, “∼” as the bitwise-not, and “<<” to shift all
the bits one position to the left and enter a zero at the rightmost position. Sometimes
we will treat bit vectors as integers and perform arithmetic operations on them.

In a precomputation step, explained in Section 3.1, the “match” matrix M is built
in a suitable way for bit-parallel processing. The boundary conditions of matrix C are
handled by giving the proper values to Z0 and V ∗0 vectors, namely V P0 = V M0 =
V T0 = 0 and Z0 = V Z0 = 2m − 1. Then we process the characters of B (matrix
columns) one by one. Each step j computes the bit vectors for column j from the
vectors of column j − 1. First, the diagonal vectors D∗j as well as the horizontal
vector HPj are computed. Vector HPj is computed already at this stage as we use
it in computing DZj. This part is complex and is explained in Section 3.2. Then
the rest of the horizontal and vertical vectors H∗j and V ∗j are easy to compute, as
explained in Section 3.3. Finally, in Section 3.4, we show how to find and report high
enough scores in column j, and how the same mechanism handles also computing
vector Zj. The way this last part is done is again slightly complicated and uses a
technique that is rather different from all the rest.

3.1 Computing Matrix M

Matrix M is represented as a table indexed by alphabet characters. M [c] is a bit
vector such that M [c](i) = 1 iff Ai = c. This table is precomputed before filling
matrix C. This way the cell value Mi,j is actually represented by M [Bj](i).

Matrix M is precomputed in O(m + |Σ|) time, where Σ is the alphabet of A and
B, as follows. First initialize M [c] ← 0 for every c ∈ Σ and then traverse string A
character-wise, setting bit M [Ai](i)← 1.

6

Bit-Parallel Computation of Local Similarity Score Matrices with Unitary Weights

3.2 Computing Vectors D∗j and HPj

Let us start with DPj. As seen in Section 2, DPi,j ≡ Mi,j ∨ V Ti,j−1 ∨ HTi−1,j.
Since we are computing all the values at column j in one shot, component HTi−1,j is
troublesome because it is not yet computed (Mi,j = M [Bj](i) is known so it is not
problematic). Let us expand HTi−1,j using its definition:

DPi,j ≡ Mi,j ∨ V Ti,j−1 ∨ (DPi−1,j ∧ V Mi−1,j−1)

where now the problematic value belongs to the same DP column. Let us express this
recurrence in vector form. We define temporary vectors X(i) ≡M [Bj](i) ∨ V Tj−1(i)
and Y (i) ≡ V Mj−1(i). Then the recurrence for vector DPj is

DPj(i) ≡ X(i) ∨ (DPj(i− 1) ∧ Y (i− 1))

This particular kind of circular dependency has already been solved by Myers [8] in
his simpler formulation for edit distance computation. Following Hyyrö’s explanation
[4, 10], we unroll DPj(i− 1) to obtain

DPj(i) ≡ X(i) ∨ (X(i− 1) ∧ Y (i− 1)) ∨ (DPj(i− 2) ∧ Y (i− 1) ∧ Y (i− 2))

and unrolling repeatedly we obtain

DPj(i) ≡ ∨i
r=0

(

X(i− r) ∧
(

∧i−1
s=i−rY (s)

))

that is, any bit set in X before position i can propagate through a sequence of bits
set in Y that reach position i− 1, so as to set position i in DPj . Myers [8] has shown
that the above formula can be computed using bit-parallelism as follows:

X ← M [Bj] | V Tj−1

Y ← V Mj−1

DPj ← ((Y + (X & Y)) ∧ Y) | X

Let us now consider DZ. From Section 2 we have

DZi,j ≡ ∼ DPi,j ∧ (Zi−1,j−1 ∨ V Pi,j−1 ∨ HPi−1,j)

where this time the problem arises with HPi−1,j. But it turns out that vector HPj

can be computed once the vector DPj is known. In Section 2 we gave the formula

HPi,j ≡ (DPi,j ∧ V Zi,j−1) ∨ (DZi,j ∧ V Mi,j−1)

for it. If we look at the situation where the condition DZi,j ∧ V Mi,j−1 is true, we
can have Ci,j = x only if Ci−1,j = x + 1, that is, only if HPi−1,j is true. Also, DPi,j

must obviously be false. Hence, DZi,j ∧ V Mi,j−1 ⇒ HPi−1,j ∧ V Mi,j−1 ∧ ∼ DPi,j.
Moreover, it is straighforward to see that the condition DZi,j ∧ V Mi,j−1 is true
whenever HPi−1,j ∧ V Mi,j−1 ∧ ∼ DPi,j is true, and thus we have the following
alternative formula for HPi,j:

HPi,j ≡ (DPi,j ∧ V Zi,j−1) ∨ (HPi−1,j ∧ V Mi,j−1 ∧ ∼ DPi,j)

The circular dependency on HPj can be solved in similar fashion as in the case of
computing vector DPj. In this case, defining temporary vectors X and Y such that

7

Paper Submitted to PSC

X(i) ≡ DPj(i) ∧ V Zj−1(i) and Y (i) ≡ V Mj−1(i + 1)∧ ∼ DPj(i + 1), the preceding
formula for HPi,j gets the vector form

HPj(i) ≡ X(i) ∨ (HPj(i− 1) ∧ Y (i− 1))

which is identical to the previous circular dependency for computing DPj . We get
immediately the following bit-parallel formula for computing HPj:

X ← DPj & V Zj−1

Y ← (V Mj−1 & ∼ DPj) >> 1
HPj ← ((Y + (X & Y)) ∧ Y) | X

Once vector HPj is available, computing the vector DZj becomes easy: a straight-
forward conversion of its formula leads into the following bit-parallel code.

DZj ← ∼ DPj & (((Zj−1 << 1) | 1) | V Pj−1 | (HPj << 1))

where, after the shift of Zj−1 we have introduced a “1” at its lowest bit to reflect the
fact that C0,j−1 = 0 (that is, Z0,j−1 = 1) for any j (recall that row zero of Z is not
represented). Similarly, HP0,j = 0 because C0,j − C0,j−1 = 0 6= 1, so we leave the
new rightmost bit in zero after shifting HPj. Finally, we have the following simple
bit-parallel formula for DMj.

DMj ← ∼ (DPj | DZj)

3.3 Computing Other Vectors H∗j and V ∗j

Once DPj, HPj, DMj , and DZj corresponding to the current column j are computed,
the rest flows easily by following the formulas used in Section 2. Again, when we shift
a bit vector to the left, we add or not a “1” bit at the rightmost position depending
on which is the value of that vector at the unrepresented row zero.

HTj ← DPj & V Mj−1

HMj ← V Tj−1 | (DZj & V Pj−1) | (DMj & V Zj−1)
HZj ← ∼ (HTj | HPj | HMj)
V Tj ← DPj & (HMj << 1)
V Pj ← (DPj & ((HZj << 1) | 1)) | (DZj & (HMj << 1))
V Mj ← (HTj << 1) | (DZj & (HPj << 1)) | (DMj & ((HZj << 1) | 1))
V Zj ← ∼ (V Tj | V Pj | V Mj)

3.4 Keeping Scores and Computing Vector Zj

Once the bit vectors for column j have been computed, we check whether some cell
values in column j of matrix C exceed the matching threshold k. At the same time it
is also convenient to check which cells have the value zero and record those positions
into vector Zj . Unfortunately the differential information of the bit vectors does not
allow us to make this in any simple and fast way. The naive approach would be to
use the difference information between adjacent cell values to compute and check the
cell values C1...m,j . This would take O(m) time per column, making the overall run
time O(mn), the same as with classical dynamic programming.

8

Bit-Parallel Computation of Local Similarity Score Matrices with Unitary Weights

On the other hand, as shown by Myers [8], a single value Ci,1...n can be tracked in
constant time per column by using the horizontal vectors H∗j. The problem is that
we need to track all the rows i, falling again to O(m) time per column.

Our approach is to set up multiple witnesses into a single bit vector, and then
scan the column in parallel with the witnesses. Each witness will be associated with
some i and keep track of the cell values Ci,1...n, that is, the cell values on row i of
C. A somewhat similar method was used in [5, 6] as part of an approximate string
matching algorithm.

Let MWj be a length-m bit vector that holds the multiple witnesses at column
j and let Q denote the number of bits taken by each witness. Then MWj can hold
r = ⌊m/Q⌋ witnesses. Let MWj{i} denote a witness that has its first bit in position
i of MWj . MWj{i} occupies the bits MWj(i . . . i+Q−1) and keeps track of the cell
values on row i of C. The first witness is always MWj{1}, and the rest are spread
evenly into MWj . This can be done in such manner that the largest empty gap after
the region of any witness is ⌈(m−rQ)/r⌉. Let us define Q′ = Q+⌈(m−rQ)/r⌉, that
is, Q′ gives the maximum distance between the first bit of a witness and the first bit
of the next witness or, for the last witness, the position after the last bit of the whole
vector.

Assume that Ci,j = x and the witness MWj{i} exists. For reasons that become
clear below, we record the value x into MWj{i} in the form 2Q−1 − x. To guarantee
that the witnesses can represent all possible score values from zero to min(m, n), the
parameter Q is determined as the minimum number for which 2Q−1 ≥ min(m, n),
that is, Q = ⌈log2 min(m, n)⌉ + 1. Figure 1 exemplifies (vectors S, E, K will be
introduced soon).

0

1

2

3

0

2

2

1

00

1

2

3

4

5

6

7

8

C
j

0

1

0

1

0

MWj

1

0

0

The witness MWj{1} represents

the value C1,j = 0 as 2Q−1 − 0 =

8 = 10002.

0

1

0

0

0

1

0

0

1

0

0

0

1

0

0

0

S E K

0

1

0

0

0

1

0

0

k − 1 = 2 =

00102

k − 1 = 2 =

00102

The witness MWj{5} represents

the value C5,j = 2 as 2Q−1 − 2 =

6 = 01102.

m = 8, k = 3,

Q = ⌈log
2
m⌉ + 1 = 4

Figure 1: Example of usage of MW , S, E, and K vectors.

With these conventions the witnesses have the following properties:

(1) The Qth bit of MWj{i} is set if and only if Ci,j = 0.

(2) Adding some value x to Ci,j corresponds to subtracting x from MWj{i}, and
vice versa.

(3) If we add k − 1 to MWj{i}, then the Qth bit of MWj{i} is set if and only if
Ci,j < k.

The witnesses are initialized to MW0{i} = 2Q−1 since all values in column 0 of C are
zero. After that the witness values are computed by using the horizontal vectors. For

9

Paper Submitted to PSC

example, if MWj−1{i} = x and the ith bit of HTj is set, then MWj{i} = MWj−1{i}−
2 = x− 2 (note that we subtracted the +2 due to property (2)). When MWj−1 and
the horizontal vectors H∗j are available, all witnesses MWj{1} . . .MWj{r} may be
computed in bit-parallel fashion. To achieve this, we use a “start” bit mask S with
bits set in those locations that correspond to the first bits of witnesses. Then, the
whole witness vector MWj may be computed as:

MWj ← MWj−1 − 2(HTj & S)− (HPj & S) + (HMj & S)

Once MWj and the vertical vectors V ∗j are available, all cell values in column j of C
can be scanned in bit-parallel manner. First we copy MWj into an auxiliary vector
X. At this stage each witness MWj{i} copied into X represents the value Ci,j. Then
each witness MWj is updated Q′ − 1 times. First to represent the value Ci+1,j, then
the value Ci+2,j, and so on until the value Ci+Q′−1,j. After Q′ − 1 iterations, all cells
of column j have been scanned (some possibly twice if Q′ 6= Q). At each stage of
the scan we check the current witness values for matches or zeros. For this we use
an “end” bit mask E ← S << (Q − 1) that has a bit set in those positions that
correspond to the last bits of the witnesses. In addition we use a bit mask K that
holds the value k − 1 at each witness location.

When the witnesses MWj{i} in X represent the cells Ci+h,j, the vector ((X +
K) & E) >> (Q − 1 − h) has bits set in those positions u where Cu,j < k, and the
vector (X & E) >> (Q− 1− h) has bits set in those positions u where Cu,j = 0.

Our strategy for checking matches is to record during the scan whether column j
contains any matches or not. These may then be checked more carefully, if desired,
but if all matching locations are recorded exactly, the run time becomes again O(mn)
in the worst case.

The match checking is done by using an auxiliary vector Y that is initialized by
setting Y ← E. When MWj{i} represents Ci+h,j, we set Y ← Y & (X + K).
There is at least one match in column j if and only if Y 6= E after the Q′ iterations
(consisting of the initial stage and Q′ − 1 update stages). The zero vector Zj is
computed by initializing it to zero and setting Z ← Z | ((X & E) >> (Q− 1− h))
when MWj{i} represents Ci+h,j.

computes MWj , then it updates the witnesses in the auxiliary vector X to go
through all cell values in column j. It also records matching columns as well as
computes the vector Zj during the scan. The first stage is handled separately, and
for this reason for example the vector Zj is directly given a non-zero value.

Figure 2 gives the complete algorithm. Note that, by carefully choosing the update
order, we manage to keep only one copy of each vector.

3.5 Analysis

Up to now we have assumed that m ≤ w. In this case computing the M table takes
O(m+|Σ|) time, and the rest of the algorithm in Figure 2 clearly runs in time O(nQ′).
Since Q′ < 2Q and Q = ⌈log2 min(m, n)⌉+1, we have that nQ′ = O(n log min(m, n))
and the total running time is O(|Σ|+ m + n log min(m, n)).

If m > w, the length-m bit vectors can be simulated in O(⌈m/w⌉) time by using
⌈m/w⌉ vectors of length w (details are omitted for lack of space). This results in the
time O(m+⌈m/w⌉|Σ|) for computing the M table, and the run time of the rest of the

10

Bit-Parallel Computation of Local Similarity Score Matrices with Unitary Weights

LocalScores (A1...m, B1...n, k)
1. For c ∈ Σ Do M [c] ← 0
2. For i ∈ 1 . . . m Do M [Ai] ← M [Ai] | 2

i−1

3. V P, V M,V T ← 0, V Z,Z ← 2m − 1
4. Q ← ⌈log2 m⌉+ 1
5. r ← ⌊m/Q⌋
6. S ← distribute evenly r witnesses and mark their first bit
7. MW,E ← S << (Q− 1)
8. K ← S × (k − 1)
9. Q′ ← Q + ⌈(m− rQ)/r⌉
10. For j ∈ 1 . . . n Do

11. X ← M [Bj] | V T
12. DP ← ((V M + (X & V M)) ∧ V M) | X
13. X ← DP & V Z
14. Y ← (V M & ∼ DP) >> 1
15. HP ← ((Y + (X & Y)) ∧ Y) | X
16. DZ ← ∼ DP & (((Z << 1) | 1) | V P | (HP << 1))
17. DM ← ∼ (DP | DZ)
18. HT ← DP & V M
19. HM ← V T | (DZ & V P) | (DM & V Z)
20. HZ ← ∼ (HT | HP | HM)
21. V T ← DP & (HM << 1)
22. V P ← (DP & ((HZ << 1) | 1)) | (DZ & (HM << 1))
23. V M ← (HT << 1) | (DZ & (HP << 1)) | (DM & ((HZ << 1) | 1))
24. V Z ← ∼ (V T | V P | V M)
25. MW ← MW − 2(HT & S)− (HP & S) + (HM & S)
26. X ← MW
27. Y ← E
28. Z ← 0
29. For h ∈ 0 . . . Q′ − 1 Do

30. Z ← Z | ((X & E) >> (Q− 1− h))
31. Y ← Y & (X + K)
32. X ← X − 2((V Tj >> h) & S)− ((V Pj >> h) & S) + ((V Mj >> h) & S)
33. If Y 6= E Then Record match at column j

Figure 2: Complete bit-parallel algorithm to compute local similarity. Some opti-
mizations have been discarded for clarity.

11

Paper Submitted to PSC

algorithm is multiplied by a factor of O(⌈m/w⌉), which yields O(mn log min(m, n)/w),
taking the alphabet size as a constant for simplicity.

The run time O(mn log min(m, n, w)/w) mentioned in the beginning of the paper
is finally achieved by observing that the values in different length-w segments of
the bit vectors may be stored using delta encoding. If C⌈hw+w/2⌉,j = x for some
h ≥ 0, we know from Lemma 1 that the values in the corresponding length-w section,
Chw+1...(h+1)w,j, must be in the range x − w + 1 . . . x + w. Thus if the witnesses for
section Chw+1...(h+1)w,j represent the values of form C⌈hw+w/2⌉,j −Ci,j, we may use the
value Q = ⌈log2 min(m, n, 2w)⌉ + 1 in storing the witnesses. Here we use the value
2w instead of w in order to ensure that the sum X + K in match checking does not
cause an overflow. Note that this scheme requires some modifications in the process
of checking for zero values and/or matches. For example the values in K must be
adjusted depending on the current base-value x.

Compared to the best bit-parallel complexity for global and semiglobal similarity
(actually, for distance computation), O(mn/w), we have a logarithmic penalty fac-
tor because of the use of local similarity. At this point it should be clear that we
can compute global and semiglobal scores (rather than distances) within the same
O(mn/w) complexity, just by removing the use of vector Z and checking the score
only at a single cell or a single row. This removes the need for the witnesses and their
logarithmic penalty.

4 Experimental Results

We implemented the O(mn log min(m, n, w)/w) version of our algorithm and com-
pared it to the plain dynamic programming algorithm. Both algorithms were pro-
grammed in C, and we tried to make both implementations as efficient as possible.
The test computer was a 64-bit Sparc Ultra 2 with 128 mb ram, and the codes were
compiled with GCC 3.3.1 with optimization switched on. The test strings were ran-
domly selected DNA sequences from the genome of S. cerevisiae (baker’s yeast). The
test contained two different types of scenarios. In the first we tested with short pat-
terns and a long text. This test involved the matching thresholds k = 1 and k = m−1
to see what kind of effect the value of k has. In the second we tested aligning patterns
and texts that have the same length, and this time we used only k = m − 1. The
results are shown in Fig. 3 (left and right, respectively). In them our algorithm is
observed to be 1.2 - 8.5 times faster than the basic dynamic programming algorithm
when w = 64.

5 Conclusions

We have presented the first bit-parallel algorithm to compute local similarity score
between two strings, which has many practical applications in computational biology.
While dynamic programming, the only existing algorithm, takes time O(mn) (m and n
being the lengths of the strings), our algorithm needs time O(mn log min(m, n, w)/w)
using a computer word of w bits. Our experiments show up to 8-fold speedups.

Our algorithm cannot replace dynamic programming because it cannot handle
prize and penalty values other than ±1. However, it can be used as a fast filter

12

Bit-Parallel Computation of Local Similarity Score Matrices with Unitary Weights

 0

 1

 2

 3

 4

 5

 6

 7

m
=32,k=31

m
=32,k=1

m
=16,k=15

m
=16,k=1

m
=8,k=7

m
=8,k=1

m
=4,k=3

m
=4,k=1

D
yn

.P
ro

g.
/O

ur
s

m,k combinations

Ratio for n=500,000, increasing m, and k=1,m-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 128 256 512 1024 2048

D
yn

.P
ro

g.
/O

ur
s

n=m

Ratio for increasing n=m and k=m-1=n-1

Figure 3: Speedup factor of our bit-parallel algorithm over the basic dynamic pro-
gramming algorithm. On the left, aligning long against short strings. On the right,
aligning strings of the same length.

to discard most of the areas and let the dynamic programming algorithm concen-
trate only on the areas that look promising. Moreover, there are some DNA-related
applications where they use precisely those ±1 penalties.

As future research issues, the most immediate is to investigate whether it is possi-
ble to “pack” the logical conditions describing the differences across the diverse direc-
tions in a different way that makes the overall formula faster to compute. Longer-term
goals are accomodating other cost functions apart from the unitary-cost one, and try-
ing to obtain optimal speedup, removing the term O(log min(m, n, w)) from the cost
formula.

References

[1] A. Bergeron and S. Hamel. Vector algorithms for approximate string matching.
International Journal of Foundations of Computer Science, 13(1):53–65, 2002.

[2] M. Crochemore, G. Landau, and M. Ziv-Ukelson. A sub-quadratic sequence
alignment algorithm for unrestricted scoring matrices. In Proc. 13th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA’02), pages 679–688,
2002.

[3] D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, 1997.

[4] H. Hyyrö. Explaining and extending the bit-parallel approximate string match-
ing algorithm of Myers. Technical Report A-2001-10, Dept. of Computer and
Information Sciences, University of Tampere, Tampere, Finland, 2001.

[5] H. Hyyrö and G. Navarro. Faster bit-parallel approximate string matching. In
Proc. 13th Combinatorial Pattern Matching (CPM’02), LNCS 2373, pages 203–
224, 2002.

[6] H. Hyyrö and G. Navarro. Bit-parallel witnesses and their applications to ap-
proximate string matching. Algorithmica, 41(3):203–231, 2005.

13

Paper Submitted to PSC

[7] W. Masek and M. Paterson. A faster algorithm for computing string edit dis-
tances. J. of Computer and System Sciences, 20:18–31, 1980.

[8] G. Myers. A fast bit-vector algorithm for approximate string matching based on
dynamic progamming. Journal of the ACM, 46(3):395–415, 1999.

[9] G. Navarro. A guided tour to approximate string matching. ACM Computing
Surveys, 33(1):31–88, 2001.

[10] G. Navarro and M. Raffinot. Flexible Pattern Matching in Strings – Practical on-
line search algorithms for texts and biological sequences. Cambridge University
Press, 2002.

[11] S. Wu, U. Manber, and E. Myers. A sub-quadratic algorithm for approximate
limited expression matching. Algorithmica, 15(1):50–67, 1996.

14

