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Abstrat. Numeri string is a sequene of symbols from an alphabet � �U, where U is some numerial universe losed under addition and subtration.Given two numeri strings A = a1 � � � am and B = b1 � � � bn and a distanefuntion d(A;B) that gives the sore of the best (partial) mathing of A andB, the transposition invariant distane is mint2Ufd(A + t; B)g, where A + t =(a1 + t)(a2 + t) : : : (am + t). The orresponding mathing problem is to �ndourrenes j ofA inB where d(A+t; Bj0:::j) is smaller than some given thresholdand Bj0:::j is a substring of B. In this paper, we give e�ient algorithms formathing numeri strings � with and without transposition invariane � undernoise; we onsider distane funtions d(A;B) suh that symbols a 2 A and b 2 Ban be mathed if jb�aj � Æ, or the � largest di�erenes jb�aj an be disarded.Keywords: approximate mathing, transposition invariane, (Æ; )�mathing1 IntrodutionTransposition invariant string mathing is the problem of mathing two strings whenall the haraters of either of them an be �shifted� by some amount t. By �shifting�we mean that the strings are sequenes of numbers and we add number t to eahharater of one of them.Interest in transposition invariant string mathing problems has reently arisen inthe �eld of musi information retrieval (MIR) [CIR98, LT00, LU00℄. In musi analysisand retrieval, one often wants to ompare two musi piees to test how similar theyare. A reasonable way of modeling musi is to onsider the pithes and durationsof the notes. Often the durations are omitted, too, sine it is usually possible toreognize the melody from a sequene of pithes. Hene, our fous is on distanemeasures for pith sequenes (of monophoni musi) and their omputation.We studied the omputation of edit distanes under transposition invariane in[MNU03℄. We notied that sparse dynami programming is useful in transposition�Supported by the Aademy of Finland under grant 22584.ySupported by Millenium Nuleus Center for Web Researh, Grant P01-029-F, Mideplan, Chile.1



invariant mathing, and obtained e.g. an O(mn log logm) algorithm for transpositioninvariant longest ommon subsequene problem.In this paper, we omplement our earlier results by studying �non-gapped� distanemeasures for numeri strings. That is, we study measures where the ith symbol ofthe soure is mathed with the ith symbol of the target. To allow some noise in thevalues to be ompared, we study measures that either allow mathing symbols thatapproximately math (i.e. values are within Æ distane apart), or allow disarding someamount (�) of largest di�erenes. We show how to ompute the transposition invariantHamming distane under noise in O(m logm) time, and transposition invariant sum ofabsolute di�erenes (SAD) and maximum absolute di�erene (MAD) distanes undernoise in O(m+ � log �) time, where m is the length of both strings to be ompared.For the orresponding searh problems we only give the trivial algorithm thatrepeats the distane omputation at eah of the n text positions. However, the upperbound obtained this way for SAD distane is in fat the same as what is known withouttransposition invariane (see [Mut95℄, �weighted k�mismathes problem�). We alsoonsider the ombined searh problem with SAD and MAD distanes, known as the(Æ; )�mathing problem; we give an O(mn) algorithm for the transposition invariantase of this problem. Again the best known upper bound for (Æ; )�mathing withouttranspositions is O(mn) (beause of the SAD distane).In addition to the distane-spei� results we introdue a more general approah totakle with noise; many distane measures that allow mathing two haraters a and bfor free when jb�aj � Æ an be omputed easily one the set of possible mathes jM Æ j =jM Æ j(A;B) = f(i; j) j jbj � aij � Æ; ai 2 A; bj 2 Bg has been omputed. We showhow to onstrut this set in O(m log j�j + n log j�j + jM Æ jmin(log(Æ + 2); log logm))time, where � is the alphabet of the two strings to be ompared. After the set M Æ isonstruted, Hamming and MAD distanes and (Æ; )�mathing under noise an beomputed in time linear in the size of the set.In the transposition invariant ase, the onstrution of the sets of possible mathesfor all relevant transpositions is useful as well (e.g. for edit distane under noise). Weshow how to do this in linear time in the overall size of these sets (plus some additivefators of m,n, and log j�j).Some of the results of this paper appear in a tehnial report [MNU02℄.2 De�nitionsLet � be a �nite numerial alphabet, whih is a subset of some universe U that islosed under addition and subtration. Let A = a1a2 : : : am and B = b1b2 : : : bn betwo numeri strings over ��, i.e. the symbols (haraters) ai; bj of the two stringsare in � for all 1 � i � m; 1 � j � n. We will assume w.l.o.g. that m � n. StringA0 is a substring of A if A0 = Ai:::j = ai : : : aj for some 1 � i � j � m. String A00is a subsequene of A, denoted by A00 v A, if A00 = ai1ai2 : : : aijA00j for some indexes1 � i1 < i2 < � � � < ijA00j � m.When m = n, the following distanes an be de�ned. The Hamming distanedH between strings A and B is dH(A;B) = m � jf(i; i) j ai = bi; 1 � i � mgj.The maximum absolute di�erene distane dMAD between A and B is dMAD(A;B) =max1�i�mfjai � bij j 1 � i � mg. The sum of absolute di�erenes distane dSADbetween A and B is dSAD(A;B) = Pmi=1 jai � bij. Note that dMAD is in fat the2



maximum metri (l1 norm) and dSAD the Manhattan metri (l1 norm) when weinterprete A and B as points in m dimensional Eulidean spae.String A is a transposed opy of B (denoted by A =t B) if B = (a1 + t)(a2 +t) � � � (am + t) = A + t for some t 2 U. The transposition invariant versions ofthe above distane measures d� where � 2 fH;MAD; SADg an now be stated asdt�(A;B) = mint2U d�(A+ t; B).So far our de�nitions allow either only exat (transposition invariant) mathesbetween some haraters (dtH) or approximate math between all haraters (dtMADand dtSAD). To relax these onditions, we introdue a onstant Æ > 0. We write a =Æ bwhen ja � bj � Æ, a; b 2 �. By replaing the equality a = b with a =Æ b in thede�nition of dtH, we get a more error-tolerant version of the distane; let us denotethe new distane dt;ÆH . Similarly, by introduing another onstant � > 0, we an de�nedistanes dt;�MAD; dt;�SAD suh that the � largest di�erenes jai � bij are disarded.The approximate string mathing problem, based on the above distane funtions,is to �nd the minimum distane between A and any substring of B. In this ase weall A the pattern and denote it P1:::m = p1p2 � � �pm, and all B the text and denoteit T1:::n = t1t2 � � � tn, and usually assume that m << n. A losely related problem isthe thresholded searh problem where, given P , T , and a threshold value k � 0, onewants to �nd all the text positions j suh that d(P; Tj0:::j) � k for some j 0. We willrefer olletively to these two losely related problems as the searh problem.Notie that searhing under Hamming distane is known as the k�mismathesproblem [Abr87, ALP01, BYG94, BYP96, GG86, LB86℄. Also, a searh prob-lem related to distanes dMAD and dSAD is known as the (Æ; )�mathing problem[CCIMP99, CILP01, CILPR02℄ in whih ourrenes j are searhed for suh thatdMAD(P; Tj0:::j) � Æ and dSAD(P; Tj0:::j) � .Our omplexity results are di�erent depending on the form of the alphabet �. Wewill distinguish two ases. An integer alphabet is any alphabet � � Z. For integeralphabets, j�j will denote max(�) � min(�) + 1. A real alphabet will be any other� � R, and then j�j denotes the ardinality of �. For any string A = a1 : : : am, wewill all �A = fai j 1 � i � mg the alphabet of A.Last, we will need some orders for a set of pairs P = f(i; j)g, where ai 2 A andbj 2 B. The row order of P is suh that P is sorted �rst by i (in inreasing order)and seondary by j (in inreasing order). In olumn order P is sorted �rst by j andseondary by i. In diagonal order P is sorted �rst by j � i and seondary by i.3 Mathing under Noise without Transposition In-varianeWe will now present a general and e�ient method that an be used with littlemodi�ations for solving both the k�mismathes problem and the (Æ; )�mathingproblem. The time omplexities will depend on the number of possible mathesbetween pattern and text haraters. A similar approah will also be used later inthe transposition invariant ase.Let M Æ (P; T ) = M Æ = f(i; j) j jpi � tjj � Æg be the set of possible mathes. Letus assume that we are given M Æ in diagonal order. By one traversal over M Æ one aneasily ompute values S(d) and N(d) for eah diagonal d, where S(d) =Pfjpi� tjj j3



(i; j) 2 M Æ ; j � i = dg and N(d) = jf(i; j) j (i; j) 2 M Æ ; d = j � igj.Given the arrays S(0 : : : n�m) and N(0 : : : n�m), one an solve various problems.For example, all values d suh that S(d) �  and N(d) = m, orrespond to a (Æ; )�math starting at position d + 1 of the text. Similarly, if N(d) � m � k whenomputed for M 0 , then there is an ourrene starting at position d + 1 of the textfor the k�mismathes problem.Thus we have an O(jM Æ j + n) algorithm for several problems, if we just manageto onstrut M Æ in linear time in its size.Theorem 1 Given numeri strings P (pattern) and T (text) of lengths m and n(m << n), the set of possible mathes M Æ (P; T ) = f(i; j) j jpi � tjj � Æg an beonstruted in time O(j�j + m + n + jM Æ jmin(log(Æ + 2); log logm)) on an integeralphabet, and in time O(m log j�j + n log j�j + jM Æ jmin(log(Æ + 2); log logm)) on areal alphabet. Within the same bounds, the set M Æ an be onstruted in row, olumn,or diagonal order.Proof. Let us �rst onsider the integer alphabet with Æ = 0. We onstrut an arrayL(1 : : : j�j), where eah entry L() stores an inreasing list of all positions of P , whereharater  ours. Array L an obviously be onstruted by one traversal over Pin O(j�j + m) time. The set M 0 an then be onstruted in olumn order in onetraversal over T by onatenating lists L(t1); L(t2); : : : L(tn). The running time isO(m+ n+ j�j+ jM 0 j).For Æ > 0, we onstrut the array L as above but the traversal over T is nowmore ompliated. To onstrut the olumn j of M Æ we need to merge the 2Æ+1 listsL(tj � Æ); : : : ; L(tj + Æ) into a single list. This merging an be done using a priorityqueue P as follows. Add the �rst element, say i, of eah list L() into P by using ias the priority and  as the key. Then repeat the following until all lists are empty:Take the element with minimum priority, say (i; ), from P, and add the next elementfrom list L() into P. Column j of M Æ is onstruted by inserting pair (i; j) at theend of M Æ at eah step. The operations on a priority queue an be supported inO(log(Æ + 2)) time by using some standard implementation.Sine the priority values that need to be stored are in the range [1; m℄, we animplement the priority queue more e�iently using a data struture of van EmdeBoas [vEB77℄. It supports, among other operations, retrieving the smallest value,inserting a new value, and deleting the smallest value, in O(log logm) amortized timeon values in the range [1; m℄. We an store the values i using this data struture.Then we an repeat retrieving and deleting the smallest value i until the struture isempty, adding (i; j) at the end of M Æ at eah step. Thus the laimed bound on theinteger alphabet follows.When the alphabet is real, we an use exatly the same proedure, expet thatthe array L needs to be replaed by a binary searh tree. It takes O(m log j�j) timeto onstrut this searh tree. For eah harater of T we need to do a range queryon this tree to retrieve the lists of positions that orrespond to haraters in range[tj � Æ; tj + Æ℄. This will take O(n log j�j) time. Merging an be done similarly as inthe ase of an integer alphabet, so the laimed bound follows.Finally, the set is in olumn order after the above onstrution. Other orders anbe onstruted easily from the olumn order in time O(m+ n+ jM Æ j). �4



The above theorem gives e.g. an O(j�j + m + n + jM 0 j) time solution for thek�mismathes problem on an integer alphabet. This an be �(mn), but in the ex-peted ase it is muh smaller. An expeted bound �(mn=j�j) is easy to prove; seee.g. [BYP96℄, where the above algorithm was originally proposed for the k�mismathesproblem.4 Mathing under Noise and Transposition Invari-aneFor this setion, let T = fti = bi� ai j 1 � i � mg = ftig be the set of transpositionsthat make some haraters ai and bi math. Note that the optimal transposition doesnot need, in priniple, to be inluded in T, but we will show that this is the ase fordtH and dt;�SAD. Note also that jTj = O(j�j) on an integer alphabet and jTj = O(m) inany ase.4.1 Hamming DistaneLet A = a1 : : : am and B = b1 : : : bm, where ai; bi 2 � for 1 � i � m. We onsiderthe omputation of transposition invariant Hamming distane dt;ÆH (A;B). That is, wesearh for a transposition tmaximizing the size of set fi j jbi�(ai+t)j � Æ; 1 � i � mg.Theorem 2 Given two numeri strings A and B, both of length m, there is an al-gorithm for omputing distane dt;ÆH (A;B) in O(j�j+m) time on an integer alphabet,or in O(m logm) time on a general alphabet.Proof. It is lear that the Hamming distane is minimized for the transposition in Tthat makes the maximum number of haraters math. What follows is a simple votingsheme, where the most voted transposition wins. Sine we allow a tolerane Æ in themathed values, ti votes for range [ti� Æ; ti+ Æ℄. Construt sets S = f(ti� Æ; �open�) j1 � i � mg and E = f(ti + Æ; �lose�) j 1 � i � mg. Sort S [ E into a list I usingorder (x0; y0) <H (x; y) if x0 < x or (x0 = x and y0 < y);where �open�<�lose�. Initialize variable ount = 0. Do for i = 1 to jIj if I(i) =(x; �open�) then ount = ount+1 else ount = ount�1. Letmaxount be the largestvalue of ount in the above algorithm. Then learly dt;ÆH (A;B) = m�maxount, andthe optimal transposition is any value in the range [xi; xi+1℄, where I(i) = (xi; �), forany i where maxount is reahed. The omplexity of the algorithm is O(m logm).Sorting an be replaed by array lookup when � is an integer alphabet, whih givesthe bound O(j�j+m) for that ase. �4.2 Sum of Absolute Di�erenes DistaneWe shall �rst look at the basi ase where � = 0. That is, we searh for a transpositiont minimizing dSAD(A+ t; B) =Pmi=1 jbi � (ai + t)j.5



Theorem 3 Given two numeri strings A and B, both of length m, there is an algo-rithm for omputing distane dtSAD(A;B) in O(m) time on both integer and generalalphabets.Proof. Let us onsider T as a multiset, where the same element an repeat multipletimes. Then jTj = m, sine there is one element in T for eah bi�ai, where 1 � i � m.Sorting T in asending order gives a sequene ti1 � ti2 � : : : � tim . Let topt be theoptimal transposition. We will prove by indution that topt = tibm=2+1, that is, theoptimal transposition is the median transposition in T.To start the indution we laim that ti1 � topt � tim . To see this, notie thatdSAD(A+(ti1� �); B) = dSAD(A+ ti1 ; B)+m�, and dSAD(A+(tim + �); B) = dSAD(A+tim ; B) +m�, for any � � 0.Our indution assumption is that tik � topt � tim�k+1 for some k. Wemay assume that tik+1 � tim�k , sine otherwise the result follows anyway. Firstnotie that, independently of the value of topt in the above interval, the ostPkl=1 jbil � (ail + topt)j +Pml=m�k+1 jbil � (ail + topt)j will be the same. Then no-tie that Pm�kl=k+1 jbil � (ail + tik+1 � �)j =Pm�kl=k+1 jbil � (ail + tik+1)j+ (m� 2k)�, andPm�kl=k+1 jbil�(ail+ tim�k+�)j =Pm�kl=k+1 jbil�(ail+ tim�k)j+(m�2k)�. This ompletesthe indution, sine we showed that tik+1 � topt � tim�k .The onsequene is that tik � topt � tim�k+1 for maximal k suh that tik � tim�k+1 ,that is, k = dm=2e. Whenm is odd, it holdsm�k+1 = k and there is only one optimaltransposition, tidm=2e . When m is even, one easily noties that all transpositions topt,tim=2 � topt � tim=2+1 , are equally good. Finally, the median an be found in lineartime [BFPRT72℄. �To get a fast algorithm for dt;�SAD when � > 0 largest di�erenes an be disarded,we need a lemma that shows that the distane omputation an be inrementalizedfrom one transposition to another. Let ti1 ; ti2; : : : ; tim be the sorted sequene of T.Lemma 4 One values Sj and Lj suh that dSAD(A + tij ; B) = Sj + Lj, Sj =Pj�1j0=1 tij � tij0 , and Lj = Pmj0=j+1 tij0 � tij , are omputed, the values of Sj+1 andLj+1 an be omputed in O(1) time.Proof. Value Sj+1 an be written asSj+1 = jXj0=1 tij+1 � tij0 = jXj0=1 tij+1 � tij + tij � tij0 = j(tij+1 � tij ) + Sj:Similar rearranging givesLj+1 = mXj0=j+2 tij0 � tij+1 = (m� j)(tij � tij+1) + Lj:Thus both values an be omputed in onstant time given the values of Sj and Lj(and tij+1). �Theorem 5 Given two numeri strings A and B both of length m, there is an algo-rithm for omputing distane dt;�SAD(A;B) in O(m+ � log �) time on both integer andgeneral alphabets. On integer alphabets, time O(j�j+m + �) an also be obtained.6



Proof. Consider the sorted sequene ti1 ; ti2 ; : : : ; tim as in the proof of Theorem 3.Clearly the andidates for the � outliers (largest di�erenes) are M(k0; k00) =fti1 ; : : : ; tik0 ; tim�k00+1; : : : timg for some k0 + k00 = �. The naive algorithm is then toompute the distane in all these �+1 ases: Compute the median of TnM(k0; k00) foreah k0+ k00 = � and hoose the minimum distane indued by these medians. These� + 1 medians an be found as follows: First selet values t�+1 and tm�� using thelinear time seletion algorithm [BFPRT72℄. Then ollet and sort all values smallerthan t�+1 or larger than tm��. After seleting the median m0;� of T nM(0; �) andm�;0 of TnM(�; 0), one an ollet all medians mk0;k00 of TnM(k0; k00) for k0+k00 = �,sine the mk0;k00 values are those between m0;� and m�;0. The �+1 medians an thusbe olleted and sorted in O(m + � log �) time, and the additional time to omputethe distanes for all of these � + 1 medians is O(�m). However, the omputation ofdistanes given by onseutive transpositions an be inrementalized using Lemma 4.First one has to ompute the distane for the median of TnM(0; �), dSAD(A+m0;�; B),and then ontinue inrementally from dSAD(A+mk0;k00; B) to dSAD(A+mk0+1;k00�1; B),until we reah the median of T nM(�; 0), dSAD(A +m�;0; B) (this is where we needthe medians sorted). Sine the set of outliers hanges when moving from one medianto another, one has to add value tik0 � tim to Sm and value tim � tik00 to Lm, whereSm and Lm are the values given by Lemma 4 (here we need the outliers sorted). Thetime omplexity of the whole algorithm is O(m + � log �). On an integer alphabet,sorting an be replaed by array lookup to yield O(j�j+m+ �). �4.3 Maximum Absolute Di�erene DistaneWe onsider now how dt;�MAD an be omputed. In ase � = 0, we searh for a trans-position t minimizing dMAD(A + t; B) = maxmi=1 jbi � (ai + t)j. In ase � > 0, we areallowed to disard the k largest di�erenes jbi � (ai + t)j.Theorem 6 Given two numeri strings A and B both of length m, there is an algo-rithm for omputing distane dt;�MAD(A;B) in O(m+ � log �) time on both integer andgeneral alphabets. On integer alphabets, time O(j�j+m+ �) an also be obtained.Proof. When � = 0 the distane is learly dtMAD(A;B) = (maxiftig � miniftig)=2,and the transposition giving this distane is (maxiftig + miniftig)=2. When � > 0,onsider again the sorted sequene ti1 ; ti2 ; : : : ; tim as in the proof of Theorem 3. Againthe � outliers are M(k0; k00) for some k0 + k00 = � in the optimal transposition. Theoptimal transposition is then the value (tim�k00 + tik0+1)=2 that minimizes (tim�k00 �tik0+1)=2, where k0+k00 = �. The minimum value an be omputed in O(�) time, onethe � + 1 smallest and largest ti values are sorted. These values an be seleted inO(m) time and then sorted in O(� log�) time, or O(j�j+ �) on integer alphabets. �4.4 SearhingUp to now we have onsidered distane omputation. Any algorithm to ompute thedistane between A and B an be trivially onverted into a searh algorithm for P inT by omparing P against every text window of the form Tj�m+1:::j. Atually, we donot have any searh algorithm better than this.7



Lemma 7 For distanes dt;ÆH , dt;�SAD, and dt;�MAD, if the distane an be evaluated inO(f(m)) time, then the orresponding searh problem an be solved in O(f(m)n)time.On the other hand, it is not immediate how to perform transposition invariant(Æ; )�mathing. We show how the above results an be applied to this ase.Note that one an �nd in O(mn) time all the ourrenes fjg suh thatdtMAD(P; Tj�m+1:::j) � Æ, and all the ourrenes fj 0g where dtSAD(P; Tj0�m+1:::j0) � .The (Æ; )�mathes are a subset of fjg \ fj 0g, but identity does not neessarily hold.This is beause the optimal transposition an be di�erent for dtMAD and dtSAD.What we need to do is to verify this set of possible ourrenes fjg \ fj 0g. Thisan be done as follows. For eah possible math j 00 2 fjg \ fj 0g one an omputelimits s and l suh that dMAD(P + t; Tj00�m+1:::j00) � Æ for all s � t � l: If the distaned = dMAD(P + topt; Tj00�m+1:::j00) is given, then s = topt� (Æ� d) and l = topt+ (Æ� d).On the other hand, note that dSAD(P +t; Tj00:::j00+m�1), as a funtion of t, is dereasinguntil t reahes the median of the transpositions, and then inreasing. Thus, dependingon the relative order of the median of the transpositions with respet to s and l, weonly need to ompute distane dSAD(P + t; Tj00�m+1:::j00) in one of them (t = s, t = l,or t = tdm=2e). This gives the minimum value for dSAD in the range [s; l℄. If this valueis � , we have found a math.One an see that using the results of Theorems 3 and 6 with � = 0, the aboveproedures an be implemented so that only O(m) time at eah possible ourreneis needed. There are at most n ourrenes to test.Theorem 8 Given two numeri strings P (pattern) and T (text) of lengths m andn, there is an algorithm for �nding all the transposition invariant (Æ; )�ourrenesof P in T in O(mn) time on both integer and general alphabets.4.5 Set of Possible Mathes RevisitedReall that an edit distane between two strings A and B is the ost of single sym-bol insertions, deletions, and substitutions to onvert A into B. The unit ost orLevenshtein distane [Lev66℄ assigns ost 1 to eah operation. If substitutions areforbidden and other operations have ost 1 the resulting distane is related to thelongest ommon subsequene (LCS) of A and B. See e.g. [MNU03℄ and the referenestherein (like [Sel80℄) for an introdution and formal de�nition of these edit distanes.For the sequel, it is only neessary to know the fat [MNU03℄ that the above editdistanes an be omputed e�iently one the set of possible mathes M = f(i; j) jai = bj; ai 2 A; bj 2 Bg is given. Sine we gave an e�ient algorithm in Set. 3for onstruting M Æ = f(i; j) j jbj � aij � Æg we immediatedly have algorithms foredit distanes under noise; just use the sparse dynami programming algorithms of[MNU03℄ (or others' ited therein) on M Æ instead of on M . The e�et of parameter Æis that two symbols an be mathed if their values are lose enough. For example, themethod skethed above an be used to ompute the longest approximately ommonsubsequene of two numeri strings.Now we fous on the transposition invariant edit distanes under noise. Let usdenote the size of M Æ as r = r(A;B; Æ) = jM Æ (A;B)j. Let us rede�ne T in this setionto be the set of those transpositions that make some haraters between A and B8



exatly Æ apart, that is T = fbj � ai � Æ j 1 � i � m; 1 � j � ng. The math setorresponding to a transposition t 2 T is M Æt = f(i; j) j jbj � ai� tj � Æg. Notie thatthere is always some t 2 T whose math set M Æt is equal to M Æt0 , where t0 2 U. Formost edit distanes (like Levensthtein distane or LCS) same math set means thatthe distane will also be the same.As notied in [MNU03℄ (in the ase Æ = 0) one ould ompute the above editdistanes by running the basi dynami programming algorithms [Sel80℄ over all pairs(A+t; B), where t 2 T. In ase Æ > 0, one would just interpret symbols a be b the samewhen jb� aj � Æ. One an obtain a more e�ient method using advaned algorithmsat eah transposition. Let us �rst assume that Æ = 0 and let r(A;B) = r(A;B; 0).The following onnetion was shown in [MNU03℄:Lemma 9 ([MNU03℄) If an algorithm omputes a distane d(A;B) inO(r(A;B)f(m;n)) time, then there is an algorithm that omputes the transpo-sition invariant distane dt(A;B) = mint2T d(A+ t; B) in O(mnf(m;n)) time.As a onsequene of the above lemma, we have O(mn polylog(n)) time algorithmsfor di�erent edit distanes, sine we manage to onstrut the math sets for all trans-positions in O(mn polylog(n)) time [MNU03℄. In our noisy ase, the above lemmaextends to giving an O(Pt2T jM Æt jf(m;n)) algorithm, whih equals O(mn polylog(n))when Æ = 0. To ahieve total running time O(Pt2T jM Æt jf(m;n)), we still need toshow that the sets M Æt an be onstruted in linear time in their overall size.Theorem 10 The math sets M Æt = f(i; j) j ai + t = bjg, eah sorted in the olumnorder, for all transpositions t 2 T, an be onstruted in time O(j�j+ Æmn) on an in-teger alphabet, and in time O(m log j�Aj+n log j�Bj+j�Ajj�Bj log(min(j�Aj; j�Bj))+Pt2T jM Æt j) on a real alphabet.Proof. (We extend the proof given in [MNU03℄ for the ase Æ = 0.) On an integeralphabet we an proeed naively to obtain O(j�j +mn) time using array lookup toget the transposition where eah pair (i; j) has to be added. For Æ > 0 eah pair (i; j)is added to entries from bj � ai � Æ to bj � ai + Æ, in O(j�j+ Æmn) time.The ase of real alphabets is solved as follows. Let us �rst onsider the ase Æ = 0.Create a balaned tree TA where every harater a = ai of A is inserted, maintainingfor eah suh a 2 �A a list La of the positions i of A, in inreasing order, suh thata = ai. Do the same for B and TB. This osts O(m log j�Aj+n log j�Bj). Now, reatean array R(1 : : : j�Ajj�Bj), where eah R(k) stores the subset of the math set M tk(in olumn order), where tk = b� a, bj = b, and ai = a for all (i; j) 2 R(k). There isan entry in R for eah possible pair (a; b), where a 2 �A, b 2 �B. Clearly R an beonstruted in O(mn) time one TA, TB, and the assoiated lists L are given. How-ever, many pairs an produe the same transposition, thus we have to (i) sort R basedon values tk and (ii) merge the partial math sets that orrespond to the same trans-position. Phase (i) an be implemented to run in O(j�Ajj�Bj log(min(j�Aj; j�Bj)))time; onsider w.l.o.g. that j�Aj � j�Bj. For �xed a 2 �A, we an get the j�Bj trans-positions b � a, b 2 �B, in inreasing order by a depth-�rst searh on TB. Thus wehave j�Aj lists, eah ontaining j�Bj transpositions already in order. Merging theselists (using standard tehniques) takes O(j�Ajj�Bj log j�Aj) time. Phase (ii) an beimplemented to run in O(mn) time; we an traverse through B and for eah bj add a9



new olumn to eah M t , where bj � a = t, a 2 �A. The orret set M t an be foundin onstant time sine we an maintain suitable pointers when sorting R in phase (i).Finally, let us onsider the ase where Æ > 0. As disussed earlier, eah pair(a; b) produes two relevant transpositions, b � a � Æ and b � a + Æ. We proeed asbefore until array R is onstruted and sorted. Consider sliding a window of length2Æ over the transpositions tk in R. Let the middle point of urrent window be att. Clearly, the pairs that are inluded in the urrent window produe the wholemath set for transposition t. That is, partial math sets R(l); R(l + 1); : : : ; R(r)are merged into math set M Æt , where tl = bj � ai � t � Æ for (all) (i; j) 2 R(l),tr = bj0�ai0 � t+Æ for (all) (i0; j 0) 2 R(r), and [l; r℄ is maximal range of R where thisholds. The math sets hange only when the middle points of the sliding window arefrom set T = fb� a� Æ j a 2 �A; b 2 �Bg. We an onstrut this set in O(j�Ajj�Bj)time. After sorting it, we an slide the window of length 2Æ stopping at eah middlepoint t 2 T , and onstrut eah math set M Æt by merging the math sets in theentries of R that are overed by the urrent window.What is left is to onsider how the merging an be done e�iently. Notie that themath sets orresponding to onseutive transpositions share a lot in ommon; themerging does not have to be done by brute fore. We have two ases depending onwhether the onseutive math sets di�er (i) only by one entry of R, or (ii) by severalentries. In ase (i), the range [l; r℄ of R is hanged either to [l + 1; r℄ or to [l; r + 1℄.Both situations an be handled by one traversal over math set orresponding to [l; r℄and in the latter ase also over R(r + 1). In ase (ii), the range [l; r℄ of R is hangedeither to [l+ k; r℄ or to [l; r+ k℄ for some k (by de�nition both ranges an not hangeat the same time). Let us onsider the latter situation, sine the �rst is analogous. Itfollows that tr+1 = � � � = tr+k, sine otherwise there would be a relevant transpositiontr+k0 � Æ, for some 1 < k0 < k, in between tr � Æ and tr+k � Æ, whih on�its the fatthat we are moving from one relevant transposition to the next. What follows is thatwe an preproess R just like in the ase when Æ = 0, merging onseutive entriesof R having exatly the same transposition in O(mn) time. After this is done, ase(ii) an be handled just like ase (i). The time omplexity of this merging phase isbounded by Pt2T jM Æt j. �Notie that Pt2T jM Æt j � Æmn on an integer alphabet. So the bound on a realalphabet is analogous to the bound on an integer alphabet.
5 Conluding RemarksThe motivation to study transposition invariant distanes omes from musi infor-mation retrieval. However, there are also other appliations where these distanemeasures are useful. For example, in image omparison one ould use the trans-position invariant SAD distane to searh for the ourrenes of a small templateinside a large image. With gray-level images the searh would then be �lighting in-variant�. Combining other invarianes, suh as rotation or saling invariane, withtransposition invariane in a searh algorithm, is a major hallenge.10
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