
Mat
hing Numeri
 Strings under NoiseVeli Mäkinen1�, Gonzalo Navarro2y, and Esko Ukkonen1�1 Department of Computer S
ien
e, P.O Box 26 (Teollisuuskatu 23)FIN-00014 University of Helsinki, Finland.e-mail: {vmakinen,ukkonen}�
s.helsinki.fi2 Center for Web Resear
h, Department of Computer S
ien
e, University of ChileBlan
o En
alada 2120, Santiago, Chile.e-mail: gnavarro�d

.u
hile.
l
Abstra
t. Numeri
 string is a sequen
e of symbols from an alphabet � �U, where U is some numeri
al universe
losed under addition and subtra
tion.Given two numeri
 strings A = a1 � � � am and B = b1 � � � bn and a distan
efun
tion d(A;B) that gives the s
ore of the best (partial) mat
hing of A andB, the transposition invariant distan
e is mint2Ufd(A + t; B)g, where A + t =(a1 + t)(a2 + t) : : : (am + t). The
orresponding mat
hing problem is to �ndo

urren
es j ofA inB where d(A+t; Bj0:::j) is smaller than some given thresholdand Bj0:::j is a substring of B. In this paper, we give e�
ient algorithms format
hing numeri
 strings � with and without transposition invarian
e � undernoise; we
onsider distan
e fun
tions d(A;B) su
h that symbols a 2 A and b 2 B
an be mat
hed if jb�aj � Æ, or the � largest di�eren
es jb�aj
an be dis
arded.Keywords: approximate mat
hing, transposition invarian
e, (Æ;
)�mat
hing1 Introdu
tionTransposition invariant string mat
hing is the problem of mat
hing two strings whenall the
hara
ters of either of them
an be �shifted� by some amount t. By �shifting�we mean that the strings are sequen
es of numbers and we add number t to ea
h
hara
ter of one of them.Interest in transposition invariant string mat
hing problems has re
ently arisen inthe �eld of musi
 information retrieval (MIR) [CIR98, LT00, LU00℄. In musi
 analysisand retrieval, one often wants to
ompare two musi
 pie
es to test how similar theyare. A reasonable way of modeling musi
 is to
onsider the pit
hes and durationsof the notes. Often the durations are omitted, too, sin
e it is usually possible tore
ognize the melody from a sequen
e of pit
hes. Hen
e, our fo
us is on distan
emeasures for pit
h sequen
es (of monophoni
 musi
) and their
omputation.We studied the
omputation of edit distan
es under transposition invarian
e in[MNU03℄. We noti
ed that sparse dynami
 programming is useful in transposition�Supported by the A
ademy of Finland under grant 22584.ySupported by Millenium Nu
leus Center for Web Resear
h, Grant P01-029-F, Mideplan, Chile.1

invariant mat
hing, and obtained e.g. an O(mn log logm) algorithm for transpositioninvariant longest
ommon subsequen
e problem.In this paper, we
omplement our earlier results by studying �non-gapped� distan
emeasures for numeri
 strings. That is, we study measures where the ith symbol ofthe sour
e is mat
hed with the ith symbol of the target. To allow some noise in thevalues to be
ompared, we study measures that either allow mat
hing symbols thatapproximately mat
h (i.e. values are within Æ distan
e apart), or allow dis
arding someamount (�) of largest di�eren
es. We show how to
ompute the transposition invariantHamming distan
e under noise in O(m logm) time, and transposition invariant sum ofabsolute di�eren
es (SAD) and maximum absolute di�eren
e (MAD) distan
es undernoise in O(m+ � log �) time, where m is the length of both strings to be
ompared.For the
orresponding sear
h problems we only give the trivial algorithm thatrepeats the distan
e
omputation at ea
h of the n text positions. However, the upperbound obtained this way for SAD distan
e is in fa
t the same as what is known withouttransposition invarian
e (see [Mut95℄, �weighted k�mismat
hes problem�). We also
onsider the
ombined sear
h problem with SAD and MAD distan
es, known as the(Æ;
)�mat
hing problem; we give an O(mn) algorithm for the transposition invariant
ase of this problem. Again the best known upper bound for (Æ;
)�mat
hing withouttranspositions is O(mn) (be
ause of the SAD distan
e).In addition to the distan
e-spe
i�
 results we introdu
e a more general approa
h tota
kle with noise; many distan
e measures that allow mat
hing two
hara
ters a and bfor free when jb�aj � Æ
an be
omputed easily on
e the set of possible mat
hes jM Æ j =jM Æ j(A;B) = f(i; j) j jbj � aij � Æ; ai 2 A; bj 2 Bg has been
omputed. We showhow to
onstru
t this set in O(m log j�j + n log j�j + jM Æ jmin(log(Æ + 2); log logm))time, where � is the alphabet of the two strings to be
ompared. After the set M Æ is
onstru
ted, Hamming and MAD distan
es and (Æ;
)�mat
hing under noise
an be
omputed in time linear in the size of the set.In the transposition invariant
ase, the
onstru
tion of the sets of possible mat
hesfor all relevant transpositions is useful as well (e.g. for edit distan
e under noise). Weshow how to do this in linear time in the overall size of these sets (plus some additivefa
tors of m,n, and log j�j).Some of the results of this paper appear in a te
hni
al report [MNU02℄.2 De�nitionsLet � be a �nite numeri
al alphabet, whi
h is a subset of some universe U that is
losed under addition and subtra
tion. Let A = a1a2 : : : am and B = b1b2 : : : bn betwo numeri
 strings over ��, i.e. the symbols (
hara
ters) ai; bj of the two stringsare in � for all 1 � i � m; 1 � j � n. We will assume w.l.o.g. that m � n. StringA0 is a substring of A if A0 = Ai:::j = ai : : : aj for some 1 � i � j � m. String A00is a subsequen
e of A, denoted by A00 v A, if A00 = ai1ai2 : : : aijA00j for some indexes1 � i1 < i2 < � � � < ijA00j � m.When m = n, the following distan
es
an be de�ned. The Hamming distan
edH between strings A and B is dH(A;B) = m � jf(i; i) j ai = bi; 1 � i � mgj.The maximum absolute di�eren
e distan
e dMAD between A and B is dMAD(A;B) =max1�i�mfjai � bij j 1 � i � mg. The sum of absolute di�eren
es distan
e dSADbetween A and B is dSAD(A;B) = Pmi=1 jai � bij. Note that dMAD is in fa
t the2

maximum metri
 (l1 norm) and dSAD the Manhattan metri
 (l1 norm) when weinterprete A and B as points in m dimensional Eu
lidean spa
e.String A is a transposed
opy of B (denoted by A =t B) if B = (a1 + t)(a2 +t) � � � (am + t) = A + t for some t 2 U. The transposition invariant versions ofthe above distan
e measures d� where � 2 fH;MAD; SADg
an now be stated asdt�(A;B) = mint2U d�(A+ t; B).So far our de�nitions allow either only exa
t (transposition invariant) mat
hesbetween some
hara
ters (dtH) or approximate mat
h between all
hara
ters (dtMADand dtSAD). To relax these
onditions, we introdu
e a
onstant Æ > 0. We write a =Æ bwhen ja � bj � Æ, a; b 2 �. By repla
ing the equality a = b with a =Æ b in thede�nition of dtH, we get a more error-tolerant version of the distan
e; let us denotethe new distan
e dt;ÆH . Similarly, by introdu
ing another
onstant � > 0, we
an de�nedistan
es dt;�MAD; dt;�SAD su
h that the � largest di�eren
es jai � bij are dis
arded.The approximate string mat
hing problem, based on the above distan
e fun
tions,is to �nd the minimum distan
e between A and any substring of B. In this
ase we
all A the pattern and denote it P1:::m = p1p2 � � �pm, and
all B the text and denoteit T1:::n = t1t2 � � � tn, and usually assume that m << n. A
losely related problem isthe thresholded sear
h problem where, given P , T , and a threshold value k � 0, onewants to �nd all the text positions j su
h that d(P; Tj0:::j) � k for some j 0. We willrefer
olle
tively to these two
losely related problems as the sear
h problem.Noti
e that sear
hing under Hamming distan
e is known as the k�mismat
hesproblem [Abr87, ALP01, BYG94, BYP96, GG86, LB86℄. Also, a sear
h prob-lem related to distan
es dMAD and dSAD is known as the (Æ;
)�mat
hing problem[CCIMP99, CILP01, CILPR02℄ in whi
h o

urren
es j are sear
hed for su
h thatdMAD(P; Tj0:::j) � Æ and dSAD(P; Tj0:::j) �
.Our
omplexity results are di�erent depending on the form of the alphabet �. Wewill distinguish two
ases. An integer alphabet is any alphabet � � Z. For integeralphabets, j�j will denote max(�) � min(�) + 1. A real alphabet will be any other� � R, and then j�j denotes the
ardinality of �. For any string A = a1 : : : am, wewill
all �A = fai j 1 � i � mg the alphabet of A.Last, we will need some orders for a set of pairs P = f(i; j)g, where ai 2 A andbj 2 B. The row order of P is su
h that P is sorted �rst by i (in in
reasing order)and se
ondary by j (in in
reasing order). In
olumn order P is sorted �rst by j andse
ondary by i. In diagonal order P is sorted �rst by j � i and se
ondary by i.3 Mat
hing under Noise without Transposition In-varian
eWe will now present a general and e�
ient method that
an be used with littlemodi�
ations for solving both the k�mismat
hes problem and the (Æ;
)�mat
hingproblem. The time
omplexities will depend on the number of possible mat
hesbetween pattern and text
hara
ters. A similar approa
h will also be used later inthe transposition invariant
ase.Let M Æ (P; T) = M Æ = f(i; j) j jpi � tjj � Æg be the set of possible mat
hes. Letus assume that we are given M Æ in diagonal order. By one traversal over M Æ one
aneasily
ompute values S(d) and N(d) for ea
h diagonal d, where S(d) =Pfjpi� tjj j3

(i; j) 2 M Æ ; j � i = dg and N(d) = jf(i; j) j (i; j) 2 M Æ ; d = j � igj.Given the arrays S(0 : : : n�m) and N(0 : : : n�m), one
an solve various problems.For example, all values d su
h that S(d) �
 and N(d) = m,
orrespond to a (Æ;
)�mat
h starting at position d + 1 of the text. Similarly, if N(d) � m � k when
omputed for M 0 , then there is an o

urren
e starting at position d + 1 of the textfor the k�mismat
hes problem.Thus we have an O(jM Æ j + n) algorithm for several problems, if we just manageto
onstru
t M Æ in linear time in its size.Theorem 1 Given numeri
 strings P (pattern) and T (text) of lengths m and n(m << n), the set of possible mat
hes M Æ (P; T) = f(i; j) j jpi � tjj � Æg
an be
onstru
ted in time O(j�j + m + n + jM Æ jmin(log(Æ + 2); log logm)) on an integeralphabet, and in time O(m log j�j + n log j�j + jM Æ jmin(log(Æ + 2); log logm)) on areal alphabet. Within the same bounds, the set M Æ
an be
onstru
ted in row,
olumn,or diagonal order.Proof. Let us �rst
onsider the integer alphabet with Æ = 0. We
onstru
t an arrayL(1 : : : j�j), where ea
h entry L(
) stores an in
reasing list of all positions of P , where
hara
ter
 o

urs. Array L
an obviously be
onstru
ted by one traversal over Pin O(j�j + m) time. The set M 0
an then be
onstru
ted in
olumn order in onetraversal over T by
on
atenating lists L(t1); L(t2); : : : L(tn). The running time isO(m+ n+ j�j+ jM 0 j).For Æ > 0, we
onstru
t the array L as above but the traversal over T is nowmore
ompli
ated. To
onstru
t the
olumn j of M Æ we need to merge the 2Æ+1 listsL(tj � Æ); : : : ; L(tj + Æ) into a single list. This merging
an be done using a priorityqueue P as follows. Add the �rst element, say i, of ea
h list L(
) into P by using ias the priority and
 as the key. Then repeat the following until all lists are empty:Take the element with minimum priority, say (i;
), from P, and add the next elementfrom list L(
) into P. Column j of M Æ is
onstru
ted by inserting pair (i; j) at theend of M Æ at ea
h step. The operations on a priority queue
an be supported inO(log(Æ + 2)) time by using some standard implementation.Sin
e the priority values that need to be stored are in the range [1; m℄, we
animplement the priority queue more e�
iently using a data stru
ture of van EmdeBoas [vEB77℄. It supports, among other operations, retrieving the smallest value,inserting a new value, and deleting the smallest value, in O(log logm) amortized timeon values in the range [1; m℄. We
an store the values i using this data stru
ture.Then we
an repeat retrieving and deleting the smallest value i until the stru
ture isempty, adding (i; j) at the end of M Æ at ea
h step. Thus the
laimed bound on theinteger alphabet follows.When the alphabet is real, we
an use exa
tly the same pro
edure, expe
t thatthe array L needs to be repla
ed by a binary sear
h tree. It takes O(m log j�j) timeto
onstru
t this sear
h tree. For ea
h
hara
ter of T we need to do a range queryon this tree to retrieve the lists of positions that
orrespond to
hara
ters in range[tj � Æ; tj + Æ℄. This will take O(n log j�j) time. Merging
an be done similarly as inthe
ase of an integer alphabet, so the
laimed bound follows.Finally, the set is in
olumn order after the above
onstru
tion. Other orders
anbe
onstru
ted easily from the
olumn order in time O(m+ n+ jM Æ j). �4

The above theorem gives e.g. an O(j�j + m + n + jM 0 j) time solution for thek�mismat
hes problem on an integer alphabet. This
an be �(mn), but in the ex-pe
ted
ase it is mu
h smaller. An expe
ted bound �(mn=j�j) is easy to prove; seee.g. [BYP96℄, where the above algorithm was originally proposed for the k�mismat
hesproblem.4 Mat
hing under Noise and Transposition Invari-an
eFor this se
tion, let T = fti = bi� ai j 1 � i � mg = ftig be the set of transpositionsthat make some
hara
ters ai and bi mat
h. Note that the optimal transposition doesnot need, in prin
iple, to be in
luded in T, but we will show that this is the
ase fordtH and dt;�SAD. Note also that jTj = O(j�j) on an integer alphabet and jTj = O(m) inany
ase.4.1 Hamming Distan
eLet A = a1 : : : am and B = b1 : : : bm, where ai; bi 2 � for 1 � i � m. We
onsiderthe
omputation of transposition invariant Hamming distan
e dt;ÆH (A;B). That is, wesear
h for a transposition tmaximizing the size of set fi j jbi�(ai+t)j � Æ; 1 � i � mg.Theorem 2 Given two numeri
 strings A and B, both of length m, there is an al-gorithm for
omputing distan
e dt;ÆH (A;B) in O(j�j+m) time on an integer alphabet,or in O(m logm) time on a general alphabet.Proof. It is
lear that the Hamming distan
e is minimized for the transposition in Tthat makes the maximum number of
hara
ters mat
h. What follows is a simple votings
heme, where the most voted transposition wins. Sin
e we allow a toleran
e Æ in themat
hed values, ti votes for range [ti� Æ; ti+ Æ℄. Constru
t sets S = f(ti� Æ; �open�) j1 � i � mg and E = f(ti + Æ; �
lose�) j 1 � i � mg. Sort S [E into a list I usingorder (x0; y0) <H (x; y) if x0 < x or (x0 = x and y0 < y);where �open�<�
lose�. Initialize variable
ount = 0. Do for i = 1 to jIj if I(i) =(x; �open�) then
ount =
ount+1 else
ount =
ount�1. Letmax
ount be the largestvalue of
ount in the above algorithm. Then
learly dt;ÆH (A;B) = m�max
ount, andthe optimal transposition is any value in the range [xi; xi+1℄, where I(i) = (xi; �), forany i where max
ount is rea
hed. The
omplexity of the algorithm is O(m logm).Sorting
an be repla
ed by array lookup when � is an integer alphabet, whi
h givesthe bound O(j�j+m) for that
ase. �4.2 Sum of Absolute Di�eren
es Distan
eWe shall �rst look at the basi

ase where � = 0. That is, we sear
h for a transpositiont minimizing dSAD(A+ t; B) =Pmi=1 jbi � (ai + t)j.5

Theorem 3 Given two numeri
 strings A and B, both of length m, there is an algo-rithm for
omputing distan
e dtSAD(A;B) in O(m) time on both integer and generalalphabets.Proof. Let us
onsider T as a multiset, where the same element
an repeat multipletimes. Then jTj = m, sin
e there is one element in T for ea
h bi�ai, where 1 � i � m.Sorting T in as
ending order gives a sequen
e ti1 � ti2 � : : : � tim . Let topt be theoptimal transposition. We will prove by indu
tion that topt = tibm=2
+1, that is, theoptimal transposition is the median transposition in T.To start the indu
tion we
laim that ti1 � topt � tim . To see this, noti
e thatdSAD(A+(ti1� �); B) = dSAD(A+ ti1 ; B)+m�, and dSAD(A+(tim + �); B) = dSAD(A+tim ; B) +m�, for any � � 0.Our indu
tion assumption is that tik � topt � tim�k+1 for some k. Wemay assume that tik+1 � tim�k , sin
e otherwise the result follows anyway. Firstnoti
e that, independently of the value of topt in the above interval, the
ostPkl=1 jbil � (ail + topt)j +Pml=m�k+1 jbil � (ail + topt)j will be the same. Then no-ti
e that Pm�kl=k+1 jbil � (ail + tik+1 � �)j =Pm�kl=k+1 jbil � (ail + tik+1)j+ (m� 2k)�, andPm�kl=k+1 jbil�(ail+ tim�k+�)j =Pm�kl=k+1 jbil�(ail+ tim�k)j+(m�2k)�. This
ompletesthe indu
tion, sin
e we showed that tik+1 � topt � tim�k .The
onsequen
e is that tik � topt � tim�k+1 for maximal k su
h that tik � tim�k+1 ,that is, k = dm=2e. Whenm is odd, it holdsm�k+1 = k and there is only one optimaltransposition, tidm=2e . When m is even, one easily noti
es that all transpositions topt,tim=2 � topt � tim=2+1 , are equally good. Finally, the median
an be found in lineartime [BFPRT72℄. �To get a fast algorithm for dt;�SAD when � > 0 largest di�eren
es
an be dis
arded,we need a lemma that shows that the distan
e
omputation
an be in
rementalizedfrom one transposition to another. Let ti1 ; ti2; : : : ; tim be the sorted sequen
e of T.Lemma 4 On
e values Sj and Lj su
h that dSAD(A + tij ; B) = Sj + Lj, Sj =Pj�1j0=1 tij � tij0 , and Lj = Pmj0=j+1 tij0 � tij , are
omputed, the values of Sj+1 andLj+1
an be
omputed in O(1) time.Proof. Value Sj+1
an be written asSj+1 = jXj0=1 tij+1 � tij0 = jXj0=1 tij+1 � tij + tij � tij0 = j(tij+1 � tij) + Sj:Similar rearranging givesLj+1 = mXj0=j+2 tij0 � tij+1 = (m� j)(tij � tij+1) + Lj:Thus both values
an be
omputed in
onstant time given the values of Sj and Lj(and tij+1). �Theorem 5 Given two numeri
 strings A and B both of length m, there is an algo-rithm for
omputing distan
e dt;�SAD(A;B) in O(m+ � log �) time on both integer andgeneral alphabets. On integer alphabets, time O(j�j+m + �)
an also be obtained.6

Proof. Consider the sorted sequen
e ti1 ; ti2 ; : : : ; tim as in the proof of Theorem 3.Clearly the
andidates for the � outliers (largest di�eren
es) are M(k0; k00) =fti1 ; : : : ; tik0 ; tim�k00+1; : : : timg for some k0 + k00 = �. The naive algorithm is then to
ompute the distan
e in all these �+1
ases: Compute the median of TnM(k0; k00) forea
h k0+ k00 = � and
hoose the minimum distan
e indu
ed by these medians. These� + 1 medians
an be found as follows: First sele
t values t�+1 and tm�� using thelinear time sele
tion algorithm [BFPRT72℄. Then
olle
t and sort all values smallerthan t�+1 or larger than tm��. After sele
ting the median m0;� of T nM(0; �) andm�;0 of TnM(�; 0), one
an
olle
t all medians mk0;k00 of TnM(k0; k00) for k0+k00 = �,sin
e the mk0;k00 values are those between m0;� and m�;0. The �+1 medians
an thusbe
olle
ted and sorted in O(m + � log �) time, and the additional time to
omputethe distan
es for all of these � + 1 medians is O(�m). However, the
omputation ofdistan
es given by
onse
utive transpositions
an be in
rementalized using Lemma 4.First one has to
ompute the distan
e for the median of TnM(0; �), dSAD(A+m0;�; B),and then
ontinue in
rementally from dSAD(A+mk0;k00; B) to dSAD(A+mk0+1;k00�1; B),until we rea
h the median of T nM(�; 0), dSAD(A +m�;0; B) (this is where we needthe medians sorted). Sin
e the set of outliers
hanges when moving from one medianto another, one has to add value tik0 � tim to Sm and value tim � tik00 to Lm, whereSm and Lm are the values given by Lemma 4 (here we need the outliers sorted). Thetime
omplexity of the whole algorithm is O(m + � log �). On an integer alphabet,sorting
an be repla
ed by array lookup to yield O(j�j+m+ �). �4.3 Maximum Absolute Di�eren
e Distan
eWe
onsider now how dt;�MAD
an be
omputed. In
ase � = 0, we sear
h for a trans-position t minimizing dMAD(A + t; B) = maxmi=1 jbi � (ai + t)j. In
ase � > 0, we areallowed to dis
ard the k largest di�eren
es jbi � (ai + t)j.Theorem 6 Given two numeri
 strings A and B both of length m, there is an algo-rithm for
omputing distan
e dt;�MAD(A;B) in O(m+ � log �) time on both integer andgeneral alphabets. On integer alphabets, time O(j�j+m+ �)
an also be obtained.Proof. When � = 0 the distan
e is
learly dtMAD(A;B) = (maxiftig � miniftig)=2,and the transposition giving this distan
e is (maxiftig + miniftig)=2. When � > 0,
onsider again the sorted sequen
e ti1 ; ti2 ; : : : ; tim as in the proof of Theorem 3. Againthe � outliers are M(k0; k00) for some k0 + k00 = � in the optimal transposition. Theoptimal transposition is then the value (tim�k00 + tik0+1)=2 that minimizes (tim�k00 �tik0+1)=2, where k0+k00 = �. The minimum value
an be
omputed in O(�) time, on
ethe � + 1 smallest and largest ti values are sorted. These values
an be sele
ted inO(m) time and then sorted in O(� log�) time, or O(j�j+ �) on integer alphabets. �4.4 Sear
hingUp to now we have
onsidered distan
e
omputation. Any algorithm to
ompute thedistan
e between A and B
an be trivially
onverted into a sear
h algorithm for P inT by
omparing P against every text window of the form Tj�m+1:::j. A
tually, we donot have any sear
h algorithm better than this.7

Lemma 7 For distan
es dt;ÆH , dt;�SAD, and dt;�MAD, if the distan
e
an be evaluated inO(f(m)) time, then the
orresponding sear
h problem
an be solved in O(f(m)n)time.On the other hand, it is not immediate how to perform transposition invariant(Æ;
)�mat
hing. We show how the above results
an be applied to this
ase.Note that one
an �nd in O(mn) time all the o

urren
es fjg su
h thatdtMAD(P; Tj�m+1:::j) � Æ, and all the o

urren
es fj 0g where dtSAD(P; Tj0�m+1:::j0) �
.The (Æ;
)�mat
hes are a subset of fjg \ fj 0g, but identity does not ne
essarily hold.This is be
ause the optimal transposition
an be di�erent for dtMAD and dtSAD.What we need to do is to verify this set of possible o

urren
es fjg \ fj 0g. This
an be done as follows. For ea
h possible mat
h j 00 2 fjg \ fj 0g one
an
omputelimits s and l su
h that dMAD(P + t; Tj00�m+1:::j00) � Æ for all s � t � l: If the distan
ed = dMAD(P + topt; Tj00�m+1:::j00) is given, then s = topt� (Æ� d) and l = topt+ (Æ� d).On the other hand, note that dSAD(P +t; Tj00:::j00+m�1), as a fun
tion of t, is de
reasinguntil t rea
hes the median of the transpositions, and then in
reasing. Thus, dependingon the relative order of the median of the transpositions with respe
t to s and l, weonly need to
ompute distan
e dSAD(P + t; Tj00�m+1:::j00) in one of them (t = s, t = l,or t = tdm=2e). This gives the minimum value for dSAD in the range [s; l℄. If this valueis �
, we have found a mat
h.One
an see that using the results of Theorems 3 and 6 with � = 0, the abovepro
edures
an be implemented so that only O(m) time at ea
h possible o

urren
eis needed. There are at most n o

urren
es to test.Theorem 8 Given two numeri
 strings P (pattern) and T (text) of lengths m andn, there is an algorithm for �nding all the transposition invariant (Æ;
)�o

urren
esof P in T in O(mn) time on both integer and general alphabets.4.5 Set of Possible Mat
hes RevisitedRe
all that an edit distan
e between two strings A and B is the
ost of single sym-bol insertions, deletions, and substitutions to
onvert A into B. The unit
ost orLevenshtein distan
e [Lev66℄ assigns
ost 1 to ea
h operation. If substitutions areforbidden and other operations have
ost 1 the resulting distan
e is related to thelongest
ommon subsequen
e (LCS) of A and B. See e.g. [MNU03℄ and the referen
estherein (like [Sel80℄) for an introdu
tion and formal de�nition of these edit distan
es.For the sequel, it is only ne
essary to know the fa
t [MNU03℄ that the above editdistan
es
an be
omputed e�
iently on
e the set of possible mat
hes M = f(i; j) jai = bj; ai 2 A; bj 2 Bg is given. Sin
e we gave an e�
ient algorithm in Se
t. 3for
onstru
ting M Æ = f(i; j) j jbj � aij � Æg we immediatedly have algorithms foredit distan
es under noise; just use the sparse dynami
 programming algorithms of[MNU03℄ (or others'
ited therein) on M Æ instead of on M . The e�e
t of parameter Æis that two symbols
an be mat
hed if their values are
lose enough. For example, themethod sket
hed above
an be used to
ompute the longest approximately
ommonsubsequen
e of two numeri
 strings.Now we fo
us on the transposition invariant edit distan
es under noise. Let usdenote the size of M Æ as r = r(A;B; Æ) = jM Æ (A;B)j. Let us rede�ne T in this se
tionto be the set of those transpositions that make some
hara
ters between A and B8

exa
tly Æ apart, that is T = fbj � ai � Æ j 1 � i � m; 1 � j � ng. The mat
h set
orresponding to a transposition t 2 T is M Æt = f(i; j) j jbj � ai� tj � Æg. Noti
e thatthere is always some t 2 T whose mat
h set M Æt is equal to M Æt0 , where t0 2 U. Formost edit distan
es (like Levensthtein distan
e or LCS) same mat
h set means thatthe distan
e will also be the same.As noti
ed in [MNU03℄ (in the
ase Æ = 0) one
ould
ompute the above editdistan
es by running the basi
 dynami
 programming algorithms [Sel80℄ over all pairs(A+t; B), where t 2 T. In
ase Æ > 0, one would just interpret symbols a be b the samewhen jb� aj � Æ. One
an obtain a more e�
ient method using advan
ed algorithmsat ea
h transposition. Let us �rst assume that Æ = 0 and let r(A;B) = r(A;B; 0).The following
onne
tion was shown in [MNU03℄:Lemma 9 ([MNU03℄) If an algorithm
omputes a distan
e d(A;B) inO(r(A;B)f(m;n)) time, then there is an algorithm that
omputes the transpo-sition invariant distan
e dt(A;B) = mint2T d(A+ t; B) in O(mnf(m;n)) time.As a
onsequen
e of the above lemma, we have O(mn polylog(n)) time algorithmsfor di�erent edit distan
es, sin
e we manage to
onstru
t the mat
h sets for all trans-positions in O(mn polylog(n)) time [MNU03℄. In our noisy
ase, the above lemmaextends to giving an O(Pt2T jM Æt jf(m;n)) algorithm, whi
h equals O(mn polylog(n))when Æ = 0. To a
hieve total running time O(Pt2T jM Æt jf(m;n)), we still need toshow that the sets M Æt
an be
onstru
ted in linear time in their overall size.Theorem 10 The mat
h sets M Æt = f(i; j) j ai + t = bjg, ea
h sorted in the
olumnorder, for all transpositions t 2 T,
an be
onstru
ted in time O(j�j+ Æmn) on an in-teger alphabet, and in time O(m log j�Aj+n log j�Bj+j�Ajj�Bj log(min(j�Aj; j�Bj))+Pt2T jM Æt j) on a real alphabet.Proof. (We extend the proof given in [MNU03℄ for the
ase Æ = 0.) On an integeralphabet we
an pro
eed naively to obtain O(j�j +mn) time using array lookup toget the transposition where ea
h pair (i; j) has to be added. For Æ > 0 ea
h pair (i; j)is added to entries from bj � ai � Æ to bj � ai + Æ, in O(j�j+ Æmn) time.The
ase of real alphabets is solved as follows. Let us �rst
onsider the
ase Æ = 0.Create a balan
ed tree TA where every
hara
ter a = ai of A is inserted, maintainingfor ea
h su
h a 2 �A a list La of the positions i of A, in in
reasing order, su
h thata = ai. Do the same for B and TB. This
osts O(m log j�Aj+n log j�Bj). Now,
reatean array R(1 : : : j�Ajj�Bj), where ea
h R(k) stores the subset of the mat
h set M tk(in
olumn order), where tk = b� a, bj = b, and ai = a for all (i; j) 2 R(k). There isan entry in R for ea
h possible pair (a; b), where a 2 �A, b 2 �B. Clearly R
an be
onstru
ted in O(mn) time on
e TA, TB, and the asso
iated lists L are given. How-ever, many pairs
an produ
e the same transposition, thus we have to (i) sort R basedon values tk and (ii) merge the partial mat
h sets that
orrespond to the same trans-position. Phase (i)
an be implemented to run in O(j�Ajj�Bj log(min(j�Aj; j�Bj)))time;
onsider w.l.o.g. that j�Aj � j�Bj. For �xed a 2 �A, we
an get the j�Bj trans-positions b � a, b 2 �B, in in
reasing order by a depth-�rst sear
h on TB. Thus wehave j�Aj lists, ea
h
ontaining j�Bj transpositions already in order. Merging theselists (using standard te
hniques) takes O(j�Ajj�Bj log j�Aj) time. Phase (ii)
an beimplemented to run in O(mn) time; we
an traverse through B and for ea
h bj add a9

new
olumn to ea
h M t , where bj � a = t, a 2 �A. The
orre
t set M t
an be foundin
onstant time sin
e we
an maintain suitable pointers when sorting R in phase (i).Finally, let us
onsider the
ase where Æ > 0. As dis
ussed earlier, ea
h pair(a; b) produ
es two relevant transpositions, b � a � Æ and b � a + Æ. We pro
eed asbefore until array R is
onstru
ted and sorted. Consider sliding a window of length2Æ over the transpositions tk in R. Let the middle point of
urrent window be att. Clearly, the pairs that are in
luded in the
urrent window produ
e the wholemat
h set for transposition t. That is, partial mat
h sets R(l); R(l + 1); : : : ; R(r)are merged into mat
h set M Æt , where tl = bj � ai � t � Æ for (all) (i; j) 2 R(l),tr = bj0�ai0 � t+Æ for (all) (i0; j 0) 2 R(r), and [l; r℄ is maximal range of R where thisholds. The mat
h sets
hange only when the middle points of the sliding window arefrom set T = fb� a� Æ j a 2 �A; b 2 �Bg. We
an
onstru
t this set in O(j�Ajj�Bj)time. After sorting it, we
an slide the window of length 2Æ stopping at ea
h middlepoint t 2 T , and
onstru
t ea
h mat
h set M Æt by merging the mat
h sets in theentries of R that are
overed by the
urrent window.What is left is to
onsider how the merging
an be done e�
iently. Noti
e that themat
h sets
orresponding to
onse
utive transpositions share a lot in
ommon; themerging does not have to be done by brute for
e. We have two
ases depending onwhether the
onse
utive mat
h sets di�er (i) only by one entry of R, or (ii) by severalentries. In
ase (i), the range [l; r℄ of R is
hanged either to [l + 1; r℄ or to [l; r + 1℄.Both situations
an be handled by one traversal over mat
h set
orresponding to [l; r℄and in the latter
ase also over R(r + 1). In
ase (ii), the range [l; r℄ of R is
hangedeither to [l+ k; r℄ or to [l; r+ k℄ for some k (by de�nition both ranges
an not
hangeat the same time). Let us
onsider the latter situation, sin
e the �rst is analogous. Itfollows that tr+1 = � � � = tr+k, sin
e otherwise there would be a relevant transpositiontr+k0 � Æ, for some 1 < k0 < k, in between tr � Æ and tr+k � Æ, whi
h
on�i
ts the fa
tthat we are moving from one relevant transposition to the next. What follows is thatwe
an prepro
ess R just like in the
ase when Æ = 0, merging
onse
utive entriesof R having exa
tly the same transposition in O(mn) time. After this is done,
ase(ii)
an be handled just like
ase (i). The time
omplexity of this merging phase isbounded by Pt2T jM Æt j. �Noti
e that Pt2T jM Æt j � Æmn on an integer alphabet. So the bound on a realalphabet is analogous to the bound on an integer alphabet.
5 Con
luding RemarksThe motivation to study transposition invariant distan
es
omes from musi
 infor-mation retrieval. However, there are also other appli
ations where these distan
emeasures are useful. For example, in image
omparison one
ould use the trans-position invariant SAD distan
e to sear
h for the o

urren
es of a small templateinside a large image. With gray-level images the sear
h would then be �lighting in-variant�. Combining other invarian
es, su
h as rotation or s
aling invarian
e, withtransposition invarian
e in a sear
h algorithm, is a major
hallenge.10

Referen
es[Abr87℄ K. Abrahamson. Generalized string mat
hing. SIAM J. Computing,16(6):1039�1051, 1987.[ALP01℄ A. Amir, M. Lewenstein, and E. Porat. Approximate Subset Mat
hingwith Don't Cares. In Pro
. 12th Annual ACM-SIAM Symposium onDis
rete Algorithms (SODA'01), pp. 279�288, 2001.[BYG94℄ R. Baeza-Yates and G. Gonnet. Fast string mat
hing with mismat
hes.Information and Computation, 108(2):187�199, 1994.[BYP96℄ R. Baeza-Yates and C. Perleberg. Fast and Pra
ti
al ApproximateString Mat
hing. Information Pro
essing Letters, 59:21�27, 1996.[BFPRT72℄ M. Blum, R. Floyd, V. Pratt, R. Rivest, and R. Tarjan. Time boundsfor sele
tion. J. Computer and System S
ien
es, 7:448�461, 1972.[CCIMP99℄ E. Cambouropoulos, M. Cro
hemore, C.S. Iliopoulos, L. Mou
hard, andYoan J. Pinzón. Algorithms for
omputing approximate repetitions inmusi
al sequen
es. In Pro
. 10th Australian Workshop on Combinato-rial Algorithms, AWOCA'99, R. Raman and J. Simpson, eds., CurtinUniversity of Te
hnology, Perth, Western Australia, pp. 129�144, 1999.[CIR98℄ T. Crawford, C.S. Iliopoulos, and R. Raman. String mat
hing te
h-niques for musi
al similarity and melodi
 re
ognition. Computing inMusi
ology 11:71�100, 1998.[CILP01℄ M. Cro
hemore, C.S. Iliopoulos, T. Le
roq, and Y.J. Pinzón. Approx-imate string mat
hing in musi
al sequen
es. In Pro
. Prague StringolyClub (PSC 2001), M. Baliik and M. Simanek, eds, Cze
h Te
hni
alUniversity of Prague, pp. 26�36, DC-2001-06, 2001.[CILPR02℄ M. Cro
hemore, C.S. Iliopoulos, T. Le
roq, W. Plandowski, and W.Rytter. Three Heuristi
s for Æ�Mat
hing: Æ�BM Algorithms. InPro
. 13th Annual Symposium on Combinatorial Pattern Mat
hing(CPM'02), Springer-Verlag LNCS 2373, pp. 178�189, 2002.[GG86℄ Z. Galil and R. Gian
arlo. Improved string mat
hing with k mismat
hes.SIGACT News, 17:52�54, 1986.[LT00℄ K. Lemström and J. Tarhio. Sear
hing monophoni
 patterns withinpolyphoni
 sour
es. In Pro
. RIAO 2000 , pp. 1261�1279 (vol 2), 2000.[LU00℄ K. Lemström and E. Ukkonen. In
luding interval en
oding into editdistan
e based musi

omparison and retrieval. In Pro
. AISB 2000,pp. 53�60, 2000.[Lev66℄ V. Levenshtein. Binary
odes
apable of
orre
ting deletions, insertionsand reversals. Soviet Physi
s Doklady 6:707�710, 1966.11

[LB86℄ G. Landau and U. Vishkin. E�
ient string mat
hing with k mismat
hes.Theoreti
al Computer S
ien
e, 43:239�249, 1986.[Mut95℄ S. Muthukrishnan. New results and open problems related to non-standard stringology. In Pro
. 6th Annual Symposium on CombinatorialPattern Mat
hing (CPM'95), LNCS 937, pp. 298�317, 1995.[MNU02℄ V. Mäkinen, G. Navarro, and E. Ukkonen. Algo-rithms for Transposition Invariant String Mat
hing.TR/DCC-2002-5, Dept. of CS, Univ. Chile, July 2002,�ftp://ftp.d

.u
hile.
l/pub/users/gnavarro/ti_mat
hing.ps.gz�[MNU03℄ V. Mäkinen, G. Navarro and E. Ukkonen. Algorithms for TranspositionInvariant String Mat
hing (Extended Abstra
t). In Pro
. 20th Interna-tional Symposium on Theoreti
al Aspe
ts of Computer S
ien
e (STACS2003), Springer-Verlag LNCS 2607, pp. 191�202, Berlin, February, 2003.[Sel80℄ P. Sellers. The theory and
omputation of evolutionary distan
es: Pat-tern re
ognition. J. of Algorithms, 1(4):359�373, 1980.[vEB77℄ P. van Emde Boas. Preserving order in a forest in less than logarithmi
time and linear spa
e. Inf. Pro
. Letters 6(3):80�82, 1977.

12

