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Abstract. Numeric string is a sequence of symbols from an alphabet ¥ C
U, where U is some numerical universe closed under addition and subtraction.
Given two numeric strings A = a1---a,, and B = by ---b, and a distance
function d(A, B) that gives the score of the best (partial) matching of A and
B, the transposition invariant distance is mingey{d(A + t, B)}, where A 4+t =
(ap + t)(ag +t)...(am + t). The corresponding matching problem is to find
occurrences j of Ain B where d(A+t, Bj:_ ;) is smaller than some given threshold
and Bj_; is a substring of B. In this paper, we give efficient algorithms for
matching numeric strings — with and without transposition invariance — under
noise; we consider distance functions d(A, B) such that symbolsa € Aand b € B
can be matched if |b—a| < 6, or the x largest differences |b—a| can be discarded.

Keywords: approximate matching, transposition invariance, (§,y)-matching

1 Introduction

Transposition invariant string matching is the problem of matching two strings when
all the characters of either of them can be “shifted” by some amount ¢. By “shifting”
we mean that the strings are sequences of numbers and we add number ¢ to each
character of one of them.

Interest in transposition invariant string matching problems has recently arisen in
the field of music information retrieval (MIR) [CIR98, LT00, LUOO]. In music analysis
and retrieval, one often wants to compare two music pieces to test how similar they
are. A reasonable way of modeling music is to consider the pitches and durations
of the notes. Often the durations are omitted, too, since it is usually possible to
recognize the melody from a sequence of pitches. Hence, our focus is on distance
measures for pitch sequences (of monophonic music) and their computation.

We studied the computation of edit distances under transposition invariance in
[MNUO03|. We noticed that sparse dynamic programming is useful in transposition
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invariant matching, and obtained e.g. an O(mnloglogm) algorithm for transposition
invariant longest common subsequence problem.

In this paper, we complement our earlier results by studying “non-gapped” distance
measures for numeric strings. That is, we study measures where the ith symbol of
the source is matched with the ith symbol of the target. To allow some noise in the
values to be compared, we study measures that either allow matching symbols that
approximately match (i.e. values are within § distance apart), or allow discarding some
amount (x) of largest differences. We show how to compute the transposition invariant
Hamming distance under noise in O(m log m) time, and transposition invariant sum of
absolute differences (SAD) and maximum absolute difference (MAD) distances under
noise in O(m + rlog ) time, where m is the length of both strings to be compared.

For the corresponding search problems we only give the trivial algorithm that
repeats the distance computation at each of the n text positions. However, the upper
bound obtained this way for SAD distance is in fact the same as what is known without
transposition invariance (see [Mut95|, “weighted k-mismatches problem”). We also
consider the combined search problem with SAD and MAD distances, known as the
(0,7) matching problem; we give an O(mn) algorithm for the transposition invariant
case of this problem. Again the best known upper bound for (d,~) matching without
transpositions is O(mn) (because of the SAD distance).

In addition to the distance-specific results we introduce a more general approach to
tackle with noise; many distance measures that allow matching two characters a and b
for free when |b—a| < § can be computed easily once the set of possible matches |M° | =
IM?|(A, B) = {(i,7) | |b; — a;] < 6,a; € A,b; € B} has been computed. We show
how to construct this set in O(mlog |S] + nlog S| + [MC | min(log(s + 2), loglog m))
time, where ¥ is the alphabet of the two strings to be compared. After the set M? is
constructed, Hamming and MAD distances and (0, y)-matching under noise can be
computed in time linear in the size of the set.

In the transposition invariant case, the construction of the sets of possible matches
for all relevant transpositions is useful as well (e.g. for edit distance under noise). We
show how to do this in linear time in the overall size of these sets (plus some additive
factors of m,n, and log |X]).

Some of the results of this paper appear in a technical report [MNU02].

2 Definitions

Let ¥ be a finite numerical alphabet, which is a subset of some universe U that is
closed under addition and subtraction. Let A = ayay...a,, and B = b1by...b, be
two numeric strings over ¥*, i.e. the symbols (characters) a;,b; of the two strings
are in ¥ forall 1 <7 < m,1 < j <n. We will assume w.l.o.g. that m < n. String
A'is a substring of Aif A" = A; ; = a;...q; for some 1 < i < j < m. String A”
is a subsequence of A, denoted by A" C A, if A" = q;,a,, .. -aj,,, for some indexes
1SZ'1<Z'2<"'<Z"AH‘ < m.

When m = n, the following distances can be defined. The Hamming distance
dy between strings A and B is dy(A,B) = m — [{(i,i) | a; = b;,1 < i < m}
The mazimum absolute difference distance dyap between A and B is dyap(A, B) =

maxi<i<mi|a; — b;| | 1 < i < m}. The sum of absolute differences distance dsap
between A and B is dsap(A, B) = > ", |a; — b;|. Note that dyap is in fact the




maximum metric (I, norm) and dsap the Manhattan metric (I; norm) when we
interprete A and B as points in m dimensional Euclidean space.

String A is a transposed copy of B (denoted by A =' B) if B = (a; + t)(ay +
t)---(ay, +1t) = A+t for some t € U The transposition invariant versions of
the above distance measures d, where x € {H, MAD,SAD} can now be stated as
d' (A, B) = mingey d.(A +t, B).

So far our definitions allow either only exact (transposition invariant) matches
between some characters (dY) or approximate match between all characters (di;\p
and df,p). To relax these conditions, we introduce a constant § > 0. We write a =% b
when |a — b] < §, a,b € ¥. By replacing the equality @ = b with a =° b in the
definition of dj;, we get a more error-tolerant version of the distance; let us denote
the new distance d;{"s. Similarly, by introducing another constant x > 0, we can define
distances dyryp, dgap, such that the « largest differences |a; — b;| are discarded.

The approximate string matching problem, based on the above distance functions,
is to find the minimum distance between A and any substring of B. In this case we
call A the pattern and denote it P;_,, = pip2---pm., and call B the text and denote
it 71, = tity -+ - t,, and usually assume that m << n. A closely related problem is
the thresholded search problem where, given P, T, and a threshold value £ > 0, one
wants to find all the text positions j such that d(P, T} ;) < k for some j'. We will
refer collectively to these two closely related problems as the search problem.

Notice that searching under Hamming distance is known as the k-mismatches
problem [Abr87, ALP01, BYGY94, BYP96, GG86, LB86|. Also, a search prob-
lem related to distances dyap and dsap is known as the (4,) matching problem
|CCIMP99, CILPO1, CILPRO2| in which occurrences j are searched for such that
dvian(P, Ty ;) < 6 and dsan (P, Ty ;) < 7.

Our complexity results are different depending on the form of the alphabet ¥. We
will distinguish two cases. An integer alphabet is any alphabet ¥ C Z. For integer
alphabets, |X| will denote max(X) — min(X) + 1. A real alphabet will be any other
¥ C R, and then |X| denotes the cardinality of ¥. For any string A = ay...a,,, we
will call ¥4 = {a; | 1 <i < m} the alphabet of A.

Last, we will need some orders for a set of pairs P = {(i,7)}, where a; € A and
bj € B. The row order of P is such that P is sorted first by ¢ (in increasing order)
and secondary by j (in increasing order). In column order P is sorted first by j and
secondary by . In diagonal order P is sorted first by 7 — ¢ and secondary by 1.

3 Matching under Noise without Transposition In-
variance

We will now present a general and efficient method that can be used with little
modifications for solving both the & mismatches problem and the (d,7) matching
problem. The time complexities will depend on the number of possible matches
between pattern and text characters. A similar approach will also be used later in
the transposition invariant case.

Let M° (P, T) = M’ = {(i,7) | |[pi — t;| < &} be the set of possible matches. Let
us assume that we are given M° in diagonal order. By one traversal over M’ one can
easily compute values S(d) and N(d) for each diagonal d, where S(d) = > {|p; — t;] |



(i,) €M, j —i=d} and N(d) = [{(i, ) | (i.5) e M’ . d = j —i}].

Given the arrays S(0...n—m) and N(0...n—m), one can solve various problems.
For example, all values d such that S(d) < v and N(d) = m, correspond to a (6,7)-
match starting at position d + 1 of the text. Similarly, if N(d) > m — k when
computed for M°, then there is an occurrence starting at position d + 1 of the text
for the £ mismatches problem.

Thus we have an O(]M°| + n) algorithm for several problems, if we just manage
to construct M in linear time in its size.

Theorem 1 Given numeric strings P (pattern) and T (text) of lengths m and n
(m << n), the set of possible matches M? (P, T) = {(i,7) | |pi — t;| < 8} can be
constructed in time O(|S| + m + n + M| min(log(§ + 2),loglogm)) on an integer
alphabet, and in time O(mlog|X| + nlog X + M| min(log(d + 2),loglogm)) on a
real alphabet. Within the same bounds, the set M° can be constructed in row, column,
or diagonal order.

Proof. Let us first consider the integer alphabet with 6 = 0. We construct an array
L(1...]X]), where each entry L(c) stores an increasing list of all positions of P, where
character ¢ occurs. Array L can obviously be constructed by one traversal over P
in O(|X] 4+ m) time. The set M° can then be constructed in column order in one
traversal over T' by concatenating lists L(ty), L(t3),...L(t,). The running time is
O(m+n+ S|+ M)).

For 6 > 0, we construct the array L as above but the traversal over T is now
more complicated. To construct the column j of M’ we need to merge the 26 + 1 lists
L(t; —9)....,L(t; + 0) into a single list. This merging can be done using a priority
queue P as follows. Add the first element, say i, of each list L(c¢) into P by using i
as the priority and ¢ as the key. Then repeat the following until all lists are empty:
Take the element with minimum priority, say (7, ¢), from P, and add the next element
from list L(c) into P. Column j of M? is constructed by inserting pair (i, j) at the
end of M’ at each step. The operations on a priority queue can be supported in
O(log(d + 2)) time by using some standard implementation.

Since the priority values that need to be stored are in the range [1,m], we can
implement the priority queue more efficiently using a data structure of van Emde
Boas |[VEB77|. It supports, among other operations, retrieving the smallest value,
inserting a new value, and deleting the smallest value, in O(loglogm) amortized time
on values in the range [1,m]. We can store the values i using this data structure.
Then we can repeat retrieving and deleting the smallest value ¢ until the structure is
empty, adding (i, j) at the end of M® at each step. Thus the claimed bound on the
integer alphabet follows.

When the alphabet is real, we can use exactly the same procedure, expect that
the array L needs to be replaced by a binary search tree. It takes O(mlog|3|) time
to construct this search tree. For each character of 7" we need to do a range query
on this tree to retrieve the lists of positions that correspond to characters in range
[t; —d,t; + 0]. This will take O(nlog|X]|) time. Merging can be done similarly as in
the case of an integer alphabet, so the claimed bound follows.

Finally, the set is in column order after the above construction. Other orders can
be constructed easily from the column order in time O(m +n + [M°|). O



The above theorem gives e.g. an O(|X| + m + n + |[M°|) time solution for the
k mismatches problem on an integer alphabet. This can be ©(mn), but in the ex-
pected case it is much smaller. An expected bound ©(mn/|X|) is easy to prove; see
e.g. [IBYP96|, where the above algorithm was originally proposed for the k—mismatches
problem.

4 Matching under Noise and Transposition Invari-
ance

For this section, let T = {t; = b; —a; | 1 < i < m} = {t;} be the set of transpositions
that make some characters a; and b; match. Note that the optimal transposition does
not need, in principle, to be included in T, but we will show that this is the case for
di; and dyh;,. Note also that |T| = O(|X|) on an integer alphabet and |T| = O(m) in
any case.

4.1 Hamming Distance

Let A=ay...a, and B = by...b,, where a;,b; € ¥ for 1 < i < m. We consider
the computation of transposition invariant Hamming distance d%"s(A, B). That is, we
search for a transposition ¢ maximizing the size of set {i | |b;—(a;+t)| < d,1 < i < m}.

Theorem 2 Given two numeric strings A and B, both of length m, there is an al-
gorithm for computing distance dt}ié(A, B) in O(|X|+m) time on an integer alphabet,
or in O(mlogm) time on a general alphabet.

Proof. 1t is clear that the Hamming distance is minimized for the transposition in T
that makes the maximum number of characters match. What follows is a simple voting
scheme, where the most voted transposition wins. Since we allow a tolerance ¢ in the
matched values, t; votes for range [t; — 0, t; +6]. Construct sets S = {(¢; — ¢, “open”) |
1 <i<m}and E = {(t; +6,“lose”) | 1 <i < m}. Sort SU F into a list I using
order

Hig,y) if o’ <zor (2 =z andy <y),

(2", y) <
where “open”<“close”. Initialize variable count = 0. Do for i = 1 to |I| if I(i) =
(x,“open”) then count = count+1 else count = count—1. Let maxcount be the largest
value of count in the above algorithm. Then clearly dtﬁé(A, B) = m — maxcount, and
the optimal transposition is any value in the range [x;, x;41], where I(i) = (x;, %), for
any 7 where maxcount is reached. The complexity of the algorithm is O(mlogm).
Sorting can be replaced by array lookup when ¥ is an integer alphabet, which gives
the bound O(|X] 4+ m) for that case. O

4.2 Sum of Absolute Differences Distance

We shall first look at the basic case where k = 0. That is, we search for a transposition
t minimizing dsap(A +t, B) = > " b — (a; + t)].



Theorem 3 Given two numeric strings A and B, both of length m, there is an algo-
rithm for computing distance dsy (A, B) in O(m) time on both integer and general
alphabets.

Proof. Let us consider T as a multiset, where the same element can repeat multiple
times. Then |T| = m, since there is one element in T for each b; —a;, where 1 < i < m.
Sorting T in ascending order gives a sequence t; < t;, < ... <t . Let ¢, be the
optimal transposition. We will prove by induction that #,, =t that is, the
optimal transposition is the median transposition in T.

To start the induction we claim that ¢;, < {,,, < ?; . To see this, notice that
dSAD<A+ (til — 6), B) = dSAD<A+til s B) —i—me, and dSAD(A+ (tim +€), B) = dSAD<A+
ti.., B) + me, for any € > 0.

Our induction assumption is that ¢;, < t,; < ¢, .. for some k. We
may assume that #;, =~ < #; ., since otherwise the result follows anyway. First
notice that, independently of the value of %,, in the above interval, the cost
S by, — (az, Ftop)| + e i — (i, N topt)| Will be the same. Then no-
tce that 7138, 1By — (0 + gy — 91 = 354 by — (0 + f)| + (m = 2K)e, and
S by = (as + i, )l = S by — (i, +ti,, )|+ (m —2k)e. This completes
the induction, since we showed that #;, <, <t; _,.

The consequence is that t;, <t,,; <t; ,  formaximal k such that ¢; <t |
that is, & = [m/2]. When m is odd, it holds m—k+1 = k and there is only one optimal
transposition, t; When m is even, one easily notices that all transpositions %,

ifm/2]"
biveys < topt < ti are equally good. Finally, the median can be found in linear
time [BFPRTT72]. OJ

im/2]+17

Ym /2417

To get a fast algorithm for dg%,, when x > 0 largest differences can be discarded,
we need a lemma that shows that the distance computation can be incrementalized
from one transposition to another. Let ¢, ,%;,,...,%;, be the sorted sequence of T.

Lemma 4 Once values S; and Lj such that dsap(A + t;,, B) = S; + L;, S; =
Zg,;ll ti, — ti,, and L; = Z?,l:jﬂtij, — ti;, are computed, the values of Sji, and
Ljiy can be computed in O(1) time.

Proof. Value S;;; can be written as

J
]—|—1 Ztl]+1 - ij’ — Zt’i]‘+1 - t1J + t1J - tij/ - j(t’i]‘+1 - t7J> + Sj
=1
Similar rearranging gives

Litw = Z tz/ —ti, = (m_j>(tij _tij+1>+Lj‘
J'=j+2

Thus both values can be computed in constant time given the values of S; and L;
(and #;,,,). O
Theorem 5 Given two numeric strings A and B both of length m, there is an algo-
rithm for computing distance dgn, (A, B) in O(m + rlog k) time on both integer and
general alphabets. On integer alphabets, time O(|X] +m + k) can also be obtained.



Proof. Consider the sorted sequence t¢;,,%;,,...,t, as in the proof of Theorem 3.
Clearly the candidates for the r outliers (largest differences) are M(E' k") =
{tiy, ooty i nyys - tiy, b for some & +&” = k. The naive algorithm is then to
compute the distance in all these k+1 cases: Compute the median of T\ M (', k") for
each k' + k" = k and choose the minimum distance induced by these medians. These
k 4+ 1 medians can be found as follows: First select values t,,; and t,,_, using the
linear time selection algorithm [BFPRT72|. Then collect and sort all values smaller
than ¢, or larger than t,,_.. After selecting the median mg, of T \ M(0,x) and
myo of T\ M(k,0), one can collect all medians myy g of T\ M (', k") for k' + k" = &,
since the my ,» values are those between mg , and m, . The s+ 1 medians can thus
be collected and sorted in O(m + klog k) time, and the additional time to compute
the distances for all of these k + 1 medians is O(km). However, the computation of
distances given by consecutive transpositions can be incrementalized using Lemma 4.
First one has to compute the distance for the median of T\ M (0, k), dsap(A+myg .. B),
and then continue incrementally from dsan(A+my g, B) to dsan(A+my 11 k71, B),
until we reach the median of T \ M(k,0), dsap(A + my 9, B) (this is where we need
the medians sorted). Since the set of outliers changes when moving from one median
to another, one has to add value ¢;, —1;, to S, and value ¢;, —*;, to L, where
Sm and L, are the values given by Lemma 4 (here we need the outliers sorted). The
time complexity of the whole algorithm is O(m + klogk). On an integer alphabet,
sorting can be replaced by array lookup to yield O(|Z| + m + ). O

ik”

4.3 Maximum Absolute Difference Distance

We consider now how dyryp, can be computed. In case & = 0, we search for a trans-
position ¢ minimizing dyan(A + t, B) = max}", |b; — (a; + t)|. In case k > 0, we are
allowed to discard the k largest differences |b; — (a; + t)].

Theorem 6 Given two numeric strings A and B both of length m, there is an algo-
rithm for computing distance dyiy, (A, B) in O(m+ klog k) time on both integer and
general alphabets. On integer alphabets, time O(|X| 4+ m + k) can also be obtained.

Proof. When k = 0 the distance is clearly djap(A, B) = (max;{t;} — min;{t;})/2,
and the transposition giving this distance is (max;{#;} + min;{t;})/2. When & > 0,
consider again the sorted sequence t;,,t;,,....,t; asin the proof of Theorem 3. Again
the k outliers are M (k', k") for some k' + k" = k in the optimal transposition. The
optimal transposition is then the value (t; , +t;, )/2 that minimizes (¢; ,
tiy,,)/2, where &'+ k" = k. The minimum value can be computed in O(x) time, once
the k 4+ 1 smallest and largest ¢; values are sorted. These values can be selected in

O(m) time and then sorted in O(klog k) time, or O(|X| 4 k) on integer alphabets. [J

4.4 Searching

Up to now we have considered distance computation. Any algorithm to compute the
distance between A and B can be trivially converted into a search algorithm for P in
T by comparing P against every text window of the form 7}, ;. Actually, we do
not have any search algorithm better than this.



Lemma 7 For distances d, dsi,. and dif\,. if the distance can be evaluated in
O(f(m)) time, then the corresponding search problem can be solved in O(f(m)n)
time.

On the other hand, it is not immediate how to perform transposition invariant
(0,7) matching. We show how the above results can be applied to this case.

Note that one can find in O(mn) time all the occurrences {j} such that
d\yan (P Tj—my1. ) < 0, and all the occurrences {j'} where di,pn (P, Tj—mi1j1) < 7.
The (6, v)-matches are a subset of {j} N {j'}, but identity does not necessarily hold.
This is because the optimal transposition can be different for dj;,p, and d,p.

What we need to do is to verify this set of possible occurrences {j} N {j'}. This
can be done as follows. For each possible match j” € {j} N {j'} one can compute
limits s and [ such that dyap(P +t, Tjr_mi1. j#) < d forall s <t < [: If the distance
d = dyan(P +topt, Tjrr 1. jv) is given, then s = t,,, — (0 —d) and | = t,y + (0 — d).
On the other hand, note that dsan(P+t,Tjn_jnim_1), as a function of ¢, is decreasing
until ¢ reaches the median of the transpositions, and then increasing. Thus, depending
on the relative order of the median of the transpositions with respect to s and [, we
only need to compute distance dsap(P +t,Tj#_mi1. j») in one of them (t =s, t =1,
or t = t[y/21). This gives the minimum value for dgap in the range [s, []. If this value
is <, we have found a match.

One can see that using the results of Theorems 3 and 6 with x = 0, the above
procedures can be implemented so that only O(m) time at each possible occurrence
is needed. There are at most n occurrences to test.

Theorem 8 Given two numeric strings P (pattern) and T (text) of lengths m and
n, there is an algorithm for finding all the transposition invariant (3,~)-occurrences
of P in T in O(mn) time on both integer and general alphabets.

4.5 Set of Possible Matches Revisited

Recall that an edit distance between two strings A and B is the cost of single sym-
bol insertions, deletions, and substitutions to convert A into B. The unit cost or
Levenshtein distance [Lev66] assigns cost 1 to each operation. If substitutions are
forbidden and other operations have cost 1 the resulting distance is related to the
longest common subsequence (LCS) of A and B. See e.g. [IMNUO03| and the references
therein (like [Sel80]) for an introduction and formal definition of these edit distances.

For the sequel, it is only necessary to know the fact [MNUO3] that the above edit
distances can be computed efficiently once the set of possible matches M = {(i,j) |
a; = bj,a; € A,b; € B} is given. Since we gave an efficient algorithm in Sect. 3
for constructing M® = {(i,j) | |b; — a;| < §} we immediatedly have algorithms for
edit distances under noise; just use the sparse dynamic programming algorithms of
[MNUO3]| (or others’ cited therein) on M instead of on M. The effect of parameter &
is that two symbols can be matched if their values are close enough. For example, the
method sketched above can be used to compute the longest approrimately common
subsequence of two numeric strings.

Now we focus on the transposition invariant edit distances under noise. Let us
denote the size of M® as r = (4, B, ) = |[M° (A, B)|. Let us redefine T in this section
to be the set of those transpositions that make some characters between A and B



exactly § apart, that is T = {b; —a;, £ | 1 <i < m,1 < j <n}. The match set
corresponding to a transposition t € T is MY = {(i, j) | |b; —a; — t| < d}. Notice that
there is always some £ € T whose match set Ml‘g is equal to MI?,, where ' € U. For
most edit distances (like Levensthtein distance or LCS) same match set means that
the distance will also be the same.

As noticed in [MNUO3] (in the case 6 = 0) one could compute the above edit
distances by running the basic dynamic programming algorithms [Sel80] over all pairs
(A+t, B), where t € T. In case § > 0, one would just interpret symbols a be b the same
when |b—a| < d. One can obtain a more efficient method using advanced algorithms
at each transposition. Let us first assume that § = 0 and let r(A, B) = r(A4, B,0).
The following connection was shown in [MNUO03|:

Lemma 9 ([MNUO3]) If an algorithm computes a distance d(A,B) in
O(r(A, B)f(m,n)) time, then there is an algorithm that computes the transpo-
sition invariant distance d*(A, B) = minger d(A + t, B) in O(mnf(m,n)) time.

As a consequence of the above lemma, we have O(mn polylog(n)) time algorithms
for different edit distances, since we manage to construct the match sets for all trans-
positions in O(mn polylog(n)) time [MNUO03|. In our noisy case, the above lemma
extends to giving an O(>", ¢ [M?|f(m, n)) algorithm, which equals O(mn polylog(n))
when § = 0. To achieve total running time O(}",c M7 |f(m, n)), we still need to
show that the sets M can be constructed in linear time in their overall size.

Theorem 10 The match sets M) = {(4,7) | a; +t = b;}, each sorted in the column
order, for all transpositions t € T, can be constructed in time O(|3]+dmn) on an in-
teger alphabet, and in time O(mlog|Xa|+nlog |Xp|+|Xal|Xp|log(min(|X 4], |Xs]))+
> ier IM?|) on a real alphabet.

Proof. (We extend the proof given in [MNUO3| for the case § = 0.) On an integer
alphabet we can proceed naively to obtain O(|X| + mn) time using array lookup to
get the transposition where each pair (i, j) has to be added. For 6 > 0 each pair (i, j)
is added to entries from b; — a; — 6 to b; — a; + 6, in O(|X| + dmn) time.

The case of real alphabets is solved as follows. Let us first consider the case ¢ = 0.
Create a balanced tree T4 where every character a = a; of A is inserted, maintaining
for each such a € ¥4 a list £, of the positions 7 of A, in increasing order, such that
a = a;. Do the same for B and 7. This costs O(mlog | 4| +nlog|Xg|). Now, create
an array R(1...|X4||Xp|), where each R(k) stores the subset of the match set M,
(in column order), where t; =b —a, b; = b, and a; = a for all (7,j) € R(k). There is
an entry in R for each possible pair (a,b), where a € ¥4, b € Y. Clearly R can be
constructed in O(mn) time once Ty, Tp, and the associated lists £ are given. How-
ever, many pairs can produce the same transposition, thus we have to (i) sort R based
on values t; and (ii) merge the partial match sets that correspond to the same trans-
position. Phase (i) can be implemented to run in O(|X4]|Xp|log(min(|X4], |X5])))
time; consider w.l.o.g. that | 4| < |Xg|. For fixed a € ¥4, we can get the |X | trans-
positions b — a, b € ¥, in increasing order by a depth-first search on 7. Thus we
have |¥ 4| lists, each containing |Xg| transpositions already in order. Merging these
lists (using standard techniques) takes O(]|X4]|Xp|log |X4|) time. Phase (ii) can be
implemented to run in O(mn) time; we can traverse through B and for each b; add a



new column to each M, where b; —a =t, a € ¥ 4. The correct set M; can be found
in constant time since we can maintain suitable pointers when sorting R in phase (i).

Finally, let us consider the case where 6 > 0. As discussed earlier, each pair
(a,b) produces two relevant transpositions, b — a — § and b — a + . We proceed as
before until array R is constructed and sorted. Consider sliding a window of length
20 over the transpositions t; in R. Let the middle point of current window be at
t. Clearly, the pairs that are included in the current window produce the whole
match set for transposition ¢. That is, partial match sets R(l), R(I + 1),..., R(r)
are merged into match set M?, where t; = b; —a; > t — § for (all) (i,5) € R(l),
t, = by —ay <t+4for (all) (', 5') € R(r), and [, r] is maximal range of R where this
holds. The match sets change only when the middle points of the sliding window are
fromset T={b—a+6|a € X4,be XNp}. We can construct this set in O(|34||X5])
time. After sorting it, we can slide the window of length 24 stopping at each middle
point ¢+ € T, and construct each match set MJ by merging the match sets in the
entries of R that are covered by the current window.

What is left is to consider how the merging can be done efficiently. Notice that the
match sets corresponding to consecutive transpositions share a lot in common; the
merging does not have to be done by brute force. We have two cases depending on
whether the consecutive match sets differ (i) only by one entry of R, or (ii) by several
entries. In case (i), the range [, 7] of R is changed either to [l + 1,r] or to [I,r + 1].
Both situations can be handled by one traversal over match set corresponding to [, 7]
and in the latter case also over R(r + 1). In case (ii), the range [I, ] of R is changed
either to [l + &, r] or to [I, r + k] for some k (by definition both ranges can not change
at the same time). Let us consider the latter situation, since the first is analogous. It
follows that ¢, 1 = --- = t, ., since otherwise there would be a relevant transposition
tryw — 0, for some 1 < k' < k, in between . — 6 and ¢, — d, which conflicts the fact
that we are moving from one relevant transposition to the next. What follows is that
we can preprocess R just like in the case when 0 = 0, merging consecutive entries
of R having exactly the same transposition in O(mn) time. After this is done, case
(ii) can be handled just like case (i). The time complexity of this merging phase is

bounded by >~ . [M?|. O

Notice that >, M| < dmn on an integer alphabet. So the bound on a real
alphabet is analogous to the bound on an integer alphabet.

5 Concluding Remarks

The motivation to study transposition invariant distances comes from music infor-
mation retrieval. However, there are also other applications where these distance
measures are useful. For example, in image comparison one could use the trans-
position invariant SAD distance to search for the occurrences of a small template
inside a large image. With gray-level images the search would then be “lighting in-
variant”. Combining other invariances, such as rotation or scaling invariance, with
transposition invariance in a search algorithm, is a major challenge.
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