Pivot Selection Techniques for Proximity
Searching in Metric Spaces

Benjamin Bustos *"!, Gonzalo Navarro "2, Edgar Chéavez ¢3

& Department of Computer and Information Science, University of Konstanz,
Universitaetstrasse 10, 78457 Konstanz, Germany.

b Center for Web Research, Department of Computer Science, University of Chile,
Blanco Encalada 2120, Santiago, Chile.

¢FEscuela de Ciencias Fisico-Matemdticas, Universidad Michoacana, Edificio “B”,
Ciudad Universitaria, Morelia, Mich. México.

Abstract

With few exceptions, proximity search algorithms in metric spaces based on the
use of pivots select them at random among the objects of the metric space. However,
it is well known that the way in which the pivots are selected can drastically affect
the performance of the algorithm. Between two sets of pivots of the same size, better
chosen pivots can largely reduce the search time. Alternatively, a better chosen small
set of pivots (requiring much less space) can yield the same efficiency as a larger,
randomly chosen, set. We propose an efficiency measure to compare two pivot sets,
combined with an optimization technique that allows us to select good sets of pivots.
We obtain abundant empirical evidence showing that our technique is effective, and
it is the first that we are aware of in producing consistently good results in a wide
variety of cases and in being based on a formal theory. We also show that good
pivots are outliers, but that selecting outliers does not ensure that good pivots are
selected.

Key words: Metric databases, range queries, pivot based indexing, nearest neigh-
bour search.

Email addresses: bustos@informatik.uni-konstanz.de (Benjamin Bustos),
gnavarro@dcc.uchile.cl (Gonzalo Navarro), elchavez@fismat.umich.mx
(Edgar Chévez).

1 On leave from the Department of Computer Science, University of Chile. Par-
tially funded by German Science Foundation (DFG) project No. KE 740/6-1 of the
strategic research initiative SPP 1041.

2 Funded by Millenium Nucleus Center for Web Research, Grant P01-029-F, Mide-
plan, Chile.

3 Supported in part by CYTED VIIL.19 RIBIDI Project 58000.

Preprint submitted to Elsevier Science 18 March 2003

1 Introduction

The concept of “proximity” searching has applications in a vast number of
fields, for example: multimedia databases, image quantization and compres-
sion, text retrieval, computational biology, function prediction, just to name
a few. In pattern recognition, proximity searching is used to implement func-
tion approximators, which classify a sample object according to the labeling
of its nearest neighbors already classified. On the image processing scope, the
detection of similar deformations of organs can be used for medical diagnosis
purposes, and there are also applications on forensic investigation (e.g., tool
and shoe marks identification).

All those applications have in common that the objects of the database form a
metric space [7], that is, it is possible to define a positive real-valued function
d among the objects, called distance or metric, that satisfies the properties of
strict positiveness (d(z,y) > 0 and d(z,y) = 0 < x = y), symmetry (d(z,y) =
d(y,x)), and the triangle inequality (d(zx, z) < d(x,y) + d(y, z)). For example,
a vector space R! is a particular case of metric space, where the objects are
tuples of t real numbers and the distance function belongs to the L, family,

1/s
defined as L, (7,) = (Zlgigt |z; — yi|s) / , T,y € R'. For example, L, is called
Manhattan distance, Ly is the Euclidean distance and Lo, = maxj<;<t |x; — i

is called the maximum distance.

In general, the distance d is considered expensive to compute (e.g., comparing
two fingerprints), and in many applications d is so costly that the extra CPU
time or even I/O time costs can be neglected. For this reason, in this paper
the complexity of the algorithms will be measured as the number of distance
computations performed. The goal of proximity search algorithms is to build
an index of the database in advance and later perform proximity queries using
this index, avoiding a full scan of the database. Many of these algorithms
are based on the use of pivots [7,9], which are distinguished objects from the
database. These pivots are used, together with the triangle inequality, to filter
out objects of the database without measuring their actual distance to the
query, hence saving distance computations while answering the query.

Almost all proximity search algorithms based on pivots choose them randomly
among the objects of the database. However, it is well known that the way
pivots are selected affects the search performance [10,7,8]. Some heuristics to
choose pivots better than at random have been presented, but in general all of
them try to choose objects that are far away from each other. For example, in
[10] is proposed to choose objects that maximize the sum of distances between
pivots previously chosen (see Section 5.4 for more details), in [13] is proposed
an heuristic based on the second moment of the distance distribution which
selects objects that are far away, and in [3] is proposed a greedy heuristic to
select objects that are the farthest apart (note that this last structure does not

select pivots, but “split points”). However, these heuristics only work in spe-
cific metric spaces and have a bad behavior in others. In R? with the Euclidean
metric, it is shown in [8] that it is possible to find an optimal set of ¢+ 1 pivots
selecting them as the vertices of a sufficiently large regular ¢-dimensional sim-
plex containing all the objects of the database, but unfortunately this result
does not apply to general metric spaces.

In this paper, we present an efficiency criterion to compare two pivot sets,
which is based on the distance distribution of the metric space. Then, we
present a selection technique based on this criterion to select a good set of
pivots. We show empirically that this technique effectively selects good sets
of pivots in a variety of synthetic and real-world metric spaces. Our technique
is the first we are aware of in producing consistently good results in a wide
variety of cases and in being based on a formal theory. Also, we show that good
pivots have the characteristic to be outliers, that is, good pivots are objects
far away from each other and from the rest of the objects of the database, but
an outlier does not have always the property to be a good pivot.

The paper is organized as follows: In Section 2 we describe the canonical search
algorithm based on pivots. In Section 3 we propose our efficiency estimator.
In Section 4 we describe some optimization techniques, based on the efficiency
estimator, for selecting good set of pivots. Section 5 presents the experimen-
tal results with synthetic and real-world datasets. Finally, we present some
conclusions in Section 6.

2 Basic proximity search algorithm using pivots

Let (X, d) be a metric space, where X is the universe of valid objects and d is the
metric of the space, and let U C X be the set of objects or database, |U| = n.
Given a query object ¢ € X, a range query (q,r)q is defined as the objects in
U that are within distance r to ¢, that is (¢,7)q = {u € U, d(u,q) < r}.

Given a query (q,7)q and a set of k pivots {p1,...,pr},p; € U, by the triangle
inequality it follows that d(p;, z) < d(pi,q) + d(g,x), and also that d(p;,q) <
d(p;, z) + d(z, q) for any = € X. From both inequalities, it follows that a lower
bound on d(q, x) is d(q,) > |d(p;,) — d(p;, q)|. The objects u € U of interest
are those that satisfy d(q,u) < r, so all the objects that satisfy the exclusion
condition (1) can be excluded, without actually evaluating d(q, u).

|d(p;,w) — d(p;, q)| > r for some pivot p; (1)

The index consists of the kn precomputed distances d(p;,u) between every
pivot and every object of the database. Therefore, at query time it is necessary

to compute the k distances between the pivots and the query ¢, d(p;,q), in
order to apply the exclusion condition (1). Those distance calculations are
known as the internal complexity of the algorithm, and this complexity is fixed
if there is a fixed number of pivots. The list of objects {uy, ..., u,,} C U that
cannot be discarded with the exclusion condition (1), known as the object
candidate list, must be checked directly against the query. Those distance
calculations d(u;, q) are known as the external complerity of the algorithm.

The total complexity of the search algorithm is the sum of the internal and
external complexity, k + m. Since one increases and the other decreases (or
at least does not increase) with k, it follows that there is an optimum £* that
depends on the tolerance range of the query, r. In practice, however, k£* is so
large that one cannot store the k*n distances, and the index simply uses as
many pivots as space permits.

There are many proximity search algorithms in metric spaces that are based on
pivots, such as Burkhard-Keller Tree [4], Fized-Queries Tree (FQT) [1], Fized-
Height FQT (FHQT) [1], Fized Queries Array (FQA) [5], Vantage Point Tree
[13], Multi Vantage Point Tree [2], Excluded Middle Vantage Point Forest [14],
AESA [12], Linear AESA (LAESA) [10] and Spaghettis [6].

3 Efficiency criterion

Depending on how pivots are selected, they can filter out less or more objects.
We define in this section a criterion to tell which from two pivot sets is expected
to filter out more and hence reduce the number of distance computations
carried out during a range query. Since the internal complexity is fixed, only
the external complexity can be reduced, and this is achieved by making the
candidate object list as short as possible.

A set of k pivots {p1,pa,...,pr}, pi € U, defines a space P of distance tuples
between pivots and objects from U. The mapping of an object u € U to P,
which will be denoted [u], is carried out as [u] = (d(u, p1), d(u, ps), . .., d(u, pr)).
Defining the metric Dy, . .3 ([2], [y]) = maxi<i<p |d(x, p;) — d(y, p;)|, it fol-
lows that (P, D) is a metric space, which turns out to be (R¥, Ly,). Given a
range query (g,), the exclusion condition (1) in the original space U becomes
(2) for the new metric space (P, D).

D{p17~~~7pk}([Q]> [u]) > (2)

To achieve a candidate object list as short as possible, the probability of (2)
should be as high as possible. One way to do this is to maximize the mean of
the distance distribution of D, which will be denoted pp. Hence, we will say

that {p1,...,pr} is a better set of pivots than {p},...,p,} when:

'uD{m ,,,,, Pi} > ’LLD{p’ Py} <3>

Another possibility for maximizing the probability of (2) is trying to reduce the
variance of the distribution of D at the same time pp is maximized. However,
we will show in Section 5.3 that in practice this approach does not work as
well as just maximizing pp.

An estimation of the value of up is obtained in the following way: A pairs of
objects {(ai,d}), (az,a}),. .., (aa,d’y)} from U are chosen at random. All the
pairs of objects are mapped to space P, obtaining the set {Dy, Da, ..., Dy}
of distances D between every pair of objects. The value of up is estimated
as up = %Zgig 4 D;. Tt follows that 2k distance computations are needed to
compute distance D for each pair of objects using k pivots. Therefore, 2kA
distance computations are needed to estimate pp.

4 Pivot selection techniques

Now we present three pivot selection techniques based on the efficiency cri-
terion (3). Each technique has a cost measured in number of distance com-
putations at index construction time. As we do more work in optimizing the
pivots, better pivots are obtained. When comparing two techniques, we give
them the same amount of work to spend. We describe the optimization cost
of each technique.

These selection techniques can be directly adapted to work with algorithms
that use a fixed number of pivots, such as FHQT, FQA, LAESA and Spaghettis.
They can also be adapted to the other pivot based algorithms.

i. Selection of N random groups.

N groups of k pivots are chosen at random among the objects of U,
and pp is calculated for each of this groups of pivots. The group that has
the maximum pp value is selected.

Optimization cost: Since the value of up is estimated N times, the
total optimization cost is 2k AN distance computations.

ii. Incremental selection.

A pivot p; is selected from a sample of N objects of U, such that
that pivot alone has the maximum pp value. Then, a second pivot ps is
chosen from another sample of N objects of U, such that {p1, p2} has the
maximum pp value, considering p; fixed. The third pivot ps is chosen
from another sample of N objects of U, such that {pi,ps, p3} has the
maximum pp value, considering p; and p, fixed. The process is repeated

until k& pivots have been chosen.

Optimization cost: If the distances Dy, 3(lar], [a)]), 1 <7 < A,
are kept in an array, it is not necessary to redo all the distance computa-
tions to estimate pp when the i pivot is added. It is enough to calculate
Dgpiy(lar], ar]), 1 < r < A, because it follows that Dy, .1 (lar], [a)]) =
max(Dyp, . pi3(ar], [ar]), D,y ([ar], [al])). Therefore, only 2N A distance
computations are needed to estimate pup when a new pivot is added. Since
the process is repeated k times, the total optimization cost is 2kAN dis-
tance computations.

iii. Local optimum selection.

A group of k pivots is chosen at random among the objects of the
database. The matrix M(r,j) = D, ([a,],[a;]), 1 <r < A, 1 < j <k,
is calculated using the A pairs of objects. It follows that D([a,],[a.]) =
max;<j<i M(r, j) for every r, and this can be used to estimate yp. Also, it
must be kept for each row of M the index of the pivot where the maximum
value is, which will be denoted r,,,., and the second maximum value,
denoted 7,422. The contribution contr of the pivot p; is the sum over
the A rows of how much does p; help increase the value of D(la,],[a}]),
that is, contr = M(r,"maz) — M (7, Tmaz2) if j = Tmae for that row, and
contr = 0 otherwise. The pivot whose contribution to the value of up is
minimal with respect to the other pivots is marked as the wvictim, and it
is replaced, when possible, by a better pivot selected from a sample of X
objects of the database. The process is repeated N’ times.

Optimization cost: The construction cost of the initial matrix M is 2Ak
distance computations. The search cost of the victim is 0, because no ex-
tra distance computations are needed, all information is in M. Finding
a better pivot from the X objects sample costs 2AX distance computa-
tions, and the process is repeated N’ times, so the total optimization cost
is 2A(k + N'X) distance computations. Considering kN = k+ N'X i.e.,
N'X = k(N — 1), the optimization cost is 2AkN distance computations.

Note that it is possible to exchange the values of N’ and X while
maintaining the optimization cost. In the experiments we use two possible
value selections: (N' = k) A (X = N — 1) (called local optimum A) and
(N = N —1)A (X = k) (called local optimum B). We also try with
another value selection, N’ = X = (/k(IN — 1), but the obtained result
does not show any improvement on the performance of the algorithm.

5 Experimental results

We have tested the selection techniques on a synthetic set of random points
in a k-dimensional vector space treated as a metric space, that is, we have
not used the fact that the space has coordinates, but treated the points as
abstract objects in an unknown metric space. The advantage of this choice

is that it allows us to control the exact dimensionality we are working with,
which is very difficult to do in general metric spaces. The points are uniformly
distributed in the unitary cube, our tests use the Ly (Euclidean) distance, the
dimension of the vector space is in the range 2 < dim < 14, the database size
is n = 100,000 (except when otherwise stated) and we perform range queries
returning 0.01% of the total database size, taking an average from 10,000
queries. We show the results of the experiments with real-world datasets in
Section 5.5.

About the parameters A and N of the optimization cost: Our experiments show
that, given an amount of work to spend, it is better to have a high value of A
and a low value of N. This indicates that it is worth to make a good estimation
of up, while small samples of candidate objects suffice to obtain good sets of
pivots. For the experiments in this section, these parameters have fixed values
as follows: A = 100,000 and N = 50.

5.1 Comparison between the selection techniques

Figure 1 shows the comparison between all the selection techniques, when
varying the number of pivots and keeping the dimension of the space fixed.
These results show that the incremental selection technique and the local
optimum A technique obtain the best performance in practice. Local optimum
B works well only in spaces with low dimension and with few pivots, obviously
influenced by the setting of parameter N. Selection of N random groups shows
little improvement over random selection in all cases.

Dimension 8, 100,000 objects, 10,000 queries, retrieving 0.01% of the database Dimension 14, 100,000 objects, 10,000 queries, retrieving 0.01% of the database
8000

7000 %
6000 [
5000 -

4000 | Y

computations (Total complexity)

3000

Distance computations (Total complexity)

Distance

2000

100 L L L L L L L 1000 L L L L L L
20 30 40 50 60 70 80 90 100 200 300 400 500 600 700 800

Number of pivots Number of pivots

Fig. 1. Comparison between selection techniques in random vector spaces of dimen-
sion 8 (left) and dimension 14 (right).

Although the incremental and local optimum A techniques give almost the
same efficiency, the incremental selection have some advantages that makes
it our favorite pivot selection technique: It is a much simpler technique and
it allows us to easily add more pivots to the index. Also, the only way to
determine the optimum number of pivots k*, for a fixed tolerance range, is
calculating an average of the total complexity of the algorithm for different

values of k, where k* is equal to the value of & which minimizes the total
complexity. That is, it is worth to add pivots to the index until the total
complexity cease to improve. The incremental selection allows us to add more
pivots to the index at any time without doing all the optimization work again,
if the distances Dy, .. 3 ([ar], [al]), Vr € 1... A are kept. On the other hand,
selection of N random groups and local optimum selection techniques must
redo all the optimization work to obtain a new set of pivots, because these
techniques cannot take advantage of the work done previously. For this reason,
it is much easier to calculate the optimum number of pivots k* using the

incremental selection technique.
5.2 Comparison between random and good pivots

Figure 2 shows a comparison for internal and total complexity (see Section 2)
between random and incremental selection when using the optimum number
of pivots for each technique. The left plot shows a comparison when varying
the dimension of the space. Since k* is equal to the internal complexity of
the algorithm, it follows that not only the optimum number of pivots is lower
when using the incremental selection, but so is also the total complexity of the
algorithm. The right plot shows a comparison in a vector space of dimension 8
varying the database size. Again we obtain that the optimum number of pivots
and the total complexity of the algorithm is lower when using the incremental
selection. The results obtained show that the incremental selection technique
effectively produces good sets of pivots.

100,000 objex retrieving 0.01% of the database, optimum number of pivots Optimum number of pivots, retrieving 00196 of the database
T

2500

Rand

2000

1500

1000 [x

computations (Total complexity)

computations (Total complexi

istance
Distance

Di

500

e n . . 20
2 4 6 8 10 12 14 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Dimension Database size

Fig. 2. Comparison between random and good pivots when varying the dimension
(left) and the database size (right).

The profit when using £* pivots with incremental selection seems low in high
dimensional spaces. However, consider that much fewer pivots (i.e., less mem-
ory) are needed to obtain the same result than with random selection. For
example, in a vector space of dimension 14 the optimum number of pivots us-
ing random selection is 920, while incremental selection only needs 280 pivots
to achieve a better total complexity than random selection in its optimum,
hence saving almost 70% of the memory used in the index.

The optimization cost used in this experiments, given by parameters A and
N, may seem a little bit high. However, it is possible to obtain good results
with a fraction of the used optimization cost. Figure 3 (left) shows the results
of an experiment in a uniform vector space of dimension 8, using the optimum
number of good pivots and varying parameter A from 100 to 100,000. The
results shows that for values higher than 10,000 the improvement is negligible.
Even when using a value as low as A = 100, we observed an improvement of
12% in the total complexity over random pivots.

5.8 Alternative efficiency estimators

As stated in Section 3, another possibility for maximizing the probability of
the exclusion condition (2) is trying to reduce the variance of the distribution
of D, 0%, at the same time pup is maximized. To accomplish this, we try to
maximize the intrinsic dimension of the space P, defined in [7] as up/20%.
We also tried another efficiency estimator: to maximize the minimum value
of the distance distribution of D. This aims to shift to the right the distance
distribution as much as possible.

Figure 3 (right) shows the results of an experiment in a synthetic vector space
of dimension 8, comparing the two additional efficiency estimators against the
original one. The figure shows that the original estimator selects best sets of
pivots compared with the others, which even cannot do better than random
selection for more than 40 pivots.

Dimension 8, 100,000 objects, 10,000 queries, retrieving 0.01% of the database

Dimension 8, 100,000 objects, 10,000 queries, retrieving 0.01% of the database

T T T T
Incremental selection —+—

computations (Total complexity)
omputations (Total complexity)

Distance
Distance c

. !
0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 20 30 40 50 60 70 80 %0 100
Parameter A Number of pivots

Fig. 3. Efficiency of the selection technique when varying parameter A (left) and
comparison between different efficiency estimators (right).

5.4 Properties of a good set of pivots

When studying the characteristics of the good sets of pivots, we found that
good pivots are far away from each other, i.e., the mean distance between
pivots is higher than the mean distance between random objects of the metric

space, and also good pivots are far away from the rest of the objects of the
metric space. The objects that satisfy these properties are called outliers. It
is clear that pivots must be far away from each other, because two very close
pivots give almost the same information for discarding objects. This is in
accordance with previous observations [8,13,3].

Then, it can be assumed that good pivots are outliers, so a new selection
technique could be as follows: use the same incremental selection method
with the new criterion of selecting objects which maximize the sum of the
distances between the pivots previously chosen, selecting the first pivot at
random. This technique will be called outliers selection, and it was already
proposed in [10]. It carries out (i — 1)N distance computations when the i
pivot is added, where N is the size of the sample of objects from where a new

pivot is selected. Hence, the optimization cost of this selection technique is
k(k=1) pr

2

It is important to note that outliers selection do not use the efficiency criterion
described in section 3, because this alternative selection technique maximizes
the mean distance in the original space and the efficiency criterion maximizes
the mean of distance D. These criteria do not always go together.

Figure 4 shows the result obtained when comparing incremental and outliers
selection techniques in random vector spaces. The figures show that the out-
liers selection has slightly better performance than the incremental selection.
This result can lead to think that outliers selection is the best pivot selection
technique, but in the next section we will see that this assumption is not true
for general metric spaces.

Dimension 8, 100,000 objects, 10,000 queries, retrieving 0.01% of the database Dimension 14, 100,000 objects, 10,000 queries, retrieving 0.01% of the database
8000

7000
6000 |
5000 |

4000 |

computations (Total complexity)

3000 .

Distance computations (Total complexity)

Distance

2000

100 L L L L L L L 1000 L L L L L
20 30 40 50 60 70 80 90 100 200 300 400 500 600 700 800

Number of pivots Number of pivots

Fig. 4. Comparison between incremental and outliers selection techniques in random
vector spaces of dimension 8 (left) and dimension 14 (right).

5.5 Real-world examples

We present four examples of the use of the incremental selection and the
outliers selection, where the objects of the metric space are not uniformly dis-

10

tributed. The incremental selection technique was used to select good pivots.
We also tested the local optimum A technique with these databases, obtaining
slightly better results compared with the incremental selection, but we prefer
to use this technique over local optimum for the reasons stated in Section 5.1.

Figure 5 (left) shows the result of an experiment in a 30-dimensional vector
space, where the elements have a Gaussian distribution, that is, the elements
form clusters. The space is formed by 100 clusters, each of them centered at
a random point of the space, and the variance for each coordinate is 0.001.
The result shows that both good pivots and outliers improve the performance
of the search algorithm in comparison with random pivots, but good pivots
perform better for few pivots.

Figure 5 (right) shows the results of the experiment over a string space, that
is, the objects of the database were strings taken from an English dictionary
of 69,069 terms, and 10% of the database was used as the query set. The
distance function used was the edit distance (the minimum number of char-
acter insertions, deletions and substitutions to make two strings equal), and
the tolerance range was r = 2, which retrieves an average of 0.02% of the
database size per query. In this case, the incremental selection improves more
the performance of the algorithm, with respect to random pivots, compared
to the outliers selection.

String database, r=2, retrieving 0.02% of the database
20000

Random pivots —— | ' ' ' ' ' 18000
pivols ---x---

0231

d
Goor Ots ---%-
utliers ------

18000
16000

16000 F
i 14000 |

14000 |
b 12000 ¢,

12000
\ 10000 -\,

10000 | Y A
: 8000 [\

omputations (Total complexity)

8000 31|

6000 |

tance computations (Total complexity)

g 6000 [
g

Distance c

3 4000 - 4000

2000 2000 -

0

. 0 A
2 4 6 8 10 12 14 16 18 20 10 20 30 40 50 60 70 80 90 100
Number of pivots Number of pivots

Fig. 5. Experiments with a vector space with Gaussian distribution (left) and a
string database (right).

Figure 6 (left) shows the results of the experiment when the objects of the
database are a set of 40,700 images from NASA archives [11]. Those images
were transformed into 20-dimensional vectors, and 10% of the database was
defined as the query set. We used a tolerance range which returns on average
0.10% of the objects of the database per query. The figure shows that for more
than 25 pivots the outliers selection technique has worse performance that the
random selection, while incremental selections always performs better.

Figure 6 (right) shows the result of the experiment with a database of 112,682
color images, where each image is represented by a feature vector of dimension
112. A 10% of the database was used as the query set. The result shows that

11

good pivots perform better than random pivots, but outliers perform worse
than random pivots. In fact, with less than 40 pivots the results were an order
of magnitude worse than with random pivots.

NASA images database, retrieving 0.10% of the database Color images database, retrieving 0.01% of the database
1100 T T T T T T T T 1000 T T T T T T T

Random pivots —+— Random

Good pivots ~--x--- : Good

utliers --x-- | : Outliers

3

ol

1000
900 1 800
800 |

700 |

600 .

Distance computations (Total complexity)
omputations (Total complesxity)

Distance c

L L L 2 I L L L L L L L L L L
10 20 30 40 50 60 70 80 % 100 10 20 30 40 50 60 70 80 90 100
Number of pivots Number of pivots

Fig. 6. Experiments with the NASA images (left) and a color image databse (right).

The last two results are in contrast with those obtained on uniformly dis-
tributed vector spaces.

6 Conclusions

We have defined an efficiency criterion to compare two sets of pivots, and we
have shown experimentally that this criterion consistently selects good sets of
pivots in a variety of synthetic and real-world metric spaces, reducing the total
complexity of pivot-based proximity searching when answering range queries.
Our efficiency criterion is based on a formal theory, that takes in account the
distance distribution of the mapped space defined by the selected pivots. We
consider this formalism crucial, in contrast to simple heuristics, to consistently
obtain good results in a wide scope as the one of metric spaces.

We presented three different pivot selection techniques, which use the efficiency
criterion defined, and we showed that the so-called incremental selection is the
best method in practice. We have found that good pivots have the property
to be outliers, but outliers are not necessarily good pivots. It is interesting to
note that outliers sets have good performance in uniformly distributed vector
spaces, but have bad performance in general metric spaces, even worse than
random selection in some cases. This result leads to questioning if it is valid
to test pivot selection techniques in uniformly distributed vector spaces.

Acknowledgements. We want to thank Prof. Thomas Seidl from Aachen Uni-
versity for kindly allowing us to use the color image database for experiments.

12

References

[1] R. Baeza-Yates, W. Cunto, U. Manber, and S. Wu. Proximity matching using
fixed-queries trees. In Proc. 5th Combinatorial Pattern Matching (CPM’94),
LNCS 807, pages 198212, 1994.

[2] T. Bozkaya and M. Ozsoyoglu. Distance-based indexing for high-dimensional
metric spaces. In Proc. ACM SIGMOD International Conference on
Management of Data, pages 357-368, 1997. Sigmod Record 26(2).

[3] S. Brin. Near neighbor search in large metric spaces. In Proc. 21st Conference
on Very Large Databases (VLDB’95), pages 574-584, 1995.

[4] W. Burkhard and R. Keller. Some approaches to best-match file searching.
Comm. of the ACM, 16(4):230-236, 1973.

[5] E. Chévez, J.Marroquin, and G. Navarro. Fixed queries array: A fast and
economical data structure for proximity searching. Multimedia Tools and
Applications (MTAP), 14(2):113-135, 2001.

[6] E. Chévez, J. Marroquin, and R. Baeza-Yates. Spaghettis: an array based
algorithm for similarity queries in metric spaces. In Proc. String Processing
and Information Retrieval (SPIRE’99), pages 38-46. IEEE CS Press, 1999.

[7] E. Chéavez, G. Navarro, R. Baeza-Yates, and J. Marroquin. Proximity searching
in metric spaces. ACM Computing Surveys, 33(3):273-321, 2001.

[8] A. Farag6, T. Linder, and G. Lugosi. Fast nearest-neighbor search
in dissimilarity spaces. [FEEE Trans. on Pattern Analysis and Machine
Intelligence, 15(9):957-962, 1993.

[9] R. Santos Filho, A. Traina, C. Traina Jr., and C. Faloutsos. Similarity search
without tears: The OMNI family of all-purpose access methods. In ICDE, pages
623-630, 2001.

[10] L. Micé, J. Oncina, and E. Vidal. A new version of the nearest-neighbor
approximating and eliminating search (AESA) with linear preprocessing-time
and memory requirements. Pattern Recognition Letters, 15:9-17, 1994.

[11] Sixth ~ DIMACS Implementation = Challenge: Available Software.
http://www.dimacs.rutgers.edu/Challenges/Sixth/software.html.

[12] E. Vidal. An algorithm for finding nearest neighbors in (approximately)
constant average time. Pattern Recognition Letters, 4:145-157, 1986.

[13] P. Yianilos. Data structures and algorithms for nearest neighbor search in
general metric spaces. In Proc. 4th ACM-SIAM Symposium on Discrete
Algorithms (SODA’93), pages 311-321, 1993.

[14] P. Yianilos. Excluded middle vantage point forests for nearest neighbor search.
In DIMACS Implementation Challenge, ALENEX’99, Baltimore, MD, 1999.

13

