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Abstract. We present a bit-parallel technique to search a text of fendpr a regular ex-
pression ofnsymbols permittind differences in worst case tin@mn/ log, s), wheresis
the amount of main memory that can be allocated. The algonftbrmits arbitrary integer
weights and matches the complexity of the best previousigaks, but it is simpler and
faster in practice. In our way, we define a new recurrencegdpraimate searching where
the current values depend only on previous values. Intagdgtour algorithm turns out
to be a relevant option also for simple approximate stringciring with arbitrary integer
weights.

ACM CCSCategoriesand Subject Descriptors: E.1. Data structures; F.2.2. Nonnumer-
ical Algorithms and Problems — Computations on discretecstires, Pattern matching,
Sorting and searching; H.3. Information Storage and Rettie
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1. Introduction and related work

The need to search for regular expressions arises in manpdsed applications,
such as text retrieval, text editing and computationaldgy] to name a few. A
regular expression is a generalized pattern composed of (i) basic stringsyigion,
concatenation and Kleene closure of other regular expmressReaders unfamiliar
with the concept and terminology related to regular expoessare referred to a
classical book such as [1]. We call the length of our regular expression, not
counting operator symbols. The alphabet is denoted, laydn is the length of the
text.

The traditional technique to search for a regular expregdipfirst builds a non-
deterministic finite automaton (NFA) and then converts iatdeterministic finite
automaton (DFA), which is finally used to search the texOim) time. This is
worst-case optimal in terms af The main problem has been always the pre-
processing time and space requirement to code the DFA, wddinhbe as high
asO(2?Mx) if the classical Thompson's NFA construction algorithr3]is used.

*An extended abstract of this paper appearéderot. ISAAC 03 [10].
TPartially supported by Fondecyt grant 1-020831.

Received ...; revised ...; accepted ....



2 GONZALO NAVARRO

Thompson’s construction produces up to &ates, but it has interesting properties,
such as ensuring a linear number of edges, constant indegdeeutdegree, etc.

An alternative NFA construction is Glushkov’s [4, 3]. Altingh it does not pro-
vide the same regularities of Thompson’s, this constrackias other interesting
properties, such as producing the minimum number of states 1) and that all
the edges arriving at a node are labeled by the same chardttercorrespond-
ing DFA needs onlyD(2M|Z|) space, which is significantly less than the worst case
using Thompson’s NFA. Nevertheless, this is still expoiabiih m.

Two techniques have been classically used to cope with theesproblem. The
firstis to use lazy DFAs, where the states are built only whew are reached. This
ensures that no more th&i(n) extra space is necessary. The second choice [13]
is to directly use the NFA instead of converting it to deteristic. This requires
only O(m) space, but the search time becon@mn). Both approaches are slow
in practice if the regular expression is large.

Newer techniques have provided better space-time tfegléy using hybrids
between the NFA and the DFA. Based on the Four Russians tpehnivhich pre-
computes large tables that permit processing several N&Assin one shot, it has
been shown tha®(mn/log s) search time is possible usir@(s) space [6]. The
use of Thompson’s automaton is essential for this approduhywhowever, is
rather complicated. Simpler solutions obtaining the saomptexities have been
obtained later using bit-parallelism, a technique to pamkesal NFA states in a
single machine word and update them as a single state. Aditgtan [16], based
on Thompson’s construction, uses a table of €¥8°™) that can be split intd
tables of sized(2°™') each, at a search cost ©ftn) table inspections. A second
solution [11] uses Glushkov's automaton and useables of sizeD(2™") each,
which is much more ficient in space usage. In both cas@¢mn/log s) search
time is obtained usin@(s) space.

Several applications in computational biology, data nunitext retrieval, etc.
need an even more sophisticated form of searching. In additi the regular ex-
pression, an integer threshdds given, so that we have to report the text substrings
that can match the regular expression after performingrakebaracter insertions,
deletions and substitutions, whose tatadt or weight does not exceekl. In most
real applications, there areffiirent weights associated to insertions, deletions, and
substitutions, depending on the characters involved. plrablem is called “ap-
proximate regular expression searching”, as opposed #ctegearching.

Instead of being just active or inactive, every NFA node has k + 2 possible
states, according to the weight of théfdrences needed to match the text (&to
or more thark). If one applies the classical DFA construction algoritiihe space
requirement raises tO((k + 2)°™) using Thompson’s NFA an@((k + 2)™) using
Glushkov's NFA. A dynamic programming based solution w@fmn) time and
O(m) space exists [7]. Although this is an achievement becausgains the time
complexity of the exact search version and handles reakdalveights, it is still
slow. The Four Russians technique has been gracefully @eteto this problem
[17], obtainingO(mn/ log, s) time usingO(s) space. Again, this algorithm is rather
complicated.
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Since bit-parallel solutions have, for many related protdeyielded fast and
simple solutions, one may wonder what have they achievesl Hesr the case of
unitary costs (that is, all the weights are 1), bit-paratgutions exist which resort
to simulatingk + 1 copies of the NFA used for exact searching. They achieve
O(ktn) time usingO(22™") space [16] (implemented in the softwakgrep [15]) or
O(2™") space (implemented in the softwavegrep [9]). This yieldsO(kmn/ log s)
time usingO(s) space, which is inferior to the achievement of the Four Russ
technique. Despite this less attractive complexity, bitafiel solutions are by far
the fastest for moderate sized regular expressions. Y&y, dke restricted to the
simpler case of unitary costs.

The aim of this paper is to overcome the technical problerastthve prevented
the existence of a simpte(mn/ log, s) time andO(s) space bit-parallel solution to
approximate regular expression searching with arbitnatgger weights. We build
over Glushkov’'s NFA and represent the state of the searciy ugil + log,(k + 2)]
bits. We then usetables of sized((k + 2)™!) each and reacB(tn) search time.

Table | illustrates the context of our contribution. We padoit, however, that
bit-parallel complexities assume that the computer camlleawords of arbitrary
length in constant time. If we use the RAM model, where the pater can handle
words ofw = ®(logn) bits in constant time, previous bit-parallel comple>stiget
multiplied by O(m/w) and ours byO(mlog(k)/w). In this setting, we match the
Four Russians complexity only whem= O(log, n).

Exact Searching Approximate Searching

Unit Cost General Costs

Dynamic O(mn) [13] O(mn) [7]

Programming Thompson Myers & Miller
Four O(mn/ logs) [6] O(mn/ log, s) [17]
Russians Myers Wu, Manber & Myers|

Bit O(mn/logs) [16, 11] || O(kmn/logs) [16,9]| O(mn/log, s) [10]

Parallelism Wu & Manber Wu & Manber THIS PAPER

Navarro & Rdfinot Navarro

TasLE |: Our contribution in context.

We use the following terminology for bit-parallel algonitis. A bit mask is a
sequence of bits, where the lowest bit is written at the rigipical bit operations
are infix *|” (bitwise or), infix “&” (bitwise and), prefix “~” (bit complementation),
and infix “<<” (* >>"), which moves the bits of the first argument (a bit mask) to
higher (lower) positions in an amount given by the argumenthe right. Addi-
tionally, one can treat the bit masks as numbers and obtatifgpefects using the
arithmetic operations+”, “ —", etc. Exponentiation is used to denote bit repetition,
e.g., §1 = 0001, and K], represents an integ&using¢ bits. Finally,X x x, where
Xis a bit mask and is a number, is the exact result of the multiplication, tisat i
a bit mask wherex appears in the places whexXehas 1's (superimpositions are
solved with summation, as in usual multiplication, but weereuse that feature).
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2. A bit-parallel exact search algorithm

We describe in this section the exact bit-parallel solutmnbuild on [11]. The
classical algorithm to produce a DFA from an NFA [1] consistsnaking each
DFA state represent a set of NFA states that may be activarat point. Our way
to represent the states of a DFA (i.e., the sets of states Wfan is a bit mask of
O(m) bits. The bit mask has in 1 the bits that belong to the set. $&eset notation
or bit mask notation indistinctly.

The description of Glushkov’s NFA construction algorithsnoutside the scope
of this paper [4, 3]. We just show an example in Fig. 1 and ré&nsame of its
properties. Given a regular expressiomotharacters (not counting operator sym-
bols), the algorithm definegs+ 1 positions numbered 0 ton (one per position of a
character ok in the regular expression, plus an initial position 0). THée NFA
has exactly one state per position, the initial state cpmeging to position 0. Two
tables are built:B(c), the set of positions of the regular expression that contai
charactero; and Follow(x), the set of NFA states that can be reached from state
x in one transitioh. From these two tables, the transition function of the NFA is
computeds : {0...m}x X — p({0...m}), such thay € 6(x, ) if and only if from
statex we can move to statg by charactew. The algorithm gives also a set of
final statesLast, which again will be represented as a bit mask.

ﬁeﬁv %Qﬁ
S @A DD DA O A A A (0)

" S
A

A

Fig. 1: Glushkov's NFA for the regular expressiGiAT | GA) (AG | AAA) *".

Important properties of Glushkov’'s construction follovt) The NFA ise-free.
(2) All the arrows leading to a given NFA state are labeledh®ydame character:
the one at the corresponding position. (3) The initial sties not receive any
transition. (4)5(x, o) = Follow(x) N B(o).

Property (4) permits a compact representation of the DFasttimns. The con-
struction algorithm is written so that tablBandFollow represent the sets of states
as bit masks. We ud® as is and build a large tabl the deterministic version of
Follow. That is,J is a table that, for every bit madk representing a set of states,
storesJ[D] = Uiep Follow(i). Then, by Property (4) it holds that, if the current
set of active states iB and we read text character, then the new set of active
states isJ[D] N B[co]. For search purposes, we set state 0[iD] for everyD and
in B[o] for everyo, and report every text positiopwhereD N Last # 0. (In fact,
state 0 needs not be represented, since it is always actier sdarching.)

1 This is computed from the regular expression, since the Nf#saot yet exist. Also, to simplify
the discussion, we assume tialow(0) = Fir <, the states reachable from the initial state.
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Hence we need onl@(2™ + |X|) space instead of th@(2™MX|) space of the clas-
sical representation. Space-time trafie@re achieved by splitting table The
splitting is done as follows. We build two tablds and J», which give the set of
states reached from states.0¢ and¢ + 1. .. m, respectively, witif = [(m+ 1)/2].
Then, if we accordingly split the current set of staizsnto left and right sub-
masks,D = D1 : Dy, we havel[D] = J;[D1] U J[D;]. TablesJ; and J, need
only O(2™?) space each. This generalizes to usirigbles, for an overall space
requirement ofD(t2™!) and a search cost @i(tn) table accesses.

3. A new recurrence for approximate searching

Let us first give an exact formulation for our problem. Rdie a regular expression
generating languagé€(R) C ¥*. Letm be the number of characters belonging-to
in R LetTy ,, € £* be the text, a sequence misymbols. The problem is, given
R, T, andk € N, to report every text positio such that, for somg’ < j and
P e L(R), ed(Tj..j, P) < k. Hereed(A, B), the edit distance, is the minimum sum
of weights of a sequence of character insertions, deletindssubstitutions needed
to convertA into B. The weights are represented by a functigrsuch thatu(a, b)
is the cost to substitute characteby characteb in the text,w(a, €) is the cost to
delete charactes from the text, andu(e, b) is the cost to insert charactbrin the
text. Functionw satisfiesw(a, a) = 0, nonnegativity, and the triangle inequality.
The classical dynamic programming solution for approxenstring matching
[12], for the case wherRis a simple strind®1.m, recomputes for every text posi-
tion j a vectorCo_m,, whereCi = minj<jed(Tj _j, P1.i). Hence every text position
j whereCy, < kis reportedC is initialized asC; = Z‘r:l w(e, Py), and then updated
to C’ at text positionj using dynamic programming:

Ci’ — min(w(Tj, P) + Ci_1, w(Tj,s) +Gi, w(e, Py) + Ci/—l)

whereC, = 0. The first component refers to a character matching or isuish,
the second to deleting a text character, and the third tatingea character in the
text.

If we have a general regular expressi®built using Glushkov’s algorithm, with
positions 1 tom, this generalizes as follows. For each NFA statee callL; the
set of strings recognized by the automaton if we assumehairily final state is
i. ThenCj = minj.<jpcL, €d(Tj i, P) is computed as follows:

Cl «min(T;,R)+ min_ Ci, o(Tj,&)+Ci, w(e,R)+ min_Cj) (1)
i’eFollow-1(i) i’eFollow-1(i)

whereR; is the only character such thate B(R): Thanks to Property (2), we
know that all the edges arriving at statare labeled by the same characir,Cq
is always 0 because it refers to the initial statel g&= {¢}. VectorC is initialized
asCj = a)(s, R|) + mini,d:o”ow_l(i) Ci.

A more convenient form for us of the above recurrence is

Ci/ — min(Si(Tj) + min ] Ci, D(TJ‘) +GC, I+ min Ci,’) (2)

i’eFollow1(i) i’eFollow1(i)
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whereS;(a) = w(a, R), D(@) = w(a, &), andl; = w(e, R).

Note that the main dlierence in the generalization is that, in the case of a single
pattern, every statehas a unique predecessor, stiatel. Here, the set of prede-
cessor states;ollow (i), can be arbitrarily complex. In the third component of
Eg. (2) (insertions in the text) we have a potential depecelgammoblem, because
in order to computé&’ for statei we need to have already computetifor states
that precede, in an automaton that can perfectly contain cycles. Thezegand
previous solutions to this circular dependence problemtid these are not easy
to apply in a bit-parallel context.

We present a new solution now. The central idea is to exiylicdansider all the
NFA paths that arrive at each state from each other stateurris tout that paths
up to a fixed length need to be considered because there ist&lon the costs
of the interesting paths. The recurrence we obtain will beentomplex but free
of circular dependences. In the next section we show howeicgonpute all those
paths so as to have a fast serach algorithm.

We will use the formi®) in minimization arguments, whose range is as follows:
i@ = iandi®™D e Follow (). Also, we will denoteS;n = Sin(T;) and
D = D(T;). Let us now unfold the recurrence of Eq. (2):

Ci, «— min(Si+r_r?1i)n Ci(l), D+Ci, Ii+r721i)n min(Si(1)+r122i)n Ci(z), D+Ci(1), Ii(1)+r722i)n Ci,(z)))
i i i i

where after a few manipulations we obtain
C «<min ( D+C;, rtgli)n(Si +Cw), rT(11|)n(I. + S + rr(12i)n Ci),
| | |

rirgll)n(l, +D + Cw), %')n(l' + Lo + min Cl) )

The term miny(l; + D + Cjw) can be removed because, by definitionGyf
Ci < ming l; + G, (third component of Eq. (2) applied to the computatiorCyf
and we have alread® + C; in the minimization. We factor out all the minimizing
operators and get

Ci’ «— min(D + C;j, _(rgi(r;)min(si + Ciw, li + Sjo) + G2, | + ljw + Ci'(z)))
i@

By unfolding C’, and doing the same manipulations again we get

C « min(D +C;,

i
_(1)I’T22i)n_(3) min(S; + C,w, li + Sio + G, i + liw) + Si@ + Cjm),
i@,i@);

li + liw + i + Ci,(3)))

and we can continue until the latter term exceledsC/,.,), which is not interest-
ing anymore. The resulting recurrence does not depend aeyomdC’, and will
become our working recurrence:

C/ <« min(D+C;, min min liw + Siy + Cie+n) 3)
r>0 i@, .0 ocor
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4. A bit-parallel approximate search algorithm

We will represent th€; vector in a bit mask. Each cdll, will range in the interval
0...k+1, sowe will need = [log,(k+2)] bits to represent it. The reason is that, if
a cell value is larger thak+ 1, we can assume that its valuis1 and the outcome
of the search will be the same [14]. For technical reasortsatieemade clear soon,
we will need an extra bit per cell, which will always be zeranc® Cg is always
0, it does not need to be represented. Hence we méed ¢) bits overall. The bit
mask will represent the sequence of c€ls= 0[Cyn]s O[Cr-1]¢ . .. O[C2], O[C4],.
We use as many computer words as needed to €t¢aesingle cell will not be split
among computer words).

From the parsing of the regular expression, we receive tiles8 andFollow,
where the sets are represented as bit masks of length (see previous work for
details [11]). We will preprocesB so as to produce bit-parallel versionslgfD
andS;:

o We recall thal; = w(e, R), and therefore it depends only on the pattern. Its
bit-parallel version i$ = O[lm]¢...0[l1],.

o Recall also thaD(a) = w(a, &), which depends on the last text character
read,a = Tj, but not on the NFA state Hence its bit-parallel version is
essentiallyD[a] = (O[D(a)],)™.

o Finally, recall thatS; = w(a, R), wherea = Tj. Its bit-parallel version is
S[a] = 0[Sm(@)]¢ - .. 0[S1(a)]e-

In all the masks above, any value larger than 1 is converted tk + 1. The
computation ofl, D[] and S[ ] from w andB is shown in Fig. 2. Fig. 3 shows an
example for the NFA of Fig. 1.

CalcWeights(w, B, k, m, ¢)
| 0(l+{’)m
For ce X Do
D[c] « (O[min(w(c, &), k+ 1)],)™
S[C] — 0(1+£’)m
Foriel...mDo
If B[c] & 0™ 10~ # 0™ Then
I« I | 0@+AM-DO[min(w(e, ¢), k + 1)],00+0(-1)
For ¢’ € £ Do
S[c] « S[c¢] | 0X+AM™Do[min(w(c’, ¢), k + 1)],00+(-1)

©CNoGOA~WDPRE

Fig. 2. Computation of tablet, D andS from w andB.

Our next tool is a tabld (an extended version of the simpler tablef Section 2),
which maps bit masks of length(1+¢) into bit masks of lengtim(1+¢), as follows:

J[O[Cm]¢ O[Cm-1]¢...0[Co]¢ O[Ca]l, ] = O[Mmle O[Mm-1]¢ . ..O[Mz], O[M4],
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w(e,A)=1,w(e,C)=1,w(eG)=2,weT) =3
w(A,e) =2, w(C,e) =3, w(G,e) =1, w(T,e) =2
W(A,C) =2, Ww(AG) =2, WA T)=1

e
=@*0"-0) OO OO

e ——e I e e

A

| = 1 3 2 1 1 2 1 1 1
D['A]= 2 2 2 2 2 2 2 2 2
S'Al= o0 1 2 0 0 2 0 0 0

Fig. 3: Examples of, D, andS masks for the NFA of Fig. 1, considering some arbitrary wisgk)
given on top. Note that there is one entry in the masks for 8k state except the initial one.

where
M; = min Gy
i’eFollow1(i)

That s, for each search st&ieJ indicates how the values @ propagate through
NFA edges. If several stat€gpropagate to a single stateve choose the minimum
value. We account for the zeros propagated from the unrexpies initial state 0.

Let us now consider the recurrence of Eq. (3). Assume @hat our current
search state. The first part of the minimul® € C;) is easily obtained in bit-
parallel, asE <« C + (0O[D],)™. If D turns out to be larger thak+ 1 we setD =
k + 1. The result of the sum can give us values as largelas 2§ in the counters.
Our extra bit per cell can hold the overflow, but we have toaeplthe values
of the overflown counters blg+ 1 in order to continue our procéssWe detect
the overflown counters by precomputivg « (10°)™ and doingZ « E & W.
Then,Z « Z - (Z >> ¢) will be a sequence of all-0 or all-1 cells, where the all-1
ones correspond to the overflown counters. These are rédtwke+ 1 by doing
E—(E& ~2)|(OKk+1])"& 2).

Let us callH the second, complex part of the main minimum of Eq. (3). Onee w
obtainH, we have to obtai€’ « Min(E, H), whereMin takes the element-wise
minimum over two sequences of values, in bit-parallel.

Bit-parallel minimum can be obtained with a technique samtb the one used
above to restore overflown values. Say that we have to conirigX, Y), where
X andY contain several counters (nonnegative integers) propéigged. We need
the extra highest bit per counter, which is always zero. VéenuasskV and perform
the operatiorZz « ((X | W) —Y) & W. The result is that, irZ, each highest bit

2 A simple choice is to use 2 ¢ bits per counter, since the upcoming minimizations willt@are
of the overflows, but we show that it can be done anyway with/Dbits.
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is set if and only if the counter oK is larger than that off. We now compute
Z «— Z - (Z >> ¢), so that the counters whekeis larger tharl have all their bits
set inZ, and the others have all the bits in zero. We now choose themaias
Min(X,Y) « (Y & Z2) | (X & ~ Z). Similarly, Max(X,Y) « (X & Z) | (Y & ~ 2Z).
Fig. 4 summarizes our mimax procedures.

Min (X, Y) Max (X, Y)

1. W (@1oH)m 1. W (@ao)m

2. Z—((XIW=-Y)&W 2 Z—(XIW)=-Y)&W

3. Z—2Z-(Z>>1) 3. Z—2Z-(Z>>1)

4. Return (Y& 2) | (X & ~ Z) 4 Return (X & Z2) | (Y & ~ Z)

Fig. 4: Bit-parallel minima and maxima.

Having overcomed these initial obstacles, we focus now enntlest complex
part: the computation dfi. Let us consideA = J[C] + S[T;], and assume that we
have again solved overflow problemsAd. Thei-th element ofA is, by definition
of J, A = Si + MiNycrgion-1() Cir- Now, consideld[A] + |. Itsi-th value is

i+ mn A = i+ min (S + min Civ)
i’eFollow1(i) i’eFollow1(i) i” eFollow=1(i")
= min(lj + S + Ciw
i<1>,i<z>(' i i)

If we computeJ[J[A] + 1] + I, we have that its-th value is mifu ;e je (li + ljo +
Si@ + Ci»), and so on. Let us defingA) = J[A] + | and f()(A) as the result of
takingr timesf overA. Then, we have that

fOR) = ‘(g]i‘rgr) Z liw + Sio + Cie+n
[N o<u<r

and hence thé&l we look for is
H[A] = Min(A f(A), fO(A), f9(A),.. ) (4)

Fig. 5 continues our example, showing how a r@wector is computed from a
currentC vector.

To conclude, we have to report every text position where id$@G; < k for a
final statei. The parsing yields am{+ 1)-bits long mask of final state$ast.
We will precompute a mask = O[Fn], O[Fm-1]¢...O[F2]; O[F1],, so thatF; =
1if i is final andF; = O otherwisé. Hence, we have a match if and only if
C& (F x (20 - 1)) # F x (k+ 1). Note thatF x x is a bit mask ofm countersX;
such thatX; = xif F; = 1 andX; = 0 otherwise.

3 The extra work for this can be avoided either by, as beforimgusounters of 2+ ¢ bits, or by
precomputing all the allocated cells df as it will be clear soon.
4 We assume that the initial state is not final, as otherwis@tblelem is trivial.
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A

=()-2

~-@ —O—-60—@*
A A S

C= 1 2 3 4 6 4 5 6

JCl= o 1 0 2\3‘/4'///3//;/5
+J'Al= o0 2 2 2 3\6 3 4 5 =A

JAl+1= 1 3 2 3 3 5 3 4 5  =f(A)
JfA]+1= 1 4 2 3 4 5 4 4 5 = f(f(A)
HA= o 2 2 2 3 5 3 4 5
C+D['A]= 3 6 4 5 6 8 6 7 8
C= o 2 2 2 3 5 3 4 5

Fig. 5. Example of Fig. 3 continued. Assume the curréntalues are those of the top row. The
automaton arrows permit carrying them onto other statej 6y (those reaching state 5 are shown
with arrows). ThenA is computed by adding[C] + S[’A’], being’A’ the current text character.
Then we repeatedly computgA) = J[A] + I, f(f(A)), as far as necessary (in this example we
stopped aff (f(A)) as it is uniformly larger tharf (A)). The arrow in the third row shows how the
value at state 5 permits reducing the value at state 6 whemmérom Ato f(A). ThenH[A] takes
the columnwise minimum oA, f(A), f(f(A)), etc. ActuallyH[A] is precomputed for every possible
A so this process takes constant time. Finally, the @exalue is the columnwise minimum between
H[A]andC + D[’A’].

Fig. 6 gives the search code. To initializave takeH over an initial state where
all the counters ar& + 1. Glushkov_Parse is in charge of parsing the regular
expression and delivering tablBsFollow and bit masK_ast. We then precompute
all the tables usingreprocess.

Search (T1.n, R K w)
(B, Follow, Last, m) « Glushkov_Parsg(R)
(D, S, J H,F,¢) « Preprocess(B, Follow, Last, m k, w)
C « H[(O[k+ 1])™]
For jel...nDo
A« J[C] + S[Tj]
C « Min(C + D[T;], H[A])
If C & (F x (2¢ - 1)) # F x (k+ 1) Then Report text positiorj

Noup,rwnhpRE

Fig. 6: Our search algorithm. We disregard the process of regtanierflows after additions.

The preprocessing is given in Fig. 7. Although it looks coiegikd, it is concep-
tually simple. There are first several technical functidaspand takes a sequence
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of m+ 1 bits, ignores the first, and introducégero bits between each pair of bits,
so as to align them to our representatitiext computes the successor of a number
made up ofMmdigits in the range 0.. k+ 1. Fill fills all the (k+2)™ possible entries
of a tableU, where each entry is formed loynumbers in the range.0. k+ 1. The
idea is that, given tablg[i, v] telling which positions get which values if position
i has valuey, U tells, given anm-tuple of numbers, the minimum value obtained
by each position from any of the values in its argumdkitl starts with the entry
where all the numbers ake+ 1 and then computes all the possible values for the
i-th number, with the invariant that all the possible valuéswmbers at smaller
positions are already computed (values at positions ldhgeri beingk + 1). G is
a bit mask that traverses all these possible valuescamds the current value of
thei-th number inG. U[G] is computed as the minimum between what we already
have with valuek + 1 for thei-th number andl[i, curr].

The purpose oFill is to compute tableg andH, which is done irPreprocess.
For J, we fill a tablee of mtuples such thad{i, v] has valuev in states reachable
from statel via Follow, andk+ 1 elsewhere. Building from evia Fill is precisely
what we need: For eaa-tuple of state values] gives the minimum value that
reaches each state \iallow. Similarly, for H we fill a tableh[i, v] corresponding
to the value oH[A] when thei-th value ofAis v and the rest i€ + 1. The fixed
point of Eqg. (4) is computed in lines 11-13. Then, we buildtlai combinations
of A usingFill as before. Note that we do not returibbecause it is embedded in
the computation oH.

5. Analysis and space-time tradeoffs

The search time of our algorithm is cleafd(n). The preprocessing time includes
O(|z[°m) for CalcWeights and O(k?n?) to computeh (since for each of thé&m
cells we iterate as long as we reduce some counter, whichaggeh onlym(k+ 1)
times). However, the dominant preprocessing complexitie®((k + 2)™) space
and time needed to fill andH. If this turns out to be excessive, we can horizontally
split tablesJ andH.

The splitting is based on the following property. L&tbe a table built over
m counters. LetlC = C! : C? be a splitting of maslC into two submasks, a
left and a right submask. If we defink and J, so that they propagate counters
only from the first and second half of magk respectively, ther[C! : C?] =
Min(J:[C1], Jo[C?]) because of the definition & (Note that); andJ, can propa-
gate values to states of any half.) The same is valitHfowe can split the argument
A into two halvesAl and A%, and preprocess the propagations of values from the
first and second half itd; andH,, so thatH[A® : A?] = Min(H[A], Ho[A?]).
Note, in particular, thal andH have been built by adding thé&ects of new states
one by one, precisely because they can be decomposed inais w

In general, we can splid andH into t tablesJ; ... J; andHs...H;, such that
Ji and H; address the counters roughly froinH1)m/t to im/t — 1, that is,m/t
counters. Each such table h&s+{2)™! entries, for a total space requirement of
O(t(k + 2)™Y). The cost is that, in order to perform each transition, wedrte pay
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1.

2
3.
4

N
1
2.
3.
4.
5
6

NGO ~WDNE

Expand(X, m, ¢)

EX «— O(l+€)m
Foriel...mDo

If X & 0™110 £ 0™! Then EX « EX | 0D+l 1 0i-1)(+0)
Return EX

ext(G, ¢, m, lim)

Foriel...mDo
val « (G >> (1+ )i — 1)) & 04+Om-1g1¢
If val < limThen
GG+ 0(1+£’)(m—i—1)0€1d1+€)(i—1)
Return G
GeG& 1(1+£’)(m—i—1)01+(’1(1+£’)(i—1)

Fill(U, u, k, ¢, m)

U[(O[k + 1]))™] « u[0, 0]
Foriel...mDo
G « (O[k + 1],)™0W+0i
For je0...(k+2) -1Do
curr « (G >> (1+ 6)(i — 1)) & 0@+Om-1)g1¢
U[G] « Min(U[G + 0WAM-DQ[k + 1 — curr],04+90-D1 u[i, curr])
G « Next(G, £, mk+ 1)
Return U

Preprocess (B, Follow, Last, m, k, w)

¢ « [logy(k + 2)1
(1,D,S) « CalcWeights(w, B, k, m, ¢)
F < Expand(Last, m, ¢)
// Computation of]
Forie0...mDo
EFollow[i] « Expand(Follow[i], m, ¢)
ForveO...k+1Do
i, v] < (O[k + 1],)™ - (EFollow]i] x (k + 1 -V))
Fill (J e k, ¢, m)
// Computation oH
Foriel...mDo
ForveO...k+1Do
h{i, V] < (O[k + 1])™"0[v],(O[k + 1],)'"*
While h[i, v] # Min(h[i, v], J[h[i, V]] + |) Do
h[i, v] « Min(h[i,v], J[h[i,v]] + 1)
h[0, O] « (O[k + 1],)™
Fill (H, h, k, £, m)
Return (D, S, J H, F,¢)

Fig. 7: Our preprocessing.
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for t table accesses so as to compute

Jct:c?:...CY
HIAL: A A

Min(J[CY, JL[CY, ... }[CY)
Min(H1[AY], Ho[A2], ... H]AY)

which makes the search tin@(tn) in terms of table accesses. If we haWés)
space, then we solve f& = t(k + 2)™!, to obtain a search time @d(tn) =
O(mn/ logy 9).

Let us consider how good can be our complexity with infinitacg Our over-
all cost, adding preprocessing and searchingQ(gk + 2)™! + tn). The op-
timum is reached fot = m/log,,,n, where the overall complexity becomes
O(mn/log, n). The amount of space we need to achieve this best possibie co
plexity is s = Q(mn/ log, n).

At this point, a note on the underlying computation modeleigvant. We are
assuming that we can handle bit mask©g@fmlogk) bits in O(1) time. If we stick
to the RAM model of computation, where the computer can oalydfe words of
w = B(log n) bits in constant time, we should multiply the cost of ouraaithm by
O(mlog(k)/w) to account for the need to use many computer words. Hence, ou
complexity in the RAM model is actuall(m?nlog?(k)/(wlogn)). On the other
hand, the previou®(kmn/ log n) bit-parallel technique [16] heeds onB(m) bits,
and therefore its RAM cost i©(km?n/(wlogn)). Still our complexity is superior
by a factor ofO(k/ log? k).

6. Experimental results

In this section we evaluate our algorithm experimentalld aompare it against
previous work. The algorithms we have compared are:

DP: The classical dynamic programming solution [7]. The cods waginally
from G. Myers and we modified it to work with integer values dned
thresholdk. This algorithm is by far the slowest in our experiments, ibut
handles the more general problem of real-valued arbitraighted scoring
schemes andfine gap costs, as opposed to our algorithm, which handles
just integral-cost dferences. However, it is a good baseline to compare how
the more specific algorithms improve upon it. Since the algar perfor-
mance is insensitive to costs and thresholds, we run it ark = 1 and
unit-cost diterences.

RUS: The four-russians approach [17]. Unfortunately, the caaldor this paper
seems to be lost [18], so we have used an algorithm implemiersiag the
same technique, but which handles exact search onfy(ran/ log s) time
andO(s) space [6]. The code is from G. Myers. The exact searching-alg
rithm gives us a lower bound on which would have been the pedace of
the version that searches permittiandifferences.

GREP: The technique of copyin§ + 1 exact searching automata and updating
them one by one [16, 15, 9]. The code is a highly optimized fication
of the “forward scanning” ohrgrep where we removed the transposition
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error, manually coded the cases<lk < 8 and up to 2 computer words,
and reduced reporting to just counting all the matches. Tréopnance

is at least as good as that ajrep because the DFA is smaller [11]. This
algorithm can handle only unit-costfférences, and seems not extensible
to arbitrary weights. Hence, it is not an alternative to dgoathm, but it
serves to show how simpler is the problem of unit-coffedences.

OURS: Our algorithm handling arbitrary integer-costfdrences, where we have

manually coded the cases of up to 2 computer words and tapli¢snso

up to 6 subtables. The code is a plain implementation of FeEnd Fig. 6.
Since our algorithm performance is insensitive to the wifighction w, we

ran it with unit-costs dterences for simplicity (our code, however, does not
take advantage of this). For each data point, we choose 8ieabeng the
alternatives of using 1 to 6 tables. The best is generallytigewith fewest
tables so that the machine can hold them comfortably. In gperments
we never used more than about 5 megabytes of memory.

All the algorithms are carefully coded, use similafflen schemes, and just count
the number of occurrences. We usgdk with all the code optimizations. Our
machine is a 64-bit Digital Alphaserver 6066 with 266 MHz 21164 Alpha-
processors and 768 Mb of RAM, running Digital Unix 4.0B. Thaahine was not
performing other heavy tasks while the experiments ran. Wasure user times
(CPU times).

We searched 10 megabytes of English text extracted from #ieSieet Journal
1987 [5]. Each data point corresponds to an average over if#emt search
patterns (the same for all the algorithms).

The choice of patterns is always problematic when dealirty veigular expres-
sions, since there is no clear concept of what a random negytaession is and,
as far as we know, there is no public repository of regularesgions available,
except for a dozen of trivial examples. We have chosen torgemeandom regular
expressions as follows:

(1) We choosen and pick a random text substring of length

(2) We choose apperator density 0 < a < 1.

(3) We apply a recursive procedure to convert a string oftlefignto a regular

expression:

(&) An empty string is converted into an empty regular exgices In the
rest, we assume a honempty string.

(b) With probability 1- « we choose that the expression will be the con-
catenation of two subexpressions: a left partZotharacters and a
right part of¢ — ¢’ characters, wher is chosen uniformly in the range
1< ¢ < ¢-1. We recursively convert both subparts into regular ex-
pressionse; ande,. The resulting expression & - e. If £ = 1 we
simply write down the string character.

(c) Otherwise, if the parent in the recursion has just geadra Kleene
closure operator+", we choose to add a union operatdt, if not, we
choose with the same probability among a Kleene closure amiba.
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(d) If we chose that the expression will have a union operaterchoose a
left part of¢’ characters and a right part &6 ¢’ characters, wheré is
chosen uniformly in the range £ ¢’ < £. We recursively convert both
subparts into regular expressiogsande,. The resulting expression is
ele.

(e) If we chose to add a Kleene closure operatdr dt the end of the
string, we recursively generate a regular expressjofor the string.
The resulting expression &:.

() To avoid problems with the ffierent softwares and with operators sym-
bols in the text, any non-alphanumerical character is abesido un-
derscore.

The above procedure is just one of the many possible alteesdab generate ran-
dom regular expressions one could argue for, but it has a deargages. First, it
permits determining the length (number of characters &) in advance. Second,
it takes the characters from the text, respecting its Oigiion. Third, it permits
us to choose expressions with more or less operators (dihardoncatenation)
by varying . We will show experiments witle = 0.05, @ = 0.10 anda =
0.20. Examples obtained from our tests, with= 10, are"I(n| (s)*urance )",
"(colntr(a)*(c(t)*|or))",and" (((D*flrodm 1| ((a)*|st))", respectively.

We first show how the search cost increases witlior the minimum threshold
k = 1. Fig. 8 shows the results. As it can be seen, DP is by far thweest algorithm
(albeit, as explained, can handle real-valued weights)jtartost grows noticeably
as the densityr of the regular expressions increases. RUS turns out to beycle
slower than our algorithm, usually twice as slow, and its @so grows slightly
with . GREP, on the other hand, is much faster than our algorittpriquhree
times faster) but, as explained, it handles unit-cofedknces only (allb() = 1).
Neither GREP nor OURS ardtacted by the density.

Increasing m, k = 1, alpha = 0.05 Increasing m, k = 1, alpha = 0.20
14| DP —— | al DP —— |
— RUS —— L RUS ——
7 12| GREP —— | @ 1o1| GREP —— |
g OURS —— @ OURS ——
&L &£
o 1r 1 = 1r 1
= =
g 08 r g 08 |
Q L 4 4
= 0.6 E 0.6
> 04F 1 D 04+ 1
o o
© 0.2 r ;] © 0.2 /_/
0 * t L ) 0 i i L |
5 10 15 20 25 5 10 15 20 25
m m

Fig. 8. Comparison for increasing pattern lengttand fixedk = 1. We show two dferent pattern
densities@ = 0.05 on the left andr = 0.20 on the right.

From now on we consider an intermediate denaity 0.10. Fig. 9 shows the
behavior of the algorithms for fixeh and increasind. We have included a new
algorithm called “RUS (extrap)”, which is just an extragaa of the cost of RUS
for k > 0. Since their complexity depends kas logk+2), we have multiplied the
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complexity of the exact search by ki 2)/In(2). We believe that this estimation
is optimistic because the code to handlfetences is indeed more complex, but
anyway this has to be taken for what it is: just our extrapatat

Both for lengthm = 15 andm = 20, OURS becomes slower than RUS only for
k > 5, even when RUS works just fer= 0. Our extrapolation of RUS is well above
OURS. On the other hand, tli&(k) complexity of GREP is clear as compared to
our O(logk) complexity. However, it seems unlikely that GREP beconlewer
than our algorithm before our algorithm becomes slower th&n(there should
be another jump fom = 20 andk = 6 because three computer words would be
needed to hold the masks). We remark again that GREP onlysworkunit-cost
differences.

Increasing k, m = 15, alpha = 0.10 Increasing k, m = 20, alpha = 0.10

16 T T T T 2
_14F 5 1.8
2 DP —— 2 16| P —— 1
8 121  RUS (k=0) —— 2 k=0) ——
g § 14| RUS(K=0) ]
; 1l GREP —— ; S GREP ——
s OURS —— S 12+ OURS —— J
g 08 RUS (extrap) —=— ,g 1| RUS (extrap) 1
g o6y g o8y ]
2 04rF | 5 06y i

& 04 ]

o o

0.2} ] 0.2 M//

Fig. 9: Comparison for fixed pattern length = 15 (left) andm = 20 (right) and increasing. We
show densityr = 0.10.

Finally, we show in Fig. 10 theffect of increasingn wherek is a fixed fraction
of m. The results bring no new surprises. Our algorithm is fabtan RUS k = 0)
up tom = 20, and consistently faster than our extrapolation of RUStH®@ other
hand, DP is much slower and GREP is significantly faster tharalgorithm.

Note that OURS shows jumps when we start using more computetsior the
simulation, and the lines stop when we need more than 6 canmuatrds since, as
we explained, we coded the algorithm with up to that numbevats.

As a final note, we remark that the best table partitioningicshoever made
us use more than 5 megabytes of memory. This means that thehméses have
negligible preprocessing. This is expected, as a largergeepsing time means
that large tables are precomputed and hence the localitgfefence to access
them is low, which worsens the search time in addition to tie@mcessing time.

7. Conclusions

We have presented a bit-parallel algorithm to solve the Iprobof approximate
searching for regular expressions with arbitrary integeights. The algorithm is
simple and has the same complexity of the best previousisoJu(mn/ log, S)
time with O(s) space. In practice, however, we show that our algorithrarltyle
outperforms previous solutions.
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Increasing m, k = 10% of m, alpha = 0.10 Increasing m, k = 20% of m, alpha = 0.10

N
(3]

N
3

"oP T

RUS (k=0) —<—

DP ——
RUS (k=0) ——
GREP ——
OURS ——
RUS (extrap) —=—

N

N
(@)
P}
m
o

RUS (extrap) —=—

=

3
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o
T

[
[
T

o
13

CPU time per Mb (secs)
o
2]

CPU time per Mb (secs)

o
o

5 10 15 20 25 5 10 15 20 25
m m

Fig. 10: Comparison for increasing and fixed fractiork/m = 10% (left) andk/m = 20% (right).
We show densityr = 0.10.

In our way, we have found a new recurrence for the problem revtiee current
values depend only on previous values. This is usually thim mamplication
when combining the circular dependence of the classicalrecce (current values
depending on current values) with the possible cycles cdtttematon. We believe
that our solution can be useful in other scenarios.

It is easy to extend the solution to the case where the regyfaession contains
classes of characters, that is, positions that match devesaible characters. We
simply have to take the minimum over the characters of theschdhen precomput-
ing tablesl andS.

It is interesting that our solution is also relevant for apimate searching of
simple strings using arbitrary weights. Current bit-pi@fedolutions handle only
the case of unitary costs, or at most a fixed integer cost patpn [8]. Recently,
Bergeron [2] extended this result showing that, when alldbertions and deletion
costs are fixed at and substitution costs are arbitrary integers, a simpiegstan
be searched for i@(mnclog(c)/w) time. Our approach permits arbitrary insertion,
deletion and substitution costs and has better complexigngenough memory
spaces> clogc/ log? k.

It would be interesting to study how one can take advantagieec$impler struc-
ture of a string pattern in order to simplify our algorithmtins case. For example,
table J[C] is simply J[C] = C << (1 + ¢). However, we have not found a relevant
simplification for tableH.

On the other hand, we have also shown that much better sudugirist for the
case of searching for regular expressions with unit-cdirdinces. Although these
solutions, also based on bit-parallelism, have worse cexitylO(kmn/ log s), they
are significantly faster in practice. Despite that unittsas an oversimplification
for many real-world applications, a clear goal for futurerkvis to develop an
algorithm whose ficiency approaches that of the best algorithms for the unit-
cost case. A way to simplify the computation of bit-parati@himum would be
important in this sense.
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