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Abstract. We present a bit-parallel technique to search a text of length n for a regular ex-
pression ofm symbols permittingk differences in worst case timeO(mn/ logk s), wheres is
the amount of main memory that can be allocated. The algorithm permits arbitrary integer
weights and matches the complexity of the best previous techniques, but it is simpler and
faster in practice. In our way, we define a new recurrence for approximate searching where
the current values depend only on previous values. Interestingly, our algorithm turns out
to be a relevant option also for simple approximate string matching with arbitrary integer
weights.

ACM CCS Categories and Subject Descriptors: E.1. Data structures; F.2.2. Nonnumer-
ical Algorithms and Problems — Computations on discrete structures, Pattern matching,
Sorting and searching; H.3. Information Storage and Retrieval

Key words: Approximate string matching, string matching with differences, regular ex-
pression searching, bit-parallelism, computational biology.

1. Introduction and related work

The need to search for regular expressions arises in many text-based applications,
such as text retrieval, text editing and computational biology, to name a few. A
regular expression is a generalized pattern composed of (i) basic strings, (ii)union,
concatenation and Kleene closure of other regular expressions. Readers unfamiliar
with the concept and terminology related to regular expressions are referred to a
classical book such as [1]. We callm the length of our regular expression, not
counting operator symbols. The alphabet is denoted byΣ, andn is the length of the
text.

The traditional technique to search for a regular expression [1] first builds a non-
deterministic finite automaton (NFA) and then converts it toa deterministic finite
automaton (DFA), which is finally used to search the text inO(n) time. This is
worst-case optimal in terms ofn. The main problem has been always the pre-
processing time and space requirement to code the DFA, whichcan be as high
asO(22m|Σ|) if the classical Thompson’s NFA construction algorithm [13] is used.
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Thompson’s construction produces up to 2m states, but it has interesting properties,
such as ensuring a linear number of edges, constant indegreeand outdegree, etc.

An alternative NFA construction is Glushkov’s [4, 3]. Although it does not pro-
vide the same regularities of Thompson’s, this construction has other interesting
properties, such as producing the minimum number of states (m + 1) and that all
the edges arriving at a node are labeled by the same character. The correspond-
ing DFA needs onlyO(2m|Σ|) space, which is significantly less than the worst case
using Thompson’s NFA. Nevertheless, this is still exponential in m.

Two techniques have been classically used to cope with the space problem. The
first is to use lazy DFAs, where the states are built only when they are reached. This
ensures that no more thanO(n) extra space is necessary. The second choice [13]
is to directly use the NFA instead of converting it to deterministic. This requires
only O(m) space, but the search time becomesO(mn). Both approaches are slow
in practice if the regular expression is large.

Newer techniques have provided better space-time tradeoffs by using hybrids
between the NFA and the DFA. Based on the Four Russians technique, which pre-
computes large tables that permit processing several NFA states in one shot, it has
been shown thatO(mn/ log s) search time is possible usingO(s) space [6]. The
use of Thompson’s automaton is essential for this approach which, however, is
rather complicated. Simpler solutions obtaining the same complexities have been
obtained later using bit-parallelism, a technique to pack several NFA states in a
single machine word and update them as a single state. A first solution [16], based
on Thompson’s construction, uses a table of sizeO(22m) that can be split intot
tables of sizeO(22m/t) each, at a search cost ofO(tn) table inspections. A second
solution [11] uses Glushkov’s automaton and usest tables of sizeO(2m/t) each,
which is much more efficient in space usage. In both cases,O(mn/ log s) search
time is obtained usingO(s) space.

Several applications in computational biology, data mining, text retrieval, etc.
need an even more sophisticated form of searching. In addition to the regular ex-
pression, an integer thresholdk is given, so that we have to report the text substrings
that can match the regular expression after performing several character insertions,
deletions and substitutions, whose totalcost or weight does not exceedk. In most
real applications, there are different weights associated to insertions, deletions, and
substitutions, depending on the characters involved. Thisproblem is called “ap-
proximate regular expression searching”, as opposed to “exact” searching.

Instead of being just active or inactive, every NFA node has now k + 2 possible
states, according to the weight of the differences needed to match the text (0 tok,
or more thank). If one applies the classical DFA construction algorithm,the space
requirement raises toO((k + 2)2m) using Thompson’s NFA andO((k + 2)m) using
Glushkov’s NFA. A dynamic programming based solution withO(mn) time and
O(m) space exists [7]. Although this is an achievement because it retains the time
complexity of the exact search version and handles real-valued weights, it is still
slow. The Four Russians technique has been gracefully extended to this problem
[17], obtainingO(mn/ logk s) time usingO(s) space. Again, this algorithm is rather
complicated.
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Since bit-parallel solutions have, for many related problems, yielded fast and
simple solutions, one may wonder what have they achieved here. For the case of
unitary costs (that is, all the weights are 1), bit-parallelsolutions exist which resort
to simulatingk + 1 copies of the NFA used for exact searching. They achieve
O(ktn) time usingO(22m/t) space [16] (implemented in the softwareAgrep [15]) or
O(2m/t) space (implemented in the softwareNrgrep [9]). This yieldsO(kmn/ log s)
time usingO(s) space, which is inferior to the achievement of the Four Russians
technique. Despite this less attractive complexity, bit-parallel solutions are by far
the fastest for moderate sized regular expressions. Yet, they are restricted to the
simpler case of unitary costs.

The aim of this paper is to overcome the technical problems that have prevented
the existence of a simpleO(mn/ logk s) time andO(s) space bit-parallel solution to
approximate regular expression searching with arbitrary integer weights. We build
over Glushkov’s NFA and represent the state of the search using m⌈1+ log2(k+2)⌉
bits. We then uset tables of sizeO((k + 2)m/t) each and reachO(tn) search time.

Table I illustrates the context of our contribution. We point out, however, that
bit-parallel complexities assume that the computer can handle words of arbitrary
length in constant time. If we use the RAM model, where the computer can handle
words ofw = Θ(logn) bits in constant time, previous bit-parallel complexities get
multiplied by O(m/w) and ours byO(m log(k)/w). In this setting, we match the
Four Russians complexity only whenm = O(logk n).

Exact Searching Approximate Searching
Unit Cost General Costs

Dynamic O(mn) [13] O(mn) [7]
Programming Thompson Myers & Miller

Four O(mn/ log s) [6] O(mn/ logk s) [17]
Russians Myers Wu, Manber & Myers

Bit O(mn/ log s) [16, 11] O(kmn/ log s) [16, 9] O(mn/ logk s) [10]
Parallelism Wu & Manber Wu & Manber T 

Navarro & Raffinot Navarro

T I: Our contribution in context.

We use the following terminology for bit-parallel algorithms. A bit mask is a
sequence of bits, where the lowest bit is written at the right. Typical bit operations
are infix “|” (bitwise or), infix “&” (bitwise and), prefix “∼” (bit complementation),
and infix “<<” (“ >>”), which moves the bits of the first argument (a bit mask) to
higher (lower) positions in an amount given by the argument on the right. Addi-
tionally, one can treat the bit masks as numbers and obtain specific effects using the
arithmetic operations “+”, “−”, etc. Exponentiation is used to denote bit repetition,
e.g., 031 = 0001, and [x]ℓ represents an integerx usingℓ bits. Finally,X× x, where
X is a bit mask andx is a number, is the exact result of the multiplication, that is,
a bit mask wherex appears in the places whereX has 1’s (superimpositions are
solved with summation, as in usual multiplication, but we never use that feature).
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2. A bit-parallel exact search algorithm

We describe in this section the exact bit-parallel solutionwe build on [11]. The
classical algorithm to produce a DFA from an NFA [1] consistsin making each
DFA state represent a set of NFA states that may be active at some point. Our way
to represent the states of a DFA (i.e., the sets of states of anNFA) is a bit mask of
O(m) bits. The bit mask has in 1 the bits that belong to the set. We use set notation
or bit mask notation indistinctly.

The description of Glushkov’s NFA construction algorithm is outside the scope
of this paper [4, 3]. We just show an example in Fig. 1 and remark some of its
properties. Given a regular expression ofm characters (not counting operator sym-
bols), the algorithm definesm+ 1 positions numbered 0 tom (one per position of a
character ofΣ in the regular expression, plus an initial position 0). Then, the NFA
has exactly one state per position, the initial state corresponding to position 0. Two
tables are built:B(σ), the set of positions of the regular expression that contain
characterσ; andFollow(x), the set of NFA states that can be reached from state
x in one transition1. From these two tables, the transition function of the NFA is
computed:δ : {0 . . .m} ×Σ→ ℘({0 . . .m}), such thaty ∈ δ(x, σ) if and only if from
statex we can move to statey by characterσ. The algorithm gives also a set of
final states,Last, which again will be represented as a bit mask.

0 1 2 3 4 5 6 7 98
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G A A
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A

Fig. 1: Glushkov’s NFA for the regular expression"(AT|GA)(AG|AAA)*".

Important properties of Glushkov’s construction follow. (1) The NFA isε-free.
(2) All the arrows leading to a given NFA state are labeled by the same character:
the one at the corresponding position. (3) The initial statedoes not receive any
transition. (4)δ(x, σ) = Follow(x) ∩ B(σ).

Property (4) permits a compact representation of the DFA transitions. The con-
struction algorithm is written so that tablesB andFollow represent the sets of states
as bit masks. We useB as is and build a large tableJ, the deterministic version of
Follow. That is,J is a table that, for every bit maskD representing a set of states,
storesJ[D] =

⋃

i∈D Follow(i). Then, by Property (4) it holds that, if the current
set of active states isD and we read text characterσ, then the new set of active
states isJ[D] ∩ B[σ]. For search purposes, we set state 0 inJ[D] for everyD and
in B[σ] for everyσ, and report every text positionj whereD ∩ Last , ∅. (In fact,
state 0 needs not be represented, since it is always active when searching.)

1 This is computed from the regular expression, since the NFA does not yet exist. Also, to simplify
the discussion, we assume thatFollow(0) = First, the states reachable from the initial state.
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Hence we need onlyO(2m + |Σ|) space instead of theO(2m|Σ|) space of the clas-
sical representation. Space-time tradeoffs are achieved by splitting tableJ. The
splitting is done as follows. We build two tablesJ1 and J2, which give the set of
states reached from states 0. . . ℓ andℓ+ 1 . . .m, respectively, withℓ = ⌊(m+ 1)/2⌋.
Then, if we accordingly split the current set of statesD into left and right sub-
masks,D = D1 : D2, we haveJ[D] = J1[D1] ∪ J2[D2]. TablesJ1 and J2 need
only O(2m/2) space each. This generalizes to usingt tables, for an overall space
requirement ofO(t2m/t) and a search cost ofO(tn) table accesses.

3. A new recurrence for approximate searching

Let us first give an exact formulation for our problem. LetR be a regular expression
generating languageL(R) ⊆ Σ∗. Let m be the number of characters belonging toΣ
in R. Let T1...n ∈ Σ

∗ be the text, a sequence ofn symbols. The problem is, given
R, T , andk ∈ N, to report every text positionj such that, for somej′ ≤ j and
P ∈ L(R), ed(T j′ ... j, P) ≤ k. Hereed(A, B), the edit distance, is the minimum sum
of weights of a sequence of character insertions, deletionsand substitutions needed
to convertA into B. The weights are represented by a functionω, such thatω(a, b)
is the cost to substitute charactera by characterb in the text,ω(a, ε) is the cost to
delete charactera from the text, andω(ε, b) is the cost to insert characterb in the
text. Functionω satisfiesω(a, a) = 0, nonnegativity, and the triangle inequality.

The classical dynamic programming solution for approximate string matching
[12], for the case whereR is a simple stringP1...m, recomputes for every text posi-
tion j a vectorC0...m, whereCi = minj′≤ j ed(T j′ ... j, P1...i). Hence every text position
j whereCm ≤ k is reported.C is initialized asCi =

∑i
r=1ω(ε, Pr), and then updated

to C′ at text positionj using dynamic programming:

C′i ← min(ω(T j, Pi) +Ci−1, ω(T j, ε) +Ci, ω(ε, Pi) +C′i−1)

whereC′0 = 0. The first component refers to a character matching or substitution,
the second to deleting a text character, and the third to inserting a character in the
text.

If we have a general regular expressionR built using Glushkov’s algorithm, with
positions 1 tom, this generalizes as follows. For each NFA statei, we callLi the
set of strings recognized by the automaton if we assume that the only final state is
i. ThenCi = minj′≤ j,P∈Li ed(T j′ ... j, P) is computed as follows:

C′i ← min(ω(T j,Ri)+ min
i′∈Follow−1(i)

Ci′ , ω(T j, ε)+Ci, ω(ε,Ri)+ min
i′∈Follow−1(i)

C′i′) (1)

whereRi is the only character such thati ∈ B(Ri): Thanks to Property (2), we
know that all the edges arriving at statei are labeled by the same character,Ri. C0

is always 0 because it refers to the initial state, soL0 = {ε}. VectorC is initialized
asCi = ω(ε,Ri) +mini′∈Follow−1(i) Ci′ .

A more convenient form for us of the above recurrence is

C′i ← min(S i(T j) + min
i′∈Follow−1(i)

Ci′ , D(T j) +Ci, Ii + min
i′∈Follow−1(i)

C′i′) (2)
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whereS i(a) = ω(a,Ri), D(a) = ω(a, ε), andIi = ω(ε,Ri).
Note that the main difference in the generalization is that, in the case of a single

pattern, every statei has a unique predecessor, statei − 1. Here, the set of prede-
cessor states,Follow−1(i), can be arbitrarily complex. In the third component of
Eq. (2) (insertions in the text) we have a potential dependence problem, because
in order to computeC′ for statei we need to have already computedC′ for states
that precedei, in an automaton that can perfectly contain cycles. There are good
previous solutions to this circular dependence problem [7], but these are not easy
to apply in a bit-parallel context.

We present a new solution now. The central idea is to explicitly consider all the
NFA paths that arrive at each state from each other state. It turns out that paths
up to a fixed length need to be considered because there is a limit k on the costs
of the interesting paths. The recurrence we obtain will be more complex but free
of circular dependences. In the next section we show how to precompute all those
paths so as to have a fast serach algorithm.

We will use the formi(r) in minimization arguments, whose range is as follows:
i(0) = i and i(r+1) ∈ Follow−1(i(r)). Also, we will denoteS i(r) = S i(r)(T j) and
D = D(T j). Let us now unfold the recurrence of Eq. (2):

C′i ← min(S i+min
i(1)

Ci(1),D+Ci, Ii+min
i(1)

min(S i(1)+min
i(2)

Ci(2),D+Ci(1), Ii(1)+min
i(2)

C′i(2)))

where after a few manipulations we obtain

C′i ← min ( D +Ci, min
i(1)

(S i +Ci(1)),min
i(1)

(Ii + S i(1) +min
i(2)

Ci(2)),

min
i(1)

(Ii + D +Ci(1)),min
i(1)

(Ii + Ii(1) +min
i(2)

C′i(2)) )

The term mini(1)(Ii + D + Ci(1)) can be removed because, by definition ofCi,
Ci ≤ mini(1) Ii +Ci(1) (third component of Eq. (2) applied to the computation ofC),
and we have alreadyD + Ci in the minimization. We factor out all the minimizing
operators and get

C′i ← min(D +Ci, min
i(1),i(2)

min(S i +Ci(1), Ii + S i(1) +Ci(2), Ii + Ii(1) +C′i(2)))

By unfoldingC′
i(2) and doing the same manipulations again we get

C′i ← min(D +Ci,

min
i(1),i(2),i(3)

min(S i + Ci(1), Ii + S i(1) +Ci(2), Ii + Ii(1) + S i(2) +Ci(3),

Ii + Ii(1) + Ii(2) +C′i(3)))

and we can continue until the latter term exceedsk + C′
i(r+1), which is not interest-

ing anymore. The resulting recurrence does not depend anymore onC′, and will
become our working recurrence:

C′i ← min(D +Ci, min
r≥0

min
i(1),...,i(r)

∑

0≤u<r

Ii(u) + S i(r) +Ci(r+1)) (3)
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4. A bit-parallel approximate search algorithm

We will represent theCi vector in a bit mask. Each cellCi will range in the interval
0 . . . k+1, so we will needℓ = ⌈log2(k+2)⌉ bits to represent it. The reason is that, if
a cell value is larger thank+1, we can assume that its value isk+1 and the outcome
of the search will be the same [14]. For technical reasons that are made clear soon,
we will need an extra bit per cell, which will always be zero. SinceC0 is always
0, it does not need to be represented. Hence we needm(1+ ℓ) bits overall. The bit
mask will represent the sequence of cellsC = 0[Cm]ℓ 0[Cm−1]ℓ . . . 0[C2]ℓ 0[C1]ℓ.
We use as many computer words as needed to storeC (a single cell will not be split
among computer words).

From the parsing of the regular expression, we receive the tablesB andFollow,
where the sets are represented as bit masks of lengthm + 1 (see previous work for
details [11]). We will preprocessB so as to produce bit-parallel versions ofIi, D
andS i:

◦ We recall thatIi = ω(ε,Ri), and therefore it depends only on the pattern. Its
bit-parallel version isI = 0[Im]ℓ . . . 0[I1]ℓ.

◦ Recall also thatD(a) = ω(a, ε), which depends on the last text character
read,a = T j, but not on the NFA statei. Hence its bit-parallel version is
essentiallyD[a] = (0[D(a)]ℓ)m.

◦ Finally, recall thatS i = ω(a,Ri), wherea = T j. Its bit-parallel version is
S [a] = 0[S m(a)]ℓ . . . 0[S 1(a)]ℓ.

In all the masks above, any value larger thank + 1 is converted tok + 1. The
computation ofI, D[ ] and S [ ] from ω andB is shown in Fig. 2. Fig. 3 shows an
example for the NFA of Fig. 1.

CalcWeights (ω, B, k, m, ℓ)
1. I ← 0(1+ℓ)m

2. For c ∈ Σ Do
3. D[c] ← (0[min(ω(c, ε), k + 1)]ℓ)m

4. S [c] ← 0(1+ℓ)m

5. For i ∈ 1 . . .m Do
6. If B[c] & 0 m−i10i−1

, 0m Then
7. I ← I | 0(1+ℓ)(m−i)0[min(ω(ε, c), k + 1)]ℓ0(1+ℓ)(i−1)

8. For c′ ∈ Σ Do
9. S [c′] ← S [c′] | 0(1+ℓ)(m−i)0[min(ω(c′, c), k + 1)]ℓ0(1+ℓ)(i−1)

Fig. 2: Computation of tablesI, D andS fromω andB.

Our next tool is a tableJ (an extended version of the simpler tableJ of Section 2),
which maps bit masks of lengthm(1+ℓ) into bit masks of lengthm(1+ℓ), as follows:

J [ 0[Cm]ℓ 0[Cm−1]ℓ . . . 0[C2]ℓ 0[C1]ℓ ] = 0[Mm]ℓ 0[Mm−1]ℓ . . . 0[M2]ℓ 0[M1]ℓ



8 GONZALO NAVARRO

w(e,A) = 1, w(e,C) = 1, w(e,G) = 2, w(e,T) = 3
w(A,e) = 2, w(C,e) = 3, w(G,e) = 1, w(T,e) = 2

23 11 2 1 1 1I = 1

22 22 2 2 2 22

21 00 2 0 0 00

w(A,C) = 2, w(A,G) = 2, w(A,T) = 1

D[’A’] =

S[’A’] =

0 1 2 3 4 5 6 7 98
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A T A
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A

A

A

G A A

A

A

A

Fig. 3: Examples ofI, D, andS masks for the NFA of Fig. 1, considering some arbitrary weightsω()
given on top. Note that there is one entry in the masks for eachNFA state except the initial one.

where
Mi = min

i′∈Follow−1(i)
Ci′

That is, for each search stateC, J indicates how the values inC propagate through
NFA edges. If several statesi′ propagate to a single statei, we choose the minimum
value. We account for the zeros propagated from the unrepresented initial state 0.

Let us now consider the recurrence of Eq. (3). Assume thatC is our current
search state. The first part of the minimum (D + Ci) is easily obtained in bit-
parallel, asE ← C + (0[D]ℓ)m. If D turns out to be larger thank + 1 we setD =
k + 1. The result of the sum can give us values as large as 2(k + 1) in the counters.
Our extra bit per cell can hold the overflow, but we have to replace the values
of the overflown counters byk + 1 in order to continue our process2. We detect
the overflown counters by precomputingW ← (10ℓ)m and doingZ ← E & W.
Then,Z ← Z − (Z >> ℓ) will be a sequence of all-0 or all-1 cells, where the all-1
ones correspond to the overflown counters. These are restored to k + 1 by doing
E ← (E & ∼ Z) | (0[k + 1]ℓ)m & Z).

Let us callH the second, complex part of the main minimum of Eq. (3). Once we
obtainH, we have to obtainC′ ← Min(E,H), whereMin takes the element-wise
minimum over two sequences of values, in bit-parallel.

Bit-parallel minimum can be obtained with a technique similar to the one used
above to restore overflown values. Say that we have to computeMin(X, Y), where
X andY contain several counters (nonnegative integers) properlyaligned. We need
the extra highest bit per counter, which is always zero. We use maskW and perform
the operationZ ← ((X | W) − Y) & W. The result is that, inZ, each highest bit

2 A simple choice is to use 2+ ℓ bits per counter, since the upcoming minimizations will take care
of the overflows, but we show that it can be done anyway with 1+ ℓ bits.
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is set if and only if the counter ofX is larger than that ofY. We now compute
Z ← Z − (Z >> ℓ), so that the counters whereX is larger thanY have all their bits
set inZ, and the others have all the bits in zero. We now choose the minima as
Min(X, Y) ← (Y & Z) | (X & ∼ Z). Similarly, Max(X, Y) ← (X & Z) | (Y & ∼ Z).
Fig. 4 summarizes our min/max procedures.

Min (X, Y)
1. W ← (10ℓ)m

2. Z ← ((X |W) − Y) & W
3. Z ← Z − (Z >> ℓ)
4. Return (Y & Z) | (X & ∼ Z)

Max (X, Y)
1. W ← (10ℓ)m

2. Z ← ((X | W) − Y) & W
3. Z ← Z − (Z >> ℓ)
4. Return (X & Z) | (Y & ∼ Z)

Fig. 4: Bit-parallel minima and maxima.

Having overcomed these initial obstacles, we focus now on the most complex
part: the computation ofH. Let us considerA = J[C] + S [T j], and assume that we
have again solved overflow problems inA3. Thei-th element ofA is, by definition
of J, Ai = S i +mini′∈Follow−1(i) Ci′ . Now, considerJ[A] + I. Its i-th value is

Ii + min
i′∈Follow−1(i)

Ai′ = Ii + min
i′∈Follow−1(i)

(S i′ + min
i′′∈Follow−1(i′)

Ci′′)

= min
i(1),i(2)

(Ii + S i(1) +Ci(2))

If we computeJ[J[A] + I] + I, we have that itsi-th value is mini(1),i(2),i(3)(Ii + Ii(1) +

S i(2) + Ci(3)), and so on. Let us definef (A) = J[A] + I and f (r)(A) as the result of
takingr times f overA. Then, we have that

f (r)(A) = min
i(1)...i(r)

















∑

0≤u<r

Ii(u) + S i(r) + Ci(r+1)

















and hence theH we look for is

H[A] = Min
(

A, f (A), f (2)(A), f (3)(A), . . .
)

(4)

Fig. 5 continues our example, showing how a newC′ vector is computed from a
currentC vector.

To conclude, we have to report every text position where it holds Ci ≤ k for a
final statei. The parsing yields an (m + 1)-bits long mask of final states,Last.
We will precompute a maskF = 0[Fm]ℓ 0[Fm−1]ℓ . . .0[F2]ℓ 0[F1]ℓ, so thatFi =

1 if i is final andFi = 0 otherwise4. Hence, we have a match if and only if
C & (F × (2ℓ − 1)) , F × (k + 1). Note thatF × x is a bit mask ofm countersXi

such thatXi = x if Fi = 1 andXi = 0 otherwise.

3 The extra work for this can be avoided either by, as before, using counters of 2+ ℓ bits, or by
precomputing all the allocated cells ofH, as it will be clear soon.
4 We assume that the initial state is not final, as otherwise theproblem is trivial.
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1 24 43 5 4 4 5 = f(f(A))J[f(A)] + I =

0 22 32 5 3 4 5H(A) =

0 01 32 4 3 4 5

= A

1 23 33 5 3 4 5 = f(A)

0 22 32 6 3 4 5

1 24 43 6 4 5 6

J[A] + I =

+ S[’A’] =

J[C] =

C =

3 46 65 8 6 7 8

0 22 32 5 3 4 5

C + D[’A’] =

C’ =

0 1 2 3 4 5 6 7 98

G

A T A

A

A

A

A

A

G A A

A

A

A

Fig. 5: Example of Fig. 3 continued. Assume the currentC values are those of the top row. The
automaton arrows permit carrying them onto other states byJ[C] (those reaching state 5 are shown
with arrows). Then,A is computed by addingJ[C] + S [’A’], being’A’ the current text character.
Then we repeatedly computef (A) = J[A] + I, f ( f (A)), as far as necessary (in this example we
stopped atf ( f (A)) as it is uniformly larger thanf (A)). The arrow in the third row shows how the
value at state 5 permits reducing the value at state 6 when moving from A to f (A). ThenH[A] takes
the columnwise minimum ofA, f (A), f ( f (A)), etc. ActuallyH[A] is precomputed for every possible
A so this process takes constant time. Finally, the newC value is the columnwise minimum between
H[A] andC + D[’A’].

Fig. 6 gives the search code. To initializeC we takeH over an initial state where
all the counters arek + 1. Glushkov Parse is in charge of parsing the regular
expression and delivering tablesB, Follow and bit maskLast. We then precompute
all the tables usingPreprocess.

Search (T1...n, R, k, ω)
1. (B, Follow, Last,m)← Glushkov Parse(R)
2. (D, S , J,H, F, ℓ)← Preprocess(B, Follow, Last,m, k, ω)
3. C ← H[(0[k + 1]ℓ)m]
4. For j ∈ 1 . . .n Do
5. A← J[C] + S [T j]
6. C ← Min(C + D[T j],H[A])
7. If C & ( F × (2ℓ − 1)) , F × (k + 1) Then Report text positionj

Fig. 6: Our search algorithm. We disregard the process of restoring overflows after additions.

The preprocessing is given in Fig. 7. Although it looks complicated, it is concep-
tually simple. There are first several technical functions.Expand takes a sequence
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of m + 1 bits, ignores the first, and introducesℓ zero bits between each pair of bits,
so as to align them to our representation.Next computes the successor of a number
made up ofm digits in the range 0. . . k+1. Fill fills all the (k+2)m possible entries
of a tableU, where each entry is formed bym numbers in the range 0. . . k+1. The
idea is that, given tableu[i, v] telling which positions get which values if position
i has valuev, U tells, given anm-tuple of numbers, the minimum value obtained
by each position from any of the values in its argument.Fill starts with the entry
where all the numbers arek + 1 and then computes all the possible values for the
i-th number, with the invariant that all the possible values of numbers at smaller
positions are already computed (values at positions largerthani beingk + 1). G is
a bit mask that traverses all these possible values, andcurr is the current value of
thei-th number inG. U[G] is computed as the minimum between what we already
have with valuek + 1 for thei-th number andu[i, curr].

The purpose ofFill is to compute tablesJ andH, which is done inPreprocess.
For J, we fill a tablee of m-tuples such thate[i, v] has valuev in states reachable
from statei via Follow, andk+1 elsewhere. BuildingJ from e via Fill is precisely
what we need: For eachm-tuple of state values,J gives the minimum value that
reaches each state viaFollow. Similarly, for H we fill a tableh[i, v] corresponding
to the value ofH[A] when thei-th value ofA is v and the rest isk + 1. The fixed
point of Eq. (4) is computed in lines 11–13. Then, we build allthe combinations
of A usingFill as before. Note that we do not returnI because it is embedded in
the computation ofH.

5. Analysis and space-time tradeoffs

The search time of our algorithm is clearlyO(n). The preprocessing time includes
O(|Σ|2m) for CalcWeights and O(k2m2) to computeh (since for each of thekm
cells we iterate as long as we reduce some counter, which can happen onlym(k+1)
times). However, the dominant preprocessing complexity istheO((k + 2)m) space
and time needed to fillJ andH. If this turns out to be excessive, we can horizontally
split tablesJ andH.

The splitting is based on the following property. LetJ be a table built over
m counters. LetC = C1 : C2 be a splitting of maskC into two submasks, a
left and a right submask. If we defineJ1 and J2 so that they propagate counters
only from the first and second half of maskC, respectively, thenJ[C1 : C2] =
Min(J1[C1], J2[C2]) because of the definition ofJ. (Note thatJ1 andJ2 can propa-
gate values to states of any half.) The same is valid forH: we can split the argument
A into two halvesA1 andA2, and preprocess the propagations of values from the
first and second half inH1 and H2, so thatH[A1 : A2] = Min(H1[A1],H2[A2]).
Note, in particular, thatJ andH have been built by adding the effects of new states
one by one, precisely because they can be decomposed in this way.

In general, we can splitJ and H into t tablesJ1 . . . Jt and H1 . . .Ht, such that
Ji and Hi address the counters roughly from (i − 1)m/t to im/t − 1, that is,m/t
counters. Each such table has (k + 2)m/t entries, for a total space requirement of
O(t(k + 2)m/t). The cost is that, in order to perform each transition, we need to pay
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Expand(X, m, ℓ)
1. EX ← 0(1+ℓ)m

2. For i ∈ 1 . . .m Do
3. If X & 0m−i10i

, 0m+1 Then EX ← EX | 0(m−i)(1+ℓ)0ℓ10(i−1)(1+ℓ)

4. Return EX

Next(G, ℓ, m, lim)
1. For i ∈ 1 . . .m Do
2. val← (G >> (1+ ℓ)(i − 1)) & 0(1+ℓ)(m−1)01ℓ

3. If val < lim Then
4. G ← G + 0(1+ℓ)(m−i−1)0ℓ10(1+ℓ)(i−1)

5. Return G
6. G ← G & 1(1+ℓ)(m−i−1)01+ℓ1(1+ℓ)(i−1)

Fill(U, u, k, ℓ, m)
1. U[(0[k + 1]ℓ)m] ← u[0, 0]
2. For i ∈ 1 . . .m Do
3. G ← (0[k + 1]ℓ)m−i0(1+ℓ)i

4. For j ∈ 0 . . . (k + 2)i − 1 Do
5. curr ← (G >> (1+ ℓ)(i − 1)) & 0(1+ℓ)(m−1)01ℓ

6. U[G] ← Min(U[G + 0(1+ℓ)(m−i)0[k + 1− curr]ℓ0(1+ℓ)(i−1)], u[i, curr])
7. G ← Next(G, ℓ,m, k + 1)
8. Return U

Preprocess (B, Follow, Last, m, k, ω)
1. ℓ ← ⌈log2(k + 2)⌉
2. (I,D, S )← CalcWeights (ω, B, k, m, ℓ)
3. F ← Expand(Last,m, ℓ)

// Computation ofJ
4. For i ∈ 0 . . .m Do
5. EFollow[i] ← Expand(Follow[i],m, ℓ)
6. For v ∈ 0 . . . k + 1 Do
7. e[i, v] ← (0[k + 1]ℓ)m − (EFollow[i] × (k + 1− v))
8. Fill (J, e, k, ℓ, m)

// Computation ofH
9. For i ∈ 1 . . .m Do
10. For v ∈ 0 . . . k + 1 Do
11. h[i, v] ← (0[k + 1]ℓ)m−i0[v]ℓ(0[k + 1]ℓ)i−1

12. While h[i, v] , Min(h[i, v], J[h[i, v]] + I) Do
13. h[i, v] ← Min(h[i, v], J[h[i, v]] + I)
14. h[0, 0]← (0[k + 1]ℓ)m

15. Fill (H, h, k, ℓ, m)
16. Return (D, S , J,H, F, ℓ)

Fig. 7: Our preprocessing.
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for t table accesses so as to compute

J[C1 : C2 : . . .Ct] = Min(J1[C1], J2[C2], . . . Jt[C
t])

H[A1 : A2 : . . . At] = Min(H1[A1], H2[A2], . . .Ht[A
t])

which makes the search timeO(tn) in terms of table accesses. If we haveO(s)
space, then we solve fors = t(k + 2)m/t, to obtain a search time ofO(tn) =
O(mn/ logk s).

Let us consider how good can be our complexity with infinite space. Our over-
all cost, adding preprocessing and searching, isO(t(k + 2)m/t + tn). The op-
timum is reached fort = m/ logk+2 n, where the overall complexity becomes
O(mn/ logk n). The amount of space we need to achieve this best possible com-
plexity is s = Ω(mn/ logk n).

At this point, a note on the underlying computation model is relevant. We are
assuming that we can handle bit masks ofO(m logk) bits in O(1) time. If we stick
to the RAM model of computation, where the computer can only handle words of
w = Θ(logn) bits in constant time, we should multiply the cost of our algorithm by
O(m log(k)/w) to account for the need to use many computer words. Hence, our
complexity in the RAM model is actuallyO(m2n log2(k)/(w logn)). On the other
hand, the previousO(kmn/ logn) bit-parallel technique [16] needs onlyO(m) bits,
and therefore its RAM cost isO(km2n/(w logn)). Still our complexity is superior
by a factor ofO(k/ log2 k).

6. Experimental results

In this section we evaluate our algorithm experimentally and compare it against
previous work. The algorithms we have compared are:
DP: The classical dynamic programming solution [7]. The code was originally

from G. Myers and we modified it to work with integer values andfixed
thresholdk. This algorithm is by far the slowest in our experiments, butit
handles the more general problem of real-valued arbitrary weighted scoring
schemes and affine gap costs, as opposed to our algorithm, which handles
just integral-cost differences. However, it is a good baseline to compare how
the more specific algorithms improve upon it. Since the algorithm perfor-
mance is insensitive to costs and thresholds, we run it only for k = 1 and
unit-cost differences.

RUS: The four-russians approach [17]. Unfortunately, the code used for this paper
seems to be lost [18], so we have used an algorithm implemented using the
same technique, but which handles exact search only, atO(mn/ log s) time
andO(s) space [6]. The code is from G. Myers. The exact searching algo-
rithm gives us a lower bound on which would have been the performance of
the version that searches permittingk differences.

GREP: The technique of copyingk + 1 exact searching automata and updating
them one by one [16, 15, 9]. The code is a highly optimized modification
of the “forward scanning” ofnrgrep where we removed the transposition
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error, manually coded the cases 1≤ k ≤ 8 and up to 2 computer words,
and reduced reporting to just counting all the matches. The performance
is at least as good as that ofagrep because the DFA is smaller [11]. This
algorithm can handle only unit-cost differences, and seems not extensible
to arbitrary weights. Hence, it is not an alternative to our algorithm, but it
serves to show how simpler is the problem of unit-cost differences.

OURS: Our algorithm handling arbitrary integer-cost differences, where we have
manually coded the cases of up to 2 computer words and tables split into
up to 6 subtables. The code is a plain implementation of Fig. 7and Fig. 6.
Since our algorithm performance is insensitive to the weight functionω, we
ran it with unit-costs differences for simplicity (our code, however, does not
take advantage of this). For each data point, we choose the best among the
alternatives of using 1 to 6 tables. The best is generally theone with fewest
tables so that the machine can hold them comfortably. In our experiments
we never used more than about 5 megabytes of memory.

All the algorithms are carefully coded, use similar buffer schemes, and just count
the number of occurrences. We usedgcc with all the code optimizations. Our
machine is a 64-bit Digital Alphaserver 600 5/266 with 266 MHz 21164 Alpha-
processors and 768 Mb of RAM, running Digital Unix 4.0B. The machine was not
performing other heavy tasks while the experiments ran. We measure user times
(CPU times).

We searched 10 megabytes of English text extracted from the Wall Street Journal
1987 [5]. Each data point corresponds to an average over 100 different search
patterns (the same for all the algorithms).

The choice of patterns is always problematic when dealing with regular expres-
sions, since there is no clear concept of what a random regular expression is and,
as far as we know, there is no public repository of regular expressions available,
except for a dozen of trivial examples. We have chosen to generate random regular
expressions as follows:

(1) We choosem and pick a random text substring of lengthm.

(2) We choose anoperator density 0 ≤ α ≤ 1.

(3) We apply a recursive procedure to convert a string of length ℓ into a regular
expression:

(a) An empty string is converted into an empty regular expression. In the
rest, we assume a nonempty string.

(b) With probability 1− α we choose that the expression will be the con-
catenation of two subexpressions: a left part ofℓ′ characters and a
right part ofℓ− ℓ′ characters, whereℓ′ is chosen uniformly in the range
1 ≤ ℓ′ ≤ ℓ − 1. We recursively convert both subparts into regular ex-
pressionse1 ande2. The resulting expression ise1 · e2. If ℓ = 1 we
simply write down the string character.

(c) Otherwise, if the parent in the recursion has just generated a Kleene
closure operator “∗”, we choose to add a union operator “|”, if not, we
choose with the same probability among a Kleene closure and aunion.
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(d) If we chose that the expression will have a union operator, we choose a
left part ofℓ′ characters and a right part ofℓ− ℓ′ characters, whereℓ′ is
chosen uniformly in the range 0≤ ℓ′ ≤ ℓ. We recursively convert both
subparts into regular expressionse1 ande2. The resulting expression is
e1|e2.

(e) If we chose to add a Kleene closure operator “∗” at the end of the
string, we recursively generate a regular expressione1 for the string.
The resulting expression ise1∗.

(f) To avoid problems with the different softwares and with operators sym-
bols in the text, any non-alphanumerical character is converted to un-
derscore.

The above procedure is just one of the many possible alternatives to generate ran-
dom regular expressions one could argue for, but it has a few advantages. First, it
permits determining the lengthm (number of characters ofΣ) in advance. Second,
it takes the characters from the text, respecting its distribution. Third, it permits
us to choose expressions with more or less operators (other than concatenation)
by varying α. We will show experiments withα = 0.05, α = 0.10 andα =
0.20. Examples obtained from our tests, withm = 10, are"I(n|(s)*urance )",
"(co|ntr(a)*(c(t)*|or))", and"((( )*f|ro)m l|((a)*|st))", respectively.

We first show how the search cost increases withm, for the minimum threshold
k = 1. Fig. 8 shows the results. As it can be seen, DP is by far the slowest algorithm
(albeit, as explained, can handle real-valued weights), and its cost grows noticeably
as the densityα of the regular expressions increases. RUS turns out to be clearly
slower than our algorithm, usually twice as slow, and its cost also grows slightly
with α. GREP, on the other hand, is much faster than our algorithm (up to three
times faster) but, as explained, it handles unit-cost differences only (allω() = 1).
Neither GREP nor OURS are affected by the densityα.
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Fig. 8: Comparison for increasing pattern lengthm and fixedk = 1. We show two different pattern
densities,α = 0.05 on the left andα = 0.20 on the right.

From now on we consider an intermediate densityα = 0.10. Fig. 9 shows the
behavior of the algorithms for fixedm and increasingk. We have included a new
algorithm called “RUS (extrap)”, which is just an extrapolation of the cost of RUS
for k > 0. Since their complexity depends onk as log(k+2), we have multiplied the
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complexity of the exact search by ln(k + 2)/ ln(2). We believe that this estimation
is optimistic because the code to handle differences is indeed more complex, but
anyway this has to be taken for what it is: just our extrapolation.

Both for lengthm = 15 andm = 20, OURS becomes slower than RUS only for
k > 5, even when RUS works just fork = 0. Our extrapolation of RUS is well above
OURS. On the other hand, theO(k) complexity of GREP is clear as compared to
our O(logk) complexity. However, it seems unlikely that GREP becomes slower
than our algorithm before our algorithm becomes slower thanDP (there should
be another jump form = 20 andk = 6 because three computer words would be
needed to hold the masks). We remark again that GREP only works for unit-cost
differences.
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Fig. 9: Comparison for fixed pattern lengthm = 15 (left) andm = 20 (right) and increasingk. We
show densityα = 0.10.

Finally, we show in Fig. 10 the effect of increasingm wherek is a fixed fraction
of m. The results bring no new surprises. Our algorithm is fasterthan RUS (k = 0)
up tom = 20, and consistently faster than our extrapolation of RUS. On the other
hand, DP is much slower and GREP is significantly faster than our algorithm.

Note that OURS shows jumps when we start using more computer words for the
simulation, and the lines stop when we need more than 6 computer words since, as
we explained, we coded the algorithm with up to that number ofwords.

As a final note, we remark that the best table partitioning choice never made
us use more than 5 megabytes of memory. This means that the best choices have
negligible preprocessing. This is expected, as a large preprocessing time means
that large tables are precomputed and hence the locality of reference to access
them is low, which worsens the search time in addition to the preprocessing time.

7. Conclusions

We have presented a bit-parallel algorithm to solve the problem of approximate
searching for regular expressions with arbitrary integer weights. The algorithm is
simple and has the same complexity of the best previous solution, O(mn/ logk s)
time with O(s) space. In practice, however, we show that our algorithm clearly
outperforms previous solutions.
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Fig. 10: Comparison for increasingm and fixed fractionk/m = 10% (left) andk/m = 20% (right).
We show densityα = 0.10.

In our way, we have found a new recurrence for the problem, where the current
values depend only on previous values. This is usually the main complication
when combining the circular dependence of the classical recurrence (current values
depending on current values) with the possible cycles of theautomaton. We believe
that our solution can be useful in other scenarios.

It is easy to extend the solution to the case where the regularexpression contains
classes of characters, that is, positions that match several possible characters. We
simply have to take the minimum over the characters of the class when precomput-
ing tablesI andS .

It is interesting that our solution is also relevant for approximate searching of
simple strings using arbitrary weights. Current bit-parallel solutions handle only
the case of unitary costs, or at most a fixed integer cost per operation [8]. Recently,
Bergeron [2] extended this result showing that, when all theinsertions and deletion
costs are fixed atc and substitution costs are arbitrary integers, a simple string can
be searched for inO(mnc log(c)/w) time. Our approach permits arbitrary insertion,
deletion and substitution costs and has better complexity given enough memory
space,s > c logc/ log2 k.

It would be interesting to study how one can take advantage ofthe simpler struc-
ture of a string pattern in order to simplify our algorithm inthis case. For example,
tableJ[C] is simply J[C] = C << (1+ ℓ). However, we have not found a relevant
simplification for tableH.

On the other hand, we have also shown that much better solutions exist for the
case of searching for regular expressions with unit-cost differences. Although these
solutions, also based on bit-parallelism, have worse complexity O(kmn/ log s), they
are significantly faster in practice. Despite that unit-costs is an oversimplification
for many real-world applications, a clear goal for future work is to develop an
algorithm whose efficiency approaches that of the best algorithms for the unit-
cost case. A way to simplify the computation of bit-parallelminimum would be
important in this sense.
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